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Notations

General

smallcase Scalar

smallcase/boldface Vector

UPPERCASE/boldface Matrix

Image representation

x, X RAW image

y, Y Precover (unquantized values)

z, Z Cover

γ Prestego (unquantized values)

ζ Stego

n Number of elements (photo-site, pixels, DCT coefficients) in an image

m Number of elements of blocks/macro-blocks of a specified size in an image

i Used when indexing individual elements of an image

k Used when indexing vectors of elements of an image

Distributions

N Univariate or multivariate Gaussian distribution

N Quantized Gaussian distribution obtained with a uniform quantizer of step 1

P Poisson distribution

Functions

Φ Cumulative distribution function of the standard Gaussian distribution

DKL KL-divergence

Q Q-function or tail function of the standard Gaussian distribution





1Basic concepts of

steganography and

steganalysis

The goal of this opening chapter is to present the main problem under-

lying steganography and steganalysis. We present the main concepts

and provide an historic example of the game that takes place between

the two main protagonists of this game: Alice, the steganographer,

and Wendy the steganalyst. Chapter 2 and 3 introduce the discipline’s Some researchers also like to call the

steganalyst Eve in reference to the

analogous antagonist in cryptography.
main techniques and modern developments

1.1 The prisoner’s problem

The standard narrative which is used to introduce the symmetric prob-

lems of steganography and steganalysis is the prisoner’s problem [73]:

Alice and Bob have just been arrested and placed in separate cells.

Wendy, the warden of the prison, allows communication to occur be-

tween the two cells as long as it is performed on a channel where she

can access its content. Furthermore, if she is able to infer any criminal

intent on the part of either Alice and Bob, such as the communica-

tion of an escape plan for example, Wendy will immediately cut all

communications between the two parties and put them into solitary

confinement in order to prevent further escape attempts.

However, Alice does indeed have a plan of escape and wants to

communicate it to Bob. It is assumed that they both had time to share

a secret key, unbeknownst to Wendy, before incarceration. Alice’s

problem is now to find a way to communicate her plan to Bob without

getting caught by Wendy.

1.2 Steganography as a solution to the prisoner’s

problem

A naive solution to Alice’s problem would be to simply encrypt the

message using the secret key and send the encrypted message to Bob

on the public channel. However, such an encrypted message has, by

design, no apparent structure and is consequently highly suspicious

to Wendy: this not a acceptable solution to Alice’s problem. This

illustrates two majors points about the prisoner’s problem:

• The goal is not to conceal the content of the message but to conceal

the act of communication itself behind another, innocuous, act of

communication.

• Corollary to the first item, there is a fundamental social aspect
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Cover
medium z

Stego
object ζ

Message s

Public
channel

Secret key k

Stego
object ζ

Message s

Alice Bob

Wendy

Figure 1.1: The prisoner’s prob-

lem. The only way Alice can

communicate to Bob is through

a public channel under surveil-

lance by Wendy. Alice must find

a way to make her communica-

tion with Bob look innocuous to

Wendy.

to the prisoner’s problem since solving it necessitates to specify

what kind of communication can be considered acceptable in a given

context.

These points lead us to the definition of steganography:

Definition 1.2.1 (Steganography). Steganography is the discipline

concerned with the design of techniques which allow to conceal a piece

of information inside an innocuous piece of content which has to be

communicated through a insecure channel.

The piece of content chosen to hide the secret piece of information is

usually referred to as the cover medium which we abbreviate as cover

and denote using the letters y (when the image takes values in the

reals) and z (when the image takes values in the integers). Once it has

been embedded with the secret piece of information, the cover becomes

a steganographic object which we abbreviate as stego and denote using

the letters γ (when taking values in the reals) and ζ (when it takes

values in the integers).

There is a large choice of possible cover media in steganography, the

only requirement being that it must not be suspicious in the context

of interest. For example, sharing the result of a hundred coin tosses on

social media might be deemed strange enough to warrant investigation

whereas sharing digital images is a normal and accepted behavior in

such an environment.

In this manuscript, the cover medium of choice are digital images

since they are both plentiful and well accepted as a communication

medium in most online interactions. The main problem to solve then
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becomes the design of an algorithm which is able to encode a message in

a digital image while, at the same time, making this act imperceptible

to the Warden.

The notion of imperceptibility is quite nebulous for the moment. In

order to develop a useful notion of imperceptibility, we first study the

most basic steganographic technique which allows to hide information

in digital images: LSB replacement.

1.3 An example of steganography: LSB replacement

At its most fundamental level, a digital image is nothing else but a

vector z, whose components encode the light intensity at each image

location. In the case of color images, three such vectors of different col-

ors are super-imposed to create the full color images, while a greyscale

image uses only one such channel. To facilitate the discussion here, we

will consider a greyscale image.

Color image R, G, B channels Greyscale image

These intensity values are usually integers ranging from zero to 28−1
or 216−1 depending on the encoding choice. Now, each intensity value

zi can be written using a binary representation. For example a 8-bit

representation of zi uses a combination of bits bl ∈ {0, 1} such that we

can write:

zi =
8
∑

l=0

bl2
l (1.3.1)

Numbers expressed using this binary system are usually represented

as a sequence of 0 and 1 with the rightmost number (bit) representing

the lowest power of two:

010 = 000000002 (1.3.2)

810 = 000001002 (1.3.3)

910 = 000001012 (1.3.4)

Any message can be encoded using this scheme, we thus assume

that the stego message s to embed is also a binary sequence of zeros

and ones.

The most immediate – and naive – method to hide information in a

digital image is to choose randomly a series of indices i and to replace

the rightmost bit of zij by the j-th bit of the stego message sj . This
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results in the stego object ζ constructed as:

ζij =















zij + 1 if bij ,0 ̸= sj and zij is even

zij − 1 if bij ,0 ̸= sj and zij is odd

zij if bij ,0 = sj

(1.3.5)

for i ∈ i and ζj = zj , ∀j /∈ i.

Once the message is embedded – see Algorithm 1 for a pseudo-code

– the modified image is then simply sent to Bob through the insecure

channel. Assuming that the key provided to Bob is simply i, then

Bob can extract the message from the image by reading the bits in the

order provided by i – see Algorithm 2.

Taken at face value, this algorithm indeed solves the prisoner’s prob-

lem. By modifying only the rightmost bit of randomly chosen values,

we ensure that the modifications introduced to the cover are almost

invisible to the naked eye. Indeed, if the i-th intensity value of the

image was a medium grey with value 127 then the stego value in the

worst case is 128 which is a slightly lighter grey. The difference will

likely not be discernible:

(a) Cover z (b) Stego ζ

(c) z− ζ

Figure 1.2: Difference between a

cover and its stego counterpart

generated with LSB replacement

with a message size equal to the

number of pixels in the in the

cover (R = 1 bpp). The vi-

sual difference between the cover

and stego image is absent despite

pretty clear patterns when com-

puting the difference between

the two images.

Now if our chosen notion of imperceptibility would be visual im-

perceptibility, this would be an acceptable solution to the prisoner’s

problem. However, this assumes that Wendy is not aware that Alice

can use steganography to communicate her plans to Bob. This is not

assumed to be the case in practice and as we will see right now by

introducing steganalysis to the game, this renders LSB replacement

almost useless.
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Algorithm 1: LSB replacement – Embedding

Data: z: Cover, s ∈ {0, 1}R : Message to embed, k : Stego

key

Result: ζ : Stego object

// Initialize a pseudo-random number generator using

the stego key as the seed

n← size (z);

R← size (s);

i← Perm (n,k);

ζ ← z;

for j ← 1 to R do

ζij = zij + sj − (zij mod 2);

Algorithm 2: LSB replacement – Extraction

Data: ζ : Stego object, k : Stego key

Result: s: Extracted message

// Initialize a pseudo-random number generator using

the stego key to obtain the same permutation as

Alice

n← size (z);

i← Perm (n,k);

for j ← 1 to n do

mi = ζij mod 2;

// The first R elements of m make the hidden

message

1.4 Steganalysis as the adversarial counterpart of

steganography

Since Wendy is aware of the existence of steganographic techniques, she It is common to invoke Kerckhoffs’s
principle in steganography which
states that the steganalyst should
be aware of everything about the
steganography except for the cover

and the secret key. As we will see

in the next two chapters, this prin-
ciple is most of the time only par-
tially followed by practionners for the
evaluation of steganography. Indeed,
in practice, steganography is often
able to leverage information unavail-
able to the steganalyst to improve
security. Two majors examples be-

ing the knowledge of the processing
pipeline used to generate the cover and

the rouding errors of DCT coefficients.

See Section 2.4.

will perform an analysis of every piece of content that goes through

the communication channel. Her goal is to confirm, to the best of

her ability, that no hidden messages are present inside these pieces of

medium.

The problem that Wendy is trying to solve is studied by steganalysis,

the converse discipline of steganography, which is concerned with the

design of techniques able to detect hidden messages in cover media.

We will often make the semantic
distinction between the steganalyst,
which is the actual person performing
the steganalysis and the steganalyzer
which is the detector employed by the
steganalyst to perform the steganaly-
sis of a sample image.

In practice, steganalysis tries to leverage artifacts introduced by the

use of steganography. These artifacts are usually modeled as devia-

tions from known properties of the distribution of elements of natural

images, such as the distribution of the noise, distribution of neighbor-

ing pixels in smooth areas, etc. . . If we go back to our example of LSB

replacement, Wendy can indeed exploit the presence of pixel distri-

butions which are characteristics of this algorithm. To see why, it is

useful to observe what is called the Least-Significant Bit plane, or LSB

plane, of an image. It is the matrix built using the least-significant

bit of each pixel value. Now observe, in Figure 1.3, that the LSB-bit
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plane of a cover image has a specific structure in certain areas which

is completely lost for the stego object:

(a) Cover LSB plane (b) Stego LSB plane

Figure 1.3: Difference between

the LSB plane of a cover and

its stego counterpart generated

with LSB replacement with a

message size equal to the num-

ber of pixels in the cover (R = 1

bpp). Observe that all the struc-

ture of LSB in the sky section of

the image is lost in the stego im-

age.The areas which have this specific structure in cover images are

smooth and saturated areas where neighboring pixels have a high prob-

ability of having the same value, and hence the same LSB. Since LSB

replacement is blind to such local structure and will randomly flip bits

without regard to the value of neighboring pixels, it is easy in principle

to discriminate the two.

To make this idea precise, we can follow [72] and construct the

histogram of the values of the pixels over the cover and stego images.

Let the histogram of the cover image be written as:

hj =

n
∑

i=1

δ (zi − j) , (1.4.1)

where δ (.) is the Kronecker delta and n is the number of pixels in the

image. Assuming the hidden message length is R bits, observe that a

given pixel yi stays the same after embedding if (1) it was not selected

for modification, which happens with probability 1 − R
n or (2) it was

selected for modification but the LSB of the pixel matched the secret

message bit, which happens with probability R
2n . Consequently, we

have, for any j:

P (ζi = j|zi = j) = 1− R

2n
, (1.4.2)

P (ζi ̸= j|zi = j) =
R

2n
. (1.4.3)

Using these probabilities, we can compute the expected value of the

histogram of the stego object hs:

E
[

hs
2j

]

=

(

1− R

2n

)

h2j +
R

2n
h2j+1, (1.4.4)

E
[

hs
2j+1

]

=

(

1− R

2n

)

h2j+1 +
R

2n
h2j . (1.4.5)

(1.4.6)

In particular, in the limit where R = n, we have that:

E
[

hs
2j

]

= E
[

hs
2j+1

]

=
h2j+1 + h2j

2
, (1.4.7)

which can be interpreted as the fact that LSB replacement evens out

the histograms of cover images – see Figure 1.4. This model of the
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statistics of the stego object is exploited further in [28] to build an

histogram attack which is able not only to detect the presence of an

hidden message but also to quantify its length.
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(a) Cover
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(b) Stego

Figure 1.4: Magnified portion

of the histogram of pixel val-

ues for the cover and stego im-

age of Figure 1.2. Observe

the typical “staircase effect” on

the stego histogram: consecutive

pixel values tend to have a very

close number of occurrence con-

trary to the cover histogram.Many more attacks on LSB replacement have been devised during

the history of steganalysis showing its inadequacy as a secure stegano-

graphic technique. However it is a perfect illustration of what a good

steganographic technique must do to evade the steganalyst: (1) min-

imize the number of modifications to prevent deviating too strongly

from the cover model and (2) perform modifications which preserves as

much as possible the statistical properties of the cover medium. These

two aspects of steganographic design are the main subject of the next

chapter.





2Elements of imperfect

steganography

Imperfect steganography is a type of steganography performed by mod-

ifying an existing cover medium. For example LSB replacement is a

type of imperfect steganography. This is opposed to perfect steganog-

raphy which is based on either:

• selecting a cover which, incidentally, already contains the message

to be communicated,

• generating a stego objects which perfectly imitates a class of cover

while, at the same time, containing the message to be communi-

cated.

Perfect steganography is quite difficult to perform for natural im-

ages in practice, mainly because it is difficult to define exactly what

kind of statistical properties of images one should try to preserve in

practice. A common argument in the literature, taken from in [7][Sec-

tion 3.1.3], states that natural images are fundamentally incognisable,

which prevents building a general model describing them.

A notable exception of successful perfect steganography is Natu-

ral Steganography [75]. Instead of trying to imitate a full image, it

perfectly imitates the noise of an image at different ISO and thus al-

lows undetectable embedding. Sadly, Natural steganography can only

be used under a very specific context, namely if an image has been

developed using a specific linear pipeline.

Due to this difficulty of designing practical algorithm in the perfect

steganography paradigm, imperfect steganography has been the strat-

egy of choice for most modern works in steganography using natural

images. However, as we have seen, modifying cover elements without

a sound strategy can only lead to the steganalyst easily detecting the

stego object.

To solve this problem, all modern works1 using imperfect steganog- 1 By modern, I refer to works follow-

ing the landmark paper of Filler [25]
which fully defined the framework pre-

sented in Section 2.1 on which most of
steganography has been based since.

raphy follow the same core methodology: minimizing a function d

related to the empirical or theoretical detectability of the stego object

when facing a certain type of steganalyst. This optimization being

performed under the constraint that a message of a given size must

be embedded in the chosen cover – a constraint which we term the

payload constraint.

The performance of this strategy relies on two main pillars. The

first is the definition of d, that is, how well d captures the actual de-

tectability of the resulting stego object. Second is the coding method.

Indeed, most messages can be encoded in order to reduce their size

and thus reducing the number of embedding changes performed for a
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given payload. We will see in the next subsection that the design of d

can be made independently of the coding function and vice-versa.

Before describing the different types of steganography techniques

following this paradigm, we fix some notations for the rest of this

section. The cover image is modeled as a vector y ∈ U
n of n elements

where U can be either a subset of R or N. Similarly, the stego image is

modeled as γ ∈ U
n. The payload constraint is expressed as a positive

integers R ∈ N expressed in bits.

2.1 Steganography minimizing a heuristic cost

The first family of imperfect steganography we study is based on a

heuristic definition of detectability. Its detectability function d is usu-

ally referred to as the distortion function and denoted as D and is a

measure of discrepancy between the cover and a stego object created

from this cover:

D : Un × U
n → R

+

(y,γ) 7→ D (y,γ)
(2.1.1)

The goal of the steganographer is then to find a stego image that

minimizes this quantity. However, D does not apriori have a direct link

to either empirical or theoretical detectability since its definition is only

heuristic. Therefore, embedding schemes employing this method must

design and validate their choice of distortion function by testing the

resulting stego objects against the best practical steganalyzer available.

Consequently, such stego schemes can only be validated empirically.

Despite this limitation, numerous algorithms have been proposed

in the literature, with the most important ones being HUGO [66],

WOW [41],UED/UERD [39], UNIWARD [42] and HILL [56].

All these schemes have in common that their distortion functions

rely on the additive approximation:

Definition 2.1.1 (Additive property of the distortion function). A

distortion function D is said to be additive iff

D (y,γ) =

n
∑

i=1

D (y,y+ei (γ−y)) , (2.1.2)

where ei is a vector of size n containing only zeros except at index i

where it contains a 1.

In other words an additive distortion function assumes that the dis-

tortion can be computed as the sum of distortions obtained when mod-

ifying a single element in the cover image. This assumes a steganalyzer

which is unable to leverage interactions between embedding changes

to improve its detection performance. Even though this model is bla-

tantly incorrect in practice, it allows for tremendous simplification in

the design of stego algorithm as well as the derivation of important

theorems.
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In particular, any additive distortion function can be thought of as

associating to each cover element a cost ρ
(k)
i of modifying this element

by adding some value k:

ρ
(k)
i = D (y,y+kei) , (2.1.3)

with the convention that not modifying a cover element does not add

any distortion:

ρ
(0)
i = 0, ∀i. (2.1.4)

Consequently, the distortion between the cover and a stego can sim-

ply be rewritten as the sum of cost of modified cover elements:

D (y,γ) =
n
∑

i=1

ρ
(γi−yi)
i . (2.1.5)

(a) S-UNIWARD (b) HILL

(c) J-UNIWARD (d) UERD

Figure 2.1: Different cost maps

for the same image using dif-

ferent state of the art stegano-

graphic algorithms in the spa-

tial domain (a-b) and in the

JPEG domain (QF100) (c-d).

Notice how all the algorithm

favor embedding in areas with

strong edges (i.e. low cost at

the boundary of the skiers) and

strongly disfavor smooth areas

such as the snow.

Once a distortion function is defined, the steganographer must know

how much information a given set of modification allows them to hide.

This quantity depends on the coding method used but there exist a

universal lower bound on this quantity 2 which depends on the entropy 2 Usually referred to as Shannon’s
bound coming from his well known
Source Coding Theorem.

of the distribution of the modification:

Definition 2.1.2 (Binary entropy of a discrete source). Let X be a

discrete random variable taking values in X . Then its binary entropy,

expressed in bits, is defined as:

H (X) = −
∑

x∈X
P (X = x) log2 (P (X = x)) (2.1.6)

Note that we express this lower bound
only for the discrete case, even though
we assumed covers to be able to take
values in R or N. In practice, a digi-

tal image will always be shared using
discrete values. As such the payload

constraint must always be expressed in

the discrete domain. However, as we
will see in Part II of this manuscript,
we can design algorithms which com-
pute their detectability function in the
continuous domain even though their
payload constraint is expressed in the
discrete domain.

Theorem 2.1.3 (Optimal coding). The expected length R of any bi-

nary code for a random variable X is greater than or equal to the

entropy:

H (X) ≤ R (2.1.7)
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Proof. See [17, Theorem 5.3.1]

Consequently, even when using the best possible code, there exists

no distribution of the embedding changes which allows to hide less

than H (X) bits of information.

Now if we assume that the steganographer has access to the optimal

code, two possible strategies can be chosen;

Payload-Limited Sender (PLS) Finding the distribution π of embed-

ding changes that minimizes the distortion under a given payload

constraint R:

PLS :











min
π

Eπ [D] =
∑

γ∈Un

π (γ)D (y,γ)

R = H(π)

(2.1.8)

Distortion-Limited Sender (DLS) Finding the distribution π of the

embedding changes that maximizes the payload size under a given

distortion constraint D∗:

DLS :







max
π

H(π)

D∗ = Eπ [D]
(2.1.9)

Both these problems can be solved using the technique of Lagrange

multipliers which leads to the following fundamental theorem for steganog-

raphy based on heuristic costs:

Theorem 2.1.4 (Optimal distribution and separation principle). Let

y ∈ U
n be a cover and γ (y) the set of possible stegos obtainable from

this cover using a given embedding scheme. The solution π∗ to the

PLS and the DLS problem is given by:

π∗ (γ) =
e−λD(y,γ)

Z
(2.1.10)

where Z is the normalization factor:

Z =
∑

γ∈γ(y)

e−λD(y,γ) (2.1.11)

and λ is obtained from the payload or distortion constraint for the

PLS an DLS problem respectively.

Proof. See [25, Section II]

A direct consequence of this theorem is the separation principle: it

provides the optimal distribution of the embedding changes of a stego

with respect to (1) a given distortion function and (2) the optimal

coding method. In practice, imagine we use a practical embedding

scheme with a given distortion function and that we choose to use the

optimal distribution π∗. Let us then measure the empirical average

distortion E[D]. If it is higher than the expected theoretical distortion,

then we know the sub-optimality is caused by the coding method.
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Such a point of view allows to separate the design of the distortion

function, for which we can always obtain the optimal distribution of

embedding changes, from the design of the coding method.

In a research setting, in order to evaluate the performance of a

steganographic algorithm or of a steganalyzer we usually only simulate

an optimal embedding by making changes over an image by following

the optimal distribution of changes π∗. To do so, we use a useful

corollary of Theorem 2.1.4 for additive distortion function: A consequence of this corollary is that,
in the case of an additive distortion,
the embedding probabilities are de-
termined independently of the others.
Furthermore, the embedding modifi-
cations are sampled independently.

Corollary 2.1.5 (Optimal distribution for additive distortion func-

tion). Let D be an additive distortion function and A the set of possi-

ble embedding changes. Then the optimal distribution π∗ for the PLS

and DLS problem is the product of the marginal probabilities of each

embedding change in A:

π∗ (γ) =
n
∏

i=1

e−λρ
γi−yi
i

∑

k∈A e−λρk
i

(2.1.12)

This corollary allows to compute the probability of making a given

change at each pixel or DCT coefficient of an image using only the cost

map, provided the distortion function is additive.

2.2 Almost-optimal coding for practical embedding

Even though we only use simulations of embedding schemes in this

manuscript, it is important to understand how far current research is

in practice from the optimal coding bound. We only present a short

overview of the current state of the art method as a complete intro-

duction would necessitate lengthy developments in coding theory which

are out of the scope of this manuscript.

The landmark paper of Thomas filler in 2011 has proposed a coding

technique, termed Syndrom-Treillis Code [24] or STC for short, which

allows to find the stego object which contains a chosen message while

also providing a trade-off between computational complexity and cod-

ing optimality. That is, in theory, the STC allows to get as close as

one wants to the theoretical bound in Theorem 2.1.3.

The goal of the STC is to find γ such that the message s to be

communicated is a syndrome of a parity-check matrix P ∈ Al×L with

l < L:

Pγ = m. (2.2.1)

Since we have l < L, there exists multiple possible solutions to

Eq (2.2.1), but following the separation principle, γ should be chosen

to minimize the distortion of the cover image y.

Now, to solve this problem, the STC uses the classical Viterbi algo-

rithm – to find the best stego image y – combined with convolutional

encoding. Assuming that the distortion function is additive, the STC

uses a block-diagonal parity check matrix P built out of sub-matrices

P̃ ∈ Ah×w. The choice of w is directly constrained by L and l. On
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the other hand, h – termed the constraint length – is freely chosen by

the user.

An important result in convolutional codes is that the code ap-

proaches exponentially the optimal coding bound as the constraint

length increases. However, the complexity of the decoding operation

will also increase with the constraint length. Consequently, there is a

trade-off between optimality of the coding scheme and computational

complexity.

For a long time, the performance of the STC has been considered to

be so good that research on the subject of coding method in steganog-

raphy has, for all intent and purpose, stopped in favor of research on

the design of cost functions. However, a recent series of papers by Kin-

Cleaves [46, 47] has highlighted the importance of the coding loss of

STC with respect to empirical detectability, showing that some gains

are still possible and that this coding loss should be taken into account

by the researcher when simulating embedding schemes.

2.3 Steganography minimizing statistical detectabil-

ity

Despite the fact that heuristic methods in steganography led to em-

bedding schemes with state-of-the-art performance against empirical

steganalyzers, the approach is plagued by two fundamental issues.

First of all, there is no direct link between empirical or theoretical

detectability and the distortion function. For example, two stego im-

ages with the same distortion against a given cover can have wildly

different empirical detectability against a given steganalyzer. This

lacks of interpretability of the distortion function makes it difficult to

understand what design choice leads to better performance in the first

place.

This leads us to the second, even more concerning issue. The per-

formance of these embedding schemes is highly dependent on the ex-

perimental setting as was shown in [71]. In this paper, the authors

show that when tested on different datasets and when using different

steganalyzers, the ranking of tested steganographic schemes differed

wildly. This is exacerbated by the fact that distortion function pa-

rameters are usually optimized with respect to a given experimental

setting3. Therefore, heuristic algorithms cannot provide any guarantee 3 HILL is the paradigmatic stegano-
graphic algorithm of this strategy. It
was designed purely heuristically by
searching for the parameters of a given
set of filters which maximized security
against the Spatial Rich Model stegan-
alyzer.

of performance.

To solve these issues, another framework of imperfect steganography

as been devised, namely steganographic schemes minimizing statisti-

cal detectability. This trend began with the design of the Multivari-

ate Gaussian algorithm [29] which assumed cover elements to follow

an independent but not-identically distributed Gaussian model 4. The 4 Contrary to what the name suggests,
no dependencies between cover ele-
ments were taken into account.

authors then minimized the KL-divergence between the cover distribu-

tion and the stego distribution. As we show in this section, and as was

known at the time through the work of Cachin [11], the KL-divergence

is directly related to the performance of some type of optimal detector.

This work was subsequently refined up to the landmark paper [69] de-
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scribing the MiPOD algorithm. In this work, the steganalyst problem

is cast as a statistical hypothesis testing problem and an optimal de-

tector is derived that solves this problem. The steganographer’s goal

is then to minimize the power of this optimal detector while taking

into account the payload constraint.

The main limitation of these works is that their state-of-the-art per-

formance do not carry over to JPEG compressed image which are the

images of interest to the steganographer due to their ubiquity. One

of the main contributions of this thesis is to construct algorithms fol-

lowing this framework with state-of-the-art performance in the JPEG

domain – see Chapter 9 and 10.

In the rest of this section, we formalize this framework and pro-

vide a series of theorems which will be heavily used in Part II of this

manuscript where we present our steganographic algorithms. We begin

by formulating the steganalyst decision problem as an hypothesis test-

ing problem between two simple hypotheses and derive the optimal

detector under this setting by following the classic Neyman-Pearson

framework. We then derive some properties of this optimal detector

which will be useful throughout this manuscript. Finally, we cast the

problem of the steganographer as a constrained optimization problem

where the goal is to minimize the power of the optimal detector under

a given payload constraint.

2.3.1 Simple hypothesis testing

During the stego game, an image is presented to Wendy, the stegan-

alyst, ξ ∈ U
n. She assumes that ξ is generated by a random variable

with distribution Pθ where θ ∈ Ω ⊂ R
p is an unknown vector of p

parameters.

Her problem is to decide if ξ is either a cover or a stego image.

Therefore, she must choose between two hypotheses: H0, the image

is cover or H1 it is a stego object. In other words, she has to build

a test which discriminates between these two hypotheses. Let us first

formalize these two concepts:

Definition 2.3.1 (Hypothesis). Let Ωk ⊂ Ω. A parametric hypothesis

Hk is a proposition such that when it is true, there exist a vector of

parameter θk ∈ Ωk such that:

ξ ∼ Pθk
. (2.3.1)

If Ωk is a singleton, that is, if under Hk ξ can only follow a unique

distribution Pθk
, then the hypothesis is said to be simple otherwise it

said to be composite.

Definition 2.3.2 (Binary hypothesis test). Let H0 and H1 be two

hypotheses. Then a binary hypothesis test is a surjective (and measur-

able) mapping δ such that:

δ : U→ {H0,H1}. (2.3.2)

Obviously, many such tests exist, but Wendy wants to build an

optimal test. However, to determine optimality, we must first define
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what quantities we will measure to determine the performance of a

test.

The performance of an hypothesis test can be measured using the

notion of error. In our case, a test makes an error when it classifies an

image as stego even though it was really a cover – a false alarm – and

when it fails to detect a stego object – a non-detection error.

Formally such errors are defined as follows:

Definition 2.3.3. The error of the k-th kind of a test δ, happens when

a test rejects hypothesis Hk when it is true. For simple hypothesis tests,

the probability of error of the k-th kind, denoted as αk (δ), is defined as

the probability that the test rejects Hk when Hk is the true hypothesis:

Pθk [δ (ξ) ̸= Hk] = αk (δ) . (2.3.3)

In this manuscript we use the following conventions: α0 (δ) is named

the probability of false alarm and sometimes will be written PFA, α1 (δ)

is named the probability of non-detection and sometimes will be writ-

ten PMD. Finally, β (δ) ≜ 1 − α1 (δ) is named the power of δ and

sometimes will be written as PD.

Wendy must now choose a criterion of optimality with regard to

these two types of error. In a real-life situation, the cost of falsely

accusing someone of misdeed is considered very high for Law Enforce-

ment Agencies. That is, the cost of a false alarm far outweighs the cost

of non-detection. Furthermore, the probability of false alarm should

not only be small but also known with certainty and, if possible, chosen

apriori by the agent. Assuming Wendy works under these principles,

the optimality criterion can be formalized following one of the most

classic frameworks in decision theory, the Neyman-Pearson framework:

Definition 2.3.4 (Neyman-Pearson criterion of optimality). Let α0 ∈
(0, 1) be a fixed false alarm probability and let ∆ be the set of possible

tests. Then the optimal test in the sense of Neyman-Pearson is the

most powerful test in the set of test for which the false-alarm is bounded

by α0. Formally let this set be written as:

Kα0 = {δ ∈ ∆|α0 (δ) ≤ α0} . (2.3.4)

Then the optimal test δ∗ is such that:

∀δ ∈ Kα0
, β (δ∗) ≥ β (δ) . (2.3.5)

This criterion leads to a systematic method for building the optimal

test. This method is given by one of the most celebrated result in the

field of hypothesis testing:

Theorem 2.3.5 (Neyman-Pearson Lemma). Let Pθ0
and Pθ1

be two

distributions with density fθ0
and fθ1

respectively. Let α0 ∈ (0, 1) and

Kα0 = {δ ∈ ∆|α0 (δ) ≤ α0} . Let the likelihood ratio Λ (ξ) be defined

as:

Λ (ξ) ≜
fθ1 (ξ)

fθ0
(ξ)

. (2.3.6)
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Then the most powerful test δ∗ which discriminates between H0 and

H1 is the likelihood ratio test (LRT):

δ∗ (ξ) =







H0 if Λ (ξ) < τ

H1 if Λ (ξ) ≥ τ
(2.3.7)

where τ is a threshold such that:

Pθ0 [Λ (ξ) ≥ τ ] = α0. (2.3.8)

Proof. See the original paper [61, Section III]

We now provide several useful results on the properties of the LRT

that will be useful in the second part of this manuscript.

2.3.2 Properties of the likelihood ratio test

As a ratio of probability distribution functions, the LRT might lead to

somewhat difficult mathematical manipulation. Thankfully, it is pos-

sible to transform the LRT into forms more amenable to mathematical

analysis without losing any of its power by using the following result:

Proposition 2.3.6 (Invariance of LRT under bijective transforma-

tion). Let g be any bijective and strictly increasing function. Then

under the same settings as Theorem 2.3.5, we have that:

δ∗g (ξ) =







H0 if g(Λ (ξ)) < g(τ)

H1 if g(Λ (ξ)) ≥ g(τ)
(2.3.9)

has the same power as δ∗.

In particular, due to the heavy use of exponential families in statis-

tical modeling, the log function is often used.

Another important property of the LRT is its direct link to the

KL-divergence as shown by the following proposition:

Proposition 2.3.7 (LRT and KL-divergence).

EH0 [log (Λ (ξ))] = −DKL (fθ0 || fθ1) (2.3.10)

EH1
[log (Λ (ξ))] = DKL (fθ1

|| fθ0
) (2.3.11)

Proof. This result is trivially obtained by the following observation:

EH0
[log (Λ (ξ))] = EH0

[

log

(

fθ1

fθ0

)]

= −DKL (fθ0 || fθ1) .

(2.3.12)

And similarly for H1.

Now, one is often interested in computing the exact power of the log-

LRT as a function of the model’s parameters. The exact distribution

of the LRT under either hypothesis often don’t make this a simple

endeavor. However, it is often possible to invoke the central limit

theorem to compute the power of the LRT in the asymptotic regime

as the number of samples (usually DCT coefficients) tends towards

infinity.
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Theorem 2.3.8 (Linderberg’s central limit theorem). Suppose (ξi)1≤i≤n

is a sequence of independent random variables with finite expectation

E [ξi] and finite variance Var [ξi]. Denote s2 = limn→∞
∑n

i=1 Var [ξi].

Then under Lindeberg’s conditions:

∀ϵ > 0, lim
n→∞

1

s2

n
∑

i=1

E

[

(ξi − E [ξi])
2 · 1{ξi:|ξi−E[ξi]|2>ϵs2}

]

= 0 (2.3.13)

where 1 is the indicator function.

We have that:

n
∑

i=1

ξi − E [ξi]⇝ N
(

0, s2
)

, (2.3.14)

with ⇝ denoting convergence in distribution as n→∞.

Proof. See [23][Section 3.4.2].

A direct corollary for the power of the LRT can be easily derived:

Corollary 2.3.9 (Asymptotic power of the LRT). Suppose (Λ(ξi))1≤i≤n

is a sequence of independent random variables such that Λ(ξi)) is de-

fined in the same way as in Theorem 2.3.5. Suppose each Λ(ξi) has

finite expectation EH0
[Λ(ξi)] and finite variance VarH0

[Λ(ξi)] under

hypothesis H0 and similarly under H1. Then the asymptotic power of

the LRT is given by:

PD ≃ Q

















Q−1 (PFA)

√

√

√

√

n
∑

i=1

VarH0
[log Λ(ξi)] +

n
∑

i=1

EH0
[log Λ(ξi)]−

n
∑

i=1

EH1
[log Λ(ξi)]

√

√

√

√

n
∑

i=1

VarH1
[log Λ(ξi)]

















(2.3.15)

Proof. We first express the threshold τ as a function of the PFA:

PFA = P [δ∗(ξ) = H1 | H0]

= P

[

n
∑

i=1

log Λ(ξi) > log τ | H0

]

≃ Q

(

log τ −∑n
i=1 EH0

[log Λ(ξi)]
√
∑n

i=1 VarH0 [log Λ(ξi)]

)

⇐⇒ log τ = Q−1 (PFA)

√

√

√

√

n
∑

i=1

VarH0
[log Λ(ξi)] +

n
∑

i=1

EH0
[log Λ(ξi)] ,

(2.3.16)

where ≃ here means that we use the asymptotic distribution of the

LRT. We then plug it directly in the expression of PD:

PD = P [δ∗(ξ) = H1 | H1]

= P

[

n
∑

i=1

log Λ(ξi) > log τ | H1

]

≃ Q

(

log τ −∑n
i=1 EH1 [log Λ(ξi)]

√
∑n

i=1 VarH1
[log Λ(ξi)]

)

.

(2.3.17)



elements of imperfect steganography 27

Corollary 2.3.9 is quite useful as it allows to reduce the study of the

LRT to the study of only its first two moments under each hypothesis

which is further simplified by knowing that the expectation under each

hypotheses are given by the KL-divergence between each of the pdf.

Sadly, it is not always possible to invoke the central limit theorem,

as will be seen in Chapter 10. In these cases, we can still bound the

power of the LRT by the KL-divergence using a simple data processing

inequality:

Proposition 2.3.10 (Data processing inequality of hypothesis testing

[11]). Let H0 and H1 be two simple hypotheses with respective pdf of

their distributions denoted as fθ0
and fθ1

. Let δ be a test discriminat-

ing between H0 and H1. Also, let ϵ > 0. Now, suppose that:

DKL (fθ0
|| fθ1

) ≤ ϵ. (2.3.18)

Then the following inequality holds:

α0 (δ) log2

(

α0 (δ)

β (δ)

)

+ (1− α0 (δ)) log2

(

1− α0 (δ)

1− β (δ)

)

≤ ϵ. (2.3.19)

In particular, when the probability of false alarm is zero, that is,

when α0 (δ) = 0:

β (δ) ≤ 1− 2−ϵ (2.3.20)

Proof. See [11][Section 3].

A particularly useful application of this inequality for steganography

is the fact that minimizing the KL-divergence allows controlling the

maximum power of a given test.

2.3.3 Minimizing the power of the optimal detector

With all these new elements now defined, let us go back to the steganog-

rapher, Alice, who wants to design a steganographic algorithm with

security guarantees. To do so, she can leverage the results of the previ-

ous subsections. First of all, we assume again that the covers available

to Alice follow a unique distribution Pθ0 . Alice also assumes the worst-

case adversary against her steganography, that is, for each stego object

Alice generates, she assumes that Wendy is aware of all the parameters

relevant to the cover and to the generation of this stego object: the

distribution of the cover image Pθ0 , the distribution of the stego sig-

nal Pθ1
as well as the size of the payload R. Under these assumptions,

Alice knows that the optimal detector Wendy can use is the LRT δ∗

with power β (δ∗)

The problem of the steganographer can thus be formalized as the

following optimization problems:

PLS :







minθ1
β (δ∗)

R = H(fθ1
)

(2.3.21)
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DeLS :







maxθ1 H(fθ1)

D∗ = β (δ∗)
(2.3.22)

We will see in Part II of this manuscript that these problems are

often solvable using the technique of Lagrange multipliers.

