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Abstract

The Least squares is the traditional regression technique for pricing European
options in incomplete markets. However, the least squares is quite sensitive
to even a single outlier in the data, and thus, the predicted option price may
potentially deviate from the true unknown one. To handle the problem of
outliers, this paper aims to develop two different option pricing prediction
strategies mainly based on the idea of robust linear regression. The proposed
robust techniques are evaluated on numerical data, and the results of which
demonstrate their effectiveness for European call option pricing on exchange
rates.

Keywords: Exchange rates, Trinomial model, European option pricing,
Least squares, Robust linear regression.

1. Introduction

The exchange rate ([7]) can be defined as the price of foreign currency with
respect to (w.r.t.) the domestic one. It mainly affects the competitiveness of
any country’s goods and services, and thus, has a huge impact on its foreign
trade as well as its citizens’ purchasing power. Since 1976, most of the top
economies in the world have adopted a floating exchange rate regime by which
it is determined by supply and demand in the market. When the exchange
rate increases (or decreases), it implies an appreciation (or depreciation) of
the foreign currency w.r.t. the domestic one. For example, it has been
observed that the Euro has shown a depreciation of about more than 18%
against the United States dollar since 2013 and especially just after the start
of the Russian-Ukraine war on Feb 24, 2022. In addition, the Lebanese
pound had a dramatic depreciation against the United States dollar mainly
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due to several political factors especially after the COVID-19 pandemic and
the Beirut port non-nuclear explosion on Aug 04, 2020.

Dealing with such a huge fluctuations of the exchange rate can be al-
leviated via buying call European options ([12]). The latter is a contract
that gives a domestic party the right, but not the obligation, to buy a de-
fined amount of a particular foreign currency only at maturity and at a price
(called strike) specified at the initial date of the contract. At maturity, there
is no need for any mathematical formulation to price a call option since its
value would simply be equal to (Exchange rate at maturity − Strike)+ and
which is well known as the PAYOFF. However, how to price options at any
time before maturity? The birth of mathematical finance has essentially
marked with the Ph.D. thesis of Louis Bachelier in 1900 ([2]) in which he
developed an option pricing closed-form formula under the hypothesis that
the asset prices increments are independent and follow an arithmetic Brow-
nian motion which can allow negative prices. The Bachelier option pricing
model has been forgotten as a part of history until it gained attention again
especially in the twenty-first century due to several serious economic crises
(e.g., the negative interest rates are observed in some developed countries
after the 2008 global financial crisis, the COVID-19 pandemic which led to
lockdown worldwide and an extremely sharp drop in the global demand for
oil).

Since then, several notable contributions for pricing options, under the
difficulty of estimating certain non-observable parameters, have been devel-
oped ([18], [14], [1], [4], [15], [16], [11]). However, one of the biggest influence
finance had on operation markets started when Myron Scholes met Fisher
Black in the fall of 1968 and began working together to discover one of the
most influential mathematical model that accurately prices options1 ([3]).
More precisely, they have developed a parametric non-arbitrage option pric-
ing model with a closed-form formula that accurately prices options under
the assumption that the market is complete. However, this model assumes a
very specific dynamics of the exchange rates, and thus, is not robust.

To move on from parametric to robust European option pricing, the one-
period discrete-time binomial non-arbitrage pricing model was developed
([6]). It mainly assumes that the exchange rate at maturity (denoted as

1See the online conversation ([17]) with Myron Scholes who briefly explained his work
with Fisher Black.
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X1), can only goes up or down w.r.t. its value at initial date (denoted as
X0). After creating a self-financing hedging portfolio and equating it to the
price of the call option at maturity, this yields a linear system of two equa-
tions with two unknowns that correspond to the (unknown) delta-hedging
portfolio coefficients which can simply be calculated with a closed-form for-
mula. However, the binomial model does not reflect the real market since
it considers only two possible directions of the exchange rate (that is, either
goes up or down).

For a more realistic option pricing model in the market, it would be more
important to further consider the possibility that the exchange rate, X1, may
remain the same w.r.t. to X0. More precisely, X1 is assumed to behave in a
three possible directions w.r.t. X0: goes up (with a factor eu, u > 0), remains
the same, or goes down (with a factor ed, d < 0). This is well known as the
one-period trinomial option pricing model ([5, 20, 9]), and by which equating
the self-financing hedging portfolio to the call option price at maturity results
an over-determined linear system of three equations with two unknowns, that
correspond again, to the delta-hedging coefficients that need to be estimated
very efficiently. As the solution of the constructed linear system can not be
guaranteed in general (ex. more equations than unknowns), the trinomial
option pricing model is said to be incomplete, that is, there exist an infinite
number of equivalent martingale measures.

Pricing European call options under this incompleteness can be achieved
in different scenarios including adding a second risky asset to the trinomial
market model and which can help to replicate the option perfectly ([13]) or
finding a hedging strategy that is close to being perfect. The latter scenario
means to find an approximation to the hedging portfolio and which can
simply be done via the least squares machine learning technique ([19, 9]). The
latter is derived with the idea of minimizing the sum of the squared “errors”,
that is, to adjust the unknown delta-hedging coefficients such that the sum of
the squares of the differences between the original and the predicted PAYOFF
values is minimized. As a result, the least squares estimates is the regression
equivalent to the sample mean which is well known to be very sensitive to the
influential observations (outliers)2, and therefore, often fails to provide good
fits to the bulk of the data. In addition, the least squares is derived under

2By an influential observation we mean the observations (outliers) that deviate from
the general pattern of the data.
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the Gaussian assumption, and this ensures its lack of robustness against the
outliers.

