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Abstract

The Least squares is the traditional regression technique for pricing European
options in incomplete markets. However, the least squares is quite sensitive to
even a single outlier in the data, and thus the predicted option price may poten-
tially deviate from the true unknown one. To alleviate the problem of outliers,
this paper aims to develop two different option pricing prediction strategies based
mainly on the idea of robust linear regression. The proposed robust techniques are
evaluated on numerical data, the results of which demonstrate their effectiveness
for European call option pricing on exchange rates.
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Robust linear regression

1 Introduction

The exchange rate (Ehrmann and Fratzscher (2005)) can be defined as the price of
the foreign currency relative to the domestic one. It mainly affects the competitiveness
of any country’s goods and services and thus has a huge impact on its foreign trade,
as well as its citizens’ purchasing power. Since 1976, most of the top economies in
the world have adopted a floating exchange rate regime, by which it is determined by
supply and demand in the market. When the exchange rate increases (or decreases),
it implies an appreciation (or depreciation) of the foreign currency with respect to the
domestic one. For example, it has been observed that the euro has shown a depreciation
of about more than 18% against the US dollar since 2013 and especially just after
the start of the Russian-Ukraine war on February 24, 2022. In addition, the Lebanese
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pound had a dramatic depreciation against the United States dollar mainly due to
several political factors especially after the COVID-19 pandemic and the Beirut port
non-nuclear explosion on August 04, 2020.

Dealing with such huge fluctuations of the exchange rate can be alleviated by buy-
ing call European options (Orlin Grabbe (1983)). The latter is a contract that gives
a domestic party the right, but not the obligation, to buy a defined amount of a
particular foreign currency only at maturity and at a price (called strike) specified
at the initial date of the contract. At maturity, there is no need for any mathe-
matical formulation to price a call option since its value would simply be equal to
(Exchange rate at maturity − Strike)+ and this is well known as PAYOFF. How-
ever, how to price options at any time before maturity? The birth of mathematical
finance has essentially marked with the Ph.D. thesis of Louis Bachelier in 1900 (Bache-
lier (1900)) in which he developed an option pricing closed-form formula under the
hypothesis that the asset prices increments are independent and follow an arithmetic
Brownian motion, which can allow negative prices. The Bachelier option pricing model
has been forgotten as a part of history until it gained attention again especially in the
twenty-first century due to several serious economic crises (e.g., the negative interest
rates are observed in some developed countries after the 2008 global financial crisis,
the COVID-19 pandemic which led to lockdown worldwide, and an extremely sharp
drop in the global demand for oil).

Since then, several notable contributions for pricing options, under the difficulty of
estimating certain non-observable parameters, have been developed (Sprenkle (1961),
Rosett (1963), Ayres (1967), Boness (1964), Samuelson (2015), Samuelson and Merton
(1969), Merton (1973)). However, one of the biggest influence finance had on oper-
ation markets started when Myron Scholes met Fisher Black in the fall of 1968 and
began working together to discover one of the most influential mathematical mod-
els that accurately prices options1 (Black and Scholes (1973)). More precisely, they
have developed a parametric non-arbitrage option pricing model with a closed-form
formula that accurately prices options under the assumption that the market is com-
plete. However, this model assumes a very specific dynamics of the exchange rates and
is thus not robust.

To move from parametric to robust European option pricing, the one-period
discrete-time binomial non-arbitrage pricing model was developed (Cox et al (1979)).
Basically, it assumes that the exchange rate at maturity (denoted as X1) can only
increase or decrease with respect to its value at the initial date (denoted as X0). After
creating a self-financing hedging portfolio and equating it with the price of the call
option at maturity, this yields a linear system of two equations with two unknowns
that correspond to the (unknown) delta hedging portfolio coefficients, which can sim-
ply be calculated with a closed-form formula. However, the binomial model does not
reflect the real market, since it considers only two possible directions of the exchange
rate (that is, it either goes up or down).

For a more realistic option pricing model in the market, it would be more important
to further consider the possibility that the exchange rate, X1, may remain the same

1See the online conversation (Scholes (2018)) with Myron Scholes, who briefly explained his work with
Fisher Black.
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with respect toX0. More precisely,X1 is assumed to behave in three possible directions
with respect to X0: increases (with a factor eu, u > 0), remains the same or decreases
(with a factor ed, d < 0). This is well known as the one-period trinomial option
pricing model (Boyle (1986); Zhu et al (2022); Johan (2016)), and by which equating
the self-financing hedging portfolio to the call option price at maturity results in an
overdetermined linear system of three equations with two unknowns, which again
correspond to the delta hedging coefficients that need to be estimated very efficiently.
As the solution of the constructed linear system can not be guaranteed in general
(e.g. more equations than unknowns), the trinomial option pricing model is said to be
incomplete, that is, there exist an infinite number of equivalent martingale measures.