2.4 Steganography using side-information

Up until now, we have considered that the steganalyst had access to

the same information as the steganographer. This is hardly true in

practice since the steganalyst often has only access to the final im-

age and possibly the metadata contained within. The steganographer,

on the other hand, can use RAW images taken with her own camera.

They can consequently have access to the RAW image, the processing

pipeline used to transform it into the final image and a lot of informa-

tion between these two states which are unavailable to the steganalyst.

We call any such information, which is available to the steganogra-

pher yet not recoverable perfectly by the steganalyst, side-information.

Side-information can take many forms in steganography but the

most popular form, and incidentally the one which is of most interest A very creative use of side-information
can be found in [19] where the authors
use multiple JPEG images of the same
scene to improve their steganography.

to us in this manuscript, is the access to the JPEG cover image before

the rounding operation. Such an image, usually referred to as the

precover and which we will denote as y, can be used to compute the

rounding errors r:

r = y− [y] = y−z. (2.4.1)

Now, how these rounding errors can be leveraged to improve steganog-

raphy ?

First, one has to imagine a setup where the steganographer captures

a RAW image x1 of a static scene. Now, imagine the steganographer

captures a second image x2 in exactly the same conditions. These

two images certainly have the same semantic content but they are not

strictly identical because of numerous sources of noise introduced both

by the quantum nature of light and by the camera sensor electronic

components. Therefore, for a given set of acquisition parameters, a Chapter 5 discusses at length these
different sources of noise and provides
a statistical model.

given static scene, and a given processing pipeline, there actually exists

a whole distribution of possible cover images.

There are at least two strategies to leverage this fact. Note that

whatever the strategy chosen, side-information has been shown to pro-

vide considerable increase in steganographic security.

2.4.1 Heuristic cost modulation

The first strategy is intuitive and heuristic: unrounded DCT coeffi-

cients which are on average close to the boundary of an integer bin

are more “unstable” in the sense that there is a high probability that

the rounded value between y1 and y2 differ because of small differ-

ences due to the noise – see Figure 2.2 for a visual explanation of this

phenomenon.



elements of imperfect steganography 29

zi zi + 1zi − 1

yi

−1 0 1

Figure 2.2: Without any more

information on the model of the

noise, we expect the unrounded

DCT coefficient yi to have a

higher probability in falling into

the bin closest to its value if

the image was to be slightly per-

turbed. In the setting of this il-

lustration, we expect that mod-

ifying the rounded DCT coeffi-

cient zi by +1 will be less de-

tectable than modifying it by

−1.

A natural idea is then to improve cost-based steganography algo-

rithm by modulating their cost depending on (1) the direction in which

the DCT coefficient is most likely to be rounded to and (2) the dis-

tance of the DCT coefficient to the bin boundary. This direction led

to a myriad of modulation strategies which usually fall into one of two

categories: binary SI embedding and asymmetric-cost SI embedding.

Binary SI embedding This strategy effectively forbids modification

which are not made in the direction of the rounding of the DCT coef-

ficient while also favoring modifications of costs close to bin boundary.

Assuming that the i-th DCT coefficient has a cost of modification ρi,

a classic example of this strategy is given by the following modulation

rule:







ρ
sign(ri)
i = (1− 2|ri|)ρi,

ρ
−sign(ri)
i =∞.

(2.4.2)

An example of this strategy can be found in [14].

Asymmetric-cost SI embedding In this strategy, no modification is

apriori forbidden, the cost is just modulated differently depending on

the direction of the modification. A classic example is the ternary

embedding strategy which is defined by the following rule:







ρ
sign(ri)
i = (1− 2|ri|)ρi,

ρ
−sign(ri)
i = ρi.

(2.4.3)

This is effectively the same rule as the binary embedding strategy

except that ρ
−sign(ri)
i is not modulated instead of being forbidden. No-

tice that the modulation is always less than 1,therefore the embedding

modification in the direction of the rounding will always be preferred

on average.

Further examples of this strategy can be found in [18, 42, 10]

with special mention to the minimum perturbation strategy presented
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in [10] which is the best performing heuristic known as of today.

2.4.2 Preservation of the statistical distribution of the precover

As is the case for the non side-informed case, the heuristic strategy

is problematic in the sense that the modulation of its cost cannot be

directly linked to empirical or theoretical detectability. A better way

would then be to derive mathematically a strategy of modification

which is directly linked to a statistical measure of detectability such

as the power of an optimal detector under a given model or the KL-

divergence between the cover and stego distribution.

Up until the work of this manuscript, this direction has seen very

few proponents. The only work, to the best of our knowledge, which

tackled this problem comprehensively is [21]. This work minimizes the

KL-divergence between the cover and the stego image using a model

of the rounding errors under a Gaussian model of the precover.

For technical reasons owing to the properties of the KL-divergence

and to the choice of the rounding-error model, the authors had to limit

themselves to a binary embedding strategy but found mathematically

the following strategy of modulation:







ρ
sign(ri)
i = (1− 2|ri|)2 ρi

ρ
−sign(ri)
i =∞

. (2.4.4)

This strategy led to very small empirical improvements compared

to the still current state-of-the-art SI-UNIWARD which, by default,

uses the ternary SI embedding strategy for modulating its costs, which

might explain the lack of interest in strategies of this type.

2.5 Conclusion

In this chapter, we have presented the two main strategies in designing

steganographic algorithms: the heuristic strategy and the statistically

informed strategy. We have shown that the heuristic strategy, though

quite successful in a laboratory setting, is limited in its real-world

applications by its lack of a strong link to either empirical or theoret-

ical detectability. The statistically informed strategy is, on the other

hand, able to provide security guarantees at the cost of specifying both

a cover and stego model that are accurate enough in a real-world set-

ting. It also has the advantage of providing both a systematic design

methodology and a theoretically sound way of assessing apriori the

performance of a steganographic algorithm through the derivation of

the optimal detector under the model of interest.

Up until the work presented in this manuscript, the main setback

of this method which prevented its adoption in the JPEG domain was

the lack of an accurate model of the noise of natural images. The goal

of Part I of this manuscript is to derive such a model, starting from

first principles, by studying how an image is captured and transformed

into a JPEG image. The second part of this manuscript leverages this

model in order to design steganographic algorithms which are able to
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provide security guarantees for a class of images far larger than what

was possible using the original MiPOD model in [69].

Finally, we have also shown how the steganography can leverage

some of the knowledge which is unavailable to the steganalyst, in par-

ticular the knowledge of the unrounded DCT coefficients. This knowl-

edge, termed side-information, if used correctly, allows tremendous

gains in security for steganography. Once again, there exist several

heuristic ways to utilize side-information, usually by modulating the

cost map depending on the rounding errors. However, a competitive

and statistically sound method had yet to be proposed.

The work in Part II of this manuscript tries to solve this problem by

finding the optimal modulation strategy under a certain model of the

cover and stego. This is done by minimizing the power of the optimal

detector as described in Section 2.3, but this detector is expressed in

the continuous domain, that is, in the domain of the precover, instead

of minimizing it in the domain of the cover which is usually quantized.

On the other hand, the payload constraint is expressed in the quantized

domain. This choice of methodology automatically provides embed-

ding probabilities that take into account the rounding errors without

having to state explicitly a modulation rule – we refer the reader to

Chapter 9 for more information.

We now go on to present the other side of the steganography game,

the detection of hidden data in cover media.





3Elements of modern

steganalysis

As we have seen in Chapter 2, modern steganography, compared to

the naive LSB replacement algorithm of Chapter 1, has developed

more and more powerful techniques in order to reduce the number of

embedding changes and to make those changes the least detectable

possible. These developments began to take place during the year

2010 and continue today with the advent of powerful cost learning

techniques based on neural networks [6]. As can be expected, the

development of steganalysis mirrors this history and is fueled by the

development of new steganography techniques.

The technique which marks the entry of steganalysis into its modern

phase is the combined use of the SPAM [65] steganalysis features with

the use of a Support Vector Machines (SVM). The SPAM features,

developed in 2010, are based on Markov-chain model of dependencies

between pixels and were the basis on which the HUGO steganographic

algorithm was built. Though largely obsolete nowadays, the technique

contains the two main elements that would be refined until 2016: (1)

the use of a heuristic, high-dimensional model of pixel dependencies

to handcraft features which are then fed to (2) a classifier trained in a

supervised learning framework. This set of techniques is presented in

Section 3.1.

The year 2015 marks the entry of steganalysis into a new phase as

it begins to leverage the recent advances in computer vision to build

the first convolutional neural network designed explicitly for steganal-

ysis – the Gaussian Neuron CNN [68]. However, its poor performance

compared the high-dimensional models of the time made it so that the

deep-learning approach did not become popular before the advent of

Xu-Net [84] in 2016 and its extension to the JPEG domain in 2017 [83].

The first iterations of Xu-Net merely incorporated the best practice of

neural-network design: the use of batch-normalization [44] and of the

ReLU activation function [59]. The extension to the JPEG domain

added shortcut connections between layers to prevent the vanishing

gradient problem, a common problem in deep networks where the gra-

dient at one point of the network becomes so small that the network

stops converging. However, Xu-Net retained one design peculiarity of

the Gaussian neuron CNN, namely the use of a pre-processing layer.

This layer consists of a series of high-pass filters reminiscent of those

used to build the high-dimensional feature sets in steganalysis. They

are meant to remove image content to facilitate detection of a stego-

signal. This design choice was entirely abandoned by the next big step

in steganalysis based on neural-network: SRNet [8]. The rationale

behind SRNet was to have a fully automatic, universal architecture
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for steganalysis where older architecture still relied on expert knowl-

edge. Consequently SRNet is mainly based on a classic ResNet archi-

tecture [40] without any pre-processing layer. Its main design choice

is to prevent any downsampling in the first layers of the network in

order to retain as much information as possible on local variations

in the image. This choice is motivated by the fact that contrary to

classic problem in computer vision, steganalysis has to deal with the

detection of very weak and localized signals. As of the writing of this

manuscript, the latest development is a result of the steganalysis com-

petition ALASKA2 [12] which took place in 2020. During the competi-

tion, most of the leading teams used the EfficientNet architecture [76]

which, contrary to every other neural network architecture used in

steganalysis until this time, was not specifically designed for steganal-

ysis. The main novelty was the use of transfer learning. EfficientNet

was first initialized with weights obtained by training it on ImageNet

for other computer vision tasks. It was then refined by training it to

discriminate between cover and stego images. This led to outstand-

ing performance, outperforming SRNet. Further improvements were

obtained by specific modifications to the architecture – see [86]. We

present the deep learning methodology in steganalysis in more detail

in Section 3.2.

3.1 Steganalysis based on handcrafted image features

A recurring theme in steganography and steganalysis is the difficulty

of modeling images. In particular, for steganography, it is difficult to

model the impact of several embedding changes on the statistics of an

image. As we have seen in Section 2.1, this difficulty led to heuristic

steganographic techniques to approximate their distortion function as

additive, thus foregoing the modeling of dependencies between cover

elements. Steganalysis based on handcrafted features leverages exactly

this weakness of the steganographic schemes. The main idea behind

the methodology is to build a model, not of the image itself which

would be too difficult, but of the dependencies between neighboring

cover elements once image content has been removed. As we will see in

detail in Part I of this manuscript, these dependencies are introduced

by the different steps of the processing pipeline used to go from the

RAW file to the final developed image.

The details of the methodology differ if the image is in the spatial

or the JPEG domain, but the main steps are as follows:

1. Residual extraction: the image is convolved by a series of high-pass

filters to obtain the so-called residual image defined as the differ-

ence between a denoised and the original image. This is performed

because the stego signal is a noise-like, weak signal hidden among

image content. Detection should thus be easier once the content

has been removed.

2. Feature construction: co-occurence matrices of different orders are

built using the residuals with each bin corresponding to a single
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feature.

3. Classification: a classifier is trained on pairs of cover-stego images

to discriminate between these two classes.

We develop each of these steps in the rest of this section and provide

examples.

3.1.1 Residual extraction

The extraction of residuals Rk of an image Y of size h×w is performed

using a series of convolutions with different linear filters Kk:

Rk = Y ⋆Kk (3.1.1)

Some feature sets also use some non-linear operations such as the

minimum or the maximum. Here are some examples:

SRM The Spatial Rich model is a feature set built for the steganalysis

of uncompressed images (spatial domain). It is built from 78 different

submodels built from high-pass linear filters and combination of these

filters, for example by selecting the maximum or minimum ouptput of

two different filters.

DCTR The Discrete Cosine Transform Residuals is a feature set built

for steganalyzing JPEG images. It uses a set of 64 filters corresponding

to the 64 DCT kernels as defined in Eq (6.1.26). Each of these filters

are then applied on the decompressed image of interest to obtain the

residuals.

GFR The Gabor Filter Residuals is an improvement on the DCTR

feature set which uses exactly the same algorithm except with different

filters. Instead of using DCT kernels, GFR uses a bank of so-called

Gabor filters [74] with different scales and orientations – see Figure 3.1.

Figure 3.1: Bank of 2D-Gabor

filters with different scales and

orientation.

3.1.2 Feature construction

Once the residuals have been extracted, the feature set is constructed

by computing co-occurrence matrices of these residuals. Such statistics

are prone to have many under-populated bins for signals with a large

dynamic range, consequently, the residuals are usually quantized and

truncated before constructing these co-occurrence matrices:

R̄k = TruncT

([

Rk

q

])

(3.1.2)

with q ∈ R, T ∈ N and

TruncT (x) =















x if − T < x < T,

−T if x ≤ −T
T if x ≥ T

. (3.1.3)
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A matrix of co-occurrence C of n dimensions is then built by se-

lecting two offset vectors δx and δy, then computing the entry at the

set of coordinates i ∈ {−T, . . . , T}n as:

Ci =

h
∑

x=1

w
∑

y=1







1 if Rk (x+ δx, y + δy) = i

0 otherwise
(3.1.4)

leading to a co-occurrence matrix with (2T + 1)n bins that corre-

spond to the final feature set once repeated values corresponding to

image symmetries are removed.

SRM The Spatial Rich Model uses four dimensional co-occurrence

matrices with a horizontal and vertical neighborhood, that is, for each

residual it computes two couples of vectors. For the horizontal neigh-

borhood, it uses δx =
(

0 1 2 3
)

and δy =
(

0 0 0 0
)

and

vice-versa for the vertical one.

DCTR The feature set of DCTR only builds histogram for each DCT

kernel and for each relative position of the pixel within an 8× 8 DCT

block. Some histograms are merged and symmetries are leveraged to

further reduce the dimensionality of the feature set.

3.1.3 Classification through supervised learning

Domain set X :
Images/ Features

Label set Y:
Cover/Stego

Training Set Classifier

Classification

function:
h : X → Y

Testing set
Evaluation:
ROC, PE , . . .

Figure 3.2: Diagram summa-

rizing the process of supervised

learning. A training set made

out of labeled examples is fed to

classifier which outputs a classi-

fication function which is then

evaluated on a testing set con-

taining samples not present in

the training set.

Once a feature set is associated to each image, the steganalyst must

devise a method to discriminate between feature sets coming from

cover images and those coming from stego objects. This is performed

in the framework of statistical supervised learning.

Following [72], the statistical supervised learning framework can be

formulated as follows:

The detector’s input The detector is assumed to have access to the

following elements/knowledge:

• Domain set: The set of objects the detector wishes to label. In our

case, the detector wishes to label images. These images might be

provided as is, in which case the domain set is U
n or they can be

provided as a feature set, for example, the rich models we have just

studied, in which case the domain set is Rd where d is the dimension
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of the feature set. To take into account all the possibilities, we refer

to the domain set in this subsection as X .

• Label set The set of possible labels or classes of the objects in the

domain set. In our case, the detector wants to discriminate between

cover and stego images. As such the label set is denoted as Y and

is equal to {Cover, Stego} or more simply and equivalently {0, 1}.

• Training data A finite sequence of nTRN pairs of labeled objects

TRN = ((xi, yi))1≤i≤nTRN where each pair belongs to X ×Y. In our

case this would be a dataset of images which are known as cover

and another datasets with images which are all stego objects. We

will often refer to TRN as the training set.

The detector’s ouput From its inputs, the detector has to learn a

method of classification, that is, a function h : X → Y associating to

each image a class, cover or stego. This function is meant to be used

to label new data which does not come from the training set.

A data generation model In this framework, each class is assumed to

be generated by a given probability distribution with pdf denoted as

P over the domain set X . We also assume that the data is generated

such that it is possible to define the true labeling function f : X → Y1. 1 Obviously this is too stringent of an

assumption. The theory usually com-
pares the learned function h to the

Bayes Optimal Predictor, which is the
detector providing the lowest possible
classification error under the distribu-
tion which generates the data. See
[72][Section 3.2.1] for more informa-
tion.

This function always outputs the label which corresponds to the true

class of the image. Note that the detectors has access to neither the

probability distribution nor to the true labeling function.

Performance metrics during training The performance of the detec-

tor is theoretically measured by the probability of (classification) error

P [h(x) ̸= f(x)] This metric is usually referred to as the generalization

error or risk in the literature. However, computing this error neces-

sitates access to P and f(x) which are not available to the detector.

Instead, the detector can rely on the empirical risk, which is the rate

of error of the detector on the training set:

LTRN(h) =
| {1 ≤ i ≤ nTRN|h(xi) ̸= f(xi)} |

nTRN
(3.1.5)

Sadly, minimizing the empirical risk is known to lead to overfitting,

that is, to a classifier overly specialized on the provided training ex-

amples but with poor performance on unseen data. To remedy this

problem, the main idea is to restrict the set of learnable functions H.
Such a restriction is referred to as inductive bias. The detector then

minimizes the empirical risk under this restricted set of functions. A

classic example of choice for H is given by linear classifiers which only

select functions which separate the domain set using an hyperplane.

Another standard way of introducing an inductive bias is by the use

of regularization.

Assessment of the generalization of the performance Once a detec-

tor has been constructed using the training dataset, its performance
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must be evaluated on unseen data to evaluate its generalization per-

formance. In an ideal world, the probability distribution and the true

labeling function would be known by the steganalyst and the gener-

alization could be computed exactly. Sadly this is not the case for

steganalysis since even when a good model of certain aspects of an

image is available, its parameters cannot be estimated perfectly.

Consequently, a standard set of metrics have been chosen along the

years for steganalysis which are used to evaluate steganalysis perfor-

mance 2. 2 For the reasons given in Chapter 2,
these metrics also serve to empirically
evaluate steganography security.

These metrics are computed on a set of images not present in the

training set, termed the testing set or held-out set. The labels of these

images are known to the steganalyst but not provided to the detector.

The performance of the detector can then be assessed in a variety of

ways. Steganalysis usually uses metrics derived from the false-alarm

rate P̂FA (cover classified as stego) and the non-detection rate P̂MD

(stego classified as cover):

P̂FA =
| {1 ≤ i ≤ nTST | h(xi) = 1 ∧ f(xi) = 0} |

2nTST
, (3.1.6)

P̂MD =
| {1 ≤ i ≤ nTST | h(xi) = 0 ∧ f(xi) = 1} |

2nTST
, (3.1.7)

where nTST is the number of images in the testing set and where we

assume that they are as many stego images as cover images. Observe

that we denote the false-alarm rate and the non-detection rate anal-

ogously to the probability of false alarm and the probability of non

detection as defined in Definition 2.3.3. This choice has been made to

highlight that P̂FA is nothing else than an empirical estimation of PFA

of the detector under the true data-generation model (and respectively

for PMD).

The false alarm rate of a detector can often be controlled by a

threshold chosen by the steganalyst, in which case, the Receiving-

Operating characteristic curve, or ROC curve, can be computed by

plotting the graph of 1− P̂MD as a function of P̂FA – see Figure 3.3.
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PFA

0.0

0.2

0.4

0.6

0.8

1.0

P
D

Figure 3.3: Example of a ROC

curve in blue. The area in red

correspond to the Area Under

the Curve or AUC and can be

used as a metric of the perfor-

mance of a detector.

Two main quantities are often used in steganalysis:

• AUC : The area under the ROC curve, which is computed as:

AUC =

∫ 1

0

(1− PMD)dPFA (3.1.8)

The closer to 1, the better the detector.

• PE : The minimum probability of error under equal priors (of an

image being cover or stego):

PE = min
PFA

1

2
(PFA + PMD) (3.1.9)

The lower, the better the detector.

It should be noted that PE is usually chosen as the metric of choice in

steganalysis and in steganography though this might only be a question
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of habit on the part of the community and the fact that it is easily

computed. However, other quantities which will not be used in this

manuscript but which are currently gaining some interest are the FP50

and MD5 quantities. FP50 is the probability of detection at a false

alarm rate of 50% and MD5 the number of missed detection at 5%

alarm rate. These quantities give a greater emphasis on the ability of

a detector to perform well at low false alarm rates.

The classifiers of choice for steganalysis before the advent of neu-

ral networks were the Ensemble Classifier [49] and the Low-Complexity

Linear Classifier [13]. The reason for the success of these two classifiers

is a direct consequence of the peculiarities of steganalysis as a classi-

fication problem. Indeed, steganalysis usually operates on datasets of

images containing between 10,000 and 100,000 images. Before neural

networks, a high-dimensional feature set had to be extracted for each

of these image, an already quite costly endeavor. The two aforemen-

tioned classifier both used “tricks” as to allow extremely fast training

and testing steps. The Ensemble Classifier builds a set of simple clas-

sifiers which operates only on a subset of the dimensions of the feature

set. The Low-Complexity Linear Classifier leverages cross-validation

to find a regularization parameter which leads to essentially the same

performance as the Ensemble Classifier.

3.2 Steganalysis using deep neural networks

Recent advances in image processing have shown the superiority of

deep neural networks for many vision and classification tasks; ste-

ganalysis is not exception to this trend as was explained in the intro-

duction. Since the focus of this manuscript is on steganography, this

section only presents the bare minimum required to understand the

steganalysis aspect of deep learning. For those readers interested to

the subject, we direct to the standard reference on the subject [38].

Classification for deep learning is no different than the supervised

methodology presented in Section 3.1.3. However, contrary to methods

based on handcrafted features, a deep learning architecture automat-

ically learns to extract features that allow a classifier to minimize a

given loss. The whole system of a deep learning network is based on

three main ingredients: an architecture, a differentiable loss function

and an optimization algorithm based on back-propagation.

3.2.1 Architecture of a deep neural network

At its core, a deep neural network is nothing but a series of parame-

terized functions applied on an input x:

The architecture usually ends with a linear classifier, the role of the

rest of the network being to learn a representation of the input which

is easily separable for the linear classifier.

The modeling power of neural networks comes in part from the fact

that each function is itself the composition of linear function hi with

a non-linear activation function σi:



40 statistical steganography based on a sensor noise model using the processing

pipeline

x g1 xt1
xtn−1 gn fθ (x)

fθ = gn ◦ gn−1 ◦ . . . ◦ g1

Input layer Output layerHidden layers

gi = σi ◦ hi (3.2.1)

Most popular networks for image processing tasks are a special type

of neural network, termed convolutional neural network.

These networks are built out of two main types of operations: dis-

crete convolutions and pooling operations.

Discrete convolution Convolution layers are made out of a learnable

kernel of size h × w, that is a matrix smaller than the actual input

of the layer with weights which are iteratively adjusted during the

optimization of the network. The kernel K is then convolved with the

input Xi using a sliding window:

Z = X ⋆K, (3.2.2)

Zi,j =

i+h
∑

k=i+1

j+w
∑

l=j+1

Xk,lKk−i,l−j (3.2.3)

In deep neural network, these layers are usually further parametrized

by a stride hyperparameter which controls how many elements are

skipped by the kernel when it “slides” across the image during the

convolution operation – see Figure 3.4-3.5. This allows to reduce the

output size of the layer, effectively subsampling the input and conse-

quently reducing the output.

(a) Step 1 (b) Step 2 (c) Step 3

Figure 3.4: Discrete convolu-

tion on input (red) of size 5 ×
5, padded to obtain an output

(blue) of size 5× 5.

Pooling operation Pooling operations are used to reduce the dimen-

sion of a layer while keeping as much relevant information as possible.

Similarly to the stride operations, pooling operations are important

to reduce the amount of parameters to learn in a neural network, and

hence the computational complexity of optimizing it. Two main types

of pooling operations are used in practice: average pooling and max
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(a) Step 1 (b) Step 2 (c) Step 3

Figure 3.5: Discrete convolution

on input (red) of size 5×5, using
a stride of 2 to obtain an output

(blue) of size 2×2. Observe how

every other element is skipped

due to the stride.

pooling. Average pooling reads values on a uniform grid with win-

dow size N × N and outputs the average value of each N × N non-

overlapping block – see Figure 3.6. Max pooling works in exactly the
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Figure 3.6: Results after dif-

ferent pooling operation. The

input matrix (left) is separated

into non-overlapping blocks by

color. Average pooling outputs

the average of each block and

max pooling outputs the maxi-

mum value.
same fashion but only the maximum value of each block. These oper-

ations are usually fixed and contain no learnable parameters.

3.2.2 Cross-entropy as a loss function

Once a network architecture is fixed, a loss function must be chosen to

evaluate the performance of the network on the training set and allow

for an iterative optimization process. As we will see in the next sub-

section, the optimization of a neural network rests on the computation

of a gradient with respect to the loss. Consequently, the chosen loss

function must be differentiable.

By using the learning framework presented in Section 3.1.3, a nat-

ural loss function can be derived. First, recall that the goal of our

neural network is to approximate, as well as possible, the true labeling

function f . The main problem is that this function does not apriori

have any structure which makes the problem quite difficult. An easier

problem would be for our neural network to learn the data-generation

model conditioned on the current sample. Such a problem is far simpler

due to the fact that we are now restricted to the class of probability

distribution functions parameterized by the parameters θ of the net-

work which we denote as pθ. However, we don’t have access to the true

data generation model ; we only have access to a training set which

has been generated by it. If we assume that the training set is a good

representation of the true data-generation model, then we can settle

with the network learning the empirical probability distribution of the

data of the training set, which we denote as pdata.

A fairly standard approach to find a good set of values for θ is to use

the maximum-likelihood principle, that is, searching for the parameters

which maximize the probability of observing the true label given the
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sample. Assuming the samples are independent we can write:

θ∗ = argmax
θ

nTRN
∏

i=1

pθ (yi | xi) (3.2.4)

= argmax
θ

1

nTRN

nTRN
∑

i=1

log pθ (yi | xi) (3.2.5)

≃ argmax
θ

Epdata
[log pθ (x | y)] , (3.2.6)

where the last line assumes a large sample regime.

It is also easy to show that maximizing the likelihood in this setting

is actually identical to minimizing the KL-divergence between pθ and

pdata:

min
θ

DKL (pdata (x | y) || pθ (x | y))

= min
θ

Epdata
[log pdata (x | y)− log pθ (x | y)]

= min
θ
−Epdata

[log pθ (x | y)]

= max
θ

Epdata
[log pθ (x | y)]

(3.2.7)

Consequently, if we want to follow the maximum likelihood princi-

ple, a natural loss function is the KL-divergence between the empirical

distribution of the training set data and the probability distribution

given as an output of the neural network. An equivalent loss function

as is shown in Eq (3.2.7) is the cross-entropy −Epdata
[log pθ] which is

differentiable and therefore usable as a loss function.

3.2.3 Optimization

Arguably, the most important part of the network, the optimization

algorithm, allows to find the set of parameters for which the loss is

minimal. Neural networks usually use a combination of stochastic

gradient descent (SGD) combined with a backpropagation algorithm,

allowing to process huge datasets in a relatively short amount of time.

Stochastic gradient descent To find the values of the parameters θ

which minimizes the cross-entropy, a neural network follows an itera-

tive procedure where, at each step, each parameter is updated in the

opposite direction of its gradient with respect to the loss: This choice is due to the fact that this
is the direction that leads to a local

minimum of the loss function.
θt+1 = θt−η∇θl (θt,xt) . (3.2.8)

where xt is the input to the network at step t and η is real hyperpa-

rameter usually called the learning rate for reasons we will see shortly.

The specificity of stochastic gradient descent is that a random subset

of the full training set x – called a mini-batch – is chosen as input to

the network at each iteration instead of full training set. Since the gra-

dient is only computed on this subset, we only get an estimate of the

average value that would be obtained using the full training set. This
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leads to different convergence behaviors of stochastic gradient descent

depending on the size of the mini-batch:

(a) SGD small batch size (b) SGD large batch size

(c) Deterministic gradient descent

Figure 3.7: This figure illus-

trates the behavior of stochastic

gradient descent depending on

the size of the mini-batch. The

black curve corresponds to level

set of the loss function, with the

center being a local minimum.

The colored curve represent the

trajectory of the loss at each

optimization step. As can be

observed the smaller the mini-

batch size, the noisier the tra-

jectory of θ. Notice also that

the smaller the mini-batch size,

the larger the radius of the ball

of values in which the value of θ

might end up.At this point, the reader might wonder what is the point of using

mini-batches instead of the full training set. The answer is that this

considerably reduces computation time as the network only has to pro-

cess a small part of training set. Furthermore, it is possible to improve

SGD convergence without increasing the mini-batch size. Indeed, ob-

serve that if we divide the learning rate η by two, and perform two

steps of SGD, we effectively performed one step of SGD using learning

rate η except we “averaged” the loss over two different mini-batches,

effectively reducing the noise in the gradient at the cost of more com-

putation. Also note that using a noisy version of the gradient allows,

to some extent, to escape local minima of the loss function.

(a) SGD large η (b) SGD small η

Figure 3.8: Illustration of the

impact of the reduction of the

learning rate which has a simi-

lar (but not equal !) effect than

a larger batch-size.

Note that, in practice, more sophisticated variants of SGD than

the one presented here are used, such as Adam [48] or Momentum

SGD [36].

Backpropagation We now know how to use the gradient in order to

minimize our loss function. However we still need to compute the

gradient itself. Thankfully, the structure of a neural network allows the

use of a simple and efficient algorithm to do so: the backpropagation

algorithm [54].
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The backpropagation algorithm leverages the chain rule of calcu-

lus in order to compute the gradient of the loss with respect to the

parameters ∇θl (x).

In our setting, let zj = gj ◦gj−1◦ . . .◦g1(x) be the output of the j-th
layer for a given input x. Then the chain rule allows us to compute

the i-th entry of the gradient ∂l
∂θi

as:

∂l

∂θi
=

n
∑

j=1

∂l

∂zj

∂zj
∂θi

. (3.2.9)

This reduces the problem to computing
∂zj
θi

and ∂l
∂zj

which can be

both be precomputed analytically or automatically and evaluated us-

ing the output of the network at various stages of the computation.

3.3 Conclusion

In this chapter, we presented the state of the art in steganalysis. It is

based on different flavors of supervised learning. Up until 2016, ste-

ganalysis was dominated by the use of so-called rich model. They are

high dimensional feature sets built out of high-order statistics on image

residuals obtained by passing the image through a collection of high

pass-filters. These feature sets were handcrafted to remove semantic

content as much as possible and to capture neighborhood dependencies

which were not taken into account by the steganography at the time.

These feature sets are then used to train a – possibly linear – clas-

sifier which has to discriminate between features coming from cover

and stego images. Starting from 2016, deep neural networks began

to surpass the state of the art of steganalysis, be it in the spatial or

JPEG domain. These networks remove the need for designing features

sets by automating this step completely. This is done through a clever

combination of the stochastic gradient descent and back propagation

algorithms. This is at the cost of the need to design the architecture

of such networks which is based on stacking different layers of linear

functions and non-linear functions.



4Impact of the image source in

steganalysis

The story of this manuscript begins in the context of 2017. At that

time the use of deep learning networks for steganalysis was only in

its infancy and the use of rich models was still the norm. But what

really defines this period for steganography and steganalysis is its high

level of standardization regarding the evaluation of the performance of

steganalyzers and steganographic schemes. During that time, all meth-

ods in steganography and steganalysis were evaluated using BossBase

dataset built during the BOSS steganalysis competition of 2010 [5].

This dataset is composed of 10000 greyscale images taken with 7

different high-end reflex cameras and developed using the very same

code from the original RAW files.

Now, such a dataset obviously does not reflect the diversity of nat-

ural images which can be found online. If one looks at mainstream

social media such as Facebook as well as at platforms dedicated to

photography such as Flickr, cameras can go from high end to very low

quality sensors such as those found on smartphones and one can even

find some exotic sensors such as those of the Fujifilm cameras. This

diversity is absent from the BOSS dataset which only contain images

taken from consumer-grade cameras – with the exception of the ex-

pensive Leica M9 which falls in the category of sensors with a peculiar

behavior as shown in [20][Figure 2].

Regarding the standard processing pipeline of the BOSS dataset, it

does not include many of the common operations usually performed

on real-world images such as denoising, sharpening and it uses a demo-

saicking algorithm, PPG, which was already outdated by 2017 stan-

dards.

All in all, the world described by BossBase represents only a small

subset of real world images, heavily biased toward the state of pho-

tography of the year 2010 and to the specific needs of a steganalysis

competition. The reader, at this point, might rightly ask how this

could have been a problem in practice when, even in 2017, a plethora

of image datasets composed of a few million images were freely avail-

able to anyone who needed them, for example the popular ImageNet

was made public as soon as 2009 [22]. As a matter of fact, the use of

such datasets was not (and is still not) standard in steganography and

steganalysis for reasons we will provide shortly. The resulting problem

from the hegemony of a single standard, small and biased dataset was

that steganographic algorithms were designed using their performance

on Bossbase as feedback and steganalysis was consequently only evalu-

ated on the dataset for which these algorithms were designed for. The

generalization properties of this setting first strongly put into question
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with works such as [71] which showed that when BossBase was de-

veloped differently from the standard processing pipeline, the ranking

of different steganographic algorithms in terms of security could be

completely flipped.

Why then datasets with such a low diversity were used? It mainly It should nevertheless be acknowl-

edged that such a standard dataset
was also quite useful for benchmark-

ing purposes.

comes from the fact that, at least until the advent of deep learning,

steganalysis was unable to cope with highly heterogenous datasets. In

particular dealing with images of different size in the same dataset was

costly and difficult and the routine extraction of high-dimensional fea-

tures on million of diverse images was out of reach of most researchers

in the discipline and the steganalysis performance on such datasets

was quite poor.

However, since most steganographic schemes relied on steganaly-

sis to evaluate their performance as we have explained in Chapter 2,

a dataset where steganalysis was easy to perform and had reliable,

known performance was needed. The causes of this lack of perfor-

mance on real-world datasets were not fully understood at that time.

However, it had already been linked to the phenomenon of cover-source

mismatch, detailed in the next section, which is the starting point of

the theoretical models of natural images of this thesis.

4.1 Heterogeneity of datasets and the phenomenon

of the cover-source mismatch

One could be tempted to end this story with the advent of deep learn-

ing techniques and methodologies which allow to train a classifier on

datasets containing more than a million sample with relative ease. This

should intuitively allow us to capture the heterogeneity of the datasets

and thus limit the generalization error.

Sadly, this is not the whole story, and to understand why, we must

now turn to the phenomenon of cover-source mismatch in steganalysis.

This phenomenon was first documented in [37] where it was ob-

served that training a classifier on a dataset containing images only

taken with a given camera CAM1 and testing it on a second dataset

built only using another camera CAM2 led to far worse performance

than when the classifier was tested on a dataset built only with CAM1.

This issue became even more evident during the BOSS competition

where the organizers added images in the testing set which were taken

with a camera not present in the training set. This led to a large drop

in steganalysis performance on these very images. What is often less

highlighted is that these outliers were not only taken with a unknown

camera, but that they had all followed a double JPEG compression

contrary to the other images which were simply JPEG compressed

once. This shows that the processing pipeline might also play an im-

portant role on steganalysis performance.

The work in [50] studies this phenomenon by focusing mainly on the

impact of different cameras, though it incidentally shows the greater

impact of different processing pipelines on the effects of cover-source

mismatch. The same authors also studied the effect of different resizing
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algorithms on steganographic security, demonstrating the key role of

the processing pipeline.

However, until our series of work [34, 35], there had been no system-

atic study of the impact of the different properties of natural images

on cover-source mismatch. This lack of knowledge on the underlying

causes of this phenomenon led to the impossibility of devising a the-

oretically sound method of constructing a training set that would at

the same time limit the performance loss on unseen data while also

limiting the number of samples needed. At the very least, it was im-

portant to understand on what type of images a classifier trained on a

given dataset could be expected to perform well.

Our starting strategy to limit the impact of cover-source mismatch

was to identify the source of images in given test set in order to build

a bespoke training set. But this begs the question: what is the source

of an image ? This is the question which we try to answer in the rest

of this chapter.

4.2 What is a source ? A preliminary definition

The first step in defining the source of an image is to list and categorize

all the parameters that play a role during the generation of a natural

image. We claim that only three categories suffice to describe all these Note that we will keep a birds-eye
view of natural image generation in

this chapter. The intricacies of each

step of the process are analyzed in de-
tail in the chapters of Part I of this
manuscript.

potential parameters:

• Semantic content : This refers to the scene represented by the image.

More precisely, it is the signal transmitted and received as light by

the camera’s sensor.