In this paper, we only focus on the second scenario for pricing European
options in incomplete markets, that is, by building a self-financing hedging
portfolio which does not perfectly replicates the option price. As the Least
squares technique fails with the presence of outliers, we alleviate this chal-
lenge via robust linear regression techniques. More precisely, we first aim
to detect the nature of the outliers and which help us to manually remove
them from the data and then simply apply the least squares on the remaining
observations (that is, after the outliers have been removed) to estimate the
(unknown) delta-hedging portfolio coefficients. However, an alternative op-
tion pricing strategy would be to exploit some linear regression M -estimators
capable of automatically identifying the outliers during the estimation of the
delta-hedging portfolio coefficients.

It is worthy to further note that the two different possible positive factors
eu and ed by which the exchange rate X1 goes up or down with respect to
X0, respectively, are usually not known in the real market, and thus, a single
specific values for both the parameters u and d can be chosen manually in
order to price the corresponding option. As a result, only three possible
observations were always used to construct the linear regression model, and
thus, using a very little number of observations (ex. three) might be not
sufficient to accurately predict the option price under any regression model.
To ensure reliable prediction results, generating enough observations may
alleviate this challenge. However, it is not surprising that the option price
greatly depends on the selection of both u and d. Hence, instead of selecting
a single specific value for each of these two parameters, we aim to price
options under a set of n possible values for both u and d, with n ≥ 1. This
will help us to generate 2n + 1 observations to build the linear regression
model and which can lead to an accurate estimation of the delta-hedging
coefficients especially with such a robust linear regression M -estimator. In
addition, pricing the call option will be much less sensitive to such a single
specific selection of both the two parameters u and d.

This paper is structured along the following lines. First comes in section
2.1 a brief presentation of how can the standard trinomial option pricing
model on exchange rates be applied and how is the delta-hedging portfolio
coefficients estimated via the least squares technique. A numerical example
is also presented to evaluate the least squares under the presence of outliers.
The proposed two robust option pricing prediction strategies are presented in
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section 3. Section 4 presents the experiments to gauge the effectiveness of the
proposed prediction strategies for European call option pricing on exchange
rates. The paper ends with a summary of the work and some directions for
future work.

Summary of main notations

Throughout this paper, we depict vectors in lowercase boldface letters
and matrices in uppercase boldface letters. The notation (.)T , (.)+, |.|,
and (̂.) stand for the transpose, positive part, absolute value, and esti-
mated/predicted value, respectively. A variety of norms on vectors will be
used. For instance, δ is a vector, and δj is the j

th element. The vector l2 and

l1- norms are defined by ∥δ∥2 =
√∑

j δ
2
j and ∥δ∥1 =

∑
j |δj|, respectively.

2. The trinomial option pricing model on exchange rates

In this section, we first overview in subsection 2.1 the one-period stan-
dard trinomial behavior of the exchange rate X1 w.r.t. X0, as well as the
corresponding arbitrage-free condition. Second, in subsection 2.2, we present
the self-financing replicating portfolio strategy that can be considered for the
prediction of the European call option price on exchange rates. Third, we
briefly overview in subsection 2.3 how can the option price be predicted via
the least squares machine learning technique. Finally, in subsection 2.4, we
demonstrate via a simple numerical example, the suffer of the least squares
to accurately predict the European call option price on exchange rates.

2.1. The one-period standard trinomial model

The one-period trinomial pricing model assumes that the exchange rate
X1 is characterized by three jump behavior as follows:

X1 =


X0e

u with probability pu > 0

X0 with probability p0 = 1− pu − pd > 0 ,

X0e
d with probability pd > 0

where u > 0, d < 0, pu, pd ∈ (0, 1), and pu + pd < 1.
Assume a domestic cash capitalization process B1 = B0e

rd , where B0 > 0,
and rd > 0 is a domestic risk-free interest rate. To prove that pu > 0 and
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pd > 0, the condition:

eu − erd

eu − 1
> p0 > 0 , (1)

should be satisfied (for more details, see theorem 2.1.2 in [9]). As pu+p0+pd =
1, one can directly conclude that pu + pd < 1. Hence, the couple (pu, pd)
defines well a probability if and only if condition (1) is satisfied, and thus,
u > rd.