Pricing European call options under this incompleteness can be achieved in differ-
ent scenarios, including adding a second risky asset to the trinomial market model and
which can help to replicate the option perfectly (Pascucci and Runggaldier (2012)) or
finding a hedging strategy that is close to being perfect. The latter scenario means
finding an approximation to the hedging portfolio and can be done simply using the
least squares machine learning technique (Takahashi (2000); Johan (2016)). The lat-
ter is derived with the idea of minimizing the sum of the squared “errors”, that is, to
adjust the unknown delta hedging coefficients such that the sum of the squares of the
differences between the original and the predicted PAYOFF values is minimized. As
a result, the least squares estimates is the regression equivalent to the sample mean,
which is well known to be very sensitive to the influential observations (outliers)2,
and therefore often fail to provide good fits to most of the data. In addition, the
least squares is derived under the Gaussian assumption, and this ensures its lack of
robustness against the outliers.

In this paper, we only focus on the second scenario for pricing European options in
incomplete markets, that is, by building a self-financing hedging portfolio which does
not perfectly replicate the option price. As the least squares technique fails with the
presence of outliers, we alleviate this challenge via robust linear regression techniques
Bitar (2024). More precisely, we first aim to detect the nature of the outliers which help
us to manually remove them from the data and then simply apply the least squares on
the remaining observations (that is, after the outliers have been removed) to estimate
the (unknown) delta hedging portfolio coefficients. However, an alternative option
pricing strategy would be to take advantage of some linear regression M -estimators
capable of automatically identifying outliers during the estimation of the delta hedging
portfolio coefficients.

It should also be noted that the two different possible positive factors eu and ed by
which the exchange rate X1 increases or decreases with respect to X0, respectively, are
usually not known in the real market, and thus a single specific value for both param-
eters u and d can be chosen manually to price the corresponding option. As a result,
only three possible observations were always used to construct the linear regression
model, and thus using a very little number of observations (for example, three) might
not be sufficient to accurately predict the option price under any regression model. To
ensure reliable prediction results, generating enough observations may alleviate this

2By an influential observation we mean the observations (outliers) that deviate from the general pattern
of the data.
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challenge. However, it is not surprising that the price of the option greatly depends
on the selection of both u and d. Hence, instead of selecting a single specific value for
each of these two parameters, our aim is to price options under a set of n possible
values for both u and d, with n ≥ 1. This will help us generate 2n + 1 observations
to build the linear regression model and can lead to an accurate estimation of the
delta hedging coefficients especially with such a robust linear regression M -estimator.
In addition, pricing the call option will be much less sensitive to such a single specific
selection of the two parameters u and d.

This paper is structured in the following manner. In Section 2.1 a brief presentation
is provided on how the standard trinomial option pricing model on exchange rates can
be applied and how the delta hedging portfolio coefficients are estimated using the
least squares technique. A numerical example is also presented to evaluate the least
squares in the presence of outliers. The two proposed robust option pricing prediction
strategies are presented in Section 3. Section 4 presents the experiments to gauge the
effectiveness of the proposed prediction strategies for the pricing of the European call
option on exchange rates. The paper ends with a summary of the work and some
directions for future work.

Summary of main notations

Throughout this paper, we represent vectors in lowercase boldface letters and matri-

ces in uppercase boldface letters. The notation (.)
T
, (.)+, |.|, and (̂.) stand for the

transpose, positive part, absolute value, and estimated/predicted value, respectively.
A variety of vector norms will be used. For example, δ is a vector, and δj is the j

th ele-

ment. The vector l2 and l1- norms are defined by ∥δ∥2 =
√∑

j δ
2
j and ∥δ∥1 =

∑
j |δj |,

respectively.

2 The trinomial option pricing model on exchange
rates

In this section, we first overview in Subsection 2.1 the one-period standard trinomial
behavior of the exchange rate X1 with respect to X0, as well as the corresponding
arbitrage-free condition. Second, in Subsection 2.2, we present the self-financing repli-
cating portfolio strategy that can be considered for the prediction of the price of the
European call option on exchange rates. Third, in Subsection 2.3 we briefly describe
how the option price can be predicted via the least squares machine learning tech-
nique. Finally, in Subsection 2.4, we demonstrate by a simple numerical example the
difficulty of accurately predicting the price of the European call option on exchange
rates.
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2.1 The one-period standard trinomial model

The one-period trinomial pricing model assumes that the exchange rate X1 is
characterized by three jump behavior as follows:

X1 =


X0e

u with probability pu > 0

X0 with probability p0 = 1− pu − pd > 0 ,

X0e
d with probability pd > 0

where u > 0, d < 0, pu, pd ∈ (0, 1), and pu + pd < 1.
Assume a domestic cash capitalization process B1 = B0e

rd , where B0 > 0 and
rd > 0 is a domestic risk-free interest rate. To prove that pu > 0 and pd > 0, the
condition:

eu − erd

eu − 1
> p0 > 0 , (1)

should be satisfied (for more details, see theorem 2.1.2 in Johan (2016)). As pu + p0 +
pd = 1, one can directly conclude that pu + pd < 1. Hence, the couple (pu, pd) defines
a probability if and only if the condition (1) is satisfied, and thus u > rd.