• Acquisition parameters : This refers to all the parameters of the

camera which are fixed in order to capture the signal of a given

scene such as the camera sensor model, the ISO setting, the lens,

the exposure time or the aperture.

• Processing parameters: This refers to all the parameters of every al-

gorithms used to transform the RAW image captured by the camera

into the final processed image.

This categorization leads us to the following definition of the source

of an image:

Definition 4.2.1 (Source). A source can be defined as a set of ac-

quisition parameters combined with a set of processing parameters that

generate cover objects such that for a given semantic content, the suc-

cession of acquisitions forms a stationary signal.
Note that this definition states that
semantic content is not part of the
source.

Obviously, such a definition is far too comprehensive to be of any use

to the steganalyst in practice. However it provides a clear framework

to the researcher for testing different parameters and measure their

impact on steganalysis performance.

Our series of work [34, 35] tries to provide a systematic and empiri-

cal study of these parameters. We summarize (and update) the results
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in Section 4.3. Before going on with the experimental study, we pro-

vide some definition to characterize the different types of difficulties

introduced by a source for steganalysis.

Definition 4.2.2 (Intrinsic difficulty). The intrinsic difficulty can be

defined practically as the prediction error (for example PE, as defined

in Eq (3.1.9)) for binary classification when both the training set and

the testing set come from the same source. The more important the

prediction error, the larger the difficulty.

Definition 4.2.3 (Source inconsistency). The inconsistency between

sources A and B is defined as the absolute difference between the pre-

diction error when training and testing a classifier on a dataset source

generated with source A and the prediction error when training a clas-

sifier on source B but testing it on a dataset generated with source

A.

4.3 Experimental exploration of the impact of dif-

ferent parameters on steganalysis

The choice of studying only the camera sensor and ISO setting for

the acquisition parameters might be surprising. This choice, at first,

stemmed from the fact that preliminary experiments showed not con-

sistent patterns with regard to the impact on intrinsic difficulty or

source inconsistency when fixing other acquisition parameters. The

underlying cause of this fact is somewhat hidden by the choice of our

categories.

Indeed, the choice of lens, exposure time and aperture, though a

choice of acquisition parameter to the photographer actually affects

the semantic content of the image as all these parameters control how

much and how the light is captured by the camera. As we will see,

the camera sensor and ISO are on the other hand related to the noise

of the image which we claim to be the main source of cover-source

mismatch in natural images.

4.3.1 Experimental setting common to all experiments

Several datasets are built by fixing different parameters. Each dataset

is composed of 10,000 cropped JPEG cover images of dimension 264×
264 and their 10,000 stego counterparts. A training set is built out of

70% of a given dataset, while the rest corresponds to the testing set.

For each experiment, we always produce a dataset composed of

10,000 images called MIX which is built by taking the same number of

images in each individual datasets so that the class of images generated

from a given set of parameter is balanced with each other class.

Steganalysis is always performed by using EfficientNet-b3 [76] in its

original configuration with the exception that the stem stride is set to

1. The starting learning rate is set to 0.25 and divided by 2 on each

loss plateau. Due to some datasets being more difficult than others,

we performed curriculum learning by starting on images embedded
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with a payload of 0.7 bits per DCT coefficients (bpc) followed by 0.5

bpc and finally 0.3 bpc. With the exception of an especially difficult

processing pipeline, this ensured the convergence of the networks for

each datasets.

Steganalysis performance is presented as a table of PE – see Eq (3.1.9)

– where the rows correspond to the training set and the columns to the

testing set. The intrinsic difficulty of each dataset can be read on the

diagonal of the table while source inconsistency is read by columns. To

facilitate the reading of the numerous results, we subtracted the PE

of non-diagonal entry by the PE of its corresponding diagonal entry:

each non-diagonal entry thus directly refers to the source inconsistency

between the training and testing set.

4.4 Acquisition parameters

4.4.1 Camera and ISO

To study the impact of the camera we selected five cameras of varying

quality which are presented in Table 4.1. With the exception of the

Canon EOS 500D, we have tried to keep the ISO relatively low, how-

ever one should understand that even if two cameras use the same ISO

setting, the resulting noise will most certainly be different. As such,

it is difficult to study the impact of the camera in isolation from the

ISO. Therefore, the source inconsistency should here be interpreted We explain the cause of this difficulty

in Chapter 5 when constructing the
model of the noise in the RAW do-

main.

as stemming from both the camera and ISO. All images were devel-

oped using Rawtherapee 5.8, in its default settings using the Amaze

demosaicking algorithm. We chose to use the current state of the art

steganographic algorithm for non side-informed JPEG steganography,

J-UNIWARD [69]. Results are presented in Figure 4.1.

Camera name ISO Year Sensor size (mm) Megapixels

Canon EOS 500D 1600 2009 22.3× 14.9 15.1

Lumix DMC-GM1 200 2013 17.3× 13.0 16

HTC One A9 93 2015 7.1 (total) 13

Apple iPad Pro 20 2015 4.80× 3.60 12

Nikon D610 100 2013 35.9× 24 24.3

Table 4.1: Characteristics of the

different camera sensors used in

the experiments of this chapter.

MIX Canon 500D DMC-GM1 HTC A9 Ipad Nikon D610

MIX 10.6 +3.6 +2.2 +2.9 +3.3 +0.9

Canon 500D +12.7 16.8 +27.9 +18.9 +18.1 +13.0

DMC-GM1 +6.4 +15.2 6.0 +9.4 +5.1 +1.1

HTC A9 +8.4 +5.5 +10.1 10.5 +7.4 +9.0

Ipad +9.2 +5.4 +4.5 +7.8 10.2 +3.5

Nikon D610 +19.8 +27.5 +16.1 +26.4 +23.7 1.6

Figure 4.1: Table of PE for dif-

ferent cameras embedded with

J-UNIWARD at payload 0.3bpp

and steganalysis performed with

EfficientNet-b3.
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A first overall observation of these results is the large diversity of

both intrinsic difficulty and source inconsistency even when the pro-

cessing pipeline is fixed. It is difficult to attribute the intrinsic difficulty

to either the camera or the ISO setting. For example, the iPad Pro

and the HTC One A9, being handheld devices, have both low quality

camera sensors and yet, despite the ISO of the HTC being higher than

the ISO setting of the iPad, they both have the same intrinsic difficulty.

On the other hand, the Canon EOS 500D, which has quite a high ISO

setting compared to the other cameras, clearly has the highest intrinsic

difficulty among these datasets. Consequently, we can conclude that

both parameters play an important role here.

Regarding source inconsistency, it is almost always larger than 5%

irrespective of the camera. An interesting case is that of the Nikon

D610, the highest quality camera among those studied here. First

it has the lowest intrinsic difficulty compared to the other cameras.

This is most likely due to the quality of the sensor leading to almost

noiseless images at low ISO. Secondly, it has a somewhat low source

inconsistency with other sources but it leads to very high inconsistency

with other datasets when it is used as the training set. This shows that

even if a dataset has low source inconsistency with other sources, it

might still be an extremely bad choice as a training set.

Finally, the MIX strategy seems excellent at mitigating the impact

of cover-source mismatch in this case as it always leads to smallest

source inconsistency when used as a training set.

4.4.2 ISO

The impact of the ISO is easier to study in isolation by fixing the

camera. Therefore we used two in-house datasets termed M9Base1

and M9Base2 taken with a single Leica M9 camera. These dataset

were made by photographing exactly the same scenes at different ISO

which allows us to isolate the impact of the ISO from every other

parameter. Once again, all images were developed using Rawtherapee

5.8, in its default settings using the Amaze demosaicking algorithm.

MIX ISO160 ISO320 ISO640

MIX 19.3 +2.3 +1.5 +5.0

ISO160 +1.8 10.5 +2.0 +8.9

ISO320 +2.9 +4.5 7.3 +8.0

ISO640 +0.5 +9.7 +4.5 18.7

Figure 4.2: Table of PE for

different ISO on M9Base1 em-

bedded with J-UNIWARD at

payload 0.3bpp and steganalysis

performed with EfficientNet-b3.

As expected, the higher the ISO, the higher the intrinsic difficulty

of the dataset. See for example in Table 4.1 where we go from an

intrisinc difficulty of 10.5% at ISO160 up to 18.7% even though both

the camera and the content of images are fixed.
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MIX ISO500 ISO1000 ISO1250

MIX 17.5 +3.2 –0.9 +1.8

ISO500 +2.0 15.5 +2.1 +5.6

ISO1000 +3.8 +7.9 18.0 +2.0

ISO1250 +2.0 +8.1 –1.8 19.9

Figure 4.3: Table of PE for

different ISO on M9Base2 em-

bedded with J-UNIWARD at

payload 0.3bpp and steganalysis

performed with EfficientNet-b3.

Also notice that semantic content does play a role here as images

in M9Base2 taken at ISO1000 have an intrinsic difficulty similar to

M9Base1 taken at ISO640.

In this setting, it looks like source inconsistency is always the lowest

when using the MIX strategy, that is when training on a dataset where

all the different ISO are present. However it should be noted that even

in this case, source inconsistency can still be pretty high with values

which can go up to 5% in the case of ISO640.

4.4.3 Processing pipeline

Finally, in order to study the impact of the processing pipeline, we

fixed the camera and ISO of each dataset while performing different

kinds of processing operations for each dataset.

Seven different processing pipelines using either Rawtherapee 5.8

(RT) or the rawpy library were chosen. In the case of Rawtherapee,

each pipeline uses the default settings (using the Amaze demosaicking

algorithm) while varying a single algorithm. In the case of rawpy,

every setting is turned off, except for the white balance which is set in

camera mode.

We now describe each of the pipeline:

• Three demosaicking algorithms: Amaze (RT), Bilinear (rawpy) and

PPG (rawpy). The Amaze algorithm is one of the current state

of the art among (open-source) demosaicking algorithms. The PPG

algorithm is a simpler and faster algorithm which is used to generate

BossBase. Finally, the bilinear algorithm (simplified as LIN) is the

simplest and fastest non-trivial demosaicking algorithm possible, at

the cost of large loss of quality compared to the other two.

• One sharpening algorithm from RT with two sets of parameters –

USM soft and USM hard. The algorithm is a modified version of

the classic Unsharp Mask algorithm [67] used to enhance the edges

and contrast of an image. The first set only applies soft sharpening

while the second applies very aggressive edge enhancement. The

latter amplified the noise so much that our network usually did not

converge due to resulting difficulty of the dataset. In theses cases,

we omit to present the results.

• One denoising algorithm from RT with two sets of parameters –
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DEN soft and DEN hard. The algorithm uses the Directional Pyra-

mid Denoising based on wavelet decomposition [62].

MIX Amaze LIN PPG USM soft USM hard DEN soft DEN hard

MIX 10.0 +3.4 +1.0 +1.3 +1.5 * +1.9 +0.6

Amaze +14.4 10.2 +14.4 +24.2 +3.5 * +8.8 +28.0

LIN +31.6 +32.4 0.3 +37.3 +26.1 * +34.4 +34.2

PPG +19.6 +30.0 +15.8 2.7 +23.7 * +30.5 +22.2

USM soft +18.8 +6.7 +14.8 +34.6 19.5 * +18.9 +33.0

USM hard +39.8 +39.6 +49.0 +46.8 +30.3 * +46.9 +48.8

DEN soft +15.0 +15.5 +11.9 +30.7 +14.7 * 3.0 +17.4

DEN hard +19.3 +33.8 +13.4 +34.5 +26.4 * +10.0 0.6

Figure 4.4: Ipad Pro – ISO 20.

Table of PE for different pro-

cessing pipelines embedded with

J-UNIWARD at payload 0.3bpp

and steganalysis performed with

EfficientNet-b3. A column is

starred (*) if Efficient-Net did

not converge for the cell on the

diagonal.

MIX Amaze LIN PPG USM soft USM hard DEN soft DEN hard

MIX 17.1 +6.0 +0.0 +3.8 +0.4 * +4.5 +0.3

Amaze +17.4 16.8 +34.1 +27.0 +7.8 * +17.4 +13.1

LIN +23.0 +33.2 0.1 +48.0 +13.9 * +45.2 +34.2

PPG +20.8 +30.9 +30.0 1.5 +13.8 * +40.1 +38.1

USM soft +29.5 +18.3 +47.3 +46.3 36.0 * +45.9 +47.9

USM hard +32.5 +33.0 +49.6 +47.6 +13.8 * +47.4 +49.7

DEN soft +17.9 +18.7 +13.7 +28.9 +8.7 * 2.3 +4.2

DEN hard +17.0 +33.1 +5.6 +48.5 +13.9 * +30.6 0.1

Figure 4.5: Canon EOS 500D –

ISO 1600

MIX Amaze LIN PPG USM soft USM hard DEN soft DEN hard

MIX 9.3 +3.7 +2.4 +2.7 +3.7 +3.2 +3.1 +1.6

Amaze +8.3 6.0 +18.4 +23.9 +2.7 +4.2 +6.2 +20.2

LIN +24.8 +29.5 0.5 +29.7 +30.5 +23.7 +28.5 +19.1

PPG +15.1 +24.3 +19.4 3.3 +25.2 +19.1 +16.3 +9.3

USM soft +8.5 +2.6 +10.5 +27.9 11.0 +2.0 +8.2 +18.9

USM hard +11.0 +3.6 +18.6 +31.3 +1.2 19.4 +9.1 +33.1

DEN soft +7.9 +11.2 +8.5 +18.2 +13.3 +10.1 2.7 +3.1

DEN hard +12.9 +26.9 +12.6 +13.4 +23.5 +18.7 +7.6 1.0

Figure 4.6: DMC-GM1 – ISO

200

A first overall observation is that the impact of the processing

pipeline on Cover-Source Mismatch is dramatic, with source in co-

herency which can reach 49% even though the camera, the ISO and

the scenes present in the datasets are identical. This observation was

already made in [35] but it was hoped that using neural network would

allow for better generalizations between sources which is clearly not

the case in practice. A good news however is that using a training set

which includes all the possible processing pipelines does allow for better

generalization, even though we kept the number of samples identical

for all datasets. This generalization results should however be studied

more thoroughly as the diversity of processing pipeline “in the wild”
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MIX Amaze LIN PPG USM soft USM hard DEN soft DEN hard

MIX 13.6 +3.4 +1.3 +2.4 +4.1 * +1.8 +1.1

Amaze +13.7 10.5 +36.5 +25.5 +9.2 * +7.9 +21.0

LIN +28.5 +31.2 0.1 +39.2 +25.0 * +38.3 +31.5

PPG +22.4 +33.3 +34.9 3.1 +25.3 * +33.3 +28.0

USM soft +10.9 +3.7 +11.2 +26.5 22.4 * +9.9 +13.1

USM hard +35.9 +39.3 +48.7 +45.8 +27.4 * +46.6 +49.3

DEN soft +18.8 +22.1 +30.0 +36.1 +19.7 * 3.0 +12.3

DEN hard +17.4 +34.8 +16.0 +34.3 +25.4 * +10.6 0.6

Figure 4.7: HTC One A9 – ISO
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MIX Amaze LIN PPG USM soft USM hard DEN soft DEN hard

MIX 3.3 +2.1 +0.5 +0.6 +2.8 +2.3 +0.8 +0.8

Amaze +1.7 1.6 +2.0 +4.1 +1.0 +1.4 +7.6 +1.1

LIN +11.8 +20.0 0.2 +12.8 +20.9 +19.5 +5.7 +3.0

PPG +2.5 +6.4 +0.9 0.5 +8.0 +8.0 +0.7 +0.9

USM soft +0.7 +0.8 +1.5 +3.9 2.8 +1.4 +4.6 +3.4

USM hard +1.6 +1.0 +2.5 +2.8 +0.8 5.7 +4.5 +3.5

DEN soft +0.5 +2.5 +0.9 +1.7 +3.9 +3.7 1.4 +0.3

DEN hard +3.6 +7.2 +2.6 +8.4 +6.2 +5.0 +1.7 0.6

Figure 4.8: NIKON D610 – ISO
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can get quite difficult for the steganalyst to handle – this is a direction

of future works not included in this manuscript.

Now, going to an analysis of each individual processing pipelines,

we can observe that pipelines which amplifies details and edges – USM

and the Amaze algorithm to a lesser extent – lead to higher intrinsic

difficulties than pipeline which tend to smooth the image such as de-

noising and linear demosaicking. This is to be expected, the more

textured an image is, the more difficult it is to model its content and

thus to separate it from the stego signal. In Chapter 3, we showed how ste-
ganalyzers try to separate the content
from the noise in an image by using
high-pass filters; edges and details are
“high-frequency” content and as such
will not be removed correctly using
these methods.

It is also interesting to note that processing pipelines which are

“closer” to each other in the sense that they perform the same oper-

ations but with different parameters tend to have lower source incon-

sistency. For example, in the case of the Nikon D610 camera, the two

USM pipelines have a source inconsistency no higher than 1.5% but

higher than at least 4% for every other pipeline except Amaze.

4.5 Conclusion : an empirical definition of the source

After collecting all these results, we are in a position where we can

refine our definition of a source from Section 4.2.

First of all, we have seen that the camera and ISO have a strong

impact on the phenomenon of cover-source mismatch and that even

two cameras with the same ISO setting won’t necessarily be coherent

with each other. Secondly, and most important, is the impact of the

processing pipeline. Two datasets taken with the same cameras with

acquisition parameters fixed will be highly incoherent if they don’t

share the same processing pipeline.
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Therefore, an empirical definition of a source could be the following:

Definition 4.5.1 (Source II). The source of an image is the conjunc-

tion of a camera sensor, an ISO setting and of a processing pipeline

used to capture and produce the final processed image.

We claim that as long as these three parameters are kept fixed, the

phenomenon of cover-source mismatch should be mitigated or even

absent.

There is still the case of the mismatch due to unseen semantic con-

tent which we studied only tangentially in this chapter. It is clear

that a classifier trained only on, say, blue skies and tested on highly

detailed images of forest for example might exhibit great loss of per-

formance, something which we actually show to be true in [35, Section

8]. However, we purposefully avoided integrating semantic content in

the definition of a source (and consequently all the acquisition param-

eters which only impact the semantic content) because measuring a

meaningful distance between two different scene is a difficult if not

impossible endeavor for steganalysis and steganography except maybe

for extreme cases such as those alluded to earlier. Consequently, with-

out a measure of similarity between scenes, we cannot produce reliable

measure of source inconsistency since we cannot “fix” the scene pa-

rameter in the same way as we did for the camera, ISO and processing

pipeline.

The next step of this manuscript is to justify theoretically this em-

pirical definition of a source by starting from how an image is actually

captured and processed.



Part I

Noise model of natural

images
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In the first part of this manuscript we build a statistical model of

the sensor noise of natural images in the developed domain and provide

methods to estimate its parameters. There are two main goals which

we try to accomplish:

• First, we want to provide a theoretical justification of the empirical

definition of the source of an image given in Chapter 4 where it was

reduced to only three parameters of importance: the camera sensor,

the ISO and the processing pipeline.

• Second, the model built in the first part of this manuscript must

be suitable for the design of stenographic algorithm following the

hypothesis testing framework presented in Section 2.3. In particular

the model must be as general as possible. But it must also be simple

enough so that we can compute or bound the power of an optimal

test between a cover under this model and a simple model of stego

objects.

The part is structured into three chapters going from the first prin-

ciples in how light is captured by a camera sensor up to the final model

after an image has been processed:

• Chapter 5 presents the noise model in the RAW domain from first

principles. We also provide a practical approximation of the model

and methods to estimate its parameters for a given RAW image.

This model of noise in the RAW domain is based on the classic

work of Alessandro Foi on the Gaussian heteroscedastic model for

signal-dependent noise [26, 27]. As such, the results of this chapter

should not be considered as a contribution of this thesis but as a

necessary foundation on which we rely to build the models of the

next chapters.

• Chapter 6 presents the model of the processing pipeline that will

be used throughout this manuscript. It begins by presenting some

of the classical operations in image processing before proposing a

general linear and stationary model of the full processing pipeline.

This chapter uses results from our work in [33, 32].

• Chapter 7 presents the final model of the noise in the developed

model by combining the results of the two previous chapters. It

proposes a multivariate Gaussian model of the noise of macro-blocks

of DCT coefficients where the covariance matrix depends only on the

camera sensor, ISO setting and processing pipeline used to obtain

the image. Two dependency models between macro-blocks are also

proposed whereas their application to steganography is addressed

in the second part of this manuscript.





5RAW domain:

Heteroscedastic model of the

noise

5.1 Data-acquisition model of a natural image

The first step in deriving a model of the noise of natural images is to

get an understanding of how images are acquired in the first place. In

this work, we only touch upon linear imaging sensors, namely CCD

and CMOS sensors, as they both make up for the vast majority of

camera sensors at time of writing.

5.1.1 Data-acquisition process

The whole data-acquisition pipeline is summarized in Figure 5.1 along-

side the different noise sources. Both sensor types function under the

same principle: converting a light signal (photons) into an electri-

cal signal (electrons). As such, they rely on a grid of photo-diodes,

henceforth termed photo-sites, to detect photons arriving at different

positions in the image. Each photo-site is able to capture only a single

color, usually one among red, green or blue (RGB). This is due to a

masking pattern arranged on the photo-sites that usually takes the

form of the so-called Bayer grid pattern as illustrated in Figure 5.2.

µ∗

Scene

x

G

N
(

0, b2

1

)

N
(

0, b2

2

)

Light

Thermal + flicker noise

Shot noise P (λ)

Amplification (ISO)

Figure 5.1: Diagram of the data-

acquisition model. The light

from the scene is captured by

the photo-sites of the imaging

sensor. The quantum nature

of light introduces noise in the

form of shot noise which follows

a Poisson distribution. Further

noise is introduced by the cir-

cuitry in the form of thermal and

flicker noise. The electrical sig-

nal is then amplified by a value

G controlled by the ISO setting

of the camera.

Each photo-site will generate an electrical current. The average

number of electrons generated by one photon is termed the quantum
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Figure 5.2: Bayer pattern used

for most imaging sensors on the

market. The pattern repeats

over the full sensor, making each

photo-site sensitive to only one

of three colors.

efficiency χ and is dependent on the characteristics of the imaging

sensor. Another hardware-dependent characteristic is the so-called

“pedestal number”: the collected charges of each photo-site is always

offset by a positive value p0 ∈ R
+. This electrical current is then fed

into different circuitry depending on the sensor type – see [60, 51] for

references. At one point during this operation, the signal is amplified

by a positive value G > 1 that is dependent on the ISO setting chosen

by the user at the time of capturing the image.

During each step of this process, some noise is introduced to the sig-

nal. Two major sources of noise can be gathered from the description

of the system: noise linked to the quantum nature of light as it arrives

on the photo-sites (shot noise) and noise introduced by the different

component of sensor circuitry (thermal and flicker noise).

5.1.2 Shot noise

The first main source of noise introduced during image acquisition is

directly linked to the fact that each photo-site does not capture light

continuously but only intermittently due to the discrete nature of light.

Let λ be the number of photons captured, on average, by a photo-

site during an exposure time ∆t for a given scene. Now divide ∆t into

n > λ subintervals of size ∆t
n . Let Xi be a random variable modeling

a Bernoulli trial asking if at least one photon has been counted by the

photo-site during the i-th time subinterval. Then we have:

Xi ∼ B
(

1,
λ

n

)

, (5.1.1)

and if we let Xn =
∑n

i Xi then we also have:

Xn ∼ B
(

n,
λ

n

)

. (5.1.2)

Now, subdividing the interval into smaller and smaller subintervals,

taking the limit as n→∞, we obviously have nλ
n = λ converging to a

finite value and limn→∞
λ2

n = 0. Consequently, by LeCam’s version of

the Poisson limit theorem [52], we have:

X ≜ lim
n→∞

Xn ⇝ P (λ) . (5.1.3)
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(a) Original RAW image (magnified) (b) Poisson noise

(c) Gaussian noise (d) Poissonian-Gaussian noise

Figure 5.3: Illustration of the

different type of noise in the

RAW domain. The dynamic

range has been exaggerated for

better visualization. Observe

that Poisson noise gets stronger

the more illuminated an area

is. Gaussian noise on the

other hand has a similar in-

tensity over the whole the im-

age. Poissonian-Gaussian noise

is visually indistinguishable from

Poisson noise as long as the im-

age is not too dark.

That is the probability of counting k photons during a exposure

time ∆t is well approximated by the probability mass function of a

Poisson distribution of parameter λ:

P [X = k] =
λeλ

k!
. (5.1.4)

Consequently, even if the hardware did not introduce any noise to

the registered signal, this signal would still be different between two

shots of the same scene taken with the same exposure time due to this

phenomenon.

5.1.3 Thermal noise and flicker noise

Thermal noise is also known as

Johnson-Nyquist noise, referring re-

spectively to the discoverer and mod-
eler of this type of noise.

.First of all, camera sensors are, as any electronic circuit, subject to

thermal noise. This noise is introduced by thermal agitations of elec-

trons in the circuitry, hence by every resistive parts of the circuit as

well as by capacitors (in which case it is called ktC noise) Despite dif-

ferences in the working mechanisms of CCD and CMOS sensors, the

same general types of noise can be observed in both and won’t require

specific treatment. Note, however, that the noise sources will still dif-

fer for each sensor type. This is of no consequence for our analysis,

but the interested reader can refer to [60, Chapter 3 Section 3] and

[51, Chapter 3] for a thorough analysis of each circuit component and

its impact on the noise. Thermal noise is usually modelled as a
Gaussian random variable owing to its
direct theoretical link to the Brownian
motion of particles in a fluid. How-
ever, it should be noted that Nyquist’s

paper [63] only proved the whiteness of
the noise but not its Gaussianity.
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Flicker noise, also called 1/f noise, is a type of noise that dominates

thermal noise at low frequency during the amplification phase. Its

exact mechanism has yet to be elucidated though it has been shown

to be well modeled by Gaussian noise [81].

Since the sources for each type of these noises are numerous in a

given circuit and assuming each of these sources to be independent

from other sources, it is usual to invoke the central limit theorem [23,

Theorem 3.4.5] to approximate the overall noise by a Gaussian random

variable with zero mean and a certain variance. As the reader can

observe in Figure 5.1, we distinguish between the noise added before

and after amplification.

5.2 Poissonian-Gaussian noise model

As we have seen so far, all the noise sources for each photo-site can

be modeled by either a Gaussian or Poisson random variable. Conse-

quently, let xi be the signal recorded at the i-th photo-site and let µ∗
i

be the signal that would be received on average by the photo-site for

a given exposure time ∆t.

Then following the data-acquisition model presented in Section 5.1.1

and summarized in Figure 5.1 we first define ηg1i and ηg2i as the contri-

bution of the thermal and flicker noise before and after amplification,

respectively. On the other hand, we note ηpi contribution due to Pois-

son (shot) noise:

ηg1i ∼ N
(

0, b21
)

, (5.2.1)

ηg2i ∼ N
(

0, b22
)

, (5.2.2)

ηpi ∼ P (µ∗
i ) . (5.2.3)

Now following the data-acquisition process we can compute the output

signal at the i-th photo-site xi:

xi = G (χηpi + p0 + ηg1) + ηg2i . (5.2.4)

First notice that we multiply ηpi by the quantum efficiency χ as even if

µ∗
i photons are received on average by the photo-site, only a fraction

of electrons will be produced as a result. Secondly, notice also that we

add the offset p0 to χηpi as was described in Section 5.1.1.

Now, assuming a scene with sufficient lighting and a large enough

quantum efficiency we can use the normal approximation of the Poisson

distribution using the central limit theorem [23, Theorem 3.4.1] and

write:

xi ∼ N
(

Gχµ∗
i +Gp0, G

2χ2µ∗
i

)

+N
(

0, G2b21 + b22
)

(5.2.5)

We can easily compute the first two moments of xi:

E [xi] = Gχµ∗
i +Gp0 ≜ µi (5.2.6)

Var [xi] = G2χ2µ∗
i +G2b21 + b22. (5.2.7)
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We consequently end with the classic Gaussian heteroscedastic model

of the sensor noise:

xi ∼ N (µi, c1µi + c2) , (5.2.8)

with:

c1 = Gχ (5.2.9)

c2 = G2b21 + b22 −G2χp0, (5.2.10)

Now, it is quite difficult to compute G, χ and p0 when only having

access to the RAW image. The goal of the next section is to solve

this problem by giving a method to compute c1 and c2 without having

access to the camera’s parameters.

5.3 Estimation of the heteroscedastic model para-

maters

5.3.1 Introduction

The estimation of the mean-variance curve for signal-dependent noise

is a well-studied problem in the literature starting with the landmark

paper of Foi [26] in 2008. Excellent reviews are available such as [53]

or [3], to which we direct the reader for more detailed information as

we will only give a brief summary of this literature here.

Two main strategies are usually applied to estimate the parameters

c1 and c2 as defined in Eq (5.2.9):

Patch-based methods These methods are based on the assumption of

self-similarity of images. The core idea is that there is a high proba-

bility that there exist several areas in a given image which share the

same, or at least very similar, content. To leverage this property, the

image is first subdivided into (possibly overlapping) patches of equal

sizes. A distance function which measure similarity between patches

is then used to group patches which are thought to have the same or

close average signal. Using the fact that photo-sites with the same µi

also have the same variance, the sample mean and sample variance of

each group of patch are then computed to obtain an estimation of the

mean-variance curve.

Segmentation-based methods These methods are based on the use of

homogeneous areas in an image for easy estimation of the mean and

variance. The main idea is to segment the image into homogeneous

zones and remove areas with high variance which are difficult to model

such as edges and highly textured areas. Once these areas are removed,

values in an given interval [xi −∆, xi +∆[ are grouped together. The

sample mean and sample variance of the values in each interval are

then computed to obtain point-estimates of the mean-variance curve.

Following the construction of the mean-variance curve, each of these

methods rely on a parametric curve fitting to find c1 and c2
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For the purpose of this thesis, we have chosen to work with the

original method presented in [26] as its performance is still extremely

relevant as of today for the estimation of the mean-variance curve.

However, we used the superior method present in [79] for the curve

fitting step.

In the rest of this section, we give the algorithm for the estimation

of c1 and c2 though we refrain from giving the full statistical analysis

present in the original paper as it will not be useful for the rest of this

work. We refer the interested reader to [26, Section III] for the detailed

analysis. This algorithm belongs to the family of segmentation-based

methods and is consequently composed of two steps: a local estimation

of the mean-variance pairs followed by a parametric fitting of the mean-

variance curve using Eq (5.2.8).

5.3.2 Local estimation of the mean-variance pairs

The estimation of the mean-variance pairs is itself divided into three

steps. First, a wavelet analysis of the RAW image is performed in

order to facilitate the estimation by separating the image into a smooth

approximation component and a component containing most of the fine

details of the image. Secondly, the image is segmented and grouped

into level sets where each element belonging to a level set can be safely

assumed to have an intensity close to other elements present in the

same level set. Finally, a robust estimation of the mean-variance pairs

is performed using these levels sets.

Wavelet analysis The wavelet analysis is performed using 1D Daubechies

wavelet:

ψ1 = [0.035, 0.085,−0.135,−0.460, 0.807,−0.333] (5.3.1)

ϕ1 = [0.025,−0.060,−0.095, 0.325, 0.571, 0.235] (5.3.2)

The RAW image is first separated into sub-images XR, XB , XG1
,

XG2
corresponding to each channel of the Bayer pattern as shown in

Figure 5.2. These four sub-images are then concatenated into a single

image X.

The image X is then separated into two components using the

Daubechies wavelets :

Xdet =↓2
(

X ⋆ψ1 ⋆ψ
T
1

)

(5.3.3)

Xapp =↓2
(

X ⋆ϕ1 ⋆ ϕ
T
1

)

(5.3.4)

where ↓2 is the decimation operator which removes every other

photo-sites of the image. The main interest of this wavelet decomposi-

tion is that in uniform regions, the following approximation holds [26,

Section 3]:

Var
[

Xdet
]

≈ Var [E [Xapp]] . (5.3.5)
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Furthermore, it can safely be assumed that in uniform regions of

the image, Xdet mainly contains the noise of the image since, by def-

inition, uniform regions don’t contain edges or textures areas. From

this observation, the main consequence of Eq (5.3.5) is that we can

easily obtain the variance of noise if we can compute the expectation

of Xapp which is also simple in uniform regions for the same reasons

we just invoked.

To estimate E [Xapp] we apply an 7× 7 uniform kernel:

Xsmo = Xapp ⋆✶7×7 . (5.3.6)

Now the approximation Xsmo ≈ E [Xapp] only holds in uniform

regions due to our choice of kernel, hence we have to remove all the

regions of the image that are not uniform, this is exactly the goal of

the segmentation step.

Segmentation The segmentation step is based on the classic method-

ology where edges are computed using an estimate of the local gradient

of the images. If the local gradient is greater than the local standard

deviation, it is then deemed to be an edge. The local standard devia-

tion S of Xdet is first estimated using:

S =

√

π

2
|Xdet | ⋆ ✶7×7 . (5.3.7)

We then compute Xedge which corresponds to the estimation of the

edges in the image as:

Xedge = |∇
(

∇2medfilt (Xapp)
)

|+ |∇2medfilt (Xapp) |, (5.3.8)

where medfilt is 3× 3 median filter while ∇ and ∇2 are 9× 9 gradient

and Laplacian filters respectively. This form of estimation is a heuristic

way to obtain ”thick” edges allowing to keep only the most uniform

regions.

Finally, the smooth photo-sites are obtained by thresholding Eq (5.3.8)

against Eq (5.3.7):

xsmo =
{

Xedge
i,j |Xedge

i,j < τSi,j

}

. (5.3.9)

where τ ∈ R
+ is a fixed threshold chosen by the user.

Finally, we construct n level sets l containing the indices of the

photo-sites in a given interval of intensity values:

li =

{

k|xsmo
k ∈

[

i∆− ∆

2
, i∆+

∆

2

[}

, (5.3.10)

where ∆ is the size of each level sets, also specified by the user.

Maximum-likelihood estimation of mean-variance pairs Now that we

have constructed the level sets, the final step is simply to estimate

the mean and variance of each level sets. Indeed, assuming that all

observations from one level-set have the same mean value corrupted
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by noise following the model in Eq (5.2.8), then each level set gives us

a point estimate of the mean-variance curve.

For each level set, we use the maximum likelihood estimation of the

mean and variance of Gaussian random variable:

µ̂i =
1

ni

ni
∑

k=1

xsmo
li,k

, (5.3.11)

σ̂2
i =

1

ni − 1

ni
∑

k=1

(

xdet
li,k
− x̄det

li

)2

, (5.3.12)

with x̄det
li

= 1
ni

∑ni

k=1 x
det
li,k

and where ni is the number of elements in

the i-th level set.

Note that µ̂i is unbiased and follows a Gaussian distribution:

µ̂i ∼ N
(

µi,
σ2
i

ni

)

, (5.3.13)

while σ̂2
i , on the other hand, follows a gamma distribution, of which

we will use the asymptotic Gaussian approximation assuming that ni

is large enough. This leads to:

σ̂2
i ∼ N

(

σ2
i ,

2σ4
i

ni

)

. (5.3.14)

5.3.3 Parametric curve fitting

Having access to an estimation of the mean-variance curve, we can now

fit a parametric curve such that σ2
i = c1µi + c2 to obtain an estimate

of the c1 and c2 parameters of the heteroscedastic model in Eq (5.2.8).

To do so we will use the methodology presented in [79, Section 3] based

on a weighted-least-square estimation.

The first part of the curve fitting step is to perform an ordinary

least-square (OLS) fit of the data to the heteroscedastic model. Under

the OLS model, it is assumed that:

σ̂2
i = c1µ̂i + c2 + siϵi (5.3.15)

where ϵi is a standard Gaussian noise and si depends on µi and

controls the variance of the residuals.

A first estimation of c1 and c2, which we name ĉ′1 and ĉ′2 respectively,

can be obtained by using the usual solution of the least-square problem:





ĉ′1

ĉ′2



 =
(

MTM
)−1

MTΣ, (5.3.16)

with:

M =















µ̂1 1

µ̂2 1
...

...

µ̂n 1















; Σ = diag
(

σ̂2) . (5.3.17)
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The variance of the residuals s2i can readily be computed using

Eq (5.3.13) and Eq (5.3.14) :

s2i = Var
[

σ̂2
i

]

−Var [c1µ̂i + c2]

=
2

ni
σ4
i −

c21
ni

σ2
i ,

(5.3.18)

where ni is the number of sample in the i-th level set.

The strategy followed by the weighted-least square (WLS) estimator

is to use the variance of the residuals as weights of the samples for

another iteration of least-square estimation. The idea is that levels sets

with larger residuals are less trustworthy than those with low residuals.

Consequently, let wi =
1
s2i

and build the weight matrix W = diag (W).

The WLS estimates are then obtained by:





ĉ′1

ĉ′2



 =
(

MTWM
)−1

MTWΣ. (5.3.19)

We provide some examples of mean-variance curve estimated with

this method in Figure 5.4-5.6. Each curve was built by merging the

three channels of 25 RAW images taken with the same camera and the

same ISO into a single large image. Some sensors/ISO have a cleaner

curve than others; this is mainly a question of how textured the images

were to allow sufficient samples to be collected.
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Figure 5.4: Mean-variance curve

for the Canon EOS 400D camera

at ISO 800. The blue dots cor-

respond to the mean/variances

sample while the black line is

the estimated curve. Notice the

small bump on the curve which

is due to textured parts of the

image which have not been fil-

tered out.