2.2. The self-financing hedging portfolio

The replicating portfolio can be defined as follows3:

At initial date :

V0 = δ1X0 + δ2B0 ,

At maturity :

V1 = δ1e
rfX1 + δ2B1

=


δ1e

rf (X0e
u) + δ2 (B0e

rd) = (X0e
u −K)+ = h1

δ1e
rf (X0) + δ2 (B0e

rd) = (X0 −K)+ = h2 ,

δ1e
rf
(
X0e

d
)
+ δ2 (B0e

rd) =
(
X0e

d −K
)
+
= h3

where δ1 is the number of units of the foreign currency bought at initial date,
δ2 is the number of units of the risk-free investment in the domestic currency,
rf > 0 is a foreign risk-free interest rate, K > 0 is the strike price, h1, h2,
and h3, represent the PAYOFF value when the exchange rate X1 goes up,
remains the same, or goes down with respect to X0, respectively. As we can
observe, the portfolio at maturity yields an over-determined linear system of
three equations with two unknowns (δ1 and δ2). Based on both the values
of X0 and K, one can assume the following three possible different scenarios

3For more details, see the class notes in https://web.ma.utexas.edu/users/mcudina/m339w-
jan-27-2020.pdf.
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for the PAYOFF values h1, h2, and h3:

if X0 ≤ K < X0e
u :

h1 > 0, h2 = 0, h3 = 0 .

if X0e
d < K < X0 :

h1 > 0, h2 > 0, h3 = 0 .

if K ≤ X0e
d :

h1 > 0, h2 > 0, h3 > 0 .

Figure 1 exhibits three plots of the three observations h1, h2, and h3 when
X0 = 1.43, u = 0.1, and d = −u. It is important to note that when X0e

d <
K < X0, the observation h2 will be strictly positive and will approaches the
line that joins the two observations h1 and h3 until they coincide all together
once K becomes lower than or equal to X0e

d (that is, K ≤ X0e
d). In the

latter situation, the least squares technique will obviously work very well in
estimating the (unknown) delta-hedging coefficient vector δ.

2.3. Delta-hedging via the least squares

We denote the corresponding vector of dependent variables by
h = [h1, h2, h3]

T ∈ R3
+. In general, the vector h does not span the col-

umn space of the matrix of independent variables A =

−− aT
1 −−

−− aT
2 −−

−− aT
3 −−

 =erfX0e
u B0e

rd

erfX0 B0e
rd

erfX0e
d B0e

rd

 ∈ R3×2
+ , and hence, a solution for δ = [δ1, δ2]

T ∈ R2 does

not exist if one forces h to be exactly equal to Aδ, that is, h = Aδ. As a
result, the trinomial model is said to be incomplete, that is, a fair price of Eu-
ropean options can not be uniquely defined. Hence, the standard European
option may not be replicable by only investing in the underlying exchange
rate and the risk-free bond. As it is generally impossible to solve the linear
system h = Aδ, it is possible, however, to project h into the column space
of A. By assuming that h ∼ N (Aδ, σ2I3) with σ > 0 and I3 is an identity
matrix of size 3 × 3, the regression coefficient vector δ ∈ R2 can simply be
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Figure 1: Example of the three PAYOFF scenarios when X0 = 1.43, u = 0.1, and d = −u.

estimated by maximizing the log-likelihood under the Gaussian distribution
assumption. More precisely, we have:

δ̂ = argmax
δ

{
−6

2
log (2π)− 3

2
log
(
σ2
)
− 1

2σ2

3∑
i=1

(
hi − aT

i δ
)2}

≡ argmin
δ

{
3∑

i=1

(
hi − aT

i δ
)2}

= argmin
δ

{
∥h−Aδ∥22

}
.

(2)

It is well known that the domain R2 is closed and convex. In addition, the
objective function to minimize in (2), ∥h−Aδ∥22, is inf-compact (since it
is coercive and lower semi-continuous) and strictly convex. As a result, the
estimation of δ, that is, δ̂, exists and is unique with an analytical formula
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defined as:

δ̂ =
(
ATA

)−1
ATh =

[̂
δ1
δ2

]
∈ R2 .

2.4. European option pricing via the least squares

Once the delta-hedging coefficient vector δ is estimated via the least
squares technique (see subsection 2.3), the true (known) option price at ma-
turity (that is, the PAYOFF vector h) can thus be predicted as:

ĥ = Aδ̂ .

Based on the optimization (minimization) problem in (2), we can obviously
observe that the least squares is derived with the idea of minimizing the
sum of the squared “errors”, that is, to adjust the unknown delta-hedging
coefficients such that the sum of the squares of the differences between the
original and predicted PAYOFF values is minimized. As a result, the least
squares estimates is the regression equivalent to the sample mean which is
well known to be very sensitive to outliers.

As the option price should always be positive, thus, it would be more
realistic to consider the rectified linear unit version of ĥ. That is:

ĥ =
(
ĥ
)
+
.

Once δ is estimated, the true (unknown) option price at initial date (that is,
V0) can be predicted as:

V̂0 = δ̂1X0 + δ̂2B0 . (3)

Does the least squares efficient to predict the option price?

We study, via a simple numerical example, the performance of the least
squares on predicting the option price at maturity (that is, the PAYOFF) as
well as at initial date (that is, V0) for different values of K ∈ ]X0e

d, X0e
u[.

Let fixX0 = 1.43, u = 0.1, and d = −u. The value forX1 under the trinomial
model will behave as follows:

X1 =


X0e

u ≈ 1.58 with probability pu > 0

X0 = 1.43 with probability p0 > 0 .

X0e
d ≈ 1.29 with probability pd > 0
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Figure 2: From left to right:PAYOFF prediction error
∥h−ĥ∥

2

∥h∥2
, the predicted option price

V̂0.