2.2 The self-financing hedging portfolio

The replicating portfolio can be defined as follows3:

At initial date :

V0 = δ1X0 + δ2B0 ,

At maturity :

V1 = δ1e
rfX1 + δ2B1

=


δ1e

rf (X0e
u) + δ2 (B0e

rd) = (X0e
u −K)+ = h1

δ1e
rf (X0) + δ2 (B0e

rd) = (X0 −K)+ = h2 ,

δ1e
rf
(
X0e

d
)
+ δ2 (B0e

rd) =
(
X0e

d −K
)
+
= h3

where δ1 is the number of units of the foreign currency bought at initial date, δ2
is the number of units of risk-free investment in the domestic currency, rf > 0 is a
foreign risk-free interest rate, K > 0 is the strike price, h1, h2, and h3, represent the
PAYOFF value when the exchange rate X1 increases, remains the same, or decreases
with respect to X0, respectively. As we can observe, the portfolio at maturity yields
an over-determined linear system of three equations with two unknowns (δ1 and δ2).
Based on both the values of X0 and K, one can assume the following three possible

3For more details, see the class notes in https://web.ma.utexas.edu/users/mcudina/m339w-jan-27-
2020.pdf.
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different scenarios for the PAYOFF values h1, h2, and h3:

if X0 ≤ K < X0e
u :

h1 > 0, h2 = 0, h3 = 0 .

if X0e
d < K < X0 :

h1 > 0, h2 > 0, h3 = 0 .

if K ≤ X0e
d :

h1 > 0, h2 > 0, h3 > 0 .

Figure 1 shows three plots of the three observations h1, h2, and h3 when X0 = 1.43,
u = 0.1, and d = −u. It is important to note that when X0e

d < K < X0, the
observation h2 will be strictly positive and will approach the line that joins the two
observations h1 and h3 until they coincide all together once K becomes lower than or
equal to X0e

d (that is, K ≤ X0e
d). In the latter situation, the least squares technique

will obviously work very well to estimate the (unknown) delta hedging coefficient
vector δ.

2.3 delta hedging via the least squares

We denote the corresponding vector of dependent variables by
h = [h1, h2, h3]

T ∈ R3
+. In general, the vector h does not span the column space of

the matrix of independent variables A =

−− aT1 −−
−− aT2 −−
−− aT3 −−

 =

erfX0e
u B0e

rd

erfX0 B0e
rd

erfX0e
d B0e

rd

 ∈ R3×2
+ ,

and hence, a solution for δ = [δ1, δ2]
T ∈ R2 does not exist if one forces h to be

exactly equal to Aδ, that is, h = Aδ. As a result, the trinomial model is said to
be incomplete, that is, a fair price of European options cannot be uniquely defined.
Hence, the standard European option may not be replicable by investing only in
the underlying exchange rate and the risk-free bond. However, since it is generally
impossible to solve the linear system h = Aδ, it is possible to project h into the
column space of A. Taking the assumption that h ∼ N

(
Aδ, σ2I3

)
with σ > 0 and

I3 is an identity matrix of size 3 × 3, the regression coefficient vector δ ∈ R2 can be
simply estimated by maximizing the log-likelihood under the Gaussian distribution
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Fig. 1: Example of the three PAYOFF scenarios when X0 = 1.43, u = 0.1, and
d = −u.

assumption. More precisely, we have:

δ̂ = argmax
δ

{
−6

2
log (2π)− 3

2
log
(
σ2
)
− 1

2σ2

3∑
i=1

(
hi − aTi δ

)2}

≡ argmin
δ

{
3∑

i=1

(
hi − aTi δ

)2}
= argmin

δ

{
∥h−Aδ∥22

}
.

(2)

It is well known that the domain R2 is closed and convex. In addition, the objective
function to minimize in (2), ∥h−Aδ∥22, is inf-compact (since it is coercive and lower

semi-continuous) and strictly convex. As a result, the estimation of δ, that is, δ̂, exists
and is unique with an analytical formula defined as:

δ̂ =
(
ATA

)−1
ATh =

[̂
δ1
δ2

]
∈ R2 .
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2

∥h∥2
, the predicted option

price V̂0.

2.4 European option pricing via the least squares

Once the delta hedging coefficient vector δ is estimated via the least squares technique
(see subsection 2.3), the true (known) option price at maturity (that is, the PAYOFF
vector h) can thus be predicted as:

ĥ = Aδ̂ .

Based on the optimization (minimization) problem in (2), we can obviously observe
that the least squares is derived with the idea of minimizing the sum of the squared
“errors”, that is, to adjust the unknown delta hedging coefficients so that the sum of
the squares of the differences between the original and predicted PAYOFF values is
minimized. As a result, the least squares estimate is the regression equivalent to the
sample mean, which is well known to be very sensitive to outliers.

As the option price should always be positive, it would be more realistic to consider
the rectified linear unit version of ĥ. That is:

ĥ =
(
ĥ
)
+
.

Once δ is estimated, the true (unknown) option price at initial date (that is, V0) can
be predicted as:

V̂0 = δ̂1 X0 + δ̂2 B0 . (3)

Does the least squares have efficiency in predicting the option price?

We study, using a simple numerical example, the performance of the least squares in
predicting the option price at maturity (that is, PAYOFF) as well as at the initial
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date (that is, V0) for different values of K ∈ ]X0e
d, X0e

u[.
Fix X0 = 1.43, u = 0.1, and d = −u. The value for X1 under the trinomial model will
behave as follows:

X1 =


X0e

u ≈ 1.58 with probability pu > 0

X0 = 1.43 with probability p0 > 0 .