5.4 Conclusion

In this chapter, based on the work of A. Foi [26, 27], we derived from

first principles a model of the noise in the RAW domain. We explained

how noise is introduced at each step of the RAW image generation:

first through the quantum nature of light and secondly by the cir-

cuitry due to thermal agitation and amplification. This leads to two

major types of noise: Poisson and Gaussian noise. After modeling the

contribution of each of these types, we were able to provide an excellent

approximation of the noise present on each photo-site as independent,
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Figure 5.5: Mean-variance curve

for the Canon EOS DIGITAL

REBEL XSi camera at ISO

200. The blue dots corre-

spond the mean/variances sam-

ple while the black line is the es-

timated curve.
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Figure 5.6: Mean-variance curve

for the NIKON D70 camera at

ISO 400. The blue dots corre-

spond the mean/variances sam-

ple while the black line is the es-

timated curve. Very few usable

samples were available for this

curve due to the highly textured

nature of the images.



raw domain: heteroscedastic model of the noise 69

heteroscedastic Gaussian noise – Eq 5.2.8. That is, the variance of the

noise on each photo-sites is linear in its mean value. An important

observation is that the parameters which control the variance in this

model only depend on the camera and ISO parameters which were used

to capture the image, thus validating in part or empirical definition of

the source in Chapter 4.

Finally, we provided for completeness a method for estimating the

parameters of the heteroscedastic model, first proposed by A. Foi

in [26]. The method is based on segmenting the image in different

classes so that areas belonging to the same class have the same mean

value. This is done through a combination of wavelet analysis and

filtering. The wavelet analysis allows a simple estimation of local

statistics of the photo-sites. The filtering operations allow to find and

discard edges and areas of high variance that are difficult to model.

Finally, using the properties of the heteroscedastic model, a weighted

least-square approach is used to fit a curve through the local estimates

of the image.

In the next chapter, we continue our path through the image gen-

eration process by proposing a model of the processing pipeline.





6Model of the processing

pipeline

The RAW image model developed in Chapter 5 determined which part

the sensor and the ISO parameter played in the structure of the noise of

natural images. The only parameter left to incorporate into the model

is the processing pipeline. Due to the great diversity of the possible

operations available in image processing, we will only touch upon the

most important ones on this chapter in order to build a model of the

processing pipeline that is both sufficiently expressive to describe these

operations while also being amenable to mathematical analysis.

6.1 Fundamental operations in image processing

RAW image Demosaicking White Balance Gamma correction

Greyscale
conversion

DownsamplingJPEG compressionJPEG image

Figure 6.1: Order of the differ-

ent image processing operations

presented in this chapter. For

an example of more comprehen-

sive image processing pipeline

– like the one used in the

popular open-source software

Rawtherapee – see https:

//rawpedia.rawtherapee.

com/Toolchain_Pipeline.

In this section, we give an overview of the most fundamental opera-

tions of image processing that will be used throughout this manuscript.

In particular, we study each operation through the lens of two cate-

gories: linearity and stationarity.

Linear operations are functions f of the form:

f(
∑

k

xk) =
∑

k

f (xk) , (6.1.1)

∀α ∈ R, f (αx) = αf (x) . (6.1.2)

Stationary operations are operations that are applied identically for

every input of the operation. For example, if the operation takes blocks

of photo-sites as input, then every block should be processed in the

same way. The demosaicking algorithm PPG, which will be described

shortly, is an example of a non-stationary algorithm as it performs

different operations on blocks depending on the gradient of the center

photo-sites with its neighbors.

6.1.1 Demosaicking

The first fundamental step in the processing of a RAW image is demo-

saicking. This step transforms the RAW image, with each photo-sites



72 statistical steganography based on a sensor noise model using the processing

pipeline

coding for only one color, into a color image composed of three color

channels, usually red, green and blue (RGB).

The general process consists in leveraging the neighborhood of each

photo-site in order to interpolate the missing colors at each position

of the image.

Demosaicking operations can contain both linear and non-linear op-

erations. The main algorithm often involves linear operations in the

form of a series of convolutions with some family of kernels. But some

non-linearities are also often present, as we will see with the PPG

demosaicking algorithm described later in this section.

Similarly, they also contain both stationary and non-stationary op-

erations. Non-stationary operations are often built-in to adapt to cer-

tain zones that are known to produce artifacts if not interpolated in a

certain manner. Hence different operations are performed depending

on, for example, the gradient between two neighboring photo-sites.

To illustrate these different types of operations, we now detail two

classic demosaicking algorithms: (1) bilinear demosaicking, which will

serve as the basis of our model and (2) the so-called Pixel Pattern

Grouping (PPG) demosaicking algorithm, which contains linear/non-

linear and stationary/non-stationary operations. It is also the demo-

saicking algorithm that has been the most extensively used in steganog-

raphy benchmarking as it is the only algorithm used to produce the

standard image dataset BOSSBase [5].

For the description of the demosaicking algorithm we need some

notation pertaining to the red, green and blue sub-images of the RAW-

image. We denote the set of spatial indices corresponding to red photo-

sites as lR and similarly for other colors and compute them by following

the Bayer pattern in Figure 5.2:

lR = {(i, j)|(i, j) mod 2 = (0, 1)} (6.1.3)

lB = {(i, j)|(i, j) mod 2 = (1, 0)} (6.1.4)

lG1 = {(i, j)|(i, j) mod 2 = (0, 0)} (6.1.5)

lG2
= {(i, j)|(i, j) mod 2 = (1, 1)} (6.1.6)

lG = lG1 ∪ lG2 (6.1.7)

Bilinear demosaicking This algorithm is the most basic algorithm

for interpolation1. It involves estimating, for each RGB channel, the 1 Without considering the naive algo-
rithm consisting in not interpolating
but only taking the closest color value
as the final value.

pixel value of a given photo-site by computing a weighted average of

the nearest-neighbours of the missing color.Let the RAW image in its

matrix form X. Similarly, let each channel of the demosaicked image

beYR, YG, YB . Each of these channels is obtained using the following

procedure:
G R/B

G

G

GG

Figure 6.2: Green interpolation

YG
i,j =







Xi,j if (i, j) ∈ lG
1
4 (Xi+1,j +Xi,j+1 +Xi−1,j +Xi−1,j) otherwise

(6.1.8)

R B

R

R R

R

G1R R G2

R

R

Figure 6.3: Red interpolation
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YR
i,j =



























Xi,j if (i, j) ∈ lR
1
2 (Xi,j+1 +Xi,j−1) if (i, j) ∈ lG2

1
2 (Xi+1,j +Xi−1,j) if (i, j) ∈ lG1

1
4 (Xi+1,j+1 +Xi−1,j+1 +Xi−1,j+1 +Xi−1,j−1) otherwise

(6.1.9)

B R

B

B B

B

G1R R G2

R

R

Figure 6.4: Blue interpolation

YB
i,j =



























Xi,j if (i, j) ∈ lB
1
2 (Xi,j+1 +Xi,j−1) if (i, j) ∈ lG1

1
2 (Xi+1,j +Xi−1,j) if (i, j) ∈ lG2

1
4 (Xi+1,j+1 +Xi−1,j+1 +Xi−1,j+1 +Xi−1,j−1) otherwise

(6.1.10)

For each channel, all these linear operations can be rewritten as a

single matrix. This is characteristic of the linearity and stationarity

properties which will heavily be used for the modeling of the processing

pipeline at the end of the chapter.

PPG demosaicking This algorithm is composed of two distinct steps. To the best of our knowledge, PPG
full description can only be found in
two places: by directly reading the
dcraw source code or by reading an old
page of the creator of the algorithm

Chuan-Kai Li which can only be found
on archive.org. Seeing the importance

of this algorithm for the benchmark-

ing of steganography and stegnanaly-
sis, it seemed important for us to pro-
vide here a full description of the al-
gorithm.

The first step is fully linear though non-stationary and involves esti-

mating the full green channel. The second step is both non-linear and

non-stationary and uses the green channel estimates to provide better

estimates of the blue and red channels.

The first steps begin by recording the value of the green photo-

sites in the green channel: they don’t need to be interpolated. For

finding the green value at blue and red photo-sites, we first compute

the vertical and horizontal gradients:

∆Ni,j = 2|Xi,j −Xi,j+2|+ |Xi,j−1 −Xi,j+1| (6.1.11)

∆Si,j = 2|Xi,j −Xi,j−2|+ |Xi,j−1 −Xi,j+1| (6.1.12)

∆Ei,j = 2|Xi,j −Xi+2,j |+ |Xi−1,j −Xi+1,j | (6.1.13)

∆Wi,j = 2|Xi,j −Xi−2,j+2|+ |Xi−1,j −Xi+1,j | (6.1.14)

Now let δi,j be the smallest of these four gradients, then the pixel

value of the green channel Y G
i,j is obtained as:

Y G
i,j =



























1
4 (3Xi,j+1 +Xi,j−1 +Xi,j −Xi,j+2) if δi,j = ∆Ni,j

1
4 (3Xi,j−1 +Xi,j+1 +Xi,j −Xi,j−2) if δi,j = ∆Si,j

1
4 (3Xi+1,j +Xi−1,j +Xi,j −Xi+2,j) if δi,j = ∆Ei,j

1
4 (3Xi−1,j +Xi+1,j +Xi,j −Xi−2,j+2) if δi,j = ∆Wi,j

(6.1.15)

The second step uses the following ad-hoc function

f(l1, l2, l3, v1, v2) =







v1 + (v2 − v1)
(l2−l1)
l3−l1

if l1 < l2 < l3 or l1 > l2 > l3
v1+v3

2 + 2l2−l1−l3
4 otherwise

(6.1.16)
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To estimate Y R
i,j or Y B

i,j for (i, j) ∈ lG1
, the following equations are

used:

Y R
i,j = f

(

Y G
i−1,j , Y

G
i,j , Y

G
i+1,j , X

R
i−1,j , X

R
i+1,j

)

(6.1.17)

Y B
i,j = f

(

Y G
i,j−1, Y

G
i,j , Y

G
i,j+1, X

B
i−1,j , X

B
i+1,j

)

(6.1.18)

Similarly for if (i, j) ∈ lG2 :

Y R
i,j = f

(

Y G
i,j−1, Y

G
i,j , Y

G
i,j+1, X

R
i−1,j , X

R
i+1,j

)

(6.1.19)

Y B
i,j = f

(

Y G
i−1,j , Y

G
i,j , Y

G
i+1,j , X

B
i−1,j , X

B
i+1,j

)

(6.1.20)

To estimate Y R
i,j for (i, j) ∈ lB we need to compute the diagonal

gradients:

∆NEi,j = |Xi−1,j+1 −Xi+1,j−1|+ |Xi+2,j−2 −Xi,j |
+ |Xi−2,j+2 −Xi,j |+ |Y G

i−1,j+1 − Y G
i,j |

+ |Y G
i+1,j−1 − Y G

i,j |,
(6.1.21)

∆NWi,j = |Xi+1,j+1 −Xi−1,j−1|+ |Xi−2,j−2 −Xi,j |
+ |Xi+2,j+2 −Xi,j |+ |Y G

i−1,j−1 − Y G
i,j |

+ |Y G
i+1,j+1 − Y G

i,j |.
(6.1.22)

Using these gradients we obtain the estimates using f , for all (i, j) ∈
lB :

Y R
i,j =







f(Y G
i−1,j+1, Y

G
i,j , Y

G
i+1,j−1, Xi−1,j+1, Xi+1,j−1) if ∆NEi,j < ∆NWi,j

f(Y G
i−1,j−1, Y

G
i,j , Y

G
i+1,j+1, Xi−1,j−1, Xi+1,j+1) else

(6.1.23)

The procedure is strictly identical for Y B
i,j at (i, j) ∈ lR.

6.1.2 Gamma transform

(a) With gamma transform (b) No gamma transform

Figure 6.5: Visual difference

when using and not using the

gamma transform when develop-

ing an image.

The gamma transform is an operation used to correct the global

illumination of an image. Its standard form [64, p.3, Item 1.2] is given

by the following function:

Γ(x) =







γ0x, if x < 0.018

1.099x
1
γ1 − 0.099, if x ≥ 0.018

(6.1.24)
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where γ0 and γ1 are user-specified parameters and x ∈ [0, 1] is the

normalized pixel value.

The gamma transform is another example of a function which is

non-stationary and contains both a linear and non-linear part.

6.1.3 White Balance

(a) With white balance (b) No white balance

Figure 6.6: Visual difference

when using and not using white

balance when developing an im-

age.

White balance is a corrective operation applied on each color chan-

nel. Its main aim is usually to make it so that a given neutral tone,

such as white, will be perceived correctly by the eye when the image

is displayed.

It is a very simple operation that only involves multiplying each

color channel by a scalar. For example, let the red channel be denoted

YR, then the corrected channel YR
WB is simply:

YR
WB = iRYR (6.1.25)

where iR is the corrective factor of the red channel. It is an example

of a purely linear and stationary operation.

6.1.4 Downsampling

Sub-sampling is a destructive operation aiming at reducing the size

of an image. In the context of image processing, it usually involves

two steps. The first step, called the anti-aliasing aims to smooth the

image content before the second step, named the decimation step which

suppresses a given number of pixels until a given size is reached. The

anti-aliasing step is performed to prevent the apparition of so-called

Moiré effects, which are visual artifacts introduced by the removal of

pixels in areas with strong intensity variations. The first operation is

performed using a low-pass filter, which is identical on all the image.

The decimation step is usually performed on a regular-grid making the

full operation both linear and stationary.

6.1.5 JPEG compression

The processing pipeline usually ends by some form of compression to

facilitate image storage and sharing by reducing its size on disk. The

most popular standard for image compression is JPEG 12 – abbrevi- 2 ISO/IEC 10918

ated as JPEG. This standard’s specification contains both the encod-

ing and decoding step which are summarized in Figure 6.7. Since this
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Color
transform

Chroma sub-
sampling

DCT Quantization Encoding

Image JPEG image

Decoding
Inverse

quantization
Inverse DCT

Chroma-
upsampling

Color
transform

Figure 6.7: Series of opera-

tion for encoding and decoding

a given image using the JPEG

standard.

work only treats greyscale images, we do not present the first two oper-

ations, namely the colorimetric transform and chromatic sub-sampling.

(a) Representation of each DCT

modes in the DCT transform. Each of

checkerboard pattern corresponds to

one of the cosine function used to rep-

resent the signal. The modes are here

presented in the same spatial order as

they would in a given DCT block.

(0, 0)

(0, 7)

(7, 0)

(7, 7)

(b) This diagram illustrate how DCT

blocks are usually read during the

encoding phase, that is, in a zig-

zag order. This order allows sorting

from the lowest-frequency mode to the

highest frequency mode in an increas-

ing frequency order.

Figure 6.8: Structure of the

DCT basis of the DCT trans-

form as cosine functions oscillat-

ing at different frequencies with

lowest frequencies at the top-left

corner and the highest at the

bottom-right corner.
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DCT transform The discrete cosine transform, often abbreviated im- Historically, the DCT transform has

been built as a fast approximation to
the celebrated Karhunen-Loeve trans-

form [2] which allows an optimal rep-
resentation – in the least-square sense
– of a stochastic process. In an image
processing context, the main idea was
to approximate a first-order Markov
chain used to model the content of
an image and use this representa-
tion to obtain a signal structure more
amenable to compression.

properly as DCT transform, is an operation applied on a uniform grid

of 8× 8 blocks of an image.

It is an orthonormal transform, analogous to the discrete Fourier

transform but with additional properties relevant to image processing

– see the footnote and the foundational publication [1]. It is based

on the decomposition of an image into a linear combination of cosine

functions oscillations at different frequencies. Each of these functions,

called DCT modes are represented in Figure 6.8.

For a given block Y, the DCT transform is computed as:

Zk,l =
7
∑

i,j=0

w(k)w(l)

4
cos
( π

16
k(2i+ 1)

)

cos
( π

16
k(2j + 1)

)

Yi,j ,

(6.1.26)

with:

w : x↣







1√
2

if x = 0,

1 else.
(6.1.27)

where Z is called a DCT block and its elements Zk,l DCT coefficients.

The first DCT coefficient (the upmost, leftmost mode in Figure 6.8)

is referred to as a DC coefficient referencing, by analogy to direct

current, the fact that it is simply the average of all pixels in the block.

Consequently, the rest of the coefficients are termed AC coefficients –

by analogy to alternative current.

The inverse transform is strictly analogous:

Yi,j =

7
∑

k,l=0

w(k)w(l)

4
cos
( π

16
k(2i+ 1)

)

cos
( π

16
k(2j + 1)

)

Zk,l

(6.1.28)

The DCT transform allows representing each block of pixels as a

linear combination of DCT modes. The main property of interest of

this representation is that most of the signal energy in natural im-

ages is concentrated at low frequencies, with details and noise usually

concentrated in the high frequencies. This means that after the DCT

transform, blocks of DCT coefficients will tend to have their energy

concentrated in coefficients close to the DC coefficients, whereas the

value of the DCT coefficients will be closer to zero at the bottom right

corner of the block. This property is the basis of the quantization

operation described in the next paragraph.

(a) QF100 (b) QF5

Figure 6.9: Impact of quanti-

zation for different quality fac-

tors. Notice the loss of details

for QF5, one of the lowest qual-

ity factor and rarely used, when

compared to QF100, the high-

est and most widely used quality

factor.
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Quantization The quantization step is the only step that induces a

loss of information and, consequently, a loss of visual quality during

JPEG compression. This loss of information allows reducing drasti-

cally the file size; the end goal being to optimize the trade-off between

visual quality and file size.

To do so, the quantization step will concentrate most of the informa-

tion loss in the high-frequency modes. These frequencies correspond

to image features which are overall less perceptible than features cor-

responding to low frequencies. Therefore, suppressing them allows a

high gain in storage with minimal visual impact.

In practice, the quantization operation is performed in three steps.

At the first step, the user chooses a value between 0 and 100, usually

referred to as the quality factor (QF). The quality factor determines

the trade-off between visual quality and final image size with higher

values corresponding to better visual quality. Each quality factor is

associated to a quantization matrix Q ∈ R
8×8 defined for each quality

factor by the JPEG standard.

Once it has been selected, each DCT coefficient of a given block

is divided by the corresponding element in the quantization matrix.

Lastly, a rounding operation is performed on every DCT coefficient.

Formally, each coefficient Z̃k,l of a quantized DCT block Z̃ is obtained

by:

Z̃k,l = round

(

Zk,l

Qk,l

)

, (6.1.29)

Encoding The coding step is a sequence of lossless operations per-

formed after quantization leveraging the structure of the quantized

signal to decrease the size of the JPEG file on disk even more.

Indeed, one of the main results of the quantization step is that high-

frequency modes in a DCT block have a high probability of being ze-

roed out. Consequently, the first step is to leverage the high number of

zeros in the DCT blocks after quantization. For each DCT block, a se-

quence of coefficients is built by reading each block in a zigzag manner

as illustrated in Figure 6.8. High frequencies will hence be at the end

of the sequence and will have a high-probability to contain long strings

of zeros at the end. A run-length encoding (RLE) scheme is used to

reduce the size of this sequence by removing, among over things, long

sequences of zeros. As a final step, a Huffman-type entropic coding

scheme is applied to the whole sequence of DCT coefficients to obtain

the final JPEG file.

1 2

3 4

Figure 6.10: Illustration of how

blocks of DCT coefficients are

read to produce figures such as

Figure 6.11. Each numbered

square represents a 8×8 block of

DCT coefficients. Elements in-

side a block are read from left to

right, up to down. All elements

of a block are read before going

to the next. Similarly, blocks are

also read from left to right, up to

down as the numbers on the il-

lustration indicate.

6.2 Linear approximation of the processing pipeline

With the exception of PPG demosaicking and of the Gamma trans-

form, all the operations of the processing pipeline we studied are both

linear and stationary. Though we only touched upon a small subset

of every possible operations; this observation would tend to show that

an approximation of the processing pipeline as a single linear and sta-

tionary operator would allow for both generality and computational
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(a) Linear demosaicking (b) PPG demosaicking

(c) DCT transform

(d) Lanczos downsampling

Figure 6.11: Matrix represen-

tation of different pipeline and

different choice of neighborhood

size. These matrices were es-

timated using the method pre-

sented in Section 7.4.2. Maxi-

mum and minimum values have

been selected for a better visual-

ization of the matrix structure.

Blue entries are positive while

red entries are negative.

tractability.

Formally, we model the processing pipeline as a full-rank matrix

H ∈M×N . The choice of M of N is a trade-off between the precision

of the model and its computational complexity. The larger M and N

are, the more dependencies between pixel and DCT coefficients can be

taken into account. At the same time, a large H incurs a high cost for

the matrix multiplication that will have to be performed to use this

model. However, it has been shown that for some processing pipelines,

optimal values of M and N exist. As an example, Taburet et al. have

shown in [75] that M = 262 and N = 242 is sufficient to capture all

the dependencies introduced by a bilinear demosaicking followed by a

DCT transform.

For the rest of this manuscript, we will only work with grayscale

JPEG images. Consequently, we always assume that N is a perfect

square3 and is a multiple of 8 in order to take into account the fact 3 That is, there exist N ′
∈ N such that

N = (N ′)2that the DCT transform acts on 8× 8 blocks of pixels.

6.2.1 Estimation of the matrix representing the processing pipeline

In this manuscript, we always assume that the steganographer has at

least a black-box access to the processing pipeline which was used to

generate the cover image they will use to hide information in. That is,

the steganographer has no direct knowledge of the inner workings of

the processing pipeline but can use it to develop images.

From this black-box access, we want to estimate the matrix repre-

sentation H of this processing pipeline.
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To do so we first generate a constant image x̄ corrupted by indepen-

dent and identically distributed centred Gaussian noise with variance

σ2:

x̄i ∼ N
(

c, σ2
)

. (6.2.1)

The constant value c can, in theory, be chosen arbitrarily. But most

image processing software will clip values that fall below zero. Con-

sequently, we always choose a constant value that is close to the mid-

value of the range of a given RAW image, usually 2000 or 8000 since

the standard ranges are either 212 or 214.

The image x̄ is then developed, using the black box access to the

processing pipeline, into the developed image ȳ. Following our sta-

tionarity and linearity assumptions, we can express ȳ as a function of

x̄ and H:

ȳk = Hx̄k, (6.2.2)

that is, every macro-block ȳk of the developed image is obtained by

multiplying the corresponding macro-block in the RAW domain x̄k by

H.

From Eq (6.2.2), we can reduce the problem of estimating H to a

simple linear regression problem. For example we can solve Eq (6.2.2)

for H using the least-square method. Let mx be the number of macro-

blocks of size M2 in x̄ and my the number of corresponding macro-

blocks of size N2 in ȳ (in vector form). Then let X̄ be the M2 ×mx

matrix built by stacking each non-overlapping macro-block in vector

form of x̄ and similarly for Ȳ. Then the least-square solution of H is

given by:

H = ȲX̄
T
(

X̄X̄
T
)−1

. (6.2.3)



model of the processing pipeline 81

6.3 Conclusion

In this chapter, we first presented some of the most common operations

in image processing, from demosaicking to JPEG compression. By ob-

serving the common properties of these operations, we proposed a gen-

eral model of the processing pipeline built around two major assump-

tions: linearity and stationarity. Concretely, this leads to modeling the

processing pipeline as a matrix H (linearity) that takes (macro)-blocks

of photo-sites as input and outputs (macro)-blocks of DCT coefficients.

The stationarity assumption means that this matrix is not dependent

on the input.

We ended the chapter by presenting a simple estimation method of

the H matrix when having access only to the processing pipeline as a

black box. It is based on generating a constant image to which noise

is added. This constant image is then developed using the process-

ing pipeline. A simple least square estimator is then applied on the

undeveloped and developed block of the image to obtain H.

In the following chapter, we combine the results of this chapter and

of Chapter 5 to finally obtain a realistic model of the noise in the

developed model for natural images.





7Model of the noise in the

developed domain

In this chapter, we finally derive the general model of the noise in the

developed domain by combining the models from Chapter 5 and Chap-

ter 6. Then, we continue by giving two different methods to estimate

the parameters of the model depending on the information available to

the steganographer. We finish by experimentally validating our model

through a set of experiments using different pipelines.

7.1 Derivation of the multivariate Gaussian model

Let xk be a macro-block containing M photo-sites. From the model

in Chapter 5 we have:

xk ∼ N (µk, diag (σk)) . (7.1.1)

Assuming the stationarity of the processing pipeline, we can write

the developed macro-block as:

yk = Hxk . (7.1.2)

Furthermore, assuming the linearity of the processing pipeline and

using the properties of the Gaussian distribution, it is immediate that

Yk follows a multivariate Gaussian distribution:

yk ∼ N (Hµk,Σk) , (7.1.3)

with the covariance Σk computed by:

Σk = Hdiag (σk)H
T . (7.1.4)

To sum up, under the hypotheses of our model, the noise of macro-

blocks in the developed domain follows a multivariate Gaussian model.

This model is a function of only three parameters: the heteroscedastic

parameters c1 and c2, which depend on the imaging sensor and on the

ISO setting, and the processing pipeline, here modeled as a matrix H.

7.2 Dependency model between macro-blocks

The last element missing in this model is the dependency model be-

tween macro-blocks yk. Indeed, the model only explicitly provides

dependencies inside a given macro-block of a specified size but does

not inform us on dependencies that might have been introduced be-

tween two neighboring macro-blocks, for example.

In this manuscript, we will study two models of dependencies be-

tween macro-blocks:
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(a) Uncorrelated noise (b) Correlated noise

Figure 7.1: Comparison be-

tween correlated noise (right)

and uncorrelated noise (left)

which share the same diagonal

in their covariance matrix. The

correlation has been produced

using linear demosaicking.

(a) Independent macro-block model:

every non-overlapping macro-blocks

of a given size is considered to be in-

dependent with the others. In this

figure,the chosen size is 24×24, hence

every block is only dependent with

blocks with which it shares its color.
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(b) Lattice model: every block is con-

sidered dependent only with its direct

neighbouring blocks. This induces

four sets of blocks, called lattices,

Λ1,Λ2,Λ3,Λ4 where each block in

a given set is independent of every

other block in the same set.

Figure 7.2: The two dependency

models studied in this work.
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1. Independent macro-blocks model : all macro-blocks of size
√
N×
√
N

on a uniform grid are considered independent of each other.

2. Lattice model : all blocks of size 8 × 8 on a uniform grid are con-

sidered dependent only with all their neighboring blocks, including

the diagonal ones.

These two models are illustrated in Figure 7.2.

7.2.1 Independent macro-block

This model is based on a uniform grid of macro-blocks of size
√
N ×√

N , that is, only non-overlapping macro-blocks are considered. Each

of the macro-blocks constructed in this way is assumed to be indepen-

dent with other non-overlapping macro-blocks. The dependencies are

then only modeled for elements inside a given macro-block.

The model is only exact at the limit where the chosen dimensions

of the – then unique – macro-block matches the dimensions of the

image. Otherwise this model is not able to capture any dependencies

between macro-block. Nevertheless, these dependencies will exist most

of the time. Indeed, if there is but one operation in the processing

pipeline involving a convolution with a kernel of size greater than one

– which might be considered the case for all pipelines of interest, in

particular for demosaicking – dependencies will be introduced between

neighboring macro-blocks – see Figure 7.3 for a visual explanation of

this fact.

Kernel

Figure 7.3: Illustration of the de-

pendencies introduced between

8 × 8 blocks after demosaick-

ing. Blocks are separated by

thick black lines, whereas the

kernel of the demosaicking al-

gorithm is shown as a blue

square. In practice, the kernel

is moved along each photo-site.

Some pixels will necessarily be a

weighted sum of photo-sites be-

longing to different blocks, hence

the fact that the independent

macro-block model is necessar-

ily inexact for most pipeline of

interest.

Using the exact version of this model is evidently extremely costly

due to the resulting size of theHmatrix. For practical applications, we

will only use the sizes M = 82 or M = 242 corresponding respectively

to a modeling of intra block dependencies and intra+inter block in the

DCT domain.

On the other hand, thanks to its simplicity and its generality, this

model will be useful as a baseline for the analysis of the more com-

plicated lattice model in Chapter 10. In particular, we will see that
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the steganographic algorithms based on these two models are almost

identical in term of implementation.

7.2.2 Lattice model

This model assumes 8×8 blocks to be dependent with their neighboring

blocks. As a consequence, there exist a natural partition of block

into four sets of vectors Λ1, Λ2, Λ3 and Λ4 which we will denote as

lattices. Each lattice is built by collecting every other block starting

at different spatial indices for each lattice – see Figure 7.2. From our

starting assumption, each block in a given lattice is independent of

every other block in the same lattice. This structure, combined with

the Gaussianity of the noise, has extremely interesting properties for

steganography which we review in Section 2.3.2.

Furthermore, this model allows to model dependencies in the DCT

domain for all pipelines involving only operations that use a neighbor-

hood of fewer than eight elements in each direction – that is, operations

that do not span more than two DCT blocks. This is a very common

case in practice as convolutions with kernels of size greater than 16 is

quite expensive in terms of computation.

7.3 Covariance matrix estimation with access to the

RAW image

In this section and the next one, we provide two methods to estimate

the covariance matrices Σk of an image macro-blocks in the developed

domain. The first method, presented in this section, is exact as long

the model assumptions are valid and assumes that one has access to

the RAW image x as well as to a black-box access to the processing

pipeline.

The first step is to estimate the H matrix representing the process-

ing pipeline. For this we refer to Section 6.2.1. Secondly, we estimate

the parameters c1 and c2 of the heteroscedastic model following the

method described in Section 5.3.

Once all these parameters have been estimated, we can compute the

variance of each photo-site xi by using:

σ2
i = c1µi + c2. (7.3.1)

The mean value of the photo-site µi can be estimated using any

denoising algorithm in the RAW domain such as [27]. However we have

found that, in practice, using the actual value of the photo site as an

estimate of the mean value does not lead to any loss for steganography.

We now rewrite Eq (7.3.1) as macro-blocks of variance:

σ2
k = c1 µk +c2. (7.3.2)

The covariance Σk of each macro-block is then simply obtained by

using Eq (7.1.4).
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7.4 Estimation and approximation of the covariance

matrix without the RAW file

This section presents a second method to estimate the covariance ma-

trix without having access to the RAW file. However, we still assume

access to the processing pipeline, at least as a black box, since the

estimation method mostly relies on having a linear approximation of

this pipeline. We will also assume that the steganographer knows the

c1 and c2 parameters of the heteroscedastic model of the cover. This

knowledge does not necessarily require access to the RAW image, it is

sufficient to know the camera and ISO which were used to capture the

cover; this information is usually available in the EXIF metadata of

an image. This second method relies on certain approximations. We

show in Section 11.2 that it does not lead to a loss in performance

when used for steganography.

The estimation method presented in this section is based on esti-

mating a generic correlation matrix that depends only on the process-

ing pipeline. The idea is then (1) to compute the variance of every

DCT coefficient by using an approximate heteroscedastic model of the

DC coefficients before (2) computing an estimation of the covariance

of each block by scaling the correlation matrix using these estimated

variances.

7.4.1 Heteroscedastic model of the DC coefficients

Our goal here is to show that, under some additional assumptions on

the processing pipeline, the variance of the DC coefficients of each

block is linear with respect to the expectation of this DC coefficients.

Note that, for this section only, we distinguish between HDCT , the

64 × 64 matrix representing the DCT transform and Hs the 64 ×M

matrix representing all operations performed in the RAW and spatial

domain. We therefore have: H = HDCTHs.

We assume, as usual, that the processing pipeline is both linear

and stationary. Furthermore, we assume the RAW image is almost

constant by block, that is, for all k we have µk = µ̂+ ek with |ek,i| ≪
µ̂, 1 ≤ i ≤M .

First of all, let us rewrite the models of the block of photo-sites and

of DCT coefficients:

xk ∼ N (µk, c1diag (µk) + c2) , (7.4.1)

yk ∼ N
(

HDCT (Hs µk −128),Hdiag (c1 µk +c2)H
T
)

. (7.4.2)

Note here that, contrary to Eq 7.1.2, we take into account the fact

that we subtract 128 to each pixel before the DCT transform as this

has an impact on the estimation method of this section (whereas it does

not when using the method which uses RAW file). We can express the

first two moments of the DC coefficient yk,1 of each block:
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E [yk,1] =

M
∑

l=1

H1,l (µ̂+ ek,l)− 1024, (7.4.3)

Var [yk,1] = c1

M
∑

l=1

H2
1,lµ̂+H2

1,lc2 + c1

M
∑

l=1

H2
1,lek,l. (7.4.4)

Let us note the following quantities:

H̄i,j ≜

∑M
l=1 H

2
i,l

∑M
l=1 Hj,l

, H̄
(2)
i,j ≜

∑M
l=1 H

2
i,l

∑M
l=1 H

2
j,l

. (7.4.5)

The variance of yk,1 can be expressed using its expectation:

Var [yk,1] = c1H̄1,1E [yk,1] +
M
∑

l=1

H2
1,lc2 + 1024 · c1H̄1,1

+ c1

(

M
∑

l=1

H2
1,lek,l − H̄1,1

M
∑

l=1

H1,lek,l

)

≜ cDC
1 E [yk,1] + cDC

2 + error,

(7.4.6)

with cDC
1 and cDC

2 defined as:

cDC
1 = c1H̄1,1, (7.4.7)

cDC
2 =

M
∑

l=1

H2
1,lc2 + 1024 · c1H̄1,1. (7.4.8)

This shows that the variance of the DC coefficients is linear with

their expectation up to an error which is small as long as the ratio H̄1,1

is small. As a particular case, note that if all the H1,l are constant,

for example if the only operation of the processing pipeline performed

is the DCT transform, then the error is simply 0. In this manuscript,

we assume that the error is negligible in practice.

Note however that, the Hi,l usually alternate sign for i > 1 because

of the structure of the DCT transform. This leads to the ratio H̄i,l

possibly exploding and the error can not be considered small anymore

for AC coefficients in general. However we can still express the variance

of the AC coefficients as a function of the variance of the DC coefficient:

Var [yk,i] = c1µ̂

M
∑

l=1

H2
i,l + c2

M
∑

l=1

H2
i,l + c1

M
∑

l=1

H2
i,lek,l

≃ H̄
(2)
i,1 Var [yk,1] ,

(7.4.9)

using the fact that |ek,l| is small compared to µ̂.

7.4.2 Processing pipeline and correlation matrix estimations

The first step is to estimate the processing pipeline matrix H since we

only assumed a black-box access to the processing pipeline.
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To do so, we first generate an image x̄ so that:

x̄i ∼ N
(

0, σ2
)

, (7.4.10)

where the value of σ2 can be freely chosen and does not impact the

estimation.

Using the black-box access to the pipelines, we develop this image

to obtain the developed image ȳ.

Using Eq (7.1.2), we know that for a given macro-block size M , the

processing pipeline outputs a macro-block of size N and that the k-th

macro-block of the image follows:

ȳk = Hx̄k, (7.4.11)

which can be solved using any type of linear regression method. For

example, we can solve for H using a least-square estimation:

H = ȳx̄T
(

x̄x̄T
)−1

, (7.4.12)

where x̄ and ȳ here correspond respectively to the M ×m and N × n

matrices where each column corresponds to a vectorized macro-block.

To approximate the covariance matrices, we will also use a correla-

tion matrix ρ based on the processing pipeline. First we compute the

sample covariance matrix of ȳ:

Σȳ =
1

m− 1

∑

ȳkȳ
T
k , (7.4.13)

and obtain the correlation matrix:

ρ = diag (Σȳ)
− 1

2 Σȳdiag (Σȳ)
− 1

2 . (7.4.14)

7.4.3 Approximation of the covariance matrix

With the use of the heteroscedastic parameters cDC
1 and cDC

2 and of

the AC-DC model, it is now possible to compute an approximation

of the covariance matrix using the correlation matrix ρ computed in

Section 7.4.2.

To do so, we first compute an approximation of the true variance

map of the DCT coefficients and use it to scale the correlation matrix:

1. Compute the variance ϱ2k,1 of the DC coefficient of the k-th block

yk as:

ϱ2k,1 = cDC
1 yk,1 + cDC

2 . (7.4.15)

2. Compute the variances of the i-th coefficients of the k-th block

simply as:

ϱ2k,i = H̄
(2)
i,1 ϱ

2
k,1. (7.4.16)

.

3. Compute the covariance matrix of the k-th block by scaling the

correlation matrix ρ with the variances of the DCT coefficients of

the block using the standard formula:
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Σ̂k = diag(ϱk) ρ diag(ϱk), (7.4.17)

where ϱk is the vector of standard deviation of the k-th block of

DCT coefficients and Σ̂k the resulting estimation of the covariance

matrix.