We consider rf = 9%, rd = 8%, and B0 = 1. We aim to compare between
four different option pricing prediction models:

1. Least squares on (h1, h2, h3): the least squares is applied on the
whole three observations h1, h2, and h3;

2. Least squares on (h1, h2): we assume that the observation h3 badly
affects the performance of the least squares on predicting the true PAY-
OFF vector h. Thus, we propose to manually delete the observation h3,
and then apply the least squares on the remaining part of data (that
is, h1 and h2);

3. Least squares on (h1, h3): We assume that the observation h2 badly
affects the performance of the least squares on predicting the true PAY-
OFF vector h. Thus, we propose to manually delete the observation h2,
and then apply the least squares on the remaining part of data (that
is, h1 and h3);

4. L1-estimator: the l2-norm in the least squares objective function in
(2) is replaced by the l1-norm. More precisely, the vector δ is estimated
as follows:

δ̂ = argmin
δ

{
3∑

i=1

∣∣hi − aT
i δ
∣∣} = argmin

δ
{∥h−Aδ∥1} . (4)

Unlike the least squares, there is no explicit expression for the mini-
mizer of (4) since the l1-norm is not differentiable at zero. However,
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Figure 3: The difference between h and ĥ when X0 ≤ K < X0e
u, X0e

d < K < X0, and
K ≤ X0e

d.

one can find recursive algorithms that are able to solve it (e.g., the
Matlab software for disciplined convex programming, CVX Matlab).

Figure 2 evaluates the four aforementioned option pricing prediction methods

in terms of the PAYOFF prediction error
∥h−ĥ∥

2

∥h∥2
and the predicted option

price at initial date V̂0 for different values of K ∈ ]1.29, 1.58[ in steps of 10−2.
We can observe that the “Least squares on (h1, h2)” achieves the lowest
PAYOFF prediction error for all values of K, and thus, we expect that its
estimated delta-hedging coefficient vector δ yields a precise prediction of the
option price at initial date.

Figure 3 exhibits the difference between h and ĥ when
K = 1.43 (X0 ≤ K < X0e

u), K = 1.35
(
X0e

d < K < X0

)
, and

K = 1.25
(
K ≤ X0e

d
)
, respectively. We can obviously observe that when

K ≤ X0e
d, the three observations h1, h2, and h3 will always be located on
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the same line and so the “least squares on (h1, h2, h3)” will behave perfectly
(that is, the predicted PAYOFF observations coincides with the true ones).
However, when X0 ≤ K < X0e

u and X0e
d < K < X0, it is the model “Least

squares on (h1, h2)” that has the lowest PAYOFF prediction error and its
predicted PAYOFF observations coincides with the true ones. We can then
consider that applying the least squares after removing the observation h3

may potentially decrease the prediction error compared to the case if the least
squares is applied on the whole three observations. If we further assume that
the bulk of the data is only formed by h1 and h2, the regression line for
the model “Least squares on (h1, h2, h3)” seems to be skewed towards the
observation h3, and thus, the Least squares when applied on the whole three
observations, has considered h3 as an outlier.

In addition, it is well known that the optimization (minimization) prob-
lem in (4) is obtained after maximizing the log-likelihood under the Laplace
distribution which is considered a heavy-tailed distribution (that is, having
a density function with tails that tend more slowly to zero compared to the
normal density tails). As the total number of observations (e.g., 3) is odd,
the derivative of the objective function in (4) with respect to aT

i δ exists and
which is everywhere except for the observations h1, h2, h3, and it is equal to
−
∑3

i=1 sign
(
hi − aT

i δ
)
which can never be equal to zero. Thus, the mini-

mizer must occur at one of the points h1, h2, h3 where the objective function
in (4) is indeed not differentiable. However, it is a continuous function and
is decreasing when aT

i δ < h 3+1
2

and increasing when aT
i δ > h 3+1

2
. Hence,

the minimizer is given by aT
i δ̂ = h 3+1

2
. As a result, replacing the l2-norm

in the objective function in (2) by the l1-norm is the regression equivalent
to the sample median. The latter is well-known to be robust to outliers but
this is paid for by an increase in variance (“a loss in efficiency”) in the exact
Gaussian distribution. However, when applying the model “L1-estimator”,
we can observe from figure 3 that its regression line is equivalent to the one
of the model “Least squares on (h1, h3)”. Hence, it seems that model “L1-
estimator” has considered that the bulk of the data is only formed by the
observations h1 and h3, whereas h2 is the observation that deviates from it
(that is, it is considered as an outlier). As a result, both the models “Least
squares on (h1, h3)” and “L1-estimator” obtained the largest PAYOFF pre-
diction error as can be seen from figure 2.
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3. Main contribution

In this section, we first present in subsection 3.1 a methodology that
allows us to construct an option pricing model that considers n ≥ 1 possible
values for each of the parameters u > 0 and d > 0, and hence, allows us to
construct a linear regression model with 2n+1 observations. Recall that our
main purpose for pricing options under a large set of values for u and d is that
we want to dramatically decrease the sensitivity of the option price on any
such a single specific selection of the parameters as has been detailed in the
standard trinomial option pricing model (see subsection 2.1). In addition,
we evaluate the least squares on a regression with 2n+1, n ≥ 1, observations
in order to detect the nature of the influential observations (that is, the
outliers). Once these outliers are identified, one can simply delete them and
then re-apply the least squares on the remaining part of the data. Finally,
instead of manually deleting the observations that are identified as outliers
and then apply the least squares on the remaining part of the data, we aim
to exploit in subsection 3.2 the idea behind the robust M -estimators for
linear regression analysis ([10, 8]). This will allow to accurately estimate the
(unknown) delta-hedging coefficient vector δ with an automatic deletion of
the identified outliers.