X0e
d ≈ 1.29 with probability pd > 0

We consider rf = 9%, rd = 8%, and B0 = 1. We aim to compare between four different
option pricing prediction models:

1. Least squares on (h1, h2, h3): the least squares is applied on the whole three
observations h1, h2, and h3;

2. Least squares on (h1, h2): we assume that the observation h3 badly affects the
performance of the least squares on predicting the true PAYOFF vector h. Thus,
we propose to manually delete the observation h3, and then apply the least squares
on the remaining part of data (that is, h1 and h2);

3. Least squares on (h1, h3): We assume that the observation h2 badly affects the
performance of the least squares on predicting the true PAYOFF vector h. Thus,
we propose to manually delete the observation h2, and then apply the least squares
on the remaining part of data (that is, h1 and h3);

4. L1-estimator: the l2-norm in the least squares objective function in (2) is replaced
by the l1-norm. More precisely, the vector δ is estimated as follows:

δ̂ = argmin
δ

{
3∑

i=1

∣∣hi − aTi δ
∣∣} = argmin

δ
{∥h−Aδ∥1} . (4)

Unlike the least squares, there is no explicit expression for the minimizer of (4)
since the l1-norm is not differentiable at zero. However, recursive algorithms can
solve it (e.g., Matlab software for disciplined convex programming, CVX Matlab).

Figure 2 evaluates the four aforementioned option pricing prediction methods in terms

of the PAYOFF prediction error
∥h−ĥ∥

2

∥h∥2
and the predicted option price at the initial

date V̂0 for different values of K ∈ ]1.29, 1.58[ in steps of 10−2. We can observe that
the “Least squares on (h1, h2)” achieves the lowest PAYOFF prediction error for all
values of K, and thus, we expect that its estimated delta hedging coefficient vector δ
yields a precise prediction of the option price at the initial date.

Figure 3 shows the difference between h and ĥ when
K = 1.43 (X0 ≤ K < X0e

u), K = 1.35
(
X0e

d < K < X0

)
and

K = 1.25
(
K ≤ X0e

d
)
, respectively. We can obviously observe that when K ≤ X0e

d,
the three observations h1, h2, and h3 will always be located on the same line, and
so the “least squares on (h1, h2, h3)” will behave perfectly (that is, the predicted
PAYOFF observations coincide with the true ones). However, when X0 ≤ K < X0e

u

and X0e
d < K < X0, it is the model “Least squares on (h1, h2)” that has the lowest

PAYOFF prediction error and its predicted PAYOFF observations coincide with the
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Fig. 3: The difference between h and ĥ when X0 ≤ K < X0e
u, X0e

d < K < X0, and
K ≤ X0e

d.

true ones. We can then consider that applying the least squares after removing the
observation h3 can potentially decrease the prediction error compared to the case if
the least squares is applied on all three observations. If we further assume that the
bulk of the data is only formed by h1 and h2, the regression line for the model “Least
squares on (h1, h2, h3)” seems to be skewed towards the observation h3, and thus the
least squares when applied on the whole three observations has considered h3 as an
outlier.

In addition, it is well known that the optimization (minimization) problem in (4)
is obtained after maximizing the log-likelihood under the Laplace distribution, which
is considered a heavy-tailed distribution (that is, having a density function with tails
that tend more slowly to zero compared to the normal density tails). As the total
number of observations (for example, three) is odd, the derivative of the objective
function in (4) with respect to aTi δ exists and is everywhere except for the observations

h1, h2, h3, and it is equal to −
∑3

i=1 sign
(
hi − aTi δ

)
which can never be equal to zero.

Thus, the minimizer must occur at one of the points h1, h2, h3 where the objective
function in (4) is not differentiable. However, it is a continuous function and decreases
when aTi δ < h 3+1

2
and increases when aTi δ > h 3+1

2
. Hence, the minimizer is given

by aTi δ̂ = h 3+1
2
. As a result, replacing the l2-norm in the objective function in (2)

10



by the l1-norm is the regression equivalent to the sample median. The latter is well
known to be robust to outliers, but this is paid for by an increase in variance (“a loss
in efficiency”) in the exact Gaussian distribution. However, when applying the model
“L1-estimator”, we can observe from Figure 3 that its regression line is equivalent to
the one of the model “Least squares on (h1, h3)”. Hence, it seems that model “L1-
estimator” has considered that the general pattern of the data is only formed by the
observations h1 and h3, whereas h2 is the observation that deviates from it (that is, it
is considered as an outlier). As a result, both the models “Least squares on (h1, h3)”
and “L1-estimator” obtained the largest PAYOFF prediction error, as can be seen in
Figure 2.

3 Main contribution

In this section, we first present in subsection 3.1 a methodology that allows us to
construct an option pricing model that considers n ≥ 1 possible values for each of
the parameters u > 0 and d < 0, and hence allows us to construct a linear regression
model with 2n + 1 observations. Recall that our main purpose for pricing options
under a large set of values for u and d is that we want to dramatically decrease the
sensitivity of the option price on any such a single specific selection of the parameters
as has been detailed in the standard trinomial option pricing model (see Subsection
2.1). In addition, we evaluate the least squares in a regression with 2n + 1, n ≥ 1,
observations to detect the nature of the influential observations (that is, the outliers).
Once these outliers are identified, one can simply delete them and then re-apply the
least squares on the remaining part of the data. Finally, instead of manually deleting
the observations that are identified as outliers and then applying the least squares on
the remaining part of the data, in Subsection 3.2 we aim to exploit the idea behind the
robust M -estimators for linear regression analysis (Maronna (2019); Huber (1964)).
This will allow for an accurate estimate of the (unknown) delta hedging coefficient
vector δ with an automatic deletion of the identified outliers.

