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Abstract—The one-period trinomial option pricing model is
well known in the literature as it considers three possible
movement directions of the asset price. However, by equating
the price of the option with the self-financing hedging portfolio
at maturity, this yields a linear system of three equations with two
unknowns that correspond to the coefficients for the delta hedging
portfolio. Hence, the trinomial model is said to be incomplete,
that is, there exists an infinite number of equivalent martingale
measures. To deal with this incompleteness, this paper aims to
price options via some robust linear regression techniques in
order to mainly handle the problem of outliers that the least
squares fails to consider. The proposed robust techniques are
evaluated on numerical data, the results of which demonstrate
their effectiveness for European call option pricing.

Index Terms—Asset prices, Trinomial model, European call
option pricing, Least squares, Robust linear regression.

I. INTRODUCTION

Option pricing theory [1]–[12] is considered one of the
most important topics in finance. One of the biggest influences
finance had on operation markets started when Myron Scholes
met Fisher Black [13] in the fall of 1968 and developed a
parametric non-arbitrage option pricing model that accurately
prices options with a closed-form formula [10]–[12]. This
pioneering work of Black and Scholes lies on the assumption
that the market is complete where the equivalent martingale
measure is unique, and hence the option can be replicated by
the self-financing hedging portfolio of the underlying basic
assets in the market. However, one of the major limitations of
this model is its lack of robustness since it considers a very
specific dynamics about the asset prices.

To move from a parametric to robust European option
pricing, the one-period discrete-time binomial model was
the first non-arbitrage discrete pricing contribution that was
developed by William Sharpe [14] and then formalized by
Cox, Ross, and Rubenstein [15]. More precisely, the price of
the asset at maturity, denoted as S1 > 0, can only increase or
decrease with respect to its price at the initial date S0 > 0.
After equating the price of the option with the self-financing
hedging portfolio at maturity, this yields a linear system of
two equations with two unknowns that correspond to the
coefficients for the delta hedging portfolio. As the number of
equations and the number of unknowns in the linear system are
equal to each other, the delta hedging coefficients, in general,
can be determined by a unique analytical solution. However,

this model assumes that the asset price can never remain the
same for two consecutive discrete time steps (e.g., S1 ̸= S0

almost surely), which does not reflect well the real market.
To complete the binomial model, Boyle [16], [17] derived

the one-period discrete-time trinomial option pricing model to
incorporate three possible movement directions of the asset
price S1, with respect to S0: (1) going up with a factor eu,
u > 0; (2) remains the same; or (3) going down with a factor
ed, d < 0. Hence, pricing options under the trinomial model
represent a more realistic but more complex structure than
the binomial one. However, equating the price of the option
with the self-financing hedging portfolio at maturity yields
an overdetermined linear system of three equations with two
unknowns that again correspond to the coefficients for the delta
hedging portfolio [16]–[18]. As the number of equations in
the linear system exceeds that of unknowns, a solution for the
delta hedging coefficients, in general, cannot be guaranteed.
Hence, the trinomial market model is said to be incomplete
[16]–[20], that is, there exists an infinite number of equivalent
martingale measures.

To deal with pricing options under the incompleteness of
the trinomial model, one can build a self-financing hedg-
ing portfolio which does not perfectly replicate the option
price. An estimation of the delta hedging coefficients can
be done simply using the least-squares technique [21]–[23].
The latter is derived with the idea of minimizing the sum
of the squared “errors”, that is, to adjust the unknown delta
hedging coefficients such that the sum of the squares of the
differences between the original and predicted PAYOFF values
is minimized. As a result, the least squares estimate is the
regression equivalent to the sample mean, which is well known
to be very sensitive to outliers [24]–[29] and therefore often
does not provide a good fit to most of the data. By outliers,
we mean observations that deviate from the general pattern of
the data. In addition, the least squares [21] is derived under
the Gaussian assumption, which proves its lack of robustness
against the outliers. Hence, the detla hedging coefficients will
not be estimated precisely and will badly affect the prediction
of the option price.