3.1. Increasing the number of observations from 3 to 2n+ 1, n ≥ 1

In order to predict the option price at initial date, that is, V0, indepen-
dently from any such a single specific selection value for both u > 0 and d < 0,
we propose to replace u and d by a set of n ≥ 1 possible values {ul}l∈[1, n]
with u1 > u2 > un > rd, and {dl}l∈[1, 5] with dn < dn−1 < · · · < d1 < 0,
respectively, with n ∈ N. As a result, one has to expect 2n+ 1 different val-
ues for X1, and thus, the possibility to construct an over-determined linear
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system of 2n+ 1 equations with only 2 unknowns. More precisely, we have:

X1 =



X0e
u1 with probability pu1 > 0

...

X0e
un with probability pun > 0

X0 with probability p0 > 0 ,

X0e
d1 with probability pd1 > 0

...

X0e
dn with probability pdn > 0

with

p0 = 1− pu1 − · · · − pun − pd1 − · · · − pdn > 0 .

V1 =



δ1e
rf (X0e

u1) + δ2B0e
rd = (X0e

u1 −K)+ = h1

δ1e
rf (X0e

u2) + δ2B0e
rd = (X0e

u2 −K)+ = h2

...

δ1e
rf (X0e

un) + δ2B0e
rd = hn = (X0e

un −K)+ = hn

δ1e
rfX0 + δ2B0e

rd = (X0 −K)+ = hn+1 .

δ1e
rf
(
X0e

d1
)
+ δ2B0e

rd =
(
X0e

d1 −K
)
+
= hn+2

δ1e
rf
(
X0e

d2
)
+ δ2B0e

rd =
(
X0e

d2 −K
)
+
= hn+3

...

δ1e
rf
(
X0e

dn
)
+ δ2B0e

rd =
(
X0e

dn −K
)
+
= h2n+1

We can observe that when n = 1, that is, a single choice for u > rd > 0 and
d < 0, we return back to the standard (one-period) trinomial option pricing
model already described in subsection 2.1. Based on both the values of X0

and K, one can expect the following two possible different scenarios for the
PAYOFF values h1, h2, · · · , h2n+1:

14



if X0e
dn < K < X0e

u1 :

h1 > 0, h2 ≥ 0, · · · , hn ≥ 0, hn+1 ≥ 0, hn+2 ≥ 0, · · · ,
h2n ≥ 0, h2n+1 = 0 .

if K ≤ X0e
dn :

h1 > 0, h2 ≥ 0, · · · , hn ≥ 0, hn+1 ≥ 0, hn+2 ≥ 0, · · · ,
h2n ≥ 0, h2n+1 = 0 .

Figure 4 exhibits three different examples of those two possible different sce-
narios for the PAYOFF values whenX0 = 1.43, n = 5, andK ∈ {0.50, 1.43, 3.1}.
We assume rd = 8% and a set of 5 possible evenly spaced values {ul}l∈[1, 5],
with u1 > · · · > u5 > rd. We choose u5 = rd+ ϵ, ∀ϵ > 0, and u1 = 1. We also
fix {dl}l∈[1, 5] = {−ul}l∈[5, 1]. The value for X1 will then behave as follows:

X1 =



X0e
u1 = 3.8871 with probability pu1 > 0

X0e
u2 = 3.0884 with probability pu2 > 0

X0e
u3 = 2.4538 with probability pu3 > 0

X0e
u4 = 1.9496 with probability pu4 > 0

X0e
u5 = 1.5491 with probability pu5 > 0

X0 = 1.43 with probability p0 > 0 .

X0e
d1 = 1.3200 with probability pd1 > 0

X0e
d2 = 1.0488 with probability pd2 > 0

X0e
d3 = 0.8333 with probability pd3 > 0

X0e
d4 = 0.6621 with probability pd4 > 0

X0e
d5 = 0.5260 with probability pd5 > 0

We can observe from figure 4 that as K decreases in value, less are the
PAYOFF observations that are zeros, and hence, the whole observations
h1, h2, · · · , h11 will locate on the same line once K becomes less than or
equal to X0e

d5 (that is, K ≤ X0e
d5).
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Figure 4: Example of the three PAYOFF scenarios when X0 = 1.43 and n = 5. From left
to right: K = 3.1, K = 1.32, K = 0.50.

What happens to the least squares with 2n+ 1, n ≥ 1, observations?