3.1 Increasing the number of observations from 3 to 2n + 1,
n ≥ 1

In order to predict the option price at initial date, that is, V0, independently from
any such a single specific selection value for both u > 0 and d < 0, we propose to
replace u and d by a set of n ≥ 1 possible values {ul}l∈[1, n] with u1 > u2 > un > rd,

and {dl}l∈[1, n] with dn < dn−1 < · · · < d1 < 0, respectively, with n ∈ N. As a result,
one has to expect 2n+1 different values for X1, and thus, the possibility to construct
an over-determined linear system of 2n + 1 equations with only 2 unknowns. More
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precisely, we have:

X1 =



X0e
u1 with probability pu1

> 0
...

X0e
un with probability pun

> 0

X0 with probability p0 > 0 ,

X0e
d1 with probability pd1

> 0
...

X0e
dn with probability pdn

> 0

with

p0 = 1− pu1
− · · · − pun

− pd1
− · · · − pdn

> 0 .

V1 =



δ1e
rf (X0e

u1) + δ2 B0e
rd = (X0e

u1 −K)+ = h1

δ1e
rf (X0e

u2) + δ2 B0e
rd = (X0e

u2 −K)+ = h2

...

δ1e
rf (X0e

un) + δ2 B0e
rd = hn = (X0e

un −K)+ = hn

δ1e
rfX0 + δ2 B0e

rd = (X0 −K)+ = hn+1 .

δ1e
rf
(
X0e

d1
)
+ δ2 B0e

rd =
(
X0e

d1 −K
)
+
= hn+2

δ1e
rf
(
X0e

d2
)
+ δ2 B0e

rd =
(
X0e

d2 −K
)
+
= hn+3

...

δ1e
rf
(
X0e

dn
)
+ δ2 B0e

rd =
(
X0e

dn −K
)
+
= h2n+1

We can observe that when n = 1, that is, a single choice for u > rd > 0 and d < 0,
we return back to the standard (one-period) trinomial option pricing model already
described in subsection 2.1. Based on both the values of X0 and K, one can expect the
following two possible different scenarios for the PAYOFF values h1, h2, · · · , h2n+1:

12



if X0e
dn < K < X0e

u1 :

h1 > 0, h2 ≥ 0, · · · , hn ≥ 0, hn+1 ≥ 0, hn+2 ≥ 0, · · · ,
h2n ≥ 0, h2n+1 = 0 .

if K ≤ X0e
dn :

h1 > 0, h2 ≥ 0, · · · , hn ≥ 0, hn+1 ≥ 0, hn+2 ≥ 0, · · · ,
h2n ≥ 0, h2n+1 = 0 .

Figure 4 shows three different examples of these two different possible scenarios for
the PAYOFF values when X0 = 1.43, n = 5, and K ∈ {0.50, 1.43, 3.1}. We assume
ϵ = 10−6, rd = 8% and a set of equally spaced 5 possible values {ul}l∈[1, 5], with
u1 > · · · > u5 > rd. We choose u5 = rd + ϵ, and u1 = 1. We also fix d5 = −u1,
d4 = −u2, d3 = −u3, d2 = −u4, and d1 = −u5. The value for X1 will then behave as
follows:

X1 =



X0e
u1 = 3.8871 with probability pu1

> 0

X0e
u2 = 3.0884 with probability pu2

> 0

X0e
u3 = 2.4538 with probability pu3

> 0

X0e
u4 = 1.9496 with probability pu4

> 0

X0e
u5 = 1.5491 with probability pu5

> 0

X0 = 1.43 with probability p0 > 0 .

X0e
d1 = 1.3200 with probability pd1 > 0

X0e
d2 = 1.0488 with probability pd2 > 0

X0e
d3 = 0.8333 with probability pd3 > 0

X0e
d4 = 0.6621 with probability pd4 > 0

X0e
d5 = 0.5260 with probability pd5

> 0

We can observe from Figure 4 that as K decreases in value, less are the PAYOFF
observations that are zeros, and hence, the whole observations h1, h2, · · · , h11 will
locate on the same line once K becomes less than or equal to X0e

d5 (that is, K ≤
X0e

d5).

What happens to the least squares with 2n+1, n ≥ 1, observations?

Using the same settings as in the example just above (that is, when n = 5 =⇒
11 observations in total), we aim to compare between three options pricing prediction
models:
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Fig. 4: Example of the three PAYOFF scenarios when X0 = 1.43 and n = 5. From
left to right: K = 3.1, K = 1.32, K = 0.50.