7.5 Correction due to clipping

Up until now, we have ignored an important aspect of the behavior of

the noise in the RAW domain: the clipping of values outside of the

range of the sensors. Camera sensors have a range of value which they

can register, usually going from 0 to 214 or 212. Any value below the

minimum value or above the maximum value will be clipped. This

leads to areas where the variance of the noise is very low due to photo-

sites having values close or equal to the minimum or maximum.

Consequently, the model of the variance presented in Chapter 5 is

slightly incomplete as it does not take this aspect into account. A

model closer to reality has the form given in Figure 7.4.
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.

Figure 7.4: Variance σ2 of 10000

samples of N (µ, c1µ+ c2) as

function of µ with c1 = 1 and

c2 = 1000. The curve in red is

obtained when the samples are

clipped at 0 and 4096 while the

curve in black is obtained when

the samples are not clipped.

Statistical models taking into account this phenomenon have been

devised such as in [27], [4] and [78] for a specific application to ste-

ganalysis. However, these model are a lot more complicated to handle

mathematically for our purpose.

In order to solve this problem while keeping the simplicity of our

model, we have experimentally found that forbidding some embedding

locations is counter-productive as it destroys the covariance structure

of the block where the changes are forbidden.

A better solution is to modify directly the covariance matrix in the

RAW domain during the estimation phase. In particular, we empiri-

cally found that a relevant heuristic is to set the variance to 1 when

the mean value of the photo-site µi is greater than 0.95S where S is

the saturating value of the camera sensor.

Similarly, it is important to set a threshold for variances near zero

for numerical stability as we use the Cholesky decomposition of the

covariance matrix later in this manuscript. As long as the value is

small we haven’t found the exact value of the threshold to matter; as
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a consequence we fixed it to 10−5, that is we fix the variance σ2
i to

10−5 if σ2
i < 10−5 .

When using the method which does not use the RAW file, we have

found that a sufficient method to obtain satisfying results is to set

ϱk,i = 10−7 for all i if the k-th block contains saturated pixels in the

spatial domain.

These simple heuristics are empirically validated in Chapter 11 of

this manuscript.

7.6 Experimental validation of the model

We finish this chapter by presenting a series of experiments to validate

the model of the noise for developed images derived in this chapter.

Two main features of the model need to be validated: the multivariate

Gaussianity of the noise and the form of the covariance which should

only depend on the sensor type, ISO and processing pipeline matrix

H.

Since the model is meant to be exact for a linear and stationary

pipeline but only approximate for other type of pipelines we will per-

form our experiments on three different pipelines which exhibit differ-

ent settings from the ideal case. The first pipeline, which we name the

Linear pipeline is composed only of purely linear and stationary oper-

ations, namely bilinear demosaicking and DCT transform. The other

pipeline, named the Bosslike pipeline since it is almost identical to the

pipeline used to build the standard image dataset BOSSBase. It will

introduce both non-linear and non-stationary operations due to the

presence of the PPG demosaicking algorithm. However the Bosslike

pipeline is still composed of several linear and stationary operations

such as white-balance, sub-sampling and the DCT transform which are

very well captured by our model. Consequently we also provide exper-

iments using the ALASKA pipeline1 which is composed of a variety 1 The pipeline is named after the
ALASKA competitions [12] which
proposed a dataset composed of im-
ages developed randomly with a large
variety of processing pipelines.

of non-linear and non-stationary operations such as the aMaZe demo-

saicking algorithm, denoising and sharpening using the Rawtherapee

5.8 software.

The Linear and Bosslike pipelines, which will be used throughout

this manuscript, are summarized in Table 7.1.

Pipeline name Demosaicking White Balance RGB to grey Downsampling method

Linear Pipeline Bilinear No Yes Crop, 264× 264

BOSS Pipeline PPG Yes, Camera Yes Resize from 792× 792 crop to 264× 264, Lanczos kernel

Table 7.1: Names and opera-

tions of the processing pipelines

used in this manuscript. The op-

erations are performed in the or-

der they are presented in the ta-

ble

7.6.1 Experimental setup

In these experiments we want to compare the covariance estimated

with Monte-Carlo simulations Σdev which we will consider the ground

truth and the covariance ΣH estimated with the method presented

in Section 7.3. For each of the three pipelines we generate n RAW

images such that the photo-sites of all images follow a Gaussian random

variable with mean 3958 and variance 29145. Each of these images are

then developed using the chosen processing pipeline. The RAW images
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are then split into m1 macro-blocks of size M ×M and the developed

image into m2 macro-blocks of size N × N . The nm1 RAW macro-

blocks are collected into a nm2×M matrix denoted as X and similarly

for the developed macro-blocks which are collected into a nm2 matrix

denoted as Y.

Then, we compute H using a linear regression between X and Y

in the same way as in Section 6.2.1. The covariance of RAW macro-

blocks Σraw and the covariance of the developed macro-blocks Σdev are

computed as:

Σraw =
1

nm1 − 1

nm1
∑

k=1

Xk X
T
k (7.6.1)

Σdev =
1

nm2 − 1

nm2
∑

k=1

Yk Y
T
k (7.6.2)

We want to compare Σdev to the following estimate, ΣH:

ΣH = HΣraw HT (7.6.3)

To do so we will use three measure of error between ΣH and Σdev.

The first two measures of error are the distances induced by the Frobe-

nius and max norm of matrices:

||A−B ||F ≜
√

∑

i,j

(Ai,j −Bi,j)2 (7.6.4)

||A−B ||∞ ≜ max
i,j
|(Ai,j −Bi,j)| (7.6.5)

The third measure of error is of more interest to our application

to steganography. It is based on the Kullback-Leibler divergence be-

tween two Multivariate Gaussian random variables with equal mean

but different covariances:

||A−B ||KL ≜
1

2

(

trace
(

B−1 A
)

−K + log

( |A |
|B |

))

. (7.6.6)

where A and B are two positive-definite matrices of equal size K ×
K.

The main idea behind using this divergence is to measure how much

power one can expect an optimal detector to gain if it has to dis-

criminate between a multivariate Gaussian using the true covariance

Σdev (here estimated by Monte-Carlo simulation) and the multivariate

Gaussian using our estimate of the covariance ΣH. The KL-divergence

bounds the power of the optimal detector – see Theorem 2.3.10 – and

as such, if it is close to zero, we can conclude that using our approxima-

tion would not hurt our steganographic scheme since the steganalyst

would not gain much discriminatory power if the steganographer were

to use our estimation method.

The results are presented in Table 7.2. The covariance matrix Σdev

obtained for each pipeline are also presented in Figure 7.5-7.7. As to be
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Error

Pipeline ||Σdev − ΣH||F ||Σdev − ΣH||∞ ||Σdev − ΣH||KL

Linear 1.7 · 10−5 1.5 · 10−6 1.2 · 10−5

Bosslike 4.0 · 10−1 1.9 · 10−1 1.8 · 10−2

ALASKA 1.1 · 10+2 8.2 · 10+1 6.1 · 10+3

Table 7.2: Different measures

of error of estimation between

the covariance estimated with

Monte Carlo simulations and the

covariance estimated with the

method presented in this chap-

ter.

expected, the errors for the linear pipeline are negligible, in particular,

even an optimal detector would not gain any significant power if a

steganographer were to use ΣH instead of Σdev.

The errors for the Bosslike pipeline are still quite low though we

can expect an optimal detector in this case to gain at most 1.23% in

terms of probability of detection which is not negligible. The larger

error is due to at least two factors. The first is that, as shown in

Section 6.1.1, the PPG demosaicking algorithm is neither linear nor

stationary. Consequently, H is not a perfect representation of the

processing pipeline. The second, more subtle factor, is that we used

74 × 74 RAW macro-blocks to estimate H, that is, we used macro-

blocks of size 8 · 9 × 8 · 9 with an added margin of 1 row/columns in

each direction. This margin is used to take into account the impact

of the convolution windows at the borders of the macro-blocks. A

margin of 1 is sufficient in the case of the Linear pipeline because

the largest convolution kernel has a 3 × 3 window size. However, the

Bosslike pipeline uses a 5× 5 Lanczos kernel during its downsampling

operation, leading to an inaccurate estimation of H on the borders. A

better estimate would be obtained by using a margin of 2 instead.

The errors on the ALASKA pipeline are several orders of magnitude

higher showing that the model cannot handle extreme deviations from

our assumptions of linearity and stationarity.

7.7 Conclusion

In this chapter we proposed a model of the noise in natural images

by taking into account (1) the heteroscedasticity of the noise in the

RAW domain and (2) the processing pipeline under the linearity and

stationarity assumptions of the previous chapter. This leads to a mul-

tivariate Gaussian model of (macro)-blocks of DCT coefficients which

depends only on the camera, ISO parameter and processing pipeline

thus providing a theoretical justification of our empirical definition of

the source in Chapter 4.

However, our model does not automatically provide a model of de-

pendencies between (macro)-blocks themselves. Therefore, we pro-

posed two models of dependencies, the first, idealized, assumes (macro)-

blocks to be independents whereas the second, closer to reality as was

shown in [75], assumes blocks of DCT coefficients to be dependent only

with direct neighboring blocks.

We then went on to provide two method of estimation for the co-

variances of each (macro)-block of DCT coefficients. The first method
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assumes knowledge of both the RAW image and of the processing

pipeline as a black box. It is a straightforward application of Eq 7.1.2

and is the simplest to implement. The second method only necessi-

tates access to the processing pipeline as a black box and leverages a

novel approximate model of the variances of the DC coefficients and

their linear relationship with the variances of the AC coefficients.

We finally ended the chapter by validating our model by showing

that the distance between a covariance estimated using Monte-Carlo

simulation and a covariance estimated using our method is quite small

as long as the pipeline does not diverge too much from the linearity

and stationarity assumptions.
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Figure 7.5: Covariance matrix

Σdev of 24 × 24 blocks of DCT

coefficients obtained for the Lin-

ear pipeline.
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Figure 7.6: Covariance ma-

trix Σdev of 24 × 24 blocks of

DCT coefficients obtained for

the Bosslike pipeline.
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Figure 7.7: Covariance ma-

trix Σdev of 24 × 24 blocks of

DCT coefficients obtained for

the ALASKA pipeline.
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In the second part of this manuscript we leverage the theoretical

model of the noise of natural images constructed in Part I to design

steganographic algorithms in the JPEG domain able to provide guar-

antees of performance under a given set of hypotheses on the noise

structure.

All chapters in this part follow an identical structure. First we

describe the model of the cover and of the stego images which will

be used by both the steganographer and the steganalyst. Then, we

derive the optimal detector under these models and compute analyt-

ically, when possible, its statistical performances. Finally, we design

the corresponding embedding scheme which minimizes the power of

this optimal detector or an upper bound on this power.

This part is structured in such a way that we go from the simplest

model requiring the least amount of knowledge about the cover image

to the most complicated one requiring the full knowledge about the

processing pipeline as well as access to the unquantized DCT coeffi-

cients:

• Chapter 8 presents the design of JMiPOD, a steganographic algo-

rithm which assumes that DCT coefficients are independent and fol-

low quantized gaussian distributions with different variances. This

algorithm does not assume access to the processing pipeline nor to

the unquantized DCT coefficients of the cover image. This chapter

is adapted from our contribution [14] which was itself a continuation

of previous works in the spatial domain, namely MiPOD [69] and

MG [29].

• Chapter 9 presents the design of Gaussian Embedding, a stegano-

graphic algorithm which assumes that unquantized DCT coefficients

are independent with different variances which can be estimated

very precisely using the knowledge of the processing pipeline. It

minimizes the power of the optimal detector in the continous do-

main under this model under a payload constraint in the quantized

domain. Consequently it assumes both the knowledge of the pro-

cessing pipeline as well as access to the unquantized DCT coeffi-

cients of the cover image. This Chapter is adapted from our two

contributions [33, 32].

• Chapter 10 presents the design of different variants of Multivari-

ate Gaussian Embedding, a steganographic algorithm which fully

leverages the noise model of Part I by assuming that macro-blocks

of unquantized DCT coefficients follow a multivariate Gaussian dis-

tribution. It also minimizes the power of the optimal detector in

the continous domain under this model under a payload constraint

in the quantized domain. This Chapter is adapted from our two

contributions [31, 30].

• Chapter 11 provides numerical results and experimental compar-

isons between these algorithms as well as to the current state of the

art in JPEG steganography.





8Independent optimal

steganography in the

quantized domain

We start our study of the different possible methods of steganography

in Gaussian noise with the most natural setting, where the steganog-

rapher is assumed to only have access to the cover image and nothing

else. In this setting, the steganographer cannot use the processing

pipeline and, as such, does not have access to the covariance of the

noise. Furthermore, we will see that having access only to the quan-

tized values of the cover imposes a major assumption on the structure

of the noise: the fine quantization limit assumption.

8.1 Cover and stego model

8.1.1 Cover model

Since we assumed that the steganographer does not have access to

the processing pipeline, we have to use an approximation of the noise

model derived in Chapter 7. Furthermore, this model did not take the

quantization step into account, something we address in this subsec-

tion.

Without access to the covariance of the noise 1, we model the noise 1 The literature concerning the estima-

tion of signal-dependent multivariate
noise is very sparse and always make

strong assumptions on either the infor-

mation available to build the model or
the structure of the covariance [3, 57].

as independent, but not identically distributed, Gaussian random vari-

ables. That is, the i-th unquantized DCT coefficient, yi of the image

is such that:

yi ∼ N
(

µi, σ
2
i

)

. (8.1.1)

However, the precover is quantized to a cover and as such each

quantized DCT coefficient zi follows a quantized Gaussian distribution:

zi = round (yi) , (8.1.2)

∼ N
(

µi, σ
2
i

)

, (8.1.3)

with probability mass function:

fµi,σi
(x) = Φ

(

x− µi + 0.5

σi

)

− Φ

(

x− µi − 0.5

σi

)

, x ∈ Z. (8.1.4)

Now such a distribution is quite difficult to manipulate in practice.

The usual strategy to deal with this difficulty in the literature is to

use the so-called fine quantization limit assumption [16, 29, 69, 15].

The fine quantization limit assumption states that the quantizer

step is far smaller than the variance. In our case, the quantizer step is

always 12. This means that: 2 Without loss of generality, we as-
sume in our model that σ2

i is the

variance after the division by Qk,l in
Eq (6.1.29) but before the rounding
operation. The rounding operation
does not multiply the resulting coeffi-
cient by Qk,l, so the quantization step
is always 1 in our model.
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σ2
i ≫ 1 (8.1.5)

The analysis in [82, Chapter 4] shows that under this assumption,

the pmf of zi is well approximated by a Gaussian distribution such

that:

zi ≈ N
(

µi, σ
2
i +

1

12

)

(8.1.6)

fµi,σi
(x) ≃ Φ





x− µi
√

σ2
i +

1
12



 . (8.1.7)

The correction of 1
12 of the variance is known from the so-called

Sheppard’s corrections, with a proof which can be found in [45]. In

order to simplify the notation in the rest of this chapter, we omit this

term and assume it to be included in σ2
i

8.1.2 Stego model

In the quantized domain, (2q + 1)-ary embedding is a popular choice By (2q + 1)-ary embedding we mean

embedding using an alphabet with
symbols taking integers value from -q
to q

with ternary embedding an excellent compromise between coding effi-

ciency and security performance.

For our purpose, we consider that the steganographer uses a ternary

alphabet A = {−1, 0,+1} where the probability βi of adding +1 to the

i-th cover element is equal to the probability of adding −1. Noting that

the probability of adding 0 to the i-th cover element is consequently

equal to 1 − 2βi, the pmf of the i-th stego element ζi is a mixture of

quantized Gaussians:

fµi,σi,βi
(x) = (1− 2βi) fµi,σi

(x)

+ βi (fµi,σi
(x+ 1) + fµi,σi

(x− 1)) ,
(8.1.8)

and we denote the distribution having this pmf as Ns so that we

can write the stego object as:

ζi ∼ Ns

(

µi, σ
2
i , βi

)

. (8.1.9)

Equation (8.1.8) means that if ζi = x, then with probability 1−2βi,

the value of the DCT coefficient before embedding was also x (no

embedding); with probability β its value was either x− 1 (added +1)

or x+ 1 (added −1).

8.2 Optimal detector

Following the setting described in Section 2.3, we assume that the

steganalyst has access to σ, µ and to β. A sample image ς is then

presented to the steganalyst and they must choose between the two

hypotheses:






H0 : {ςi ∼ Ns

(

µi, σ
2
i ,0
)

}, ∀i
H1 : {ςi ∼ Ns

(

µi, σ
2
i , βi

)

}, ∀i
(8.2.1)
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The following theorem provides the optimal detector and its asymp-

totic statistical performance under this setting:

Theorem 8.2.1. Under the settings of this chapter, the following

holds:

1. The test maximizing the power function PD for a prescribed false

PFA is the likelihood ratio test (LRT):

Λ (ς,σ,β) =
n
∑

i=1

log

(

fµi,σi,βi
(ς)

fµi,σi
(ς)

)H0

≶
H1

τ (8.2.2)

where τ is a threshold fixed so that P [Λ > τ | H0] = α0, where α0

is the chosen probability of false alarm.

2. The limit distribution of Λ− EH0
[Λ] as n→∞ is given by:

Λ (ς,σ,β)−EH0
[Λ]⇝























N
(

0,

n
∑

i=1

2β2
i

σ4
i

)

under H0

N
(

n
∑

i=1

2β2
i

σ4
i

,

n
∑

i=1

2β2
i

σ4
i

+O
(

σ−6
i

)

)

under H1

(8.2.3)

3. Under the asymptotic regime, the power function PD can be com-

puted as:

PD (α0) = Q



Q−1 (α0)−

√

√

√

√

n
∑

i=1

2β2
i

σ4
i



 (8.2.4)

Proof. (1) follows directly from Theorem 2.3.5 combined with Propo-

sition 2.3.6. (2) and (3) are proved in Appendix 8.A.

The third point can be interpreted as the fact that areas with high

variance don’t contribute much to the power of the detector. This

can be intuitively understood since the values of DCT coefficients in

such areas are difficult to predict and are, as such, the most secure for

the steganographer. We leverage precisely this observation in the next

section where we finally design the first steganographic algorithm of

this manuscript.

8.3 Embedding

The steganographer’s problem is to minimize the power of the LRT

under a given payload constraint R. This can be formulated as the

following optimization problem:



















minβ =

n
∑

i=1

2β2
i

σ4
i

R =
n
∑

i=1

H3 (βi)

(8.3.1)

with:
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H3 (x) = −2x log(x)− (1− 2x) log(1− 2x). (8.3.2)

This problem can be solved using the method of Lagrange multipli-

ers. The Lagrangian of Eq (8.3.1) can be written as:

L =
n
∑

i=1

2β2
i

σ4
i

+ λ

(

R−
n
∑

i=1

H3 (βi)

)

. (8.3.3)

We then compute the parameters βi and λ which make ∂L
∂βi

null:

∂L
∂βi

= 0 ⇐⇒ 4βi

σ4
i

+ 2λ log

(

βi

1− 2βi

)

= 0, (8.3.4)

which needs to be solved numerically for each βi. In practice, a interval

halving search is performed on λ to find the resulting βi which allow

the payload constraint to be satisfied.

8.4 Variance estimation without the processing pipeline

8.4.1 The noise-content tradeoff

In the absence of the processing pipeline, the techniques presented in

Chapter 7 cannot be used to estimate the variance. Consequently, an

estimator of the variance must be chosen to perform the embedding of

hidden data as described in Eq (8.3.1). A counter-intuitive fact to take

into account is that the most accurate estimator of the variance might

not, in fact, lead to the best security performance for this algorithm.

This has been first discussed in [70, 69] and we have provided a long

experimental study of this fact in [32] where we clearly showed that,

against some steganalyzers, the use of perfect estimates of the vari-

ance is sub-optimal with respect to using estimates from more crude

estimators.

In particular, we showed the existence of a noise-content trade-off in

steganography: algorithms that use only perfect estimates of the vari-

ance don’t leverage the fact that steganalyzer cannot perfectly model

the content of an image. Such algorithms have consequently subpar

performance against algorithms such as J-UNIWARD which precisely

leverages such weakness of steganalyzers.

However, it is possible to integrate this local difficulty of modeling

content by using an imperfect variance estimator that only uses the

cover image. The estimation errors would typically occur in “non-

smooth” areas and result in largely overestimated variance – indicating

to the steganographic algorithm that these zones are “safe” to embed

in.

8.4.2 Wiener filtering and local approximation with a parametric model

Please note that the methodology
of this subsection is mostly taken
from the first work on the subject in
steganography, that is [70]. Indeed,
except for the change of some parame-
ters, the overall methodology has been
kept the same across all works based
on the setting of this chapter [70, 69,
15, 14]. We still provide it in this
manuscript for completeness.

We perform the estimation of the variance in the spatial domain. That

is, we first decompress the cover image z into the image z̃. When re-

ferring to these images in their matrix form, we write Z and Z̃ respec-

tively.
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The first step of the variance estimation procedure is to separate

the noise from the content of the image since we are mainly interested

in estimating the variance of the noise. To do so, we compute at first

a crude estimate of the mean using a 2× 2 Wiener filter W on Z̃:

R = Z̃−W
(

Z̃
)

, (8.4.1)

with R the residual noise.

To improve the estimation of the content, we fit a parametric linear

model to the residuals using their surrounding neighbors. To do so,

we first choose a neighborhood size p. For the i-th residual of the

image, we note the p×p block centered on this residual, reshaped into

a column vector of size p2, as ri.

Using a linear parametric model for this residual amounts to write:

ri = Gai + ξi, (8.4.2)

ξi ∼ N
(

0, diag
(

ϱ2i
))

, (8.4.3)

where G is a p2 × q matrix defining the parametric model and ai a

vector of size q representing the actual coefficients of this model for

the particular residual block ri.

Our goal here is to estimate ϱ2i . Whatever the chosen parametric

model G, under the assumption that all the variances in a given ξ are

constant, the Gauss-Markov theorem [55, Theorem 4.12] states that

the best linear unbiased estimation of ai is given by:

âi =
(

GTG
)−1

GT ri. (8.4.4)

Using the well-known maximum likelihood estimator of Gaussian

random variable, we obtain the individual variance estimates ϱ̂2i :

ϱ̂2i =
||ri −Gâi||22

p2 − q

=
||ri −G

(

GTG
)−1

GT ri||22
p2 − q

.

(8.4.5)

From the pioneering paper [70] to the most recent [14], It ap-

pears that the empirical choice that leads to highest empirical security

against current detectors is a trigonometric polynomial model contain-

ing l monomials:

G =(1, cos (U) , cos
(

UT
)

, cos (U) · cos
(

UT
)

, cos (2U) ,

cos
(

2UT
)

, cos (2U) · cos
(

2UT
)

, cos (4U) , . . . ,

cos (lU) , cos
(

lUT
)

, cos (lU) · cos
(

lUT
)

, cos (l2U))

(8.4.6)

with:

Ui,j =
π(2j − 1)

2p
, ∀1 ≤ i, j ≤ p. (8.4.7)

For the moment, we only estimated the variance ϱ2i in the spatial

domain. To obtain the variances in the DCT domain, we leverage the
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linearity of the DCT transform – see Eq (6.1.26). For the k-th 8 × 8

block of DCT coefficient, the block of variance σ2
k in the DCT domain

is given by:

σ̂2
k = diag

(

HDCTdiag
(

ϱk
2
) (

HDCT
)T
)

, (8.4.8)

where HDCT is the DCT transform represented as a 64×64 matrix.

Once every σ̂2
i is estimated we compute the Fisher Information Ii : We call this quantity the Fisher

Information as it can be shown
with simple calculations that

E

[

(

∂fµi,σi,βi
∂βi

)2
]

|βi=0

= 1

σ4
i

Ik = σ̂−4
k . (8.4.9)

It has been observed that the security of the steganographic algo-

rithm can be highly improved if the Fisher Information is smoothed

using an ad-hoc filter:

Î = I ⋆W. (8.4.10)

We have found experimentally the following parameters to lead to good

performance in the JPEG domain:

W =
1

20









1 3 1

3 4 3

1 3 1









. (8.4.11)

8.5 Performance evaluation

Since the algorithm presented in this chapter was designed for quite

a different setting than the algorithms of the following chapters (no

side-information and no use of the processing pipeline), we provide

the performance evaluation of J-MiPOD in this section whereas other

algorithms will be evaluated in Chapter 11. We compare the pro-

posed method with the two state-of-the-art of non side-informed JPEG

steganography: UERD [39] and J-UNIWARD [42].

We have used two datasets: BossBase [5] and BOWS3. They are 3 Dataset from the watermarking com-
petition organized by P. Bas and T.

Furon – see http://bows2.ec-lille.

fr/

both made of 10, 000 grayscale images of size 512× 512. As explained

in Chapter 4 this dataset lacks the diversity of real-world datasets

since all images have been processed in the same way. Therefore, to

compare the security of these embedding schemes under more realistic

conditions we have also used the recent ALASKA dataset [12]. The

version we used is made of 80, 000 JPEG grayscale images of size 512×
512. All the images from this dataset have been processed differently

using a randomized process.

For steganalysis, we used Efficient-Net-b0 [76] as it has been shown to

reach state of the art performance during the ALASKA2 competition.

Results are presented in Figure 8.1-8.2.

8.6 Conclusion

In this chapter, we presented the JMiPOD algorithm which is based

on a very simplified model of the sensor noise in the quantized domain.

We have used it to illustrate the main strategy of statistically based

embedding schemes as presented in Section 2.3.
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Figure 8.1: PE as function

of payload size for Boss-

Base+BOWS steganalyzed

using Efficient-Net-b0. Payload

is in bits per non zero AC

coefficients.
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Figure 8.2: PE as function of

payload size for ALASKA ste-

ganalyzed using Efficient-Net-

b0. Payload is in bits per non

zero AC coefficients.
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The algorithm is based on an independent quantized Gaussian model

of DCT coefficients in the JPEG domain. The stego model uses a

mixture of quantized Gaussian distribution, modeling the impact of

ternary embedding. The power of the optimal detector under these

models is shown to depend only on the variance of the DCT coeffi-

cients. JMiPOD then minimizes the power of this detector to locate

the best DCT coefficients for embedding.

We provided a methodology to estimate the variance of DCT coeffi-

cients when only the JPEG file is available and showed that the method

performed better than the state of the art of non side-informed JPEG

steganography.

In the following chapters, we finally begin to leverage the model of

the sensor noise developed in the previous part of this manuscript and

combine it with the strategy outlined in this chapter.
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Appendices

8.a Limit distribution of the LRT and asymptotic per-

formance

Without loss of generality, we assume that µi = 0, ∀i for the rest of

this appendix. This appendix is largely adapted from
the excellent presentation of the ap-
pendix of the original MiPOD pa-
per [69]

We have that:

Λ (ς,σ,β) =

n
∑

i=1

log

(

fσi,βi
(ς)

fσi
(ς)

)

=

n
∑

i=1

log





(1− 2βi) exp
(

ς2i
2σ2

)

+ βi

(

exp
(

(ςi+1)2

2σ2
i

)

+ exp
(

(ςi−1)2

2σ2
i

))

exp
(

ς2i
2σ2

i

)





=
n
∑

i=1

log

(

1− 2βi + βi

(

exp

(

ςi − 1
2

σ2
i

)

+ exp

(−ςi − 1
2

σ2
i

)))

(8.A.1)

By using the fine quantization assumption, we have that σi ≫ 1. We

can then use the second-order Taylor approximation of the exponential

function around 0:

Λ (ς,σ,β)
.
=

n
∑

i=1

log

(

1 + βi

(

− 1

σ2
i

+
ς2i + 1

4

σ4
i

))

, (8.A.2)

which we follow by the first-order Taylor approximation of log (1 + x):

Λ (ς,σ,β)
.
=

n
∑

i=1

βi

(

− 1

σ2
i

+
ς2i + 1

4

σ4
i

)

. (8.A.3)

Using the invariance of the LRT under the addition of a constant

we obtain the final expression:

Λ (ς,σ,β) =

n
∑

i=1

βi

(

− 1

σ2
i

+
ς2i
σ4
i

)

. (8.A.4)

The moments of Λ can be computed under both hypotheses. Under

H0 we have:

EH0
[Λ] =

n
∑

i=1

βiEH0

[

ς2i
σ4
i

]

−
n
∑

i=1

βi

σ2
i

=

n
∑

i=1

βi

σ2
i

−
n
∑

i=1

βi

σ2
i

= 0.

(8.A.5)

VarH0
[Λ] =

n
∑

i=1

β2
i VarH0

[

ς2i
σ4
i

]

=
n
∑

i=1

2β2
i

σ4
i

.

(8.A.6)
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And conversely under H1:

EH1
[Λ] =

n
∑

i=1

βi

EH1

[

ς2i
]

σ4
i

−
n
∑

i=1

βi

σ2
i

=

n
∑

i=1

βi

(1− 2βi)EH0

[

ς2i
]

+ βi

(

EH0

[

(ςi + 1)2
]

+ EH0

[

(ςi − 1)2
])

σ4
i

−
n
∑

i=1

βi

σ2
i

=

n
∑

i=1

βi

(1− 2βi)EH0

[

ς2i
]

+ 2βiEH0

[

ς2i + 1
]

σ4
i

−
n
∑

i=1

βi

σ2
i

=

n
∑

i=1

βi
(1− 2βi)σ

2
i + 2βi(σ

2
i + 1)

σ4
i

−
n
∑

i=1

βi

σ2
i

=

n
∑

i=1

βiσ
2
i + 2β2

i

σ4
i

−
n
∑

i=1

βi

σ2
i

=
n
∑

i=1

2β2
i

σ4
i

.

(8.A.7)

VarH1
[Λ] =

n
∑

i=1

β2
i VarH1

[

ς2i
σ4
i

]

=

n
∑

i=1

β2
i

EH1

[

ς4i
]

− EH1

[

ς2i
]2

σ8
i

=
n
∑

i=1

β2
i

2βi + 3σ4
i + 12βiσ

2
i − σ4

i − 4β2
i − 2βiσ

2
i

σ8
i

=

n
∑

i=1

2β2
i

σ4
i

+O
(

σ−6
i

)

≃ VarH0
[Λ] .

(8.A.8)

Since we assume DCT coefficients to be independent we can directly

use Corollary 9.2.1 to obtain the asymptotic performance of the LRT:

PD = Q



Q−1 (PFA) +
0−∑n

i=1
2β2

i

σ4
i

√

∑n
i=1

2β2
i

σ4
i





= Q



Q−1 (PFA)−

√

√

√

√

n
∑

i=1

2β2
i

σ4
i



 .

(8.A.9)
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9.1 Cover and stego model

In this chapter, the steganographer assumes that all the unquantized

DCT coefficients yi are independent and that they follow a Gaussian

distribution such that:

yi ∼ N
(

µi, σ
2
i

)

, (9.1.1)

with the pdf denoted as pσi
.

However, contrary to Chapter 8, we now model the prestego signal,

that is, the stego signal in the continuous domain before quantization.

In this chapter, the steganographer chooses to use a prestego signal si,

which is added to yi such that:

si ∼ N
(

0, ϵ2i
)

. (9.1.2)

This choice of distribution, though we do not prove its optimality, is

motivated by two nice properties of the Gaussian distribution. First,

the sum of two Gaussian random variable is also a Gaussian random

variable which makes the mathematical derivations more tractable.

Secondly, for a given expectation and variance, the Gaussian distri-

bution is the maximum entropy distribution in the continuous do-

main [17], we can thus expect the distribution to maximize the em-

bedded payload for a given power of the LRT.

We then define the prestego image element γi as the stego image

element before rounding:

γi = yi + si (9.1.3)

∼ N
(

µi, σ
2
i + ϵ2i

)

, (9.1.4)

with pdf denoted as qσi,ϵi .

9.2 Optimal detector

Under our setting, the goal of the steganalyst is to construct a test in

the continuous domain. We assume they have access to µ σ, ϵ as well

as to the sample in the continuous domain ξ. The steganalyst must

choose between two hypotheses:







H0 : {ξi ∼ N
(

µi, σ
2
i

)

}, ∀i
H1 : {ξi ∼ N

(

µi, σ
2
i + ϵ2i

)

}, ∀i
(9.2.1)
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The following theorem provides the form of the optimal test under

this setting as well as its performance:

Theorem 9.2.1 (Independent Gaussian LRT). Under the settings of

this chapter, the following holds:

1. The test maximizing the power function PD for a prescribed false

α0 is the log-likelihood ratio test (LRT):

Λ (ξ,σ,β) =

n
∑

i=1

log

(

qσi,ϵi

pσi

)H0

≶
H1

τ (9.2.2)

where τ is a threshold fixed so that P [Λ > τ | H0] = α0, where α0

is the chosen probability of false alarm.

2. The limit distribution of Λ as n→∞ is given by:

Λ (ξ,σ, ϵ)⇝























N
(

−DKL (pσi
|| qσi,ϵi) ,

n
∑

i=1

ϵ4i
2(σ2

i + ϵ2i )
2

)

under H0

N
(

DKL (qσi,ϵi || pσi
) ,

n
∑

i=1

ϵ4i
2σ4

i

)

under H1

(9.2.3)

3. Under the asymptotic regime and assuming σ2
i ≫ ϵ2i for all i, the

power function PD can be computed as:

PD (α0) = Q



Q−1 (α0)−

√

√

√

√

n
∑

i=1

ϵ4i
2σ4

i



 (9.2.4)

Proof. (1) follows directly from Theorem 2.3.5 combined with Propo-

sition 2.3.6. (2) and (3) are proved in Appendix 9.A and 9.B respec-

tively.

9.3 Embedding

The embedding problem under the setting of this chapter is peculiar

because we express the power of the LRT in the continuous domain but

the final message must be embedded in the quantized domain since the

image will have to be shared as compressed JPEG. Consequently, the

payload constraint must be expressed in the quantized domain despite

the power of the LRT being expressed in the continuous domain. This

results in the following optimization problem:



















minϵ

n
∑

i=1

ϵ4i
2σ4

i

R =
∑n

i=1

∑

k∈Z

βk
i log β

k
i

(9.3.1)

where βk
i is the probability of modifying the i-th DCT coefficient by

+k during embedding. It is computed as:

βk
i = Φ

(

k − ri + 0.5

ϵi

)

− Φ

(

k − ri − 0.5

ϵi

)

, (9.3.2)
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where ri = yi − [yi] is the rouding error of the i-th DCT coefficient.

Now, Eq (9.3.1) is a difficult system to solve directly but we can use

the following proxy problem:



















minϵ

n
∑

i=1

ϵ4i
2σ4

i

R∗ = 1
2

n
∑

i=1

log
(

2πeϵ2i
)

(9.3.3)

where R∗ is the entropy of the signal in the continuous domain.

Now observe that both R∗ and R are increasing in ϵ2i . Consequently,

we only have to find R∗ such that
∑n

i=1

∑

k∈Z
βk
i log β

k
i = R, with each

βk
i directly depending on R∗ through ϵ2i .

We can solve Eq (9.3.3) using the method of Lagrange multipliers:

L =

n
∑

i=1

ϵ4i
2σ4

i

+ λ

(

R∗ − 1

2

n
∑

i=1

log
(

2πeϵ2i
)

)

(9.3.4)

∂L
∂ϵi

= 0, ⇐⇒ 2ϵ3i
σ4
i

+
λ

ϵi
= 0

⇐⇒ ϵ2i =

√

λ

2
σ2
i .

(9.3.5)

Finally we obtain the expression of λ by plugging in ϵ2i in the payload

constraint in the continuous domain:

λ = exp

(

4R∗

n
− 4

n

n
∑

i=1

log (σi)− 2 log (2πe) + log (2)

)

. (9.3.6)

Note then that the optimal variance of the prestego signal is pro-

portional to the variance of the cover noise. Finding the optimal R

can be done through a simple halving interval search on λ until the

payload constraint in the quantized domain is met. This allows solving

the original optimization problem in Eq (9.3.1). We provide the full

algorithm in Algorithm 3.

9.4 Validation and limitations of the method

We end this chapter by studying how our steganographic algorithm

behaves against the likelihood ratio test under different model assump-

tions on the cover model. First, we test the performance of the algo-

rithm on synthetic images which follow the model of Section 9.1 and

verify that it matches the performance predicted by Theorem 9.2.1.

We then go on to test the method on natural images in order to show

the limitations of not taking correlations between DCT coefficients into

account.

9.4.1 Synthetic images

In order to validate the analysis of Section 9.2, we build a dataset made

out of synthetic images with the parameters of the noise chosen as to
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Algorithm 3: Gaussian Embedding

Data: y: Precover, σ2: Cover noise variances, R: Payload

size (in nats)

Result: s : Prestego signal solving Eq (9.3.1)

n← size(y);

r← y − round(y);

// Interval bisection on R∗ until the payload

constraint is met

l, r ← InitializeIntervalBounds();

// Compute λ using Eq (9.3.6) for R∗ = l.