By pursuing the same settings as in the example just above (that is,
when n = 5 =⇒ 11 observations in total), we aim to compare between
three option pricing prediction models:

1. Least squares on (h1, · · · , h11): we directly apply the least squares
on the whole 11 observations;

2. Least squares on (hj, ∀j ∈ {1, 2, · · · , 11} |hj ̸= 0, ): we assume that
all the observations which are equal to zero correspond to the influential
observations (outliers), and thus, the least squares is only applied on
the remaining part of the data (that is, on the observations hj ̸= 0).
Note that when only one observation is not equal to zero (see figure
4 when K = 3.1), that is, h1 > 0 and hj = 0∀ j ∈ [2, 11], the least
squares will then only be applied on the two observations h1 and h2.
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Figure 5: From left to right:PAYOFF prediction error
∥h−ĥ∥

2

∥h∥2
, the predicted option price

V̂0.

3. L1-estimator: it is the same model that we have already described
in subsection 2.4. More precisely, the l2-norm in the least squares
objective function in (2) is replaced by the l1-norm.

Figure 5 evaluates the three aforementioned option pricing prediction models

in terms of the PAYOFF prediction error
∥h−ĥ∥

2

∥h∥2
and the predicted option

price at initial date V̂0 for different values of K ∈ ]0.5260, 3.8871[ in steps of
10−2.
We can observe that the “Least squares on (hj, ∀j ∈ {1, 2, · · · , 11} |hj ̸= 0)”
achieves the lowest PAYOFF prediction error for all values of K, and thus,
its estimated delta-hedging coefficient vector δ should achieve a precise pre-
diction of the option price at initial date. We can also observe that when
K ∈ ]0.5260, 1.0560[, the PAYOFF prediction error as well as V̂0 for the “L1-
estimator” coincides with those of the “Least squares on
(hj, ∀j ∈ {1, 2, · · · , 11} |hj ̸= 0)”. Figure 6 exhibits the difference between

h and ĥ whenK = 3.1
(
X0e

d5 < K < X0e
u1
)
,K = 1.43

(
X0e

d5 < K < X0e
u1
)
,

and K = 0.50
(
K ≤ X0e

d5
)
, respectively. We can obviously observe that

when K ≤ X0e
d5 , the whole 11 observations h1, h2, · · · , h11, will always be

located on the same line and so the “Least squares on (h1, · · · , h11)” will
behave perfectly (that is, the predicted PAYOFF observations coincides with
the true ones). However, when X0e

d5 < K < X0e
u1 , it is the model “Least

squares on (hj, ∀j ∈ {1, 2, · · · , 11} |hj ̸= 0)” that has the lowest PAYOFF
prediction error and its predicted PAYOFF observations coincides with the

17
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Figure 6: The difference between h and ĥ when X0e
dn < K < X0e

u1 and K ≤ X0e
d when

n = 5.

true ones.

3.2. Delta-hedging via robust linear regression M-estimators

Instead of manually removing the influential observations (outliers) from
the data and then apply the least squares on the remaining part of the data, it
seems that there exists other strategies that can automatically remove those
outliers while estimating the (unknown) delta-hedging coefficient vector δ.
Recall that the least squares is derived under the Gaussian assumption which
does not take into consideration the outliers. In order to not consider any
specific kind of distribution (ex. the Gaussian assumption), we are going to
assume that the hi’s, i ∈ [1, 2n+ 1], n ≥ 1, are independent and not identi-

cally distributed with any density of the form 1
σ
f0

(
hi−aT

i δ

σ

)
. The likelihood

18



under this density function can be written as ([10, 8]):

L (h1, · · · , h2n+1; δ, σ) =
2n+1∏
i=1

1

σ
f0

(
hi − aT

i δ

σ

)
.

Maximizing the log-likelihood w.r.t. (δ, σ) is thus equivalent to the following
(minimization) optimization problem:

max
δ,σ

{
− (2n+ 1) log (σ) +

2n+1∑
i=1

log

(
f0

(
hi − aTi δ

σ

))}

≡ min
δ,σ

{
(2n+ 1) log (σ) +

2n+1∑
i=1

ρ

(
hi − aTi δ

σ

)}
,

(5)

where −log
(
f0

(
hi−aT

i δ

σ

))
= ρ

(
hi−aT

i δ

σ

)
for any non-constant function ρ (.).

One can clearly observe that the least squares and the L1-estimator are a

special case when ρ
(

hi−aT
i δ

σ

)
=
(

hi−aT
i δ

σ

)2
and ρ

(
hi−aT

i δ

σ

)
=
∣∣∣hi−aT

i δ

σ

∣∣∣, re-
spectively. By taking the derivative of the objective function in (5) with
respect to δ and σ and set it to zero, one obtains ([10]):

2n+1∑
i=1

ρ′

(
hi − aT

i δ̂

σ̂

)
ai = 0

and
1

(2n+ 1)

2n+1∑
i=1

(
hi − aT

i δ̂

σ̂

)
ρ′

(
hi − aT

i δ̂

σ̂

)
= 1 ,

respectively.
Note that the function ρ (.) must be chosen to respect the following con-

ditions ([10]):

• ρ (x) should be a non-decreasing function of |x| ;

• ρ (0) = 0 ;

• ρ (x) is increasing for x > 0 such that ρ (x) < ρ (∞) ;

• if ρ is bounded, it is also assumed that ρ (∞) = 1 .
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Choices for the function ρ(.)