1. Least squares on (h1, · · · , h11): we directly apply the least squares on the whole
11 observations;

2. Least squares on (hj , ∀j ∈ {1, 2, · · · , 11} |hj ̸= 0, ): we assume that all the
observations which are equal to zero correspond to the influential observations (out-
liers), and thus, the least squares is only applied on the remaining part of the data
(that is, on the observations hj ̸= 0). Note that when only one observation is not
equal to zero (see Figure 4 when K = 3.1), that is, h1 > 0 and hj = 0∀ j ∈ [2, 11],
the least squares will then only be applied to the two observations h1 and h2.

3. L1-estimator: it is the same model that we have already described in Subsection
2.4. More precisely, the l2-norm in the least squares objective function in (2) is
replaced by the l1-norm.

Figure 5 evaluates the three aforementioned option pricing prediction models in terms

of the PAYOFF prediction error
∥h−ĥ∥

2

∥h∥2
and the predicted option price at initial date

V̂0 for different values of K ∈ ]0.5260, 3.8871[ in steps of 10−2.
We can observe that the “Least squares on (hj , ∀j ∈ {1, 2, · · · , 11} |hj ̸= 0)”
achieves the lowest PAYOFF prediction error for all values of K, and
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Fig. 5: From left to right:PAYOFF prediction error
∥h−ĥ∥

2

∥h∥2
, the predicted option

price V̂0.

thus, its estimated delta hedging coefficient vector δ should achieve a pre-
cise prediction of the option price at initial date. We can also observe
that when K ∈ ]0.5260, 1.0560[, the PAYOFF prediction error as well as
V̂0 for the “L1-estimator” coincides with those of the “Least squares on
(hj , ∀j ∈ {1, 2, · · · , 11} |hj ̸= 0)”. Figure 6 shows the difference between h and ĥ
when K = 3.1

(
X0e

d5 < K < X0e
u1
)
, K = 1.43

(
X0e

d5 < K < X0e
u1
)
, and K =

0.50
(
K ≤ X0e

d5
)
, respectively. We can obviously observe that when K ≤ X0e

d5 , the
whole 11 observations h1, h2, · · · , h11, will always be located on the same line and so
the “Least squares on (h1, · · · , h11)” will behave perfectly (that is, the predicted PAY-
OFF observations coincide with the true ones). However, when X0e

d5 < K < X0e
u1 ,

it is the model “Least squares on (hj , ∀j ∈ {1, 2, · · · , 11} |hj ̸= 0)” that has the low-
est PAYOFF prediction error, and its predicted PAYOFF observations coincide with
the true ones.

3.2 delta hedging via robust linear regression M -estimators

Instead of manually removing the influential observations (outliers) from the data and
then apply the least squares on the remaining part of the data, it seems that there
exists other strategies that can automatically remove those outliers while estimat-
ing the (unknown) delta hedging coefficient vector δ. Recall that the least squares is
derived under the Gaussian assumption which does not take into consideration the
outliers. In order not to consider any specific kind of distribution (ex. the Gaussian
assumption), we are going to assume that the hi’s, i ∈ [1, 2n + 1], n ≥ 1, are inde-

pendent and not identically distributed with any density of the form 1
σf0

(
hi−aT

i δ
σ

)
.

The likelihood under this density function can be written as (Maronna (2019); Huber

15
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Fig. 6: The difference between h and ĥ when X0e
dn < K < X0e

u1 and K ≤ X0e
d

when n = 5.

(1964)):

L (h1, · · · , h2n+1; δ, σ) =

2n+1∏
i=1

1

σ
f0

(
hi − aTi δ

σ

)
.

Maximizing the log-likelihood with respect to (δ, σ) is thus equivalent to the following
(minimization) optimization problem:

max
δ,σ

{
− (2n+ 1) log (σ) +

2n+1∑
i=1

log

(
f0

(
hi − aTi δ

σ

))}

≡ min
δ,σ

{
(2n+ 1) log (σ) +

2n+1∑
i=1

ρ

(
hi − aTi δ

σ

)}
,

(5)

where −log
(
f0

(
hi−aT

i δ
σ

))
= ρ

(
hi−aT

i δ
σ

)
for any non-constant function ρ (.).

One can clearly observe that the least squares and the L1-estimator are a special case

when ρ
(

hi−aT
i δ

σ

)
=
(

hi−aT
i δ

σ

)2
and ρ

(
hi−aT

i δ
σ

)
=
∣∣∣hi−aT

i δ
σ

∣∣∣, respectively. By taking
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the derivative of the objective function in (5) with respect to δ and σ and set it to
zero, one obtains (Maronna (2019)):

2n+1∑
i=1

ρ′

(
hi − aTi δ̂

σ̂

)
ai = 0

and
1

(2n+ 1)

2n+1∑
i=1

(
hi − aTi δ̂

σ̂

)
ρ′

(
hi − aTi δ̂

σ̂

)
= 1 ,

respectively.
Note that the function ρ (.) must be chosen to respect the following conditions

(Maronna (2019)):

• ρ (x) should be a non-decreasing function of |x| ;
• ρ (0) = 0 ;
• ρ (x) is increasing for x > 0 such that ρ (x) < ρ (∞) ;
• if ρ is bounded, it is also assumed that ρ (∞) = 1 .

Choices for the function ρ(.)