λ← ComputeLambda (l);

// Compute entropy using Eq (9.3.1) and Eq (9.3.2).

fl← ComputeEntropy (λ)−R ;

λ← ComputeLambda (r);

fr ← ComputeEntropy (λ)−R ;

while error ̸= 0 do

R∗ ← l+r
2 ;

λ← ComputeLambda (R∗);

error← ComputeEntropy (λ)−R;

if fl · error < 0 then

r ← R∗;

fr ← error;

else

l← R∗;

fl← error;

// Sample n independent gaussians with variance ϵ2

s← N (0, diag

(

√

λ
2 σ

2

)

;

be identical to those of the camera used to capture the original image.

For each dataset, we select a RAW image x̄ from BOSSBase which we

then develop using the Linear pipeline, as defined in Section 7.6, to

obtain the baseline image ȳ. We then generate 1000 precover images

y(l) such that for all l:

y
(l)
i ∼ N

(

µi, σ
2
i

)

(9.4.1)

where µi = ȳi and σ2
i is the variance of ȳi estimated using the method

presented in Section 7.3. Notice that each y(l) is simply the baseline

image to which was added different realizations of a Gaussian noise.

We then embed each image using the Gaussian Embedding algo-

rithm for different payload to obtain the prestego images γ(l):

γ(l) ∼ N
(

µi, σ
2
i + ϵi

)

. (9.4.2)

We finally compute the LRT under the model presented in this chapter:

Λ (ξ,σ,β) =
n
∑

i=1

log

(

qσi,ϵi

pσi

)

(9.4.3)
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We present the ROC curve of the empirical LRT against the ROC

curve of the theoretical LRT in Figure 9.1. As expected the perfor-
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PFA

0.0
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P
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R = 0.05

R = 0.1

R = 0.2

Figure 9.1: LRT on a dataset

with synthetic independent

Gaussian noise built with image

6551 in BossBase for different

relative payloads R. The dotted

lines represent the theoreti-

cal performance of the LRT

whereas the full line represent

the empirical performance.

mance of the empirical LRT match the expected performance for all

the tested cameras, validating our theoretical analysis of the algorithm.

We now go on to study how far the independent Gaussian model for

natural images in order to highlight its limit and motivate the con-

struction of the next chapter.

9.4.2 Natural images under the Linear pipeline

We repeat the experiment of the previous subsection, but this time,

instead of generating noise directly in the developed domain, we gen-

erate noise in the RAW domain so that it follows all the operation of

the processing pipeline. We first estimate the heteroscedastic model

parameters c1 and c2 of the noise in the RAW domain of the RAW

image x̄ using the method described in Section 5.3. We then generate

1000 noisy versions x(l) such that:

xl
i ∼ N (x̄i, c1x̄i + c2) . (9.4.4)

Notice that each noisy image should follow exactly the model of the

noise of x̄ except that we use the baseline image as the mean value.

We then process each image using the Linear pipeline to obtain the

precover, with the l-th precover denoted as y(l). From the analysis of

Chapter 7, y(l) should follow a multivariate Gaussian model:

y
(l)
k ∼ N (Hx̄k,Σk) . (9.4.5)

Note that for the Linear pipeline, the lattice model presented in Sec-

tion 7.2 should be exact as is shown in [75]. As such, using the Linear

pipeline provides us with an exact precover model to compare with the

cruder model of this chapter.

Now, we embed each precover using Gaussian Embedding to obtain

the prestego γ(l) which should follow the following model:

y
(l)
k ∼ N (Hx̄k,Σk + diag(ϵk)) . (9.4.6)
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We finally compute the LRT for two different types of the Warden:

1. A Lattice Warden who uses the model of Eq (9.4.5) and Eq (9.4.6)

as well as the lattice model as defined in Section 7.2. We refer the

reader to Chapter 10 for the exact description of the LRT and how

to compute the joint probabilities of the macro-blocks under the

lattice model.

2. An Ignorant Warden which is defined exactly as in Section 9.2,

in particular she does not use the covariance matrices Σk of the

noise but only the variances σ2.

0.0 0.2 0.4 0.6 0.8 1.0
PFA

0.0

0.2

0.4

0.6

0.8

1.0

P
D

Ignorant Warden

Theoretical Ignorant Warden

Lattice Warden

Figure 9.2: ROC curves of dif-

ferent LRTs on a dataset built

using image 6551 in BossBase,

to which independent Gaussian

noise was added in the RAW do-

main and then developed using

the Linear pipeline. Images were

embedded using Gaussian Em-

bedding at 0.1bpp. Note how

the empirical LRT of the Lat-

tice Warden has perfect detec-

tion despite the LRT of the igno-

rant Warden having a quite low

performance.

A first observation is that there is a non-negligible discrepancy be-

tween the theoretical performance of the ignorant Warden’s LRT and

its actual empirical performance: we cannot provide any exact guaran-

tee of security under this model as it is inexact. A second observation is

that under the model of the Lattice Warden, the LRT always perfectly

discriminates between precover and prestego images even though the

LRT under the ignorant Warden’s model is far from a perfect classifi-

cation. This shows that taking into account correlations between DCT

coefficients is extremely important in practice if we want to provide

guarantees of performance. The final chapter of this manuscript will

also demonstrate that, even for imperfect detectors such as neural net-

works, not using correlations leads to highly sub-optimal performance

of the steganographic algorithm.
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9.5 Conclusion

In this chapter we derived our first steganographic algorithm, Gaussian

Embedding, based on the model of the sensor noise presented in the

first part of this manuscript. We started in the simplest way possible

by assuming no dependencies between DCT coefficients during the

embedding phase. Note however that the variance estimation method

we use does take into account these dependencies, leading to a superior

estimation of the variances than the method presented in Chapter 81. 1 As was explained in Chapter 8 this is
not necessarily a good thing since this
“better” variance estimation method
does not take into account the content
of the image but only the noise. For
the interested reader, we studied this
question of the noise-content trade-off
more thoroughly in the original publi-
cation [32].

The steganographic algorithm then assumes an independent Gaus-

sian model for both the precover and the prestego. The power of the

optimal detector was then derived and we showed that in this case, the

optimal prestego signal has a variance proportional to the variance of

the precover noise. We then designed an embedding scheme which

leverages this result while still being able to embed in the quantized

domain, which is the domain of interest in our case.

We finished this chapter by validating our implementation by show-

ing that the empirical performance are aligned with the theoretical

predictions of Theorem 9.2.1 when using synthetic images following

the noise model of this chapter. However, we also showed the limit of

the simplified model of this chapter by showing that, when using natu-

ral images, the LRT that takes dependencies between DCT coefficients

into account perfectly detects stego images generated by Gaussian Em-

bedding.

The goal of the next chapter will be to fix this problem by designing

an algorithm which fully leverages the dependencies between DCT

coefficients.
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Appendices

9.a Limit distribution of the LRT

In this appendix we derive the exact asymptotic performance of test

derived in Section 9.2. Let :

pσi
(x) =

1
√

2πσ2
i

exp

(−x2

2σ2
i

)

, (9.A.1)

qσi,ϵi (x) =
1

√

2π(σ2
i + ϵ2i )

exp

( −x2

2(σ2
i + ϵ2i )

)

, (9.A.2)

Λi(ξi, σi, ϵi) = ln

(

pσi
(ξi)

qσi,ϵi (ξi)

)

, (9.A.3)

Λ(ξ, σ, ϵ) =

n
∑

i=0

Λi(ξi, σi, ϵi), (9.A.4)

Using Proposition 2.3.7, we write the expectation of the LRT under

each hypothesis as the KL-divergence between the cover and stego

distributions:

EH0 [Λi] = −DKL (pσi
|| qσi,ϵi)

= ln

(

√

σ2
i + ϵ2i
σi

)

+
σ2
i

2 (σ2
i + ϵ2i )

− 0.5.
(9.A.5)

and similarly for H1:

EH1
[Λi] = DKL (qσi,ϵi || pσi

) (9.A.6)

The variances can also be computed analytically by identifying the

moments of the Gaussian in the following integral:

V arH0
[Λi] =

∫ ∞

−∞
ln2
(

qσi,ϵi (z)

pσi
(z)

)

pσi
(z) dz

−D2
KL (pσi

|| qσi,ϵi) .

(9.A.7)

Let:

c1 = ln2
(

σi

σs
i

)

,

c2 = 2 ln

(

σs
i

σi

)

(σs
i )

2 − σ2
i

2(σs
i )

2σ2
i

,

c3 =

(

(σs
i )

2 − σ2
i

2(σs
i )

2σ2
i

)2

,

with (σs
i )

2 = σ2
i + ϵ2i .

We can rewrite the variance as:

V arH0 [Λi] =

∫ ∞

−∞

(

c3z
4 + c2z

2 + c1
)

pσi
(z) dz

−D2
KL (pσi

|| qσi,ϵi) .

(9.A.8)
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Finally, recognizing the second and fourth moment of the Gaussian

distribution, we obtain:

V arH0
[Λi] = 3c3σ

4
i + c2σ

2
i + c1 −D2

KL (pσi
|| qσi,ϵi) , (9.A.9)

and similarly under H1.

With some routine but tedious calculations, the second moments of

the LRT can be simplified as:







V arH0
[Λi] =

ϵ4i
2(ϵ2i+σ2

i )
2

V arH1 [Λi] =
ϵ4i
2σ4

i

(9.A.10)

Finally, using the independence of the cover elements, the full mo-

ments are obtained as the sum of the individual moments:

E [Λ] V ar [Λ]

H0 −∑n
i=1 DKL (pσi

|| qσi,ϵi)
∑n

i=1
ϵ4i

2(ϵ2i+σ2
i )

2

H1

∑n
i=1 DKL (qσi,ϵi || pσi

)
∑n

i=1
ϵ4i
2σ4

i

As the number cover elements n → ∞, Linderberg’s central limit

theorem implies that:

Λ(x,σ, ϵ)⇝







N (EH0
[Λ],VarH0

[Λ]) , under H0

N (EH1
[Λ],VarH1

[Λ]) , under H1

(9.A.11)

where ⇝ denotes convergence in distribution.

9.b Power of the LRT

From the limiting distribution in Eq 9.A.11 and using Proposition 2.3.9,

the asymptotic power of the LRT is given by:

PD = P (δ (x) = H1|H1) (9.B.1)

= Q

(

Q−1 (PFA)
√

VarH0
[Λ] + EH0

[Λ]−EH1
[Λ]

√

VarH1
[Λ]

)

, (9.B.2)

where Q is the tail distribution function of the standard normal dis-

tribution.

Which we rewrite by plugging in the expression of each moment:

PD = Q









Q−1 (PFA)

√

∑n
i=1

ϵ4i
2(ϵ2i+σ2

i )
2 −

∑n
i=1

ϵ4i
2σ4

i+2σ2
i ϵ

2
i

√

∑n
i=1

ϵ4i
2σ4

i









,

(9.B.3)

Under the assumption that the power of the stego signal is negligible

compared to the sensor noise, that is σ2
i >> ϵ2i , we obtain the much

more manageable expression:
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PD
.
= Q





Q−1 (PFA)
√

∑n
i=1

ϵ4i
2σ4

i

−∑n
i=1

ϵ4i
2σ4

i
√

∑n
i=1

ϵ4i
2σ4

i



 ,

= Q



Q−1 (PFA)−

√

√

√

√

n
∑

i=1

ϵ4i
2σ4

i



 .

(9.B.4)
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This chapter is the culmination of the second part of this manuscript

where we design the steganographic algorithm which fully leverages

the model derived in Chapter 7 by taking all the dependencies between

DCT coefficients into account.

10.1 Cover and stego model

10.1.1 Precover model

The precover model is exactly the model presented in Chapter 7, i.e.

each macro-block yk of the precover follows a multivariate Gaussian

distribution with covariance Σk:

yk ∼ N (µk,Σk) , (10.1.1)

The dependency models presented in Section 7.2, namely the in-

dependent macro-block model and the lattice model will both be ad-

dressed in Section 10.3.

Before ending this subsection, we assume that we can write the

whole cover y as multivariate Gaussian r.v: This assumption is simple to prove if
one remembers that photo-sites are all
independant Gaussian random vari-
ables and that H is identical for each

(macro)-block. One then can simply
build a matrix H∗ which takes the
whole RAW image x as input and out-
puts the developed image y. H∗ is a
block matrix built using copies of H.
y is then evidently also follows a mul-
tivariate Gaussian distribution.

y ∼ N (µ,Σ) , (10.1.2)

with Σ being the covariance of the whole image.

10.1.2 Prestego model

We assume that the steganographer uses a centered multivariate Gaus-

sian signal with covariance Ek:

sk ∼ N (0,Ek) . (10.1.3)

The signal is then simply added to the k-th macro-block of the

precover leading to the prestego macro-block γk:

γk = yk +sk (10.1.4)

∼ N (µk,Σk +Ek) (10.1.5)

This choice of distribution is motivated by the same properties of

the Gaussian distribution we used in Chapter 9; it also allows us to

construct extremely efficient algorithms to compute the stego signal in

the quantized domain – see Section 10.3.
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10.2 Optimal detector

Under these precover and prestego models, the goal of the steganalyst

is once again to construct a test in the continuous domain. We assume

they have access to µ, Σ, E as well as to the observations in the

continuous domain ξ. Furthermore we denote the covariance of the

entire precover as Σ and the covariance of the entire prestego as E.

The steganalyst must choose between two hypotheses:







H0 = ξ ∼ N (µ,Σ) ,

H1 = ξ ∼ N (µ,Σ+E) .
(10.2.1)

This time, the optimal detector has a structure that prevents us to

provide a simple asymptotic expression of its power. This is shown in

the following theorem:

Theorem 10.2.1 (Multivariate Gaussian LRT). Under the settings

of this section, the following holds:

1. The test maximizing the power function PD for a prescribed false

α0 is the likelihood ratio test (LRT):

Λ(ξ,Σ,E) =
qΣ,E (ξ)

pΣ (ξ)

H0

≶
H1

τ, (10.2.2)

where τ is a threshold fixed so that P [Λ > τ | H0] = α0, where α0

is the chosen probability of false alarm.

2. Let A = Σ-1− (Σ+E)
-1
. An equivalent test can be written as:

Λ∗(ξ,Σ,E) = ξT A ξ
H0

≶
H1

τ ′, (10.2.3)

where τ ′ = 2τ − 2 log
(

|Σ |
|E |

)

.

3. The likelihood ratio Λ∗(ξ,Σ,E) is a sum of weighted chi-square

random variables:

ξT A ξ =

M
∑

i=0

Kiiξ
2
u,i. (10.2.4)

where ξ2u,i ∼ X (1) and where the Kii are the eigenvalues of AΣ or

A (Σ+E) under H0 and H1 respectively.

Proof. (1) follows directly from the Neyman-Pearson Lemma as stated

in Theorem 2.3.5.

(2) follows from Proposition 2.3.6 and some simple algebraic manipu-

lations – see [80, Chapter 3, Section 3].

(3) is proven in Appendix 10.A.

Sadly, there exists no general closed-form expression for the tails of

a weighted sum of chi-square random variables [58]. Furthermore, we

cannot use the central-limit theorem to approximate this distribution

since some weights might be far larger than most other weights. Due
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to this fact, it is difficult to design a steganographic algorithm with

optimality guarantees in this setting. However, thanks to the Propo-

sition 2.3.10, we can still upper bound the power of the LRT through

the expression of the KL-divergence between the cover and stego dis-

tributions. This is the method we propose to follow in the next section

to design a steganographic algorithm with security guarantees.

10.3 Embedding

For both dependency models, the goal of the steganographer is to min-

imize the power of the LRT under a given payload constraint R. How-

ever as we have seen in Section 10.2, no closed-form expression of PD

is available. Therefore, we simplify the problem by instead minimizing

an upper bound on the power of the LRT. That is, we abandon claims

of optimality in exchange for a tractable problem while, at the same

time, keeping guarantees of security for a given steganographic signal.

Moreover, we provide the best security guarantee available under the

chosen bound.

As was shown with Proposition 2.3.10, the power of the LRT can

be controlled by the following quantity:

DKL (pΣ || qΣ,E) (10.3.1)

Consequently we can formulate the following optimization problem:















min
E

DKL (pΣ || qΣ,E)

R =

n
∑

i=1

∑

k∈Z

βk
i log β

k
i

(10.3.2)

To solve this problem we use the following theorem:

Theorem 10.3.1 (Optimal covariance of the prestego). Let R∗ ∈ R
+.

Let also the precover y and prestego γ, both of size n, be such that:

y ∼ N (0,Σ) , (10.3.3)

γ ∼ N (0,Σ+E) . (10.3.4)

Then the optimization problem the system in Eq (11.5.22) has for

solution a positive definite matrix E∗ such that:

E∗ = αΣ, (10.3.5)

with α ∈ R
+.

Proof. See Appendix 10.B.

In other words, the prestego signal has a covariance proportional to

the covariance of the precover noise. In particular, α is the same for

all macro-blocks of the precover.

Consequently, the system in Eq (11.5.22) is easily solved by a simple

bisection search on α since
∑n

i=0

∑

j∈Z
β
(j)
i log

(

β
(j)
i

)

is increasing in

α.
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However, to be able to compute the value of the payload size for

a given α, it is necessary to compute all individual β
(j)
i which is not

an obvious task since we want to compute an individual value in the

quantized domain from a multivariate signal in the continuous domain.

The next subsection addresses this difficulty and presents a solution

that avoids relying on expensive Monte-Carlo simulations to do so.

10.3.1 Computing embedding probabilities

First, let sk be a prestego signal macro-block. It follows a centered

multivariate Gaussian (MVG) random variable (rv) ofN elements with

a full-rank covariance Ek. Denote the i-th element of sk as sk,i. Then

we have, for all i:

sk,i|sk,1, sk,2, ...sk,i−1 ∼ N
(

η̄k,i, ϵ̄
2
k,i

)

. (10.3.6)

In other words, every element of an MVG rv conditioned on all its

previous elements follows a univariate Gaussian distribution with mean

η̄k,i and variance ϵ̄2k,i.

Secondly, since Ek is a full-rank covariance matrix, it is symmet-

ric positive definite. Consequently it can be factorized uniquely by a

lower triangular matrix Lk with positive diagonal entries [43, Corollary

7.2.9]:

Ek = LkL
T
k , (10.3.7)

which corresponds to the Cholesky decomposition of the covariance

matrix.

Finally, let wk be a vector of M identical standard Gaussian rvs

with zero mean and unit variance. We can correlate white noise by

multiplying it by the Cholesky decomposition of a chosen covariance

matrix:

Lkwk ∼ N (0,Ek) . (10.3.8)

The parameters η̄ and ϵ̄ can be computed efficiently using the

Cholesky decomposition and the realization of s using the following

equations – see Figure 10.1 for a graphical explanation:

ϵ̄k = diag(Lk), (10.3.9)

η̄k = (Lkwk − diag(Lk)wk) . (10.3.10)
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l21x1 + l22x2

l31x1 + l32x2 + l33x3






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


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









ϵ̄i = lii

η̄i =
∑i−1

j=1
lijxj

Figure 10.1: Illustration of

how to compute the conditioned

Gaussian parameters ϵ̄i (in red)

and η̄i (in cyan) using the

Cholesky decomposition L of the

covariance matrix. For the i-th

line, the xi on the diagonal is the

random variable while the other

xj , j < i are the realizations of

the previous elements. One can

see that the standard deviation

ϵ̄i is simply lii whereas the mean

η̄i is the sum of the i-th line mi-

nus the last element.

Now observe that all of this methodology can be applied to every

macro-block of the prestego signal sk as defined in Eq (10.1.2). If

we apply Eq (10.3.9)-(10.3.10) to every sk, we obtain a vector s̄ of n

elements such that:
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s̄i ∼ N (η̄i, ϵ̄i) . (10.3.11)

Finally, using the chain rule of probability on each β
(j)
i , and the

quantization of the Gaussian distribution, the embedding probabilities

β
(j)
i are obtained by:

β
(j)
i = Φ

(

j − ri − η̄i + 0.5

ϵ̄i

)

−Φ

(

j − ri − η̄i − 0.5

ϵ̄i

)

, (10.3.12)

where ri = yi− [yi] denotes the rounding error of i-th DCT coefficient.

In practice, we perform a q-ary embedding, that is, the alphabet

size of the embedding scheme is finite: j is thus constrained to a finite

range between −q and q and the β
(j)
i must be normalized accordingly: In practice, the impact of the normal-

ization is negligible.

β
(j)
i,normalized =

β
(j)
i

∑q
j=−q β

(j)
i

. (10.3.13)

To understand Equation (10.3.12), observe that after adding the

prestego signal, the new value will either stay in the same integer

bin after rounding or fall into a neighboring one. The probability of

falling into one bin or another depends on the original rounding error

ri, the conditioned mean η̄i and variance ϵ̄2i of the prestego signal –

see Figure 10.2. Computing β
(j)
i is then simply a matter of computing

the probability of falling into each bin which is simply the area under

the curve of the prestego signal centered at the original rounding error

inside each integer bin.

β0

i β1

i β2

iβ−1

iβ−2

i

ri + η̄i

−2 −1 0 1 2

Figure 10.2: Figure explaining

how β
(j)
i are computed with a

prestego signal centered at the

original rounding error ri. The

dashed boxes represent the inte-

ger bins after rounding the DCT

coefficient whereas the colored

parts represent the area under

the curve of the prestego signal

which will be taken into account

for each β
(j)
i .

10.3.2 Independent macro-block model

The first dependency model assumes that every elements in the same√
N ×

√
N macro-block are possibly dependent while elements in two

different macro-blocks are considered independent. As shown in Fig-

ure 7.2, only non-overlapping macro-blocks are considered.

To build the macro-blocks in this model, one just has to split the

whole image y into non-overlapping macro-blocks yk of the same size

so that every element yi of the precover belongs to one and only one

macro-block.

Consequently we have each yk independent from every other yk and

following a MVG distribution:

yk ∼ N (µk,Σk) . (10.3.14)
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To simulate the stego signal the steganographer first samples the

prestego signal according to the precover distribution and secondly,

scales it so that it matches the payload constraint. The signal is finally

added to the precover and quantized.

We provide the full algorithm of the steganographic scheme that

uses this dependency model, henceforth named Multivariate Gaussian

Embedding, or MGE for short, in Algorithm 4.

Algorithm 4: Multivariate Gaussian Embedding

Data: N : Number of element in a macro-block, y: Precover,

Σ: Covariance matrices, R: Payload size (in nats)

Result: s : Prestego signal solving Eq (11.5.22)

n← size(y);

m← n/N ;

r← y − round(y);

for k in 1..m do

// Sample N standard gaussians

wk ← N (0, I) ;

// Correlate the noise using the Cholesky

decomposition

Lk ← Cholesky(Σk);

sk ← Lkwk;

// Interval bisection on α until the payload

constraint is met

l, r ← InitializeIntervalBounds();

// Compute entropy using Eq (11.5.22) and Eq (10.3.12).

the argument of the function is α.

fl← ComputeEntropy (l)−R ;

fr ← ComputeEntropy (r)−R ;

while error ̸= 0 do

α← l+r
2 ;

error← ComputeEntropy (α)−R;

if fl · error < 0 then

r ← α;

fr ← error;

else

l← α;

fl← error;

for k in 1..m do

sk ← αsk;

10.3.3 Lattice model

In the lattice model, we assume dependencies between DCT coefficients

within the same block as well as among DCT coefficients with neigh-

boring blocks. Recall that under the linear pipeline, such a model

theoretically allows sampling the stego signal exactly, as was shown
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in [75].

First, we introduce some notations that will be used throughout

this subsection. We write Λ to denote a set of blocks, which we call

a lattice, such that all blocks in the set are independent from one

another.

For a given block yk we write ycardinal
k with cardinal ∈ {N,S,E,W,

NE,NW,SE, SW} to designate the block which is respectively above,

below, right of, left of, etc. . . of yk.

Now, from Figure 7.2, observe that the lattice model assumptions

lead to a natural decomposition of the image into four lattices Λ1,Λ2,

Λ3,Λ4.

The steganographer’s goal is, first, to sample a MVG signal s with

the same covariance as the noise of the precover. To do so, we use

the fact that the pdf of the whole image can be decomposed using the

chain rule of probability so that the pdf of s is:

p (s) =p
(

sΛ1
)

p
(

sΛ2 |sΛ1
)

p
(

sΛ3 |sΛ1 , sΛ2
)

p
(

sΛ4 |sΛ1 , sΛ2 , sΛ3
)

.
(10.3.15)

Consequently, we can first sample the prestego signal in Λ1 by sam-

pling from p
(

sΛ1
)

, then sample the prestego signal in Λ2 according to

p
(

sΛ2 |sΛ1
)

and so on for the two other lattices.

Now let Λ∗
1,Λ

∗
2,Λ

∗
3,Λ

∗
4 be such that:

Λ∗
1 = Λ1, (10.3.16)

Λ∗
2 = {[yNE , yNW , ySE , ySW , y]|y ∈ Λ2}, (10.3.17)

Λ∗
3 = {[yN , yS , yE , yW , y]|y ∈ Λ3}, (10.3.18)

Λ∗
4 = {[yN , yS , yE , yW , yNE , yNW , ySE , ySW , y|y ∈ Λ4}. (10.3.19)

In other words, each Λ∗ contains vectors built from blocks in Λ along

with the blocks from previous lattices on which they depend. See

Figure 10.3 for a graphical representation of the dependency structure

of each lattice used to construct each Λ∗. In what follows, we refer to

the covariance matrix of the k-th vector of the i-th lattice Λ∗
i as Σ

Λ∗

i

k

Λ1

a) Λ∗
1

Λ2

Λ1

Λ1 Λ1

Λ1

b) Λ∗
2

Λ3

Λ2

Λ2

Λ1Λ1

c) Λ∗
3

Λ4

Λ1

Λ1

Λ2Λ2

Λ3

Λ3

Λ3

Λ3

d) Λ∗
4

Figure 10.3: Graphical represen-

tation of the blocks used to con-

truct each Λ∗
i .

By using exactly the same reasoning as in Section 10.3.1, adapted to

a multivariate setting, we can easily sample the blocks in each lattice

by using the Cholesky decomposition of the covariance of each vector

in each Λ∗
i :

sΛi

k = L
Λ∗

i

k wΛi

k , ∀i ∈ {1, 2, 3, 4} (10.3.20)

with L
Λ∗

i

k being the rectangular submatrix of the Cholesky decom-

position of Σ
Λ∗

i

k referring to the central block of the k-th vector of Λ∗
i .
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In practice, using the convention of Eq (10.3.16-10.3.19), where the

central block is always at the end of each vector of Λ∗
i , L

Λ∗

i

k would be

constructed by taking the 64 last lines of the Cholesky decomposition

of Σ
Λ∗

i

k .

Once every sΛi

k are computed, the algorithm to sample the prestego

signal and perform the embedding is exactly the same as for the inde-

pendent macro-block model.

10.3.4 Embedding in practice

The algorithms we have presented so far are useful for simulating ex-

tremely efficiently the stego signal in the quantized domain. However,

in practice, when using Syndrom-Treillis Codes to embed a given mes-

sage , we need to compute the embedding probabilities β
(j)
i and convert

them to the corresponding costs ρ
(j)
i using:

β
(j)
i =

e−λρ
(j)
i

1 +
∑

j ̸=0 e
−λρ

(j)
i

. (10.3.21)

where λ is the Lagrange multiplier solving the system in Eq. (11.5.22).

However, the probability of embedding in the l-th coefficient of a given

block depends on the actual embedding performed by the STC on all

the previous coefficients in that block. The practical implementation

will thus have to be performed iteratively.

In the first iteration, we compute the embedding probabilities of

the first coefficient of each block. Here, we necessarily have ν̄i = 0 for

all coefficients; β
(j)
i ’s can thus directly be computed and converted to

costs. Once the payload has been embedded, the uncorrelated prestego

signal wi corresponding to each of these coefficients must be computed

since it will be used to compute the β
(j)
i of the next coefficient. To

do so we can sample the correlated prestego signal si using rejection

sampling until the rounded value of si matches the actual embedding

in the quantized domain. We then compute wi using the fact that:

wk = L−1
k sk (10.3.22)

The l-th iteration is done in exactly the same manner for the l-th

coefficient of each block, except this time we compute ν̄l using the

previously computed wi and Eq (10.3.10).

The only caveat with this approach is that α must be fixed before

the embedding and be identical for each lattice. This can be done

by simulating embedding on the image until an α big enough for the

message to be embedded is found, then use this α on the actual STC

embedding. However, since the actual entropy depends on the β
(j)
i ,

hence on the actual embedding performed, it is theoretically not pos-

sible to compute the minimal α that would allow reaching the payload

size. In practice, this is not such a problem as we observed during

simulations that the realizations of the wi play a very small role on

the entropy; it will usually make it change by 1 or 2 nats at most if at

all. A good rule of thumb would then be to find the optimal α for a
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slightly higher payload and to use it to ensure the message will fit on

the first try.

10.4 Validation of the method

In the previous chapter, we showed that only using the diagonal of

the covariance matrix led to a great loss of performance against a de-

tector that took into account correlations between DCT coefficients.

In this section, we show that Multivariate Gaussian Embedding does

indeed solve this problem and has the performance predicted by Theo-

rem 10.3.1. We follow the same methodology as the previous chapter:

first, we test the performance of the algorithm on synthetic images and

then go on to test the method on natural images developed with the

linear pipeline.

10.4.1 Synthetic images

We build a dataset of synthetic images with the parameters of the

noise taken from the camera that was used to capture the image. We

selected a RAW image x̄ from BOSSBase which we then develop using

the Linear pipeline, as defined in Section 7.6, to obtain the baseline

image ȳ. We then generated 1000 synthetic precover images y(l) by

sampling them directly such that for all l:

y(l) ∼ N (µk,Σk) . (10.4.1)

where µk = ȳk and Σk is the covariance of ȳk estimated using the

method presented in Section 7.3. We also sample this signal so that

macro-blocks follow the Lattice model defined in Section 7.2 by using

the sampling method presented in Section 10.3.3

We then embed each image using the Multivariate Gaussian Em-

bedding algorithm for different payloads to obtain the prestego images

γ(l):

γ(l) ∼ N (µk,Σk +Ek) . (10.4.2)

We finally compute the LRT under the model presented in this chapter:

Λ(ξ,Σ,E) =
qΣ,E (ξ)

pΣ (ξ)
. (10.4.3)

We present the ROC curve of the empirical LRT against the ROC

curve of the theoretical LRT in Figure 10.4.

Once again, the performance of the empirical LRT matches the

expected performance for all the tested cameras, validating our theo-

retical analysis of the algorithm.

10.4.2 Natural images under the Linear pipeline

We repeat the experiment of Section 9.4.21 but we now embed each 1 That is, the noise is now sampled in
the RAW domain and is processed in
the same way as the image instead of
being sampled directly in the devel-
oped domain.

precover by using the Multivariate Gaussian Embedding algorithm to

obtain the prestego γ(l) which, if our theoretical model is correct,

should follow:
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Figure 10.4: LRT on a dataset

with synthetic multivariate

Gaussian noise built with image

6551 in BossBase for different

relative payloads R. The dotted

lines represent the theoreti-

cal performance of the LRT

whereas the full line represent

the empirical performance.

y
(l)
k ∼ N (Hx̄k,Σk +Ek) . (10.4.4)

Notice that this is the same model as for the synthetic case: if the em-

pirical performance matches the theoretical one, this is strong evidence

that our model of the noise is exact for the Linear pipeline.

The results are presented in Figure 10.5.
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Figure 10.5: LRT on a dataset

to which independent Gaussian

noise was added in the RAW

domain and then developed us-

ing the Linear pipeline with im-

age 6551 in BossBase for differ-

ent relative payloads R. The

dotted lines represent the theo-

retical performance of the LRT

whereas the full line represent

the empirical performance.

Notice how Figure 10.5 is virtually indistinguishable from Figure 10.4

even though the former is, for all intent and purpose, a natural image.

Note that the difference in the theoretical performance between the

two figures is only due to the fact that the choice α leading to the

right payload in the quantized domain is different for the synthetic

and the natural images.

This strongly validates our noise model as a correct model of the

noise of such images, at least for the Linear pipeline as per the as-

sumption of our model.
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Figure 10.6: BossBase image

3492 developed with the Linear

pipeline. On the left, how much

entropy is allocated per mode

for each macro-lattices, noting

that each macro-lattice contains

64 modes. The red dotted lines

represented the average entropy

allocated per macro-lattice. On

the right, how much entropy is

allocated per macro-lattice.

10.4.3 Information hidden per lattice

When using Multivariate Gaussian Embedding, cover images are effec-

tively decomposed into 4×64 lattices when using the 4 Lattice model.

In this subsection, we investigate how the payload is allocated across

each lattice. Two main parameters play a role here: the value of the

variance of the DCT coefficients and the act of conditioning DCT coef-

ficients on realizations of previous lattices. On one hand the higher the

variance, the higher the allocation of the payload will be. On the other

hand, conditioning a DCT coefficient on previous lattices will tend to

decrease the payload allocated to it (due to the loss of entropy), de-

pending on the strength of the correlations with DCT coefficients in

these lattices.

To verify these heuristics, we embed some images developed with

either the Linear or the Bosslike pipeline with 4 Lattice MGE at differ-

ent payloads and compute the entropy on each lattice in the quantized

domain – see the results in Figures 10.6 to 10.9.
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Figure 10.7: BossBase image

3492 developed with the Bosslike

pipeline.
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Figure 10.8: BossBase image

3799 developed with the Linear

pipeline.

In the case of the Linear pipeline, we can observe the two parameters

in action: for a given block of DCT coefficient – which we might call

a “macro-lattice” here, the payload allocated decreases steadily for

DCT coefficients in the higher frequency modes. This is both due to

the fact these coefficients variances decrease for higher modes due to
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Figure 10.9: BossBase image

3799 developed with the Bosslike

pipeline.

the DCT transform as well as for the fact that each DCT coefficient is

conditioned on every coefficient of a lower mode.

If we look at the entropy per macro-lattice, we indeed observe that

the allocated payload decreases consistently as the index of the lattice

increases. More precisely, we see a small loss for Λ2 since the central

block is only conditioned on diagonal neighboring blocks – see Fig-

ure 10.3 – where the correlations are small. The loss is far stronger for

Λ3 and Λ4 where the central block are now dependent with horizontal

and vertical neighboring blocks with far stronger correlations.

For the case of the Bosslike pipeline, the observations for a given

block are the same but we can also see that the entropy per macro-

lattices is more or less constant between each Λi. This comes from the

fact that, because of the resizing operations in this pipeline, inter-block

dependencies are actually negligible. This observation will also explain

the results in Chapter 11 where we
will see that the independent macro-
block model has security performances
equivalent to the 4 lattice model for
the Bosslike pipeline.

10.5 Conclusion

In this chapter, we derived a steganographic algorithm, Multivariate

Gaussian Embedding, which is able to leverage the full model that was

presented in the first part of this manuscript. To get there, we proved

a key result which states that the optimal covariance of the prestego

signal is proportional to the covariance of precover noise.

We then provided an algorithm that allows simulating this optimal

signal extremely efficiently by leveraging the Cholesky decomposition

of covariance matrices. Two variants of the algorithm were presented

depending on the chosen dependency model.

We finished the chapter by validating the implementation of our

steganographic algorithm by showing that its empirical performance

match the theoretical performance given by Theorem 10.2.1. We also

experimentally showed that our noise model is exact under the Linear

pipeline when using the four lattices dependency model.

In the next and last chapter of this manuscript we evaluate the

performance of the Gaussian Embedding algorithms presented in the

second part of this manuscript as well as further experimental analysis.
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Appendices

10.a Likelihood ratio is a weighted sum of chi-square

random variable

To be as general as possible, we will not consider any particular de-

pendency model in this appendix. As such we will consider that the

sample ξ is the whole image under scrutiny. Consequently we try to

derive the optimal test which discriminate between the two following

hypotheses:







H0 = {ξ ∼ N (µ,Σ)} ,
H1 = {ξ ∼ N (µ,Σ+E)} .

(10.A.1)

Notice that we consider here the covariance of the whole image Σ

and not the covariance of the blocks. Now recall that the optimal test

under our setting is the likelihood-ratio test given by:

Λ(ξ,Σ,E) =
qΣ,E (ξ)

pΣ (ξ)

H0

≶
H1

τ, (10.A.2)

To compute the power of this test, we need to compute the distri-

bution of the likelihood ratio under both hypotheses. To do so, we use

the fact that the statistic of the LRT can be written as a quadratic

form – see [80][Chapter 3, Section 3] for a derivation:

1

2

(

ξT
(

Σ-1− (Σ+E)
-1
)

ξ+ log

( |Σ|
|Σ+E |

))H0

≶
H1

τ. (10.A.3)

This test can be simplified as:

Λ̂(ξ,Σ,E) = ξT
(

Σ-1− (Σ+E)
-1
)

ξ
H0

≶
H1

τ ′. (10.A.4)

by putting the contribution of the constant values in the threshold.

We will show that this test can be rewritten as a sum of weighted

independent standard chi-squared rv.s. We will develop only the case

under H0; the case for H1 follows exactly from the same method.

Let:

A = Σ-1− (Σ+E)
-1
, (10.A.5)

and decompose Σ using the symmetric square-root matrix :

Σ = Σ1/2Σ1/2. (10.A.6)

Using the spectral theorem we can write:

Σ1/2AΣ1/2 = UKUT , (10.A.7)

where U is an orthogonal matrix and K a diagonal matrix.