To estimate the delta-hedging coefficient vector δ, we can assume three
types of ρ(.)-functions to estimate δ, and thus, the prediction of the PAYOFF
as well as the true (unknown) option price at initial date V0. More precisely,
the following ρ(.)-functions are considered:

1. The Huber -ρ (.) function: For the first impression, one can directly
think to propose an estimator that combines the robustness of the me-
dian (under the non-Gaussian assumption) and the low-variance of the
mean (under exact normality). Hence, for a fair compromise between
the mean and median, the function ρ (.) can be chosen to belong to the
family of Huber functions. More precisely, the function ρ(.) can be as
follows:

ρ

(
hi − aT

i δ

σ

)
=


(

hi−aT
i δ

σ

)2
if
∣∣∣hi−aT

i δ

σ

∣∣∣ ≤ λ

2λ
∣∣∣hi−aT

i δ

σ

∣∣∣− λ2 if
∣∣∣hi−aT

i δ

σ

∣∣∣ > λ
.

Figure 7a and 7b exhibit both the ρ (.)- and ρ′ (.)- functions under this
family of Huber functions, respectively. Note that the solution aT

i δ̂ is
closely related to Winsorizing.

2. The Bisquare-ρ (.) function: From figure 7a, we can observe that the
function ρ (.) aims to tend to infinity at infinity, whereas its derivative
(figure 7b), that is, the function ρ′ (.), is continuous but always shifted
by ±λ = 1.345. These findings demonstrate that both the gross as well
as the moderately large outliers are going to be treated in the same
manner. In this regard, thinking about using a function ρ′ (.) that re-
descend smoothly to zero at infinity (see figure 7d) may be quite helpful
since in this case the gross outliers will be completely rejected and the
moderately large outliers will be completely ignored. That is why, one
can consider the following ρ(.)-function:

ρ

(
hi − aT

i δ

σ

)
=

1−
(
1−

(
hi−aT

i δ

σλ

)2)3

if
∣∣∣hi−aT

i δ

σ

∣∣∣ ≤ λ

1 if
∣∣∣hi−aT

i δ

σ

∣∣∣ > λ

.

3. The Talwar -ρ (.) function: In addition to the sample median and win-
sorized mean, one can think of discarding a proportion of the largest
and smallest values. This is well-known as the trimming procedure
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Figure 7: (a) and (b) the Huber ρ- and Ψ = ρ′- functions (with λ = 1.345), respectively;
(c) and (d) the Bisquare ρ- and Ψ = ρ′- functions (with λ = 4.685), respectively.

([8]) and which can be much more robust to outliers than the sam-
ple mean and sample median. Hence, one can consider the following
ρ(.)-function:

ρ

(
hi − aT

i δ

σ

)
=

1
2

(
hi−aT

i δ

σ

)2
if
∣∣∣hi−aT

i δ

σ

∣∣∣ ≤ λ

1
2
λ2 if

∣∣∣hi−aT
i δ

σ

∣∣∣ > λ
.

4. Experiments

In this section, we mainly aim to compare between six different option
pricing prediction models on exchange rates. More precisely, the six models
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are the following:

1. Least squares on (h1, · · · , h2n+1): we directly apply the least squares
on the whole 2n+ 1 observations;

2. Least squares on (hj, ∀j ∈ {1, 2, · · · , 2n+ 1} |hj ̸= 0): the least squares
is applied on the observations that are not equal to zero. When only
one observation is different than zero (that is, h1 > 0), the least squares
will then only be applied on the two observations h1 and h2;

3. L1-estimator;
4. Huber ;
5. Bisquare;
6. Talwar .

All our evaluations are done on two different scenarios for n:

• n = 1 (the standard one-period trinomial option pricing (see subsection
2.1)): a single value for u > 0 and d < 0 are specified to price the option.
In our experiments, the value for d is always fixed to be equal to −u;

• n > 1 (our proposed extension of the one-period trinomial option pric-
ing model (see subsection 3.1)): a large set of n values for both u and d
are considered at once. More precisely, the set {ul}l∈[1, n] and {dl}l∈[1, n],
with u1 > u2 > · · · > un > rd and dn < dn−1 < · · · < d1 < 0 are spec-
ified to price the European option. In our experiments, we consider
dn = −u1, dn−1 = −u2, · · · , d1 = −un.

In all the experiments, we fix rd = 8%, rf = 9%, B0 = 1, and we assume
that the exchange rate at initial date is X0 = 1.43. A call on the exchange
rate is available with a strike price K = X0, expiring at maturity.

Note that we use the robustfit package in MATLAB to simultaneously
estimate both δ and σ for the Huber, Bisquare, and Talwar robust linear re-
gression techniques. This package uses an iteratively reweighted least squares
to compute the delta-hedging coefficients.

To choose the best parameter value of λ for every robust regression esti-
mator (e.g. Huber, Bisquare, and Talwar), we decide to vary λ between 1 and

5 by step of 10−4. The parameter value λ that minimizes the criterion
∥h−ĥ∥

2

∥h∥2
will be selected as the optimal value. All our experiments are conducted on
MATLAB 2021a 4.

4The MATLAB code of the proposed work is available upon request.
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Figure 8: Evaluations when n = 1: (a) the prediction error
∥h−ĥ∥

2

∥h∥2
, (b) the pre-

dicted European call option pricing at initial date (V̂0), (c) the predicted option price
for “Least squares on (hj , ∀j ∈ {1, 2, · · · , 2n+ 1} |hj ̸= 0)”, (d) the optimal values of λ
for {Huber, Bisquare, andTalwar}-prediction models.