To estimate the delta hedging coefficient vector δ, we can assume three types of ρ(.)-
functions to estimate δ, and thus the prediction of the PAYOFF as well as the true
(unknown) price of the option at the initial date V0. More precisely, the following
ρ(.)-functions are considered:

1. The Huber -ρ (.) function: For the first impression, one can directly think to propose
an estimator that combines the robustness of the median (under the non-Gaussian
assumption) and the low-variance of the mean (under exact normality). Hence, for
a fair compromise between the mean and median, the function ρ (.) can be chosen
to belong to the family of Huber functions. More precisely, the function ρ(.) can be
as follows:

ρ

(
hi − aTi δ

σ

)
=


(

hi−aT
i δ

σ

)2
if
∣∣∣hi−aT

i δ
σ

∣∣∣ ≤ λ

2λ
∣∣∣hi−aT

i δ
σ

∣∣∣− λ2 if
∣∣∣hi−aT

i δ
σ

∣∣∣ > λ
.

Figure 7a and 7b exhibit both the ρ (.)- and ρ′ (.)- functions under this family

of Huber functions, respectively. Note that the solution aTi δ̂ is closely related to
Winsorizing.

2. The Bisquare-ρ (.) function: From figure 7a, we can observe that the function ρ (.)
aims to tend to infinity at infinity, whereas its derivative (figure 7b), that is, the
function ρ′ (.), is continuous but always shifted by ±λ = 1.345. These findings
demonstrate that both the gross as well as the moderately large outliers are going
to be treated in the same manner. In this regard, thinking about using a function
ρ′ (.) that re-descend smoothly to zero at infinity (see figure 7d) may be quite
helpful since in this case the gross outliers will be completely rejected and the
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Fig. 7: (a) and (b) the Huber ρ- and Ψ = ρ′- functions (with λ = 1.345), respectively;
(c) and (d) the Bisquare ρ- and Ψ = ρ′- functions (with λ = 4.685), respectively.

moderately large outliers will be completely ignored. That is why, one can consider
the following ρ(.)-function:

ρ

(
hi − aTi δ

σ

)
=

1−
(
1−

(
hi−aT

i δ
σλ

)2)3

if
∣∣∣hi−aT

i δ
σ

∣∣∣ ≤ λ

1 if
∣∣∣hi−aT

i δ
σ

∣∣∣ > λ

.

3. The Talwar -ρ (.) function: In addition to the sample median and winsorized mean,
one can think of discarding a proportion of the largest and smallest values. This
is well-known as the trimming procedure (Huber (1964)) and which can be much
more robust to outliers than the sample mean and sample median. Hence, one can

18



consider the following ρ(.)-function:

ρ

(
hi − aTi δ

σ

)
=

 1
2

(
hi−aT

i δ
σ

)2
if
∣∣∣hi−aT

i δ
σ

∣∣∣ ≤ λ

1
2λ

2 if
∣∣∣hi−aT

i δ
σ

∣∣∣ > λ
.

4 Experiments

In this section, our main objective is to compare six different option pricing prediction
models on exchange rates.

1. Least squares on (h1, · · · , h2n+1): we directly apply the least squares on the whole
2n+ 1 observations;

2. Least squares on (hj , ∀j ∈ {1, 2, · · · , 2n+ 1} |hj ̸= 0): the least squares is applied
on the observations that are not equal to zero. When only one observation is dif-
ferent than zero (that is, h1 > 0), the least squares will then only be applied on
the two observations h1 and h2;

3. L1-estimator;
4. Huber ;
5. Bisquare;
6. Talwar .

All our evaluations are performed on two different scenarios for n:

• n = 1 (the standard one-period trinomial option pricing (see Subsection 2.1)): a
single value for u > 0 and d < 0 are specified to price the option. In our experiments,
the value for d is always fixed to be equal to −u;

• n > 1 (our proposed extension of the one-period trinomial option pricing model (see
subsection 3.1)): a large set of n values for both u and d are considered at once.
More precisely, the set {ul}l∈[1, n] and {dl}l∈[1, n], with u1 > u2 > · · · > un > rd
and dn < dn−1 < · · · < d1 < 0 are specified to price the European option. In our
experiments, we consider dn = −u1, dn−1 = −u2, · · · , d1 = −un.

In all experiments, we fix rd = 8%, rf = 9%, B0 = 1, and we assume that the exchange
rate at the initial date is X0 = 1.43. A call on the exchange rate is available with a
strike price K = X0, which expires at maturity.

Note that we use the robustfit package in MATLAB to simultaneously estimate
both δ and σ for the Huber, Bisquare and Talwar robust linear regression techniques.
This package uses iteratively reweighted least squares to compute the delta hedging
coefficients.

To choose the best parameter value of λ for every robust regression estimator (e.g.
Huber, Bisquare, and Talwar), we decide to vary λ between 1 and 5 by step of 10−4.

The parameter value λ that minimizes the criterion
∥h−ĥ∥

2

∥h∥2
will be selected as the

optimal value. All of our experiments are conducted on MATLAB 2021a 4.