Finally, let ξu = UTΣ−1/2 ξ and note that it follows a centered

multivariate Gaussian distribution with covariance the identity matrix

(by the orthogonality of U).
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Now write:

ξT A ξ = ξT Σ−1/2UKUTΣ−1/2 ξ (10.A.8)

= ξTu K ξu =

M
∑

i=0

Kiiξ
2
u,i. (10.A.9)

The statistic in Eq (10.A.4) is thus a realization of a sum of in-

dependent standard chi-squared random variable weighted by the

eigenvalues of AΣ and A (Σ+E) under H0 and H1 respectively.

10.b Scaling of noise covariance minimizes KL-divergence

Computing the power of the LRT when the distribution under both

hypotheses are weighted sum of chi-square distribution is difficult in

the general case. Furthermore, we cannot appeal to the central limit

theorem since we have no information on the distribution of the weights

Kii.

If we cannot give the form of the optimal pre-stego signal due to

this fact, we can however give security guarantees for a given pre-stego

signal. To do so, we use the result of Cachin’s work on steganographic

security [11], which shows, using a simple data-processing inequality,

that the performance of an optimal detector is upper bounded by the

KL divergence between the distributions of the two hypotheses.

Instead of minimizing the power of LRT under an entropy constraint

we will thus minimize the KL-divergence DKL (p||q) under an entropy

constraint:







min
E

DKL (pΣ||qΣ,E)

R = 1
2 log (2πe|E|)

(10.B.1)

where R is the payload constraint in the continuous domain and |.| the
matrix determinant. Recall that we assume here Σ and E to be both

positive definite matrices.

Note that the KL divergence between p and q is given by:

1

2
(trace

(

(Σ+E)−1Σ
)

+ log

( |Σ+E |
|Σ|

)

− n). (10.B.2)

The main idea of this proof is that we can simplify the problem by

working in a basis where the covariance of the cover noise is the identity

matrix. This is done by showing that the KL-divergence is invariant

when changing to this basis. We then express the Lagrangian of the

system as a function of the eigenvalues of E and show that there exists

a unique minimum for our system.

First, let L be the Cholseky decomposition of Σ such that:

Σ = LLT . (10.B.3)

Let us also define Ew as:

Ew ≜ L−1 E
(

L−1
)T

. (10.B.4)

We now want to show the following equality:
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DKL (pΣ || qΣ,E) = DKL (pI || qI,Ew
) , (10.B.5)

where I is the identity matrix (with relevant dimensions).

To do so, we begin by showing the equality for the trace term:

trace
(

(Σ +E)−1Σ
)

= trace
(

LT (Σ +E)−1L
)

= trace

(

(

(

LT (Σ +E)−1L
)−1
)−1

)

= trace

(

(

L−1 (Σ +E)
(

L−1
)T
)−1

)

= trace

(

(

I+ L−1 E
(

L−1
)T
)−1

)

= trace
(

(I+Ew)
−1
)

.

(10.B.6)

and secondly for the determinant term:

|Σ+E | · |Σ−1| = |I+EΣ−1|
= |I+EL(L−1)T |
= |I+Ew |,

(10.B.7)

with the last line obtained using Sylvester’s Law of determinant. This

validates the invariance of the KL-divergence to our change of basis.

Using Eq (10.B.5), we rewrite the system in Eq (10.B.1) as:







min
Ew

DKL (pI || qI,Ew
)

R = 1
2

(

log (2πe|Ew|)− log
(

2πe|Σ−1|
))

.
(10.B.8)

Now, let ki be the i-th eigenvalues of Ew, we have that:

DKL (pI || qI,Ew
) =

1

2

(

trace
(

(I+Ew)
−1
))

+
1

2
(log (|I+Ew |)− n)

=
1

2

(

n
∑

i=1

1

1 + ki
+

n
∑

i=1

log (1 + ki)− n

)

(10.B.9)

Consequently the Lagrangian of Eq (10.B.8) is given by:

L =
1

2

(

n
∑

i=1

1

1 + ki
+

n
∑

i=1

log (1 + ki)− n

)

− λ

2

(

R− log
(

2πe|Σ−1|
)

−
n
∑

i=1

log (2πe ki)

)

,

(10.B.10)

The derivative with respect to the eigenvalues ki is given by:

∂L
∂ ki

=
λ

2 ki
+

ki

2 (ki +1)
2 . (10.B.11)
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Solving for 0 and assuming λ ̸= −1:

∂L
∂ ki

= 0

⇔ λ

ki
+

ki

(ki +1)
2 = 0

⇔







ki = −λ−
√
−λ

λ+1

ki = −λ+
√
−λ

λ+1

(10.B.12)

Since Ew is positive definite, an acceptable solution must be both

real and strictly positive. Therefore, we necessarily have λ < 0. Fur-

thermore, notice that if λ < −1, then neither solutions are positive.

Consequently we must have −1 < λ < 0 and the only positive solution

is given by:

α =
−λ+

√
−λ

λ+ 1
∈ R

+, (10.B.13)

with λ obtained by plugging α in the entropy constraint.

In conclusion, the Lagrangian admits a unique stationary point,

which is a matrix with eigenvalues which are all equal. Since Ew is

positive definite (hence normal), this implies that Ew is proportional

to the identity matrix:

Ew = αI. (10.B.14)

To show that this solution is indeed a minimum, we compute the

bordered Hessian F of the Lagrangian. Starting with the second

derivative when i = i:

∂2L
∂ ki

2 = − λ

ki
2 −

1

(ki +1)
2 +

2

(ki +1)
3 . (10.B.15)

At ki = α, the first two terms are equal so we have:

∂2L
∂ ki

2 |ki=α = 2 (α+ 1)
−3

> 0. (10.B.16)

Then, for all i ̸= j:
∂2L
∂ ki kj

= 0. (10.B.17)

and finally:
∂2L
∂ ki λ

=
∂2L
∂λ ki

=
1

ki
> 0. (10.B.18)

When ki = α, the bordered Hessian has a special structure:

F|ki=α =























0 α−1 α−1 . . . α−1

α−1 2 (α+ 1)
−3

0 . . . 0

α−1 0
. . .

...
...

...
. . . 0

α−1 0 . . . 0 2 (α+ 1)
−3























(10.B.19)
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By induction, this allows us to express the i-th leading principal

minor as follow:

|Fi| = −(i− 1)

(

2

(α+ 1)
3

)i−2

· 1

α2
< 0, for i > 1. (10.B.20)

Therefore, each leading minor is strictly negative. Since we have

only one constraint, the solution is indeed the unique minimum as was

to be shown.

Going back to the original system in Eq (10.B.1), the solution is

obtained by:

E = LEw LT

= LαILT

= αΣ.

(10.B.21)





11Numerical results and

analysis for Gaussian

embedding schemes

We end the second part of this manuscript by comparing the perfor-

mance of each of the algorithms we developed against a state-of-the-art

steganalyzer as well as to the current state-of-the-art in side-informed

JPEG steganography: SI-UNIWARD.

From this experimental study, we show when the use of more com-

plex models of the noise of natural images brings more security in

practice and when simpler models can be used without much loss. Fi-

nally, we provide a set of experiments to understand the impact of

different type of model misspecification on empirical security, such as

when the heteroscedastic model or the processing pipeline matrix are

badly estimated.

11.1 Experimental setting

In this section, we present the experimental setting that will be used

for all the experiments of this chapter.

The overall structure of standard performance evaluation experi-

ments in steganalysis is as follows.

First, from each cover dataset, we generate 5 stego datasets, each

with different but fixed payloads. For each dataset, note that the pro-

cessing pipeline, including the quality factor of the JPEG compression,

is fixed. The final datasets are then built by merging the cover dataset

with each stego dataset. Secondly, we separate each final dataset into

a training and testing set with respectively 70% and 30% of the im-

ages. We train one steganalyzer for each training set and test it on

the corresponding testing set. The performance of each steganalyzer

is quantified by using the minimum probability of error PE under the

assumption that the cover and stego classes are balanced:

PE = min
PFA

1

2
(PFA + PMD) . (11.1.1)

Dataset We use the BOSSBase RAW dataset excluding the images

taken with the M9 camera because of the peculiar distribution of its

photonic noise (see [20, Figure 2]) which would lead to an imprecise

estimation of the covariance matrix. From this dataset comprising

7240 RAW images taken with 6 different cameras, we produce two new

datasets using two different processing pipelines: a linear processing

pipeline and a processing pipeline close to what is used to obtain the

standard BOSSBase dataset. Both these pipelines output 264 × 264
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greyscale JPEG images. The details are exposed in Table 7.1. The

cropping operation was not performed blindly: we used the Edge crop1 1 Available at
https://alaska.utt.fr/#materialalgorithm that selects crops containing the greatest number of edges

– that is the zone that should contain the most textured areas. This

choice of cropping was made because it is known that SI-UNIWARD

does not perform well on smooth images [32, Section V.A]. Therefore,

using such a cropping algorithm allows us to compare our embedding

schemes in a situation where SI-UNIWARD is not disfavored due to a

suboptimal content choice.

Steganography The different embedding schemes used are described

in Table 11.1.

Paramater estimation for stegaography In Chapter 7, we presented

two methods to estimate the covariance matrix of the noise model.

The most precise method, presented in Section 7.3 requires access to

the RAW file. When using this method, we prefix the steganographic

scheme’s name with Σ. When using the other method, presented in

Section 7.4 which does not require access to the RAW file, we add

the suffix noRAW to the scheme’s name. Both these methods re-

quire an estimate of the parameters c1 and c2 of the heteroscedastic

model described in Eq (5.2.8). They are estimated using the method

described in Section 5.3. Finally, the matrix H representing the pro-

cessing pipeline is estimated once for each processing pipeline using

the method described in Section 7.4.2.

Steganalysis Steganalysis was performed using the current state-of-

the-art in practical steganalyzers, namely neural networks using pre-

trained weights on ImageNet – see Section 3.2. More precisely, we

used the Efficient-Net-b3 [77] architecture which showed to have ex-

cellent performance while also being extremely fast to train during the

ALASKA2 competition [12]. We modified the architecture slightly so

that the stride of the stem is equal to 1. The network was trained

by training from the highest payload for 30 epochs, then 10 epochs

for other payloads. The model for the highest payload was initialized

with ImageNet weights. The base learning rate was fixed at 0.0005

and divided by 2 on loss plateau. The batch size was fixed to 24. The

rest of the parameters are initialized in the same way as the original

paper.

11.2 Performance against the state of the art

The results of the experiments are presented in Figure 11.1 for the

Bosslike pipeline and in Figure 11.2 for the Linear pipeline. Beginning

with QF100, regardless of the processing pipeline, there is a clear gap

between the performance of SI-UNIWARD and the different variants

of MGE. For the linear pipeline, the gap is, on average, of 6% and

9% in terms of absolute PE for Σ-MGE Intra only and Σ-MGE intra
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Figure 11.1: PE as function of

payload size for BossBase devel-

oped with the BOSS pipeline us-

ing Efficient-Net-b3.
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Figure 11.2: PE as function of

payload size for BossBase devel-

oped with the Linear pipeline us-

ing Efficient-Net-b3.
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Name Meaning

GE Minimizes the power of of the MP detector in the continuous domain

supposing every DCT coefficients to be independent as described in

Chapter 9.

MGE Intra Only Minimizes the KL divergence detector in the continuous domain sup-

posing 8× 8 DCT blocks to be independent.

MGE Intra+Inter Minimizes the KL divergence in the continuous domain supposing 24×
24 DCT macro-blocks to be independent.

Lat MGE Minimizes the power of the MP detector in the continuous domain

using lattice embedding as described in Section 10.3.3.

SI-UNIWARD Side informed distortion based schemes as described in [42].

Table 11.1: Nomenclature of the

embedding schemes

+ inter respectively. However, it is of 22% on average when using

Σ-Lat MGE showing the importance of using the most precise model

for this pipeline. The difference between the different models is less

pronounced for the Bosslike pipeline with an average gain of 13.5% in

terms of absolute PE wrt SI-UNIWARD for the MGE schemes what-

ever the chosen correlation model. This is due to the fact that the

downsampling operation removes most correlations between blocks due

to the removal of neighboring pixels before the DCT transform.

At QF95, the difference between the different schemes becomes less

pronounced for the Linear pipeline. However, there is still a gap in per-

formance between these schemes and SI-UNIWARD. Compared with

Σ-Lat MGE, there is an average gain of 10.5% wrt to SI-UNIWARD

for the Linear pipeline and 4% for the BOSS pipeline. At QF75, every

scheme performs approximately the same irrespective of the pipeline.

This is most likely due to the fact that, at such a low QF, most of

the variances are now close to 0. As such most of the performance of

the steganography is likely due to the side-information related to the

rounding errors.

We also note that the implementation of Σ-Lat MGE which does not

use the RAW file has a performance virtually identical with the orig-

inal implementation showing that the assumptions on the processing

pipeline we used in Section 7.4 are quite practical for a steganography

context.

Finally, note that when using Σ-GE, which does not use any correla-

tion between DCT coefficient, there is always a small gain with respect

to SI-UNIWARD for both QF100 and QF95. However its performance

are always subpar even compared to Σ-MGE intra only, showing the

importance of taking these correlations into account.

One interesting thing to note here is the impact of the processing

pipeline on the correlation structure necessary to obtain good perfor-

mances. In the Bosslike case, the downsampling operation has made

most inter-block dependencies very small compared to intra-block de-

pendencies – see Figure 11.3. Consequently, using a more sophisticated

model of dependencies does not bring any gain in performance. On

the other hand, in the Linear pipeline case where all dependencies

are preserved until the end of the pipeline since no downsampling is

performed, there is quite a substantial gain when using the most so-

phisticated model.
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Figure 11.3: Covariances of a

central block (leftmost 64 × 64

block in the matrix) of DCT

coefficients developed with the

Bosslike pipeline with its neigh-

boring blocks. The uppermost

figure shows that the covariances

are negligible compared to the

variances. If we threshold the

dynamic range we observe that

the intra-block covariances dom-

inate other inter-block covari-

ances.11.3 Impact of the quality factor on the covariance

matrix

As we observed in the performance evaluation experiments, as we use

lower quality factors for compressing a dataset, the lower is the gain in

security when using models taking into account dependencies between

DCT coefficients. This trend is so strong that at QF75, for a given

pipeline, all the tested algorithms perform exactly the same despite

wildly different models.

To explain this phenomenon we study the impact of the quantization

of the covariance matrix. To illustrate our analysis, we provide in

Figure 11.4 a series of covariance matrices of the same image block as

the quality factor decreases. Note that these covariances are obtained

after the rounding of DCT coefficients. One can observe that most of

of the covariances become negligible as soon as quantization with QF95

is performed. Furthermore, most variances and covariances become

zero since they are far smaller than the quantization step of 1 after

being divided by the quantization matrix.

11.4 Impact of model misspecification

In this subsection, we study the impact of errors on the estimation of

the covariance matrix. Three main types of errors can occur on the

estimation:

1. errors on the heteroscedastic parameters c1 and c2,

2. errors on the pipeline matrix H

3. and errors due to the saturation of the pixels.

Error on the heteroscedastic parameters Error on the heteroscedastic

parameters can be studied analytically. Let c1 and c2 be the true

parameters; ĉ1 and ĉ2 are the estimated parameters. The variances σi

and estimated variances σ̂i in the RAW domain are given by
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Figure 11.4: Covariance matrix

of a block of rounded DCT coef-

ficient of image 1200 in BOSS-

Base with the linear pipeline for

different quality factors.

σi = c1µi + c2, (11.4.1)

σ̂i = ĉ1µi + ĉ2. (11.4.2)

Let α′ be relative estimation error on the c1 parameter:

α′ =
ĉ1
c1

. (11.4.3)

We have that:

σ̂i = α′σi + C, (11.4.4)

where C = ĉ2 − α′c2 is a constant which does not depend on the

photo-site. Consequently, the resulting estimated covariance Σ̂k in the

developed domain is given by:

Σ̂k = α′Σk + CHHT . (11.4.5)

As a particular case, note that if we have ĉ1
ĉ2

= c1
c2
, then the estimation

error has no impact on the MGE steganography schemes, because a

multiplicative error on the covariance does not change the optimal

solution.

As a working example, let’s take the Bosslike pipeline. We com-

puted HHT for each camera and found that the average absolute value

of the non-diagonal entries is of the order of 10−7 and 10−4 for the di-

agonal elements. If we set ĉ2 = 0, the relative estimation error would
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Figure 11.5: PE as function of

payload size for different the dif-

ferent heuristics and design de-

cisions made in this paper.

then have to be very high – i.e, in the order of at least 100 – to begin

to have an impact. To validate this analysis on the Bosslike pipeline,

we repeated the experiments of Section 11.2 except that the covariance

matrices were estimated by fixing c1 = 0.5 and c2 = 0 for every image.

The results are given in Figure 11.5. As expected, they are extremely

close to the original Σ-Lat-MGE results on this pipeline.

Error on the estimation of the processing pipeline and not taking clip-

ping into account In this manuscript, we always assumed the steganog-

rapher had access to the correct processing pipeline for the estimation

of the covariance matrix, even in the “no RAW” case. It would then

be interesting to see the impact on security when using mismatched

pipelines for the covariance estimation. To do so, we repeated the ex-

periments of Section 11.2, but this time using the covariance matrices

estimated with the Bosslike pipeline on the Linear dataset and vice

versa. Similarly, we also repeated the experiments when using and not

using the heuristic presented in Section 7.5 to take the clipping effect

into account. The results are presented in Figure 11.5.

The results are clear: using strongly mismatched pipelines or not

taking the saturation of pixels into account leads to near useless schemes,
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showing the importance of having a good model of the pipeline and of

the sensor in the first place.

11.5 Conclusion

In this final chapter, we evaluated all the Gaussian Embedding algo-

rithms developed in the two previous chapters and compared them to

SI-UNIWARD, the current state of the art of JPEG steganography.

We observed that, whatever the version of Gaussian Embedding we

used, whatever the datasets, the algorithms performed better than SI-

UNIWARD. However there was a large gap of performance between

the different versions of the algorithms depending on how well the de-

pendencies were taken into account. In the case of the Linear pipeline,

the performance greatly increases (up to +30%inPE) the more depen-

dencies are taken into account. On the other hand, due to the fact

that inter-block dependencies are negligible in the case of the Bosslike

pipeline, the Multivariate Gaussian Embedding taking only intra-block

dependencies into account is sufficient to obtain the best performance.

We also observed that the difference between SI-UNIWARD tended

to get smaller as we decrease the JPEG quality factor of the datasets.

This was explained by observing that dependencies between DCT coef-

ficients get destroyed due to the quantization and rounding operations.

Finally, we provided some analysis of the impact of model misspec-

ification on the security performance of our algorithms.



General conclusion and

perspectives

The two main tasks of this thesis could be summarized:

• The derivation of a realistic, yet simple, model of the sensor noise

of natural images in the developed domain.

• A suite of steganographic algorithm which leverage this model of

the noise to provide guarantees of performance.

In the first part of this manuscript, we tackled the first task by start-

ing from first principles. We described how RAW images are captured

and, following the classic work of A. Foi, we derived the heteroscedastic

Gaussian noise model of the sensor noise in the RAW domain. We then

went on to describe common operations in image processing. We pro-

vided a general of the full processing pipeline by observing that most of

these operations could be well approximated by linear and stationary

operations. We consequently modeled the full processing pipeline as a

matrix that takes as input blocks of photo-sites and outputs blocks of

DCT coefficients. By combining the model of RAW sensor noise and

this model of the processing pipeline we obtained a multivariate Gaus-

sian model of the noise in the developed domain. The parameters of

interest of this model only depend on the camera sensor, ISO parame-

ter and processing pipeline which were used to capture the image. For

all the models presented in this first part, we also provided methods

for estimating their parameters.

In the second part, we leveraged this model of the noise in the do-

main to solve the second task. We started by showing how to build

a steganographic based on a statistical measure of detectability in the

most simple setting. To do so, one needs a statistical model of the

cover and the stego images. We started with a simple quantized, in-

dependent Gaussian model of the noise for the cover and a mixture

of quantized Gaussian for the stego. We derived the optimal detector

which discriminates between these two distributions, the likelihood ra-

tio test, and computed analytically its power as a function of the cover

and stego parameters. We then designed a steganographic algorithm

that minimizes the power of this optimal detector. Following this step,

we went on to design algorithms that follow this strategy but use the

model derived in the first part of the manuscript. We began with an

independent Gaussian model for the precover and the prestego but

used the full multivariate model for the estimation of the variances

of the model. The second algorithm used the full multivariate Gaus-

sian model. In this most general case, we showed that the optimal
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covariance of the prestego signal is proportional to the covariance of

the precover noise.

We finally provided numerous results showing that these algorithms

surpass the current state-of-the-art by a large margin in terms of se-

curity performance. We also showed that their performance matched

the theoretical performance predicted by our theoretical analysis as

long as the assumptions of the models were met. This allows for guar-

antees of security performance against the worst-case adversary (the

optimal detector) under the linearity and stationarity assumptions of

the processing pipeline. However, we also showed that even if these

assumptions are not met, our algorithms still largely surpass the state-

of-the-art.

The perspectives of this work are numerous and go from simple ex-

tensions to more theoretical questions on the link with other steganog-

raphy methods. First, the theoretical analysis for the linear and sta-

tionary case is mostly complete. One missing part is in the proof of

optimality of the covariance of the stego signal. Indeed, we only proved

that a covariance matrix proportional to the cover noise covariance

minimizes the KL-divergence, which itself bounds the power of the

LRT. However, we conjecture that such a covariance should actually

minimize the power of the LRT. At the very least, sharper bounds

than the simple data processing inequality bound we used should be

obtainable, using, for example, a Hoeffding-type inequality. Regard-

ing extensions of our model to the non-linear and non-stationary case,

we have already experimentally observed some interesting properties

of the downsampling operation which could simplify the problem for

all pipelines using this operation. Indeed, it seems that downsampling

“linearizes” most of the non-linear operations, making the noise in the

DCT domain close to Gaussian. Furthermore, the non-stationarity of

the pipeline seems, usually, to result in a bias on the noise of individual

DCT coefficients. These are some leads that could be followed in the

future to try to make this model as general as possible and to truly

provide a steganographic algorithm able to guarantee security perfor-

mance in most cases.

Regarding some interesting connections with recent work, the break-

through work on the Backpack algorithm showed that cost maps gen-

erated by this algorithm produced a stego signal with correlations rem-

iniscent of the correlations produced by the processing pipeline stud-

ied in this manuscript. Seeing how our algorithm claims optimality

for certain cases, it would be interesting to see if Backpack converges

to costs leading to correlations identical to those of our algorithm or

not. Another question of interest comes to mind after the work of

Y. Yousfi in [85] which illustrated how different steganographic algo-

rithms are detected differently by a deep neural network. In the case of

J-UNIWARD, the DNN seems to make a decision by using the global

image. In the case of J-MiPOD, on the other hand, the DNN seems
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able to leverage local artifacts and make a decision based solely on a

single block. Such information should be of interest for the design of

our algorithms, especially in cases where we cannot claim optimality.

Preliminary experiments on this question seem to show that a DNN

will favor smooth areas to make a decision. This might be because

these are the only areas where it is “easy” to estimate variances and

maybe covariances.Finally, it should be noted that we emphasized the

use of our noise model for applications in steganography. However

one can easily imagine ways to improve steganalysis or even forensics

methods if we assume the knowledge of the processing pipeline avail-

able. In the steganalysis case, this would allow verifying, per block,

a deviation from the expected correlations between DCT coefficients.

Another direction, in line with the observations of Chapter 4, would be

the design of a classifier that, for a given image, automatically selects

the best images in a training set in order to train itself to classify this

image. This selection would be made by selecting images that have

a covariance structure close to the covariance structure of the image

to classify. This would ensure that the classifier is specialized for the

right processing pipeline to minimize cover-source mismatch.





Résumé en français

Introduction générale

La stéganographie est la discipline s’intéressant à la conception d’algorithmes

permettant la dissimulation d’information dans un support considéré

comme anodin, appelé média de couverture, ou plus simplement cover.

La discipline s’est à ce jour principalement concentré sur l’utilisation

de support numériques pour la dissimulation d’information, en partic-

ulier les images numériques. Ce choix résulte de la conjonction de trois

propriétés intéressantes pour le stéganographe: l’omniprésence de ce

médium, la facilité de son partage ainsi que sa facilité de modification

(au contraire de la vidéo par exemple). Une fois l’information dis-

simulée dans une image, on appelle cette dernière objet stéganographique,

ou plus simplement stégo. On suppose ensuite que cet objet stégo est

envoyé à un tiers en passant par canal publique non destructif et non

bruité.

En pratique la stéganographie cherche donc à concevoir des algo-

rithmes permettant d’insérer de l’information dans une image numérique

sans en l’altérer visuellement. Cependant, la minimisation de l’impact

visuel de l’insertion est très insuffisante en pratique. En effet, on

considère que le stéganographe est confrontée à une adversaire, la

stéganalyste, capable d’employer diverses techniques statistiques pour

permettre la détection d’information dans les images. Nous référons

au Chapitre 1 pour un exemple d’attaque concrète sur un schéma

d’insertion näıf ne prenant en compte que l’impact visuel. Le but du

stéganographe sera donc très précisément de minimiser la détectabilité

de son schéma d’insertion lorsque confronté à un certain type d’adversaire.

Comme nous venons de l’indiquer, la discipline adverse de la stéganographie

est la stéganalyse dont le rôle est développer des techniques permettant

la détection d’information dissimulée. Le contexte classique d’étude de

la stéganalyse et de la stéganographie suppose que que la stéganalyste

est passive, c’est à dire qu’elle ne modifiera pas les images envoyées

par le stéganographe pour empêcher un tiers d’en extraire le message.

De plus, il est important de noter que le rôle de la stéganalyste est la

détection d’information cachée et non pas son extraction. De plus, on

supposera que le but de la stéganalyste est de déterminer pour chaque

image qui lui est présentée si celle ci est cover ou stego. Son rôle ne

sera donc pas ici de savoir si un acteur donné est stéganographe ou

non.
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11.5.1 État de l’art en stéganographie

Les travaux actuels en stéganographie reposent sur la conception de

fonctions de coût efficaces. Il existe actuellement deux voies princi-

pales pour leur conception : heuristique et statistique.

La voie heuristique a été de loin la plus populaire, l’approche étant

basée sur la conception de fonctions de coût évaluées sur le stéganalyste

le plus efficace du moment. Les performances de ces systèmes ne sont

donc validées qu’empiriquement. Cette approche a donné lieu à des

schémas très efficaces dans le domaine spatial [42, 56] et dans le do-

maine JPEG [42, 39].

Malgré ce succès et le fait que la famille UNIWARD, par exemple,

soit toujours compétitive à ce jour, cette approche présente plusieurs

limites. Tout d’abord, le fait que ces techniques ne soient validées

qu’empiriquement conduit parfois à d’énormes différences de perfor-

mance au fur et à mesure que les standards d’évaluation des perfor-

mances évoluent et que les techniques de stéganalyse deviennent plus

sophistiquées - voir par exemple l’observation récente sur UERD contre

DNNs [8] ou l’impact du choix des jeux de données sur la performance

de ces schémas [69, 35]. Deuxièmement, et plus généralement, cette

approche utilise des fonctions de coût qui n’ont pas apriori de lien clair

avec une détectabilité théorique ou empirique. Par conséquent, cette

approche donne très peu d’indications sur la raison pour laquelle une

stratégie fonctionne et pourquoi une autre ne fonctionne pas. Pire en-

core, cela rend l’approche incapable de donner des garanties théoriques

en termes de détectabilité.

La deuxième voie est basée sur la minimisation d’une quantité qui

est directement liée apriori à la détectabilité théorique et/ou em-

pirique. La stratégie la plus récente qui suit cette voie, l’insertion

adverserielle, tente directement de minimiser la détectabilité empirique

sur une base d’image donnée en modifiant itérativement la fonction de

coût afin de minimiser les performances d’un classificateur. Ce clas-

sificateur se met également à jour à chaque étape afin de minimiser

la performance du sténographe. Bien que cette approche ai largement

fait ses preuves [77, 6], elle a ses propres limites. Celles-ci sont : un

coût de calcul élevé et le besoin de grandes bases d’images, nécessaires

pour obtenir une fonction de coût de haute qualité. De plus, elle ne

résout pas le problème des garanties théoriques pour bases d’images

non testées.

Pour ces raisons, nous travaillons dans ce rapport avec une autre

stratégie qui fonctionne en minimisant la détectabilité théorique d’un

détecteur optimal. Cette approche est apparue pour la première fois

dans [29] et a abouti à la conception de l’algorithme MiPOD [69]. Le

cadre conçu pour MiPOD est basé sur la théorie des tests d’hypothèse.

L’idée principale est de représenter le problème de la stégananalyse
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comme un simple test entre deux hypothèses : H0, l’image examinée

est une couverture ou H1, c’est un stego. En utilisant cette théorie, on

peut montrer sous certaines conditions qu’il existe un détecteur opti-

mal et calculer ses performances. Le but du stéganographe est alors

de minimiser la puissance de ce détecteur sous la contrainte d’insérer

un message d’une taille donnée dans le média de couverture.

Toutefois, pour être en mesure de poser le problème dans ce con-

texte, il faut disposer d’un modèle des images de couverture et un

modèle des images stégo. Les limites de MiPOD et de l’algorithme MG

qui l’a précédé, provenaient principalement de leur choix de modèle de

bruit. En effet, ces deux algorithmes modélisaient les images naturelles

comme des pixels corrompus par un bruit gaussien indépendant, mais

non identique. De plus, ils s’appuyaient sur l’hypothèse de la lim-

ite de quantification fine, qui stipule que les variances des pixels sont

supérieures à un. Ces deux hypothèses sont toutes deux erronées en

pratique. Premièrement, il est connu que les pixels voisins sont, le

plus souvent, corrélés en raison de l’impact de la châıne de traite-

ment [75, 32, 31]. Deuxièmement, la limite de quantification fine est

souvent violée dans les zones sombres d’une image en raison de la na-

ture hétéroscédatique du bruit [27], [82, Chapitre 5, Section 5] qui

implique que la variance dans ces zones est très faible. Cette hy-

pothèse est encore plus problématique si l’on veut étendre l’approche

dans le domaine JPEG, car la quantification des coefficients DCT peut

considérablement réduire la variance avant l’opération d’arrondi de la

compression JPEG. Malgré ces limitations, MiPOD obtient des perfor-

mances proches de l’état de l’art dans le domaine spatial, démontrant

ainsi le mérite de l’approche.

État de l’art en stéganalyse

Comme nous venons de le voir, la stéganographie a développé des tech-

niques de plus en plus puissantes afin de réduire le nombre d’éléments

modifiés dans une image et de rendre ces modifications les moins

détectables possibles. Ces développements ont commencé à avoir lieu

au cours de l’année 2010 et se poursuivent aujourd’hui avec l’avènement

de techniques d’apprentissage des coûts basées sur les réseaux de neu-

rones [6]. Comme on peut s’y attendre, le développement de la stéganalyse

reflète cette histoire et est alimenté par le développement de nouvelles

techniques de stéganographie.

La méthodologie qui marque l’entrée de la stéganalyse dans sa phase

moderne est l’utilisation combinée de l’ensemble de caractéristiques

(feature sets) SPAM [65] et de Support Vector Machine (SVM). Les

caractéristiques SPAM, développées en 2010, sont basées sur un modèle

de châıne de Markov des dépendances entre les pixels et ont servi

de base à l’algorithme stéganographique HUGO. Bien que largement

obsolète de nos jours, cette technique contient les deux principaux

éléments qui ont été perfectionnés jusqu’en 2016 : (1) l’utilisation d’un
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modèle heuristique de haute dimension des dépendances entre les pixels

permettant l’élaboration (manuelle) d’un ensemble de caractéristiques

qui sont ensuite transmises à (2) un classificateur formé dans un cadre

d’apprentissage supervisé. Cet ensemble de techniques est présenté,

dans le manuscrit, dans la section 3.1.

L’année 2015 marque l’entrée de la stéganalyse dans une nouvelle

phase. En effet, celle-ci commence à tirer parti des récentes avancées

en matière de traitement de l’image pour construire le premier réseau

de neurones convolutifs conçu explicitement pour la stéganalyse : le

CNN à neurones gaussiens [68]. Cependant, ses piètres performances

par rapport aux modèles à haute dimension de l’époque ont eu pour

conséquence que l’approche par apprentissage profond n’est pas dev-

enue populaire avant l’avènement de Xu-Net [84] en 2016 et de son ex-

tension au domaine JPEG en 2017 [83]. Les premières itérations de Xu-

Net se contentaient d’intégrer les meilleures pratiques de conception de

réseaux de neurones : l’utilisation de la normalisation par lots [44] et

de la fonction d’activation ReLU [59]. L’extension au domaine JPEG

a permis d’ajouter des connexions raccourcies entre les couches afin

d’éviter le problème du gradient évanescent, un problème courant dans

les réseaux profonds où le gradient en un point du réseau devient si

faible que le réseau cesse de converger. Cependant, Xu-Net a conservé

une particularité de conception du CNN à neurones gaussiens, à savoir

l’utilisation d’une couche de prétraitement. Cette couche consiste en

une série de filtres passe-haut qui rappellent ceux utilisés pour constru-

ire les ensembles de caractéristiques à haute dimension en stéganalyse.

Ils sont destinés à séparer le contenu de l’image du bruit pour faciliter

la détection d’un signal stégo.

Ce choix de conception a été entièrement abandonné par la grande

étape suivante en stéganalyse basée sur les réseaux de neurones : SR-

Net [8]. L’idée majeur derrière SRNet était de disposer d’une archi-

tecture entièrement automatique et universelle pour la stéganalyse.

Par conséquent, SRNet est principalement fondé sur une architecture

ResNet classique [40] sans aucune couche de prétraitement. Son princi-

pal choix de conception est d’empêcher tout pooling dans les premières

couches du réseau afin de conserver autant d’informations que possible

sur les variations locales de l’image. Ce choix est motivé par le fait

que, contrairement aux problèmes classiques de la vision par ordina-

teur, la stéganalyse est confrontée à la détection de signaux très faibles

et localisés. Au moment de la rédaction de ce manuscrit, le dernier

développement en stéganalyse peut être observé dans les résultats du

concours de stéganalyse ALASKA2 [12] qui a eu lieu en 2020. Lors

de ce concours, la plupart des équipes de tête ont utilisé l’architecture

EfficientNet [76] qui, contrairement à toutes les autres architectures

de réseaux de neurones utilisées jusqu’alors en stéganalyse, n’était

pas spécifiquement conçue pour la stéganalyse. La principale nou-

veauté était l’utilisation de l’apprentissage par transfert. EfficientNet

a d’abord été initialisé avec des poids obtenus en l’entrâınant sur Im-

ageNet pour d’autres tâches. Il a ensuite été affiné en l’entrâınant à

classifier des images cover et des images stégo. Cela a conduit à des per-
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formances exceptionnelles, dépassant SRNet. D’autres améliorations

ont été obtenues par des modifications spécifiques de l’architecture –

voir [86].

Problématique et contributions

Le but fixé de cette thèse était de concevoir un algorithme de stéganographie

possédant des garanties en terme de détectabilité. Donner de telles

garanties impose d’être en mesure quantifier exactement la détectabilité

d’une image dans laquelle de l’information a été cachée.

Pour ce faire, nous nous somme dirigés vers une modélisation du

problème utilisant les tests d’hypothèses. En effet, il est possible

d’interpréter le problème d’un stéganalyste souhaitant classifier en

deux classes d’images, cover ou stégo, comme un test d’hypothèse sim-

ple entre deux classes. Une fois ce test correctement spécifié, il est

possible pour le stéganographe de construire un signal minimisant la

puissance de ce test sous contrainte de cacher un message de taille

donnée.

Cependant la construction d’un tel test nécessite l’accès à des modèles

bien spécifiés pour les deux classes d’images cover et stégo. Bien plus,

pour obtenir de réelles garanties en terme de détectabilité, ces modèles

doivent êtres suffisamment fins pour que la puissance du test soit ef-

fectivement lié à une détectabilité empirique.

La problématique de ce manuscrit est donc triple :

• Déterminer les aspects clés d’une image naturelle qui ont un im-

pacts dans les performances des algorithmes de stéganographie et

de stéganalyse.

• Modéliser ces aspects clés pour obtenir un modèle fin du bruit des

images naturelles.

• Exploiter ce modèle pour la construction d’un schéma d’insertion

donnant des garanties de détectabilité.

Ce manuscrit est donc le fruit de trois contributions principales –

chacune liée à un point de la problématique – que nous résumons très

succinctement ici, le lecteur ou la lectrice intéressé·e pourra se référer

aux chapitres qui leurs sont dédiées pour plus de détails.

Contribution 1 : Une étude empirique d’envergure de l’impact des

différents paramètres d’acquisition et de développement des images

sur les performances en stéganalyse – voir Chapitre 4.

Cette étude a mené à une définition concrète du concept de source

en stéganographie.