In this paper, we alleviate the effect of outliers in efficiently
predicting the PAYOFF and the option price at the initial date.
We achieve this by two different option prediction strategies:

1) The first one would be to simply (1) clean the data by



manually removing the influential observations (outliers)
that are separated from the general pattern of the data;
and (2) use the least squares estimation on the remaining
part of the data (that is, after the outliers have been
removed) [28];

2) An alternative strategy would be to estimate the delta
hedging portfolio coefficients via some robust linear
regression techniques in order to deal with the outliers
that the least squares fails to consider. More precisely,
by taking advantage of some linear regression M -
estimators [28], [29], the delta hedging coefficients can
be estimated quite precisely, and thus the true (known)
PAYOFF values as well as the true (unknown) option
price at the initial date will be efficiently predicted.

It should be noted that the two different possible positive
factors eu and ed by which the asset price S1 increases or
decreases with respect to S0, respectively, are usually not
known in the real market and therefore a single specific
value for each of the parameters u and d should be chosen
manually to price the corresponding option. As a result, only
three possible observations are always used to construct the
linear regression model. However, using a very small number
of observations (for example, three) might not be sufficient
to accurately predict the option price under any regression
model. To ensure reliable prediction results, generating enough
observations may alleviate this challenge.

However, it is not surprising that the price of the option
greatly depends on the selection of u and d. For example, the
option price always increases with an increase in the value
of u. We believe that generating enough observations may
greatly reduce the effect of the choice of u and d on the
option price. Instead of selecting a specific value for each
of these two parameters, we aim to price options under a
large set of values for u and d at once. This will help us
generate enough observations that can lead to an accurate
estimate of the delta hedging coefficients, especially with such
a robust linear regression M -estimator. In addition, this makes
pricing the option much less sensitive to such a specific single
selection of both parameters u and d, and thus a more realistic
option pricing model.

This paper is organized as follows. In Section II we first
present a brief overview of the standard (one-period) trinomial
option pricing model as well as the estimation of the delta
hedging portfolio coefficients via the least squares. A numer-
ical example is also presented to evaluate the least squares in
the presence of outliers. The proposed robust European call
option prediction strategies are outlined in sec III. Section IV
presents numerical experiments to gauge the effectiveness of
the proposed prediction strategies. Finally, Section V gives
concluding remarks and some directions for future work.

II. THE STANDARD ONE-PERIOD TRINOMIAL PRICING
MODEL AND THE LEAST SQUARES

The one-period discrete-time trinomial market model con-
siders two primary assets: (1) a risk-free asset with price
D1 = D0e

r, with a constant risk-free rate r > 0 and D0 > 0;

and (2) a risky asset with price S1, characterized by three jump
behavior as follows:

S1 =


S0e

u with probability pu

S0 with probability p0 = 1− pu − pd ,

S0e
d with probability pd

where u > 0, d < 0, pu, pd ∈ (0, 1), and pu + pd < 1.
Interestingly, for the market to be arbitrage-free, the follow-

ing condition is necessary [23]:

u > r,
eu − er

eu − 1
> p0 > 0 . (1)

However, once condition (1) is satisfied, this implies that

pu > 0 , pd > 0 , and pu + pd < 1 .

Hence, the couple (pu, pd) defines a probability if and only if
the condition (1) is satisfied.

Now, assume that an investor’s portfolio is constructed by
∆S ∈ R risky asset and ∆D ∈ R risk-free asset, where ∆S

and ∆D represent the unknown delta hedging coefficients that
are linearly independent and need to be estimated efficiently.
The self-financing portfolio can be defined as

C1 − C0 = ∆S (S1 − S0) + ∆D (D1 −D0) .

More precisely, one has:

At initial date :
C0 = ∆S S0 +∆D D0 .

At maturity :
C1 = ∆SS1 +∆DD1

=


∆S (S0e

u) + ∆D (D0e
r) = y1

∆S (S0) + ∆D (D0e
r) = y2 ,

∆S

(
S0e

d
)
+∆D (D0e

r) = y3

where y1 = (S0e
u −K)+, y2 = (S0 −K)+, and y3 =(

S0e
d −K

)
+

, represent the price of the call option at maturity
(that is, PAYOFF) with a strike K > 0 when the asset price
S1 increases, remains the same, or decreases with respect to
S0, respectively. As we can see, this yields an overdetermined
linear system of three equations with only two unknowns (∆S

and ∆D). We denote the corresponding vector of dependent
variables by y = [y1, y2, y3]

T ∈ R3
+. In general, the vector y

does not span the column space of the matrix of independent

variables X =

−− xT
1 −−

−− xT
2 −−

−− xT
3 −−

 =

S0e
u D0e

r

S0 D0e
r

S0e
d D0e

r

 ∈ R3×2
+ ,

and hence, a solution for ∆ = [∆S , ∆D]
T ∈ R2 does not exist

if one forces y to be exactly equal to X∆, that is, y = X∆.