4.1. European option pricing on exchange rates

Let fix ϵ = 10−6.

4.1.1. When n = 1

We choose to evaluate the aforementioned six option pricing prediction
models on a set of 500 single evenly spaced values for u between rd + ϵ
and 1. Figure 8 exhibits, as a function of u, the error results in the pre-
diction of h, the prediction results of V0, as well as the different obtained
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optimal values of λ for the {Huber, Bisquare, and Talwar}-prediction mod-
els. As we can observe from figure 8a and 8b, only the “Least squares on
(hj, ∀j ∈ {1, 2, 3} |hj ̸= 0)” (that is, when applying the least squares after
the manual removal of the outliers) achieves the lowest prediction error for
all the values of u and presents a stable V̂0 always varying around 0.1099 (see
figure 8c). However, the other prediction models behave poorly for all the
different values of u.

4.1.2. When n > 1

For any un ≥ r+ϵ, the six option pricing prediction models are evaluated
on a large set of {ul}l∈[1, n] and {dl}l∈[1, n], both containing n > 1 evenly
spaced values. Figure 9 exhibits, as a function of n ∈ {2, · · · , 30} in steps
of 1, and for u1 = 1, the error results in the prediction of h, the prediction
results of V0, as well as the different obtained optimal values of λ for the
{Huber, Bisquare, and Talwar}-prediction models. From figure 9a and 9b,
it is important to note that when n ∈ [3, 11], the PAYOFF prediction error
and the European call option price for the Bisquare is about 1.5877× 10−15

and 0.1099, respectively, and they both coincide in values with that of the
“Least squares on (hj, ∀j ∈ {1, 2, · · · , 2n+ 1} |hj ̸= 0)”.

The Talwar achieves a low PAYOFF prediction error when n ∈ [3, 10].
More precisely, for every value of n ∈ {3, 4, 5, 6, 7, 8, 9, 10}, it achieves
respectively a PAYOFF prediction error of about (0.0195, 0.0174, 0.0157,
0.0143, 0.0131, 4.7532 ×10−6, 0.0113, 6.3428 ×10−6) and a European
call option price of about (0.1403, 0.1380, 0.1360, 0.1343, 0.1328, 0.1099,
0.1303, 0.1099).

It is true that “Least squares on (hj, ∀j ∈ {1, 2, · · · , 2n+ 1} |hj ̸= 0)”
always achieve a very low PAYOFF prediction error for all the possibili-
ties of n, it can be seen from figure 9c and 9d, however, that it presents
slightly higher prediction error as well as higher variability in the call option
price than Bisquare when n ∈ [3, 11]. Figure 10 exhibits the difference be-
tween h and ĥ for the different six option pricing prediction models when
n ∈ {3, 5, 7, 9, 11}. As we can observe, the PAYOFF vector h can be
predicted very efficiently for the two prediction models “Least squares on
(hj, ∀j ∈ {1, 2, · · · , 2n+ 1} |hj ̸= 0, )” and Bisquare.
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Figure 9: Evaluations when n > 1: (a) the PAYOFF prediction error
∥h−ĥ∥

2

∥h∥2
, (b) the

predicted European call option pricing at initial date (V̂0), (c) the PAYOFF prediction
error when n ∈ [3, 11], (d) the predicted option price V̂0 when n ∈ [3, 11], (e) the optimal
values of λ for {Huber, Bisquare, and Talwar}-prediction models.
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Figure 10: The difference between h and ĥ for the six option pricing prediction models
when n ∈ {3, 5, 7, 9, 11}. From top row to bottom row: Least squares on (h1, · · · , h2n+1),
Least squares on (hj , ∀j ∈ {1, 2, · · · , 2n+ 1} |hj ̸= 0), L1-estimator, Huber, Bisquare,
Talwar.
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5. Conclusion and future work

The trinomial European call option pricing model is well known to be
incomplete, and thus, the least squares linear regression technique can sim-
ply be used to build a self-financing hedging portfolio that does not perfectly
replicates the call option. However, the least squares is quite sensitive to even
a single influential observation, and thus, the prediction of the PAYOFF and
the option price at initial date can potentially deviate from their true val-
ues. This paper has alleviated this challenge via robust linear regression.
More precisely, two option pricing prediction strategies have been developed:
the first strategy simply applies the least squares after the outliers are re-
moved. Whereas the second strategy exploits some robust linear regression
M -estimators. Both the prediction strategies have been evaluated on numer-
ical experiments, and the results of which demonstrate their effectiveness for
European call option pricing on exchange rates.

For future enhancements, a likely first step would be to extend the pro-
posed work to the multi-period case. Other promising avenues for further
research include the pricing of European call options on exchange rates via
deep learning (e.g. neural networks). More precisely, by extending the tri-
nomial option pricing model to the case of 2n + 1, n ≥ 1, observations, the
use of deep learning can be quite efficient in predicting the PAYOFF when
n is sufficiently large. However, the big challenge remains of how to develop
a method that can benefit from the estimated neural network weights to
efficiently predict the option price at initial date.
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