Ce concept avait historiquement pour fonction d’expliquer les différences

de performances de la stéganalyse sur des photographies prises dans

des conditions différentes. Cependant, les paramètres d’importances

n’avaient jamais été identifiés. Cette étude a eu pour résultat de rap-

porter le concept de sources à trois paramètres : le capteur de l’appareil
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de photo utilisé, l’ISO avec lequel la photo a été prise et la chaine de

développement utilisée.

Comme nous le montrons dans la seconde contribution ces trois

paramètres caractérisent pleinement la structure du bruit du capteur.

Cette structure est le point crucial pour la conception d’une stéganographie

possédant des garanties de détectabilité.

Contribution 2 : Une modélisation générale du bruit de capteur des

images naturelles ainsi qu’une méthode pour en estimer les paramètres

– voir la Partie I de ce manuscrit.

Suite à l’étude de la première contribution, l’effort s’est concentré

sur la modélisation du bruit de capteurs des images du domaine RAW

jusqu’au domaine JPEG, qui est le domaine d’intérêt en stéganographie

au vu de la prévalence de ce format. Cette modélisation part d’un

modèle classique en débruitage des images RAW, fondé sur un modèle

gaussien hétéroscedastique [27] – voir le Chapitre 5. Ainsi le bruit de

chaque photo-site du capteur est indépendant mais pas identiquement

distribué par rapport aux autres photo-sites. Les paramètres de ce

modèle sont complètement déterminés par le type de capteur ainsi que

l’ISO utilisé. Pour passer de ce modèle du bruit, dans le domaine RAW,

à un modèle général du bruit dans le domaine JPEG, il est nécessaire

de modéliser ensuite la chaine de développement – voir le Chapitre 6.

En partant d’une hypothèse de linéarité et de stationnarité de la chaine

de développement, on peut modéliser le bruit dans le domaine JPEG

par un modèle gaussien multivarié – voir le Chapitre 7. Ce modèle

pose toute l’importance de la covariance du bruit en stéganographie

et donc de la nécessité de prendre en compte la corrélations entre des

coefficients DCT voisins lors de l’insertion – un aspect jusque là peu

étudié dans la discipline.

Contribution 3 : Un schéma d’insertion fondé sur le modèle de la

seconde contribution, donnant des garanties de détectabilité pour une

large classe de chaines de développement et dépassant largement les

performances de l’état de l’art – voir la Partie II de manuscrit.

Pour utiliser ce nouveau modèle de bruit dans le cadre d’une stéganographie

donnant des garanties de détectabilité, il est d’abord nécessaire de

choisir un adversaire – un stéganalyste. Dans le cadre des tests d’hypothèse,

l’adversaire le plus naturelle est un adversaire du type ”pire-cas” qui

connais apriori tous les paramètres du modèle, ainsi que les paramètres

du signal stéganographique.

Dans ce contexte nous montrons que le signal optimal pour le stéganographe

est un signal gaussien multivarié dont la covariance est directement

proportionnelle à la covariance du bruit de l’image utilisé – le fac-

teur de proportionnalité dépendent uniquement de la taille du message

souhaitant être dissimulé.

Enfin nous montrons comment échantillonner rapidement ce signal

stégo, sous contrainte que le message final aie une taille donnée, en
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utilisant une décomposition de Cholesky de la matrice de covariance

du bruit de l’image cover.

Impact de la source sur les performances en stéganalyse

Nous résumons dans cette section la première contribution de cette

thèse, traitant de l’impact du phénomène de cover-source mismatch

ou CSM en stéganalyse ainsi que de la définition d’une source d’image

en stéganographie et stéganalyse.

Le phénomène du cover-source mismatch a été documenté pour la

première fois dans [37] où il a été observé que lorsqu’un un classifica-

teur est entrainé sur un ensemble de données contenant des images

prises uniquement avec un appareil photo AP1 puis que ce même

classificateur est testé sur un second ensemble de données construit

uniquement à l’aide d’un appareil AP2, on observe une énorme perte

de performance par rapport à celles attendues si le classificateur était

testé sur un ensemble de données construit uniquement avec AP1.

Ce problème est devenu encore plus évident lors de la compétition

BOSS où les organisateurs ont ajouté des images dans l’ensemble

de test qui ont été prises avec un appareil photo absent de la base

d’entrâınement. Cela a entrâıné une forte baisse des performances

de stéganalyse sur ces mêmes images. Ce qui est souvent moins mis

en évidence, c’est que ces images aberrantes n’ont pas seulement été

prises avec un appareil photo inconnu, mais qu’elles ont toutes subi

une double compression JPEG, contrairement aux autres images qui

ont simplement été compressées une fois. Cela montre que la châıne

traitement d’image peut également jouer un rôle important dans les

performances de la stéganalyse.

Le travail de [50] étudie ce phénomène en se concentrant principale-

ment sur l’impact de la diversité des appareils photos dans une base

d’image. Cette étude montre cependant l’impact plus important des

différentes châınes de traitement d’image sur les effets du CSM. Les

mêmes auteurs ont également étudié l’effet de différents algorithmes

de redimensionnement sur la sécurité stéganographique, démontrant

ainsi le rôle clé de la châıne de traitement.

Cependant, jusqu’à notre série de travaux [34, 35], il n’y avait pas

eu d’étude systématique de l’impact des différentes propriétés des im-

ages naturelles sur le CSM. Ce manque de connaissances sur les causes

sous-jacentes de ce phénomène a conduit à l’impossibilité de con-

cevoir une méthode théoriquement solide pour construire un ensemble

d’entrâınement qui permettrait à la fois de (1) limiter la perte de per-

formance sur des données absentes de la base d’entrainement tout en

(2) limitant le nombre d’échantillons nécessaires à cet entrainement.

Il était du moins important de comprendre sur quels types d’images

on pouvait s’attendre à ce qu’un classificateur entrâıné sur une base

d’image donné soit performant.

Notre stratégie de départ pour limiter l’impact du CSM consistait à
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identifier la source des images dans un ensemble de test donné afin de

construire un ensemble d’entrâınement sur mesure. Mais cela soulève

la question suivante : quelle est la source d’une image ?

11.5.2 Définition d’une source

La première étape dans la définition de la source d’une image est de

lister et de catégoriser tous les paramètres jouant un rôle lors de la

génération d’une image naturelle. Nous retiendrons seulement trois

catégories pour décrire tous ces paramètres potentiels :

• Contenu : Il s’agit de la scène représentée par l’image. Plus précisément,

il s’agit du signal émis et reçu sous forme de lumière par le capteur

de l’appareil photo.

• Paramètres d’acquisition : Il s’agit de tous les paramètres de l’appareil

photo qui sont fixés afin de capturer le signal d’une scène donnée.

On pensera par exemple au modèle de capteur de l’appareil photo, le

réglage ISO, le choix de l’objectif, le temps d’exposition ou l’ouverture.

• Paramètres de traitement : Il s’agit de tous les paramètres de tous

les algorithmes utilisés pour transformer l’image RAW capturée par

l’appareil photo en image finale traitée.

Cette catégorisation nous amène à la définition suivante de la source

d’une image :

Source Une source peut être définie comme un ensemble de paramètres

d’acquisitions combiné à un ensemble de paramètres de traitement qui

génèrent des images tels que, pour un contenu donné, la succession des

acquisitions forme un signal stationnaire.

Cette définition étant beaucoup trop générique pour aider le stéganalyste

à concevoir ses bases d’images, nous avons effectué une étude expérimentale

systématique de chacun de ces paramètres pour étudier leur impact sur

la performance d’un classificateur à l’état de l’art – voir le Chapitre 4

de manuscrit.

De ces expériences, nous avons vu que l’appareil photo et l’ISO ont

un fort impact sur le phénomène du CSM et que même deux appareils

photo ayant le même réglage ISO ne seront pas forcément cohérents en-

tre eux. Deuxièmement, l’impact de la châıne de traitement de l’image

semble être le plus importants sur l’ensemble des paramètres étudiés.

Par conséquent, nous proposons une définition empirique d’une source

comme étant :

Definition 11.5.1 (Source II). La source d’une image est la combi-

naison d’un capteur d’appareil photo, d’un réglage ISO et d’une châıne

de traitement utilisée pour capturer et produire l’image finale traitée.

La première partie de ce manuscrit vise très justement à donner

une justification théorique à cette définition par la construction d’un

modèle statistique.
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Modèle de bruit des images naturelles

Nous développons succinctement dans cette section la seconde con-

tribution de cette thèse, à savoir une modélisation fine du bruit de

capteur des images naturelles ainsi que l’estimation des paramètres de

ce modèle.

En partant des enseignements de la première contribution, nous

savons que le bruit de capteur des images naturelles ne dépend que de

trois paramètres : le capteur de l’appareil de photo, l’ISO avec lequel

la photo a été prise et la chaine de développement.

Nous commençons par modéliser la chaine de développement avant

de dériver le modèle de bruit dans le domaine JPEG à partir du modèle

de bruit dans le domaine RAW.

Nous nous référerons à des bloc de taille 8× 8 comme des blocs de

coefficients DCT tandis que les groupes de blocs de coefficients DCT

comme des macro-blocs. Notez également que nous regroupons les

différents termes photo-sites (domaine RAW), pixels (domaine développé

avant compression) et coefficients DCT (domaine JPEG) sous le terme

général d’éléments d’image pour faciliter la présentation.

Hypothèses pour la modélisation de la chaine de développement

RAW image Demosaicking White Balance Gamma correction

Greyscale
conversion

DownsamplingJPEG compressionJPEG image

Figure 11.6: Ordre des

différentes opérations de traite-

ment d’images présentées dans

ce chapitre. Pour un exemple de

châıne traitement d’image plus

complet – comme celui utilisé

dans le logiciel open-source

Rawtherapee – voir https:

//rawpedia.rawtherapee.

com/Toolchain_Pipeline.

Pour pouvoir modéliser le bruit de capteur dans le domaine JPEG,

nous avons besoin d’un modèle de la chaine de

développement. Pour conserver une certaine facilité de traitement

mathématique tout en restant aussi général que possible, nous modélisons

la chaine de développement comme un opérateur linéaire et station-

naire, agissant sur des macro-blocs d’éléments de l’image

Les opérations linéaires sont des fonctions f de la forme :

f(
∑

k

xk) =
∑

k

f (xk) , (11.5.1)

∀α ∈ R, f (αx) = αf (x) . (11.5.2)

Les opérations stationnaires sont des opérations qui sont appliquées

de manière identique pour chaque entrée de l’opération. Par exem-

ple, si l’opération prend en entrée des blocs de sites photographiques,

alors chaque bloc doit être traité de la même manière. L’algorithme de

dématriçage PPG, décrit dans le Chapitre 6, est un exemple d’algorithme

non stationnaire, car il effectue différentes opérations sur les blocs en

fonction du gradient du photo-site central par rapport à ses voisins.

En partant de ces hypothèses, nous pouvons représenter la chaine

de développement comme une matrice M2 × N2, notée H pour le
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reste de ce rapport. Dans ce rapport, H modélise la chaine de traite-

ments jusqu’à la transformée DCT de la compression JPEG mais avant

l’opération d’arrondis – qui est non-linéaire.

Le choix de M et N sont à la discrétion du modélisateur. Plus

ces paramètres sont élevés, plus le modèle de bruit sera fin, car il

prendra en compte les corrélations entre coefficients DCT de plus en

plus éloignés.

Modèle de bruit des images RAW

µ∗

Scene

x

G

N
(

0, b2

1

)

N
(

0, b2

2

)

Light

Thermal + flicker noise

Shot noise P (λ)

Amplification (ISO)

Figure 11.7: Diagramme du

modèle d’acquisition d’image

dans le domaine RAW. La

lumière de la scène est cap-

turée par les photo-sites du cap-

teur d’image. La nature quan-

tique de la lumière introduit du

bruit sous la forme de “bruit

de grenaille” (shot noise) qui

suit une distribution de Pois-

son. D’autres bruits sont in-

troduits par le circuit sous la

forme de bruits thermiques. Le

signal électrique est ensuite am-

plifié par une valeur G contrôlée

par le réglage ISO de l’appareil

photo.
Nous modélisons maintenant le bruit des images naturelles en par-

tant du domaine RAW pour arriver jusqu’au domaine DCT (avant

arrondis).

Pour commencer, étudions comment une image RAW, c’est à dire

une image en sortie de capteur, avant tout traitement, est capturée. La

châıne d’acquisition des images RAW est résumé dans la figure 11.7.

Les capteurs d’appareils photo usuellement utilisés fonctionnent tous

sur le même principe : convertir un signal lumineux (photons) en

un signal électrique (électrons). Ils s’appuient donc sur une grille de

photo-diodes, que nous appelons photo-sites, pour détecter les pho-

tons arrivant à différentes positions dans l’image. Chaque photo-site

ne peut capturer qu’une seule couleur, généralement l’une des couleurs

rouge, verte ou bleue (RVB). Cela est dû à un motif de masquage dis-

posé sur les photo-sites qui prend généralement la forme du motif de

la grille de Bayer.

Le nombre moyen d’électrons générés par un photon est appelé ef-

ficacité quantique et dépend des caractéristiques du capteur d’images.

Une autre caractéristique dépendant du matériel est un offset sur

chaque photo-site : les charges collectées de chaque site photo sont

toujours compensées par une valeur positive p0 ∈ R
+. Ce courant

électrique est ensuite envoyé dans différents circuits selon le type de
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capteur – voir [60, 51] pour les références. Au cours de cette opération,

le signal est amplifié par une valeur positive G > 1 qui dépend du

réglage ISO choisi par l’utilisateur au moment de la capture de l’image.

À chaque étape de ce processus, du bruit est introduit dans le signal.

Deux sources majeures de bruit peuvent être déduites de la description

du système : le bruit lié à la nature quantique de la lumière lors de

son arrivée sur les sites de prise de vue (bruit de grenaille) et le bruit

introduit par les différents composants du circuit du capteur (bruit

thermique).

A partir de ce modèle, il est possible de construire un modèle

statistique du bruit dans le domaine RAW. Nous suivons pour cela

les travaux maintenant classiques de Foi [27] en adoptant un modèle

hétéroscedastique du bruit de capteur – voir le Chapitre 5 pour une

dérivation complète du modèle.

Nous représentons donc les photo-sites d’une image RAW comme

une séquence de m variables aléatoires suivant une loi gaussienne :

xi ∼ N
(

µi, σ
2
i

)

; σ2
i = c1µi + c2, (11.5.3)

où µi serait la i-ième valeur du photo-site s’il n’avait pas été cor-

rompu par un bruit d’acquisition. Dans ce modèle, la variance dépend

linéairement µi à travers deux paramètres c1 et c2. Ces deux paramètres

dépendent exclusivement du capteur et de l’ISO de l’appareil photo

utilisé.

Pour faciliter la suite de la présentation, nous réinterprétons Eq (11.5.3)

en modélisant conjointement les macro-blocs de photo-sites de tailles

M ×M :

xk ∼N(µk, diag(σk)), (11.5.4)

où diag est la fonction prenant en entrée un vecteur et retournant la

matrices diagonales des valeurs de ce vecteur.

Modèle de bruit dans le domaine développée

L’image RAW est ensuite développée en appliquant la chaine de développement

H sur chaque macro-bloc.

En supposant la stationnarité de la châıne de traitement, nous pou-

vons écrire le macro-bloc développé comme suit :

yk = Hxk . (11.5.5)

De plus, en supposant la linéarité de la châıne de traitement et en

utilisant les propriétés de la distribution gaussienne, il est immédiat

que Yk suit une distribution gaussienne multivariée :

yk ∼ N (Hµk,Σk) , (11.5.6)

avec la covariance Σk obtenue par l’équation :

Σk = Hdiag (σk)H. (11.5.7)



162 statistical steganography based on a sensor noise model using the processing

pipeline

En résumé, sous les hypothèses de notre modèle, le bruit des macro-

blocs dans le domaine développé suit un modèle gaussien multivarié.

Ce modèle dépend de seulement trois paramètres : les paramètres

hétéroscédastiques c1 et c2, qui ne dépendent que du capteur d’image

et du réglage ISO, et le pipeline de traitement, ici modélisé par une

matrice H. Cela nous permet de donner une justification théorique de

la définition de la source donnée lors de notre première contribution.

Estimation de la matrice représentant la châıne de développement

Dans ce manuscrit, nous supposons toujours que le stéganographe a un

accès de type “bôıte noire” à la châıne de traitement qui a été utilisé

pour générer l’image cover qu’il utilisera pour cacher de l’information.

En d’autres termes, le stéganographe n’a aucune connaissance directe

du fonctionnement interne de cette châıne de traitement mais peut

l’utiliser pour développer des images.

À partir de cette hypothèse, nous souhaitons estimer la matrice H

de cette châıne de traitement.

Pour ce faire, nous générons d’abord une image constante x̄ cor-

rompue par un bruit gaussien centré indépendant et identiquement

distribué avec une variance σ2 :

x̄i ∼ N
(

c, σ2
)

. (11.5.8)

La valeur constante c peut, en théorie, être choisie arbitrairement.

Cependant, la plupart des logiciels de traitement d’images coupent les

valeurs inférieures à zéro. Par conséquent, nous choisissons toujours

une valeur constante proche de la valeur médiane de la plage d’une

image RAW donnée, soit généralement 2000 ou 8000.

L’image x̄ est ensuite développée, en utilisant l’accès à la châıne

de traitement. L’image ainsi développée est notée ȳ. En suivant nos

hypothèses de stationnarité et de linéarité, nous pouvons exprimer ȳ

comme une fonction de x̄ et de H :

ȳk = Hx̄k, (11.5.9)

c’est-à-dire que chaque macro-bloc ȳk de l’image développée est

obtenu en multipliant le macro-bloc correspondant dans le domaine

RAW x̄k par H.

À partir de l’équation (11.5.9), nous pouvons réduire le problème

de l’estimation de H à un simple problème de régression linéaire. Par

exemple, nous pouvons résoudre Eq (11.5.9) pour H en utilisant la

méthode des moindres carrés. Soit mx le nombre de macro-blocs de

taille M2 dans x̄ et my le nombre de macro-blocs correspondants de

taille N2 dans ȳ (sous forme de vecteur). Soit X̄ la matrice mx ×M2

construite en empilant chaque macro-blocs de x̄ (sous forme vecto-

rielle). De même pour Ȳ. La solution des moindres carrés de H est

alors donnée par :

H = ȲX̄
T
(

X̄X̄
T
)−1

. (11.5.10)
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11.5.3 Estimation de la covariance du bruit de l’image cover

Nous terminons en présentant une méthode pour estimer la matrice de

covariance du bruit dans le domaine développé. La méthode que nous

présentons ici est simple et exacte tant que les hypothèses du modèle

sont valides. Cependant, elle suppose que l’on a accès à l’image RAW

x ainsi qu’à un accès bôıte noire au pipeline de traitement. Pour une

méthode approximative mais ne nécessitant pas l’accès à l’image RAW,

nous renvoyons à la Section 7.4 de manuscrit.

La première étape consiste à estimer la matrice H représentant la

châıne de traitement avec la méthode présentée précédemment. En-

suite, nous estimons les paramètres c1 et c2 du modèle hétéroscédastique

en suivant la méthode décrite dans la Section 5.3 de manuscrit.

Une fois que tous ces paramètres ont été estimés, nous pouvons

calculer la variance de chaque photo-site xi en utilisant :

σ2
i = c1µi + c2. (11.5.11)

La valeur moyenne du photo-site µi peut être estimée en utilisant

n’importe quel algorithme de débruitage dans le domaine RAW tel

que [27]. Cependant, nous avons constaté que, dans la pratique,

l’utilisation de la valeur réelle du site de la photo comme estimation

de la valeur moyenne n’entrâıne aucune perte pour la stéganographie.

Nous réécrivons maintenant Eq (11.5.11) comme des macro-blocs

de variance :

σ2
k = c1µk + c2. (11.5.12)

La covariance Σk de chaque macro-bloc est alors simplement obtenue

en utilisant:

Σk = Hdiag (σk)H. (11.5.13)
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Stéganographie utilisant un modèle statistique du bruit

de capteur

Cette section décrit la construction d’un schéma d’insertion fondé sur

le modèle développé dans la seconde contribution.

Nous commençons par formuler le problème de détection du point de

vue du stéganalyste avant d’en construire le détecteur optimal. Une

fois cela fait, le but du stéganographe est de trouver le signal min-

imisant la puissance de ce détecteur.

Nous modélisons la précover y – l’image cover avant l’opération

d’arrondis de la compression JPEG – comme un vecteur contenant m

macro-blocs indépendants de taille M ×M suivant une distribution

gaussienne multivariée. L’image “pré-stego” γ est quant à elle l’image

y à laquelle a été rajouté un signal gaussien multivarié de moyenne

nulle et de covariance ϵk.

Formellement, soit :

yk ∼ N (µk,Σk), (11.5.14)

γk ∼ N (µk,Σk +Ek). (11.5.15)

En suivant la méthodologie présentée dans [69], nous cherchons à

trouver les paramètres du signal stégo qui minimisent la puissance

du détecteur le plus puissant. Pour ce faire, nous travaillons sous

l’hypothèse que le stéganalyste connait E = (E1,E2, . . . ,En) ainsi que

les paramètres du modèles µ = (µ1,µ2, . . . ,µn) etΣ = (Σ1,Σ2, . . . ,Σn)

les blocs d’images avant l’opération d’arrondis sont stéganalysés : xi =

(ξ1, ξ2, . . . , ξn).Le stéganalyste doit alors décider entre deux hypothèses

∀k ∈ {1, 2, . . . , n}:






H0 = {ξk ∼ N (µk,Σk)} ,
H1 = {ξk ∼ N (µk,Σk +Ek)} .

(11.5.16)

La distribution du bruit sous H0, pΣk
(x), et celle de qΣk,Ek

(x) sous

H1 sont données par :

pΣk
(x) =

exp
(

(x− µk)
T
Σ−1

k (x− µk)
)

√

2π|Σk|
(11.5.17)

qΣk,Ek
(x) =

exp
(

(x− µk)
T
(Σk +Ek)

−1
(x− µk)

)

√

2π|Σk +Ek |
. (11.5.18)

Nous utilisons pour la suite le critère d’optimalité de Neyman-Pearson.

Dans ce contexte, le stéganalyste construit un test δ : R → {H0,H1}
qui maximise la puissance du test PD ≜ P (δ (x) = H1|H1) sous une

probabilité de fausse-alarme fixée PFA ≜ P (δ (x) = H1|H0).

Sous ces hypothèses, le problème du stéganalyste (11.5.16) est réduit

à un choix entre deux hypothèses simples. Dans ce contexte, le lemme

de Neyman-Pearson indique que le test le plus puissant existe et que

ce test est le test du rapport de vraisemblance (TRV) défini comme :

Λk(ξ,Σk,Ek) = ln

(

pΣk
(ξ)

qΣk,Ek
(ξ)

)

, (11.5.19)
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Λ(ξ,Σ,E) =

n
∑

i=0

Λi(ξk,Σk,Ek)
H0

≶
H1

τ, (11.5.20)

où la dernière ligne se déduit de l’indépendance des macro-blocs.

Insertion par minimisation de la puissance du test

L’étude des performances du TRV que nous effectuons dans le Chapitre 10

nous permet de démontrer que le la matrice de covariance qui minimise

la divergence de Kullback-Leibler entre la distribution de la précover

et celle de la préstego à la forme suivante :

Ek = αΣk, (11.5.21)

avec α ∈ R+ indépendant de l’indice k.

Formellement, le stéganographe cherche alors à trouver le signal qui

minimiser la divergence de Kullback-Leibler sous contrainte d’insérer

un message de taille donnée :







min
E

DKL (pΣ || qΣ,E)

R =
∑n

i=1

∑

k∈Z
βk
i log β

k
i

(11.5.22)

où β
(j)
i est la probabilité d’ajouter +j eu i-ième coefficient, n est le

nombre total de coefficients DCT et R est la taille du message à insérer

en bits. Il est important de noter que l’algorithme minimise la diver-

gence de Kullback-Leibler dans le domaine continue, tandis que la

contrainte est donné dans le domaine quantifié.

Pour minimiser PD sous cette contrainte, une simple recherche par

dichotomie du α optimal suffit.

Calcul des probabilités d’insertion

Reste à calculer les probabilités d’insertion β
(j)
i en fonction de la co-

variance de la préstego dans le domaine continue. Pour ce faire nous

utilisons la factorisation de Cholesky de E:

Ek = LkL
T
k . (11.5.23)

Tout d’abord, soit sk un macro-bloc de la préstego. Il suit une

variable aléatoire (rv) gaussienne multivariée centrée (MVG) de N

éléments avec une covariance de rang complet Ek. Dénotons le i-ième

élément de sk comme sk,i. On a alors, pour tout i :

sk,i|sk,1, sk,2, ...sk,i−1 ∼ N
(

η̄k,i, ϵ̄
2
k,i

)

. (11.5.24)

En d’autres termes, chaque élément d’une gaussienne multivariée con-

ditionné par tous ses éléments précédents suit une distribution gaussi-

enne univariée de moyenne η̄k,i et de variance ϵ̄
2
k,i. Ensuite, soit wk un

vecteur de M v.a gaussiennes standard de moyenne nulle et de vari-

ance unitaire. Nous pouvons corréler le bruit blanc en le multipliant
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par la décomposition de Cholesky d’une matrice de covariance choisie

:

Lkwk ∼ N (0,Ek) . (11.5.25)

Les paramètres η̄ et ϵ̄ peuvent être calculés efficacement en utilisant

la décomposition de Cholesky et la réalisation de la préstegos:

ϵ̄k = diag(Lk), (11.5.26)

N η̄k = (Lkwk − diag(Lk)wk) . (11.5.27)

Si l’on applique Eq (11.5.26)-eq11.5.27) à chaque sk, on obtient un

vecteur s̄ de n éléments tel que :

s̄i ∼ N (η̄i, ϵ̄i) . (11.5.28)

Enfin, en utilisant la formule des probabilités composées sur chaque

β
(j)
i , et la quantification de la distribution gaussienne, les probabilités

d’insertion β
(j)
i sont obtenues par :

β
(j)
i = Φ

(

j − ri − η̄i + 0.5

ϵ̄i

)

−Φ

(

j − ri − η̄i − 0.5

ϵ̄i

)

, (11.5.29)

où ri = yi−[yi] représente l’erreur d’arrondi du i-ième coefficient DCT.

Résultats

Nous donnons-ici les résultats obtenus avec les algorithmes développés

durant cette thèse. La description des conditions expérimentales restera

très succinctes dans ce rapport, nous renvoyons à [30] pour plus de

détails.

Les performances de nos algorithmes sont mesurées par rapport

à l’état de l’art de la stéganographie JPEG – SI-UNIWARD [42].

Nous donnons une rapide description de chaque algorithme dans le

Tableau 11.2.

Pour évaluer les performances de ces algorithmes, nous utilisons la

base d’image BOSS [5], standard en stéganographie. La base d’image

a été développée avec deux chaine de développement (CD) différentes

– voir le tableau ci-dessous. La première CD est linéaire et correspond

aux hypothèse de notre modèle, tandis que la CD BOSS correspond à

la CD utilisée dans les benchmarks standard en stéganographie. Les

performances sont évaluées empiriquement en utilisant l’état de l’art

de la stéganalyse actuelle – Efficient-Net [76]. Efficient-Net-b3 est

entrainé sur 5000 images et testé sur les 2342 images restantes. Le score

utilisé est la probabilité d’erreur sous hypothèse de classes cover/stégo

équilibrées :

PE = min
PFA

PFA + PMD

2
(11.5.30)

où PFA est le taux de fausse alarme du détecteur sur la base de test,

PMD le taux de mauvaise détection.

Les résultats sont présentés dans les Figures 11.8-11.9.
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CD Dématriçage Balance des blancs Sous-échantillonage

Linéaire Bilinéaire Non Rognage, 264× 264

BOSS PPG Oui Redimensionnements 792× 792 à 264× 264

Name Meaning

GE Minimise la puissance du détecteur le plus puissant en supposant que

les coefficients DCT sont indépendants – voir le Chapitre 9.

MGE Intra Only Minimise la divergence KL en supposant que les macro-blocs DCT

8× 8 sont indépendants.

MGE Intra+Inter Minimise la divergence KL en supposant que les macro-blocs DCT

24× 24 sont indépendants.

Lat MGE Minimise la divergence KL sous les hypothèses du modèle par lattice

tel que présenté dans la Section 10.3.3.

SI-UNIWARD Schéma d’insertion employant l’information adjacente tel que décrit

dans [42].

Table 11.2: Nomenclature of the

embedding schemes
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Figure 11.8: PE en fonction de

la taille du message inséré sur la

base d’image BOSS développée

avec la CD BOSS et stéganalysée

avec EfficientNet-b3.

0.20 0.25 0.30 0.35 0.40

Payload (bpc)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

P
E

SI-UNIWARD

Σ-GE

Σ-MGE Intra only

Σ-MGE Inter+Intra

Σ-Lat MGE

Lat MGE noRAW

(a) QF100

0.05 0.10 0.15 0.20 0.25

Payload (bpc)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

P
E

SI-UNIWARD

Σ-GE

Σ-MGE Intra only

Σ-MGE Inter+Intra

Σ-Lat MGE

Lat MGE noRAW

(b) QF95

0.0125 0.0250 0.0500 0.1000 0.1500

Payload (bpc)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

P
E

SI-UNIWARD

Σ-GE

Σ-MGE Intra only

Σ-MGE Inter+Intra

Σ-Lat MGE

Lat MGE noRAW

(c) QF75

Figure 11.9: PE en fonc-
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inséré sur la base d’image BOSS

développée avec la CD linéaire et

stéganalysée avec EfficientNet-

b3.
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Les résultats des expériences sont présentés dans la Figure 11.1 pour

la CD Bosslike et dans la Figure 11.2 pour la CD linéaire. À partir

de QF100, quel que soit la CD de traitement, il existe un écart net

entre les performances de SI-UNIWARD et les différentes variantes de

MGE. Pour la CD linéaire, l’écart est, en moyenne, de 6%et9% en

termes de PE absolu pour Σ-MGE Intra seulement et Σ-MGE intra

+ inter respectivement. Cependant, il est de 22% en moyenne lors de

l’utilisation de Σ-Lat MGE montrant l’importance d’utiliser le modèle

le plus précis pour ce pipeline. La différence entre les différents modèles

est moins prononcée pour la CD Bosslike avec un gain moyen de 13.5%

en termes de PE absolu par rapport à SI-UNIWARD pour les schémas

MGE quel que soit le modèle de corrélation choisi. Cela est dû au

fait que l’opération de sous-échantillonnage supprime la plupart des

corrélations entre les blocs en raison de la suppression des pixels voisins

avant la transformée DCT.

À QF95, la différence entre les différents schémas devient moins

prononcée pour la CD linéaire. Cependant, il y a toujours un écart de

performance entre ces schémas et SI-UNIWARD. Par rapport à Σ-Lat

MGE, il y a un gain moyen de 10, 5% par rapport à SI-UNIWARD pour

la CD linéaire et de 4% pour la CD BOSS. À QF75, tous les schémas

ont à peu près les mêmes performances, quel que soit la CD. Cela est

probablement dû au fait qu’à un QF aussi bas, la plupart des variances

sont maintenant proches de 0. Ainsi, la plupart des performances de la

stéganographie sont probablement dues à l’information adjacente liée

aux erreurs d’arrondi.

Nous notons également que l’implémentation de Σ-Lat MGE qui

n’utilise pas le fichier RAW a une performance pratiquement identique

à l’implémentation originale, ce qui montre que les hypothèses sur

la CD que nous avons utilisées dans la section 7.4 sont tout à fait

pratiques dans un contexte de stéganographie.

Enfin, notez que lorsque vous utilisez Σ-GE, qui n’utilise aucune

corrélation entre les coefficients DCT, il y a toujours un petit gain

par rapport à SI-UNIWARD pour QF100 et QF95. Cependant, ses

performances sont toujours inférieures, même par rapport à Σ-MGE

intra seulement, ce qui montre l’importance de prendre en compte ces

corrélations.

Une chose intéressante à noter ici est l’impact du pipeline de traite-

ment sur la structure de corrélation nécessaire pour obtenir de bonnes

performances. Dans le cas de Bosslike, l’opération de sous-échantillonnage

a rendu la plupart des dépendances inter-blocs très petites par rap-

port aux dépendances intra-blocs – voir Figure 11.3. Par conséquent,

l’utilisation d’un modèle plus sophistiqué des dépendances n’apporte

aucun gain de performance. Par contre, dans le cas du pipeline linéaire

où toutes les dépendances sont préservées jusqu’à la fin du pipeline

puisqu’aucun sous-échantillonnage n’est effectué, il y a un gain assez

substantiel en utilisant le modèle le plus sophistiqué.
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Impact du facteur de qualité sur la matrice de covari-

ance

Comme nous venons de l’observer, plus nous utilisons des facteurs de

qualité faibles pour compresser nos images, plus le gain en sécurité

est faible lorsqu’on utilise des modèles tenant compte des dépendances

entre les coefficients DCT. Cette tendance est si forte qu’à QF75, pour

une CD donnée, tous les algorithmes testés ont exactement les mêmes

performances malgré des modèles très différents. Il est malgré tout

important de noter qu’en général, le stéganographe devrait éviter les

couvertures avec des facteurs de qualité faibles car une quantification

plus forte entrâıne une variance plus faible du coefficient DCT et par

conséquent, mutatis mutandi, une sécurité plus faible [9].

Pour expliquer ce phénomène, nous étudions l’impact de la quan-

tification de la matrice de covariance.

Pour illustrer notre analyse, nous fournissons dans la Figure 11.10

une série de matrices de covariance du même bloc d’image à mesure que

le facteur de qualité diminue. Notez que ces covariances sont obtenues

après l’arrondi des coefficients DCT. On peut observer que la plupart

des covariances deviennent négligeables dès que la quantification avec

QF95 est effectuée. De plus, la plupart des variances et des covari-

ances deviennent nulles car elles sont bien plus petites que le pas de

quantification après avoir été divisées par la matrice de quantification.

Figure 11.10: Matrice de co-

variance d’un bloc de coefficient

DCT arrondi de l’image 1200

dans BOSSBase avec le pipeline

linéaire pour différents facteurs

de qualité.
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English abstract Steganography is the discipline concerned with techniques designed to embed hidden data

into an innocuous cover media. In the case of this manuscript, the cover media of choice are JPEG images.

Steganography schemes based on a statistical model of natural images possess a clear advantage against

schemes based on heuristics. Indeed, they provide a direct link between theoretical detectability and em-

pirical performance. However, this advantage is dependent on the accuracy of the underlying cover and the

stego model. Until the work presented in this manuscript, the available models were not accurate enough

for statistical steganography schemes to attain competitive performances in the JPEG domain or to provide

security guarantees for natural images. In this manuscript, we propose two main contributions to solve this

problem. First, we derive a model of noise in the developed domain which takes into account the camera

sensor, ISO setting and the full processing pipeline. This leads to a multivariate Gaussian model of the noise

which models intra and inter-block dependencies in JPEG images. Secondly, we design a series of stegano-

graphic algorithms leveraging this noise model. They minimize or bound the power of the most powerful

detector to provide security guarantees when meeting the model assumptions. In particular, we show that

the optimal covariance of the stego signal is proportional to the covariance of the cover noise. Finally, these

algorithms are shown to attain state-of-the-art performance, greatly outperforming the standard algorithms

in side-informed JPEG steganography.

Keywords: Cryptography, Statistical hypothesis testing,Signal processing, Parameter estima-

tion.

-

Abstract français La stéganographie est la discipline traitant des techniques visant à dissimuler de l’information

dans un média de couverture jugé inoffensif. Dans le cadre de ce manuscrit, les médias de couvertures choisis

sont des images JPEG. Les schémas stéganographiques basés sur un modèle statistique d’images naturelles

présentent un avantage certain par rapport aux schémas basés sur des heuristiques. En effet, ils fournissent

un lien direct entre détectabilité théorique et performances empiriques. Cependant, cet avantage dépend

de la précision des modèles sous-jacents. Cette précision était insuffisante dans les travaux précédants ce

manuscrit. Nous proposons deux contributions principales pour résoudre ce problème. Premièrement, nous

dérivons un modèle de bruit prenant en compte le capteur, le réglage ISO et la châıne de traitement. Cela

conduit à un modèle gaussien multivarié du bruit modélisant les dépendances intra et inter-blocs dans les im-

ages JPEG. Ensuite, nous concevons une série de schémas stéganographiques exploitant ce modèle de bruit.

Ils minimisent ou bornent la puissance du détecteur le plus puissant pour fournir des garanties de sécurité

lorque les hypothèses du modèle sont respectées. En particulier, nous montrons que la covariance optimale

du signal stégo est proportionnelle à la covariance du bruit de l’image cover. Enfin, nous montrons que ces

algorithmes atteignent des performances à l’état de l’art, dépassant largement les algorithmes standard de

la stéganographie JPEG.

Mots clés : Cryptographie, Tests d’hypothèses (statistique), Traitement du signal, Estima-

tion de paramètres.
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