A. European call option pricing via the least squares

As it is generally impossible to solve the linear system y =
X∆ when the number of equations exceeds that of unknowns,
it is possible, however, to project y into the column space of
X. Consider the following linear regression model:

y = X∆+ ϵ ,



where ϵ ∼ N
(
0, σ2I3

)
with σ > 0, I3 is an identity matrix

of size 3× 3, and y ∼ N
(
X∆, σ2I3

)
. Maximizing the log-

likelihood with respect to ∆ under the Gaussian assumption
gives:

∆̂ = argmin
∆

{
3∑

i=1

(
yi − xT

i ∆
)2}

=
(
XTX

)−1
XTy =

[̂
∆S

∆D

]
∈ R2 .

The least squares predictor of the true (known) PAYOFF can
be given as:

ŷ =
(
X∆̂

)
+
.

Once ∆ is estimated, the least squares predictor of the true
(unknown) call option price at the initial date (that is, C0) is:

Ĉ0 = ∆̂SS0 + ∆̂DD0 .

B. Problem of outliers with the least Squares

Fix r = 2%, D0 = $1, S0 = $100, K = S0, u = 0.1, and
d = −u. We aim to compare three different option pricing
prediction models:

1) Least squares on {y1, y2, y3}: the least squares is ap-
plied on the whole set of 3 observations {y1, y2, y3};

2) Least squares on {y1, y2}: we assume that the observa-
tion y3 badly affects the performance of the least squares
on predicting the vector y. We propose to manually
remove the observation y3, and then apply the least
squares on the remaining part of the data {y1, y2};

3) Least squares on {y1, y3}: we manually remove y2 and
then apply the least squares on the remaining part of the
data {y1, y3}.

Figure 1 (left side) shows the difference between y and ŷ for
the three models. We can observe that the predicted PAYOFF
observations with model “Least squares on {y1, y2}” coincide
with the true ones, and the least squares line with model “Least
squares on {y1, y2, y3}” is skewed towards observation y3.
Therefore, applying least squares after removing the obser-
vation y3 potentially decreases the PAYOFF prediction error
compared to the other two models.

III. MAIN CONTRIBUTION

We present in Subsection III-A a method to construct an
option pricing model that considers n ≥ 1 possible values for
each of the parameters u > 0 and d < 0, and thus allows us to
construct a linear regression model with 2n+ 1 observations.
In addition, we evaluate the least squares in a regression with
2n+1, n ≥ 1, observations to detect the nature of the outliers.
Once these outliers are identified, one can simply remove them
and then re-apply the least squares on the remaining part of
the data. Finally, in Subsection III-B, we aim to exploit some
robust linear regression M -estimators [28], [29] to accurately
estimate the (unknown) vector ∆ with an automatic removal
of outliers.

A. Increasing the number of observations to 2n+ 1, n ≥ 1

In order to estimate the option price at the initial date
independently of any such a specific single value for each
of the parameters u > 0 and d < 0, we propose to replace
u and d by a set of n ≥ 1 possible values {ul}l∈[1, n]

with u1 > u2 > · · · > un > r and {dl}l∈[1, n] with
dn < dn−1 < · · · < d1 < 0, respectively, with n ∈ N\{0}. As
a result, one has to expect 2n+ 1 different values for S1 and
the possibility to construct an overdetermined linear system of
2n+ 1 equations with only 2 unknowns. We have:

S1 =



S0eu1 with pu1 > 0

...
S0eun with pun > 0

S0 with p0 > 0

S0ed1 with pd1 > 0

...
S0edn with pdn > 0

, C1 =



∆S (S0eu1 ) + ∆D D1 = y1
∆S (S0eu2 ) + ∆D D1 = y2

...
∆S (S0eun ) + ∆D D1 = yn

∆SS0 +∆D D1 = yn+1 ,

∆S

(
S0ed1

)
+∆D D1 = yn+2

∆S

(
S0ed2

)
+∆D D1 = yn+3

...
∆S

(
S0edn

)
+∆D D1 = y2n+1

where p0 = 1− pu1
− · · · − pun

− pd1
− · · · − pdn

> 0, y1 =
(S0e

u1 −K)+, y2 = (S0e
u2 −K)+, yn = (S0e

un −K)+,
yn+1 = (S0 −K)+, yn+2 =

(
S0e

d1 −K
)
+

, yn+3 =(
S0e

d2 −K
)
+

, and y2n+1 =
(
S0e

dn −K
)
+

. We can observe
that the standard (one-period) trinomial option pricing model
is a special case when n = 1.

What happens to the least squares with 2n+ 1 observations?
Fix r = 2%, ϵ = 10−6, S0 = $100, K = S0, and D0 = $1.

Instead of specifying a single specific value for u as we did
in the example in Subsection II-B, we predict the PAYOFF
with the least squares under a set of equally spaced 5 possible
values {ul}l∈[1, 5], with u1 > · · · > u5 > r. We choose
u5 = r + ϵ and u1 = 1. We also fix d5 = −u1, d4 = −u2,
d3 = −u3, d2 = −u4, and d1 = −u5. Hence, we have 11 pos-
sible PAYOFF values, that is, y = [y1, y2, · · · , y11]T ∈ R11

+ .
Figure 1 (right side) shows the difference between the true
PAYOFF values and the predicted ones by comparing the
following two option pricing prediction models:

1) Least squares on {yi, i ∈ [1, 11]}: we directly apply the
least squares on the whole set of 11 observations;

2) Least squares on {yi, i ∈ [1, 11] | yi > 0}: we assume
all the observations which are equal to zero correspond
to the influential observations (outliers), and thus, the
least squares is only applied on the remaining part of
the data (that is, on the set of observations that are > 0).

From Figure 1 (right side), we can clearly observe that the
model “Least squares on {yi, i ∈ [1, 11] | yi > 0}” achieves
the lowest PAYOFF prediction error and so its predicted
PAYOFF observations coincide with the true ones.

B. Estimation of ∆ via robust linear regression M -estimators

Recall that the least squares is derived under the Gaussian
assumption which does not take into consideration the outliers.
In order not to consider any specific kind of distribution (e.g.,
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Fig. 1: The difference between y and ŷ when K = S0.

Gaussian), we assume that the yi’s, i ∈ [1, 2n+1], n ≥ 1, are
independent and not identically distributed with any density
of the form 1

σf0

(
yi−xT

i ∆
σ

)
. Maximizing the log-likelihood

with respect to (∆, σ) is thus equivalent to the following
(minimization) optimization problem [28]:

max
∆,σ

{
− (2n+ 1) log (σ) +

2n+1∑
i=1

log

(
f0

(
yi − xT

i ∆

σ

))}

≡ min
∆,σ

{
(2n+ 1) log (σ) +

2n+1∑
i=1

ρ

(
yi − xT

i ∆

σ

)}
,

where −log
(
f0

(
yi−xT

i ∆
σ

))
= ρ

(
yi−xT

i ∆
σ

)
for any non-

constant function ρ (.). One can clearly observe that the least

squares is a special case when ρ
(

yi−xT
i ∆

σ

)
=

(
yi−xT

i ∆
σ

)2

.
Note that the function ρ (.) must be chosen to respect several
conditions (see definition 2.1 on page 31 of [28] for details).

IV. EXPERIMENTS

We compare six different option pricing prediction models:
1) Least squares on {yi, i ∈ [1, 2n+1]}: we directly apply

the least squares on the whole set of 2n+1 observations;
2) Sample median [28]–[31]: ρ

(
yi−xT

i ∆
σ

)
=

∣∣∣yi−xT
i ∆

σ

∣∣∣ ;
3) Winsorized mean [28]:

ρ
(

yi−xT
i ∆

σ

)
=


(

yi−xT
i ∆

σ

)2

if
∣∣∣ yi−xT

i ∆

σ

∣∣∣ ≤ κ

2κ
∣∣∣ yi−xT

i ∆

σ

∣∣∣− κ2 if
∣∣∣ yi−xT

i ∆

σ

∣∣∣ > κ
;

