Human Action Recognition Based on Sub-data Learning - Université de technologie de Troyes
Communication Dans Un Congrès Année : 2017

Human Action Recognition Based on Sub-data Learning

Yang Chen
  • Fonction : Auteur
Jiakun Li
  • Fonction : Auteur
Xiaowei Lv
  • Fonction : Auteur

Résumé

Human action recognizing nowadays plays a key role in varieties of computer vision applications while at the same time it’s quite challenging for the requirement of accuracy and robustness. Most current computer vision methods focus on algorithms designing classifiers with handcrafted features which are complex and inflexible. To automatically extract both spatial and temporal features, in this paper we propose a method of human action recognition based on sub-data learning which combines the proposed 3D convolutional neural network (3DCNN) with the One-versus-One (OvO) algorithm. We also employ effective data augmentation to reduce overfitting. We evaluate our method on the KTH and UCF Sports dataset and achieve promising results.
Fichier non déposé

Dates et versions

hal-03320698 , version 1 (16-08-2021)

Identifiants

Citer

Yang Chen, Tian Wang, Jiakun Li, Xiaowei Lv, Hichem Snoussi. Human Action Recognition Based on Sub-data Learning. Second CCF Chinese Conference, CCCV 2017: Computer Vision, Oct 2017, Tianjin, China. pp.617-626, ⟨10.1007/978-981-10-7305-2_52⟩. ⟨hal-03320698⟩
16 Consultations
0 Téléchargements

Altmetric

Partager

More