4The MATLAB code of the proposed work is available upon request.
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Fig. 8: Evaluations when n = 1: (a) the prediction error
∥h−ĥ∥

2

∥h∥2
, (b) the predicted

European call option pricing at initial date (V̂0), (c) the predicted option price for
“Least squares on (hj , ∀j ∈ {1, 2, · · · , 2n+ 1} |hj ̸= 0)”, (d) the optimal values of λ
for {Huber, Bisquare, andTalwar}-prediction models.

4.1 European option pricing on exchange rates

Let ϵ = 10−6.

4.1.1 When n = 1

We choose to evaluate the aforementioned six option pricing prediction models on a
set of 500 single evenly spaced values for u between rd + ϵ and 1. Figure 8 shows, as
a function of u, the error results in the prediction of h, the prediction results of V0,
as well as the different optimal values of λ for the {Huber, Bisquare, and Talwar}-
prediction models. As we can observe from figures 8a and 8b, only the “Least squares
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on (hj , ∀j ∈ {1, 2, 3} |hj ̸= 0)” (that is, when applying the least squares after the
manual removal of the outliers) achieves the lowest prediction error for all the values
of u and presents a stable V̂0 always varying around 0.1099 (see figure 8c). However,
the other prediction models behave poorly for all the different values of u.

4.1.2 When n > 1

For any un ≥ r + ϵ, the six option pricing prediction models are evaluated on a large
set of {ul}l∈[1, n] and {dl}l∈[1, n], both containing n > 1 evenly spaced values. Figure 9

shows, as a function of n ∈ {2, · · · , 30} in steps of 1, and for u1 = 1, the error results
in the prediction of h, the prediction results of V0, as well as the different obtained
optimal values of λ for the {Huber, Bisquare, and Talwar}-prediction models. From
figures 9a and 9b, it is important to note that when n ∈ [3, 11], the PAYOFF prediction
error and the European call option price for the Bisquare is about 1.5877× 10−15 and
0.1099, respectively, and both coincide in values with that of the “Least squares on
(hj , ∀j ∈ {1, 2, · · · , 2n+ 1} |hj ̸= 0)”.

The Talwar achieves a low PAYOFF prediction error when n ∈ [3, 10]. More
precisely, for every value of n ∈ {3, 4, 5, 6, 7, 8, 9, 10}, it achieves respectively a
PAYOFF prediction error of about (0.0195, 0.0174, 0.0157, 0.0143, 0.0131, 4.7532
×10−6, 0.0113, 6.3428 ×10−6) and a European call option price of about (0.1403,
0.1380, 0.1360, 0.1343, 0.1328, 0.1099, 0.1303, 0.1099).

It is true that “Least squares on (hj , ∀j ∈ {1, 2, · · · , 2n+ 1} |hj ̸= 0)” always
achieve a very low PAYOFF prediction error for all the possibilities of n, it can be
seen from figures 9c and 9d, however, that it presents slightly higher prediction error
as well as higher variability in the call option price than Bisquare when n ∈ [3, 11].

Figure 10 shows the difference between h and ĥ for the six different option pricing
prediction models when n ∈ {3, 5, 7, 9, 11}. As we can observe, the PAYOFF vector
h can be predicted very efficiently for the two prediction models “Least squares on
(hj , ∀j ∈ {1, 2, · · · , 2n+ 1} |hj ̸= 0, )” and Bisquare.
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Fig. 9: Evaluations when n > 1: (a) the PAYOFF prediction error
∥h−ĥ∥

2

∥h∥2
, (b) the

predicted European call option pricing at initial date (V̂0), (c) the PAYOFF prediction
error when n ∈ [3, 11], (d) the predicted option price V̂0 when n ∈ [3, 11], (e) the
optimal values of λ for {Huber, Bisquare, and Talwar}-prediction models.22
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Fig. 10: The difference between h and ĥ for the six option pricing predic-
tion models when n ∈ {3, 5, 7, 9, 11}. From top row to bottom row: Least
squares on (h1, · · · , h2n+1), Least squares on (hj , ∀j ∈ {1, 2, · · · , 2n+ 1} |hj ̸= 0),
L1-estimator, Huber, Bisquare, Talwar.
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5 Conclusion and future work

The trinomial European call option pricing model is well known to be incomplete, and
therefore, the least squares linear regression technique can simply be used to build a
self-financing hedging portfolio that does not perfectly replicate the call option. How-
ever, the least squares is quite sensitive to even a single influential observation, and
thus, the prediction of the PAYOFF and the option price at initial date can potentially
deviate from their true values. This paper has alleviated this challenge via robust linear
regression. More precisely, two option pricing prediction strategies have been devel-
oped: the first strategy simply applies the least squares after the outliers are removed.
The second strategy takes advantage of some robust linear regression M -estimators.
Both prediction strategies have been evaluated on numerical experiments, and the
results of which demonstrate their effectiveness for European call option pricing on
exchange rates.

For future enhancements, a likely first step would be to extend the proposed work
to the multi-period case. Other promising avenues for further research include the
pricing of European call options on exchange rates via deep learning (e.g., neural
networks). More precisely, by extending the trinomial option pricing model to the
case of 2n + 1, n ≥ 1, observations, the use of deep learning can be quite efficient in
predicting PAYOFF when n is sufficiently large. However, the big challenge remains
of how to develop a method that can benefit from the estimated weights of the neural
network to efficiently predict the option price at the initial date.
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