4) Bisquare [28]:

ρ
(

yi−xT
i ∆

σ

)
=

1−
(
1−

(
yi−xT

i ∆

σκ

)2
)3

if
∣∣∣ yi−xT

i ∆

σ

∣∣∣ ≤ κ

1 if
∣∣∣ yi−xT

i ∆

σ

∣∣∣ > κ

;

5) Trimmed mean [28], [29]:

ρ
(

yi−xT
i ∆

σ

)
=

 1
2

(
yi−xT

i ∆
σ

)2

if
∣∣∣yi−xT

i ∆
σ

∣∣∣ ≤ κ

1
2κ

2 if
∣∣∣yi−xT

i ∆
σ

∣∣∣ > κ
;

6) Least squares on {yi, i ∈ [1, 2n+ 1] | yi > 0}: All ob-
servations that are equal to zero are eliminated, and the
least squares is only applied on the remaining part of the
data (that is, on the set of observations that are > 0).
When only one observation is strictly positive among
the 2n+ 1 observations (that is, only y1 > 0), the least
squares will then be applied on {y1, y2}.

Fix r = 2%, D0 = $1, and we assume that the asset price at
the initial date is S0 = $100. A call on the asset is available
with a strike price K = S0, expiring at maturity. We use CVX
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Fig. 2: From left to right: the prediction error ∥y−ŷ∥2

∥y∥2
, the

predicted European call option price at the initial date (Ĉ0), the
predicted Ĉ0 for bisquare, trimmed mean, and “Least squares
on {yi, i ∈ [1, 2n+ 1] | yi > 0}” when 8 ≤ n ≤ 40.

in MATLAB 2021a to estimate ∆ for the sample median, and
the robustfit package to simultaneously estimate both ∆ and
σ for the winsorized mean, bisquare, and trimmed mean. To
choose the best parameter value of κ for the winsorized mean,
bisquare, and trimmed mean, we decide to vary κ between 1
and 5 by step of 10−4. The value of κ that minimizes the
criterion ∥y−ŷ∥2

∥y∥2
will be selected as optimal.

Fix ϵ = 10−6, u1 = 1, and un = r + ϵ. The six
option pricing prediction models are evaluated on a large
set of {ul}l∈[1, n] with u1 > u2 > · · · > un > r and
{dl}l∈[1, n] with dn < dn−1 < · · · < d1 < 0, both
containing equal spaced n > 1 values. We consider dn = −u1,
dn−1 = −u2, · · · , d1 = −un. Figure 2 shows, as a function
of n ∈ {2, · · · , 100} in steps of 1, the PAYOFF prediction
error and the prediction results of C0. We can observe that the
bisquare and the trimmed mean achieve a negligible PAYOFF
prediction error only when n ∈ [3, 40] and n ∈ [8, 71],
respectively. In these two specific ranges of n, the predicted
option price Ĉ0 is about $1.98013. It is true that “Least squares
on {yi, i ∈ [1, 2n+ 1] | yi > 0}” always achieve the lowest
PAYOFF prediction error for all values of n, it can be seen,
however, that it presents higher variability in the values of Ĉ0

compared to the bisquare and trimmed mean (see the third
plot on the right side of Figure 2).

V. DISCUSSION AND FUTURE WORK

Two different European call option pricing prediction strate-
gies via the trinomial model are developed mainly to alleviate
the problem of outliers that least squares does not take into
account. The first strategy applies the least squares but after
the removal of the outliers; whereas the second one exploits
some robust linear regression M -estimators. Both strategies
are evaluated on numerical experiments, the results of which
demonstrate their effectiveness in pricing European call op-
tions. Regarding future enhancements, a likely first step would
be to improve the performance of the bisquare and the trimmed
mean when n > 40 and n > 71, respectively. A second step
would be to estimate ∆ using deep learning techniques (e.g.,
standard neural networks) when n is quite large. Other promis-
ing avenues for further research include (1) the extension of
the proposed work to the multi-period case [23], [32], and
(2) the improvement of financial risk management by buying
European options on assets and exchange rates [33] at the
same time to resist any potential fall of the domestic currency
value.
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