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Abstract—In hyperspectral imagery, each subpixel target is
well known as the target of interest that occupies only a fraction
of the pixel area. The remaining part of the pixel is then filled with
the background (at the same spatial location). In this paper, we
mainly discuss a hyperspectral target detector that is represented
as a sparse hyperspectral image (HSI) that ideally contains only
subpixel targets with the background suppressed. More precisely,
with the help of a pre-learned target dictionary constructed from
some online spectral libraries, the given HSI can be decomposed
into a sum of low-rank background HSI and a sparse target
HSI, where the latter can be directly used as the target detector.
However, with this matrix separation model, the detection of the
target of interest may fail (or not succeed without a lot of false
alarms) when the subpixel target has a very low fill-fraction and
especially when its spectra is well matched to the surroundings.
To well alleviate this serious real challenge, we prove via some
synthetic experiments that learning an additional background
dictionary, and when included in the matrix separation model,
would be crucial.

Index Terms—Hyperspectral target detection, sparse target
HSI, background dictionary, target dictionary, low target fill-
fraction.

I. INTRODUCTION

The hyperspectral remote sensing system [1]–[8] has essen-
tially four basic parts: (1) the illumination source (e.g., the Sun
in passive remote sensing); (2) the atmospheric path; (3) the
target scene; and (4) the airborne hyperspectral imaging sensor.
In hyperspectral imagery, pixels are represented by vectors
whose entries correspond to spectral bands, and images are
represented by 3-D hypercubes. One of the most important
applications of hyperspectral imagery is target detection [1],
[2], [9]–[15], which can be viewed as a binary classification
problem where pixels are labeled as target or background
based on their spectral characteristics. Hyperspectral imagery
has many applications in areas such as military [11], [16],
[17], agricultural [18], [19], mineralogy [20], and medical
fields. Its rich spectral information allows for a more accurate
material identification. However, the greatest challenge lies
in modeling the variation of data due to material spectral
variability, atmospheric conditions, and sensor noise.

The hyperspectral image (HSI) contains both pure and
mixed pixels [2], [3]. A pure pixel represents only one
single material which can be either a pure target or a pure
background; whereas a mixed pixel represents an aggregation
of multiple materials where the result can be either a pure

target, a pure background, or a mixture between the target
and background in the corresponding spatial location. It is
well known that in hyperspectral imagery, every test pixel is
represented by a replacement signal model [2]. That is,

x = α t+ (1− α) b ,

where x is the hyperspectral test pixel, t is the spectrum
of the target, b is the spectrum of the background located at
the same spatial location of the target, and α ∈ [0, 1] is the
target fill-fraction. When α = 0, x is a background pixel (that
is, fully occupied by the background material); whereas when
α ∈ (0, 1], the pixel x is fully (α = 1) or partially (0 < α < 1)
occupied by the target material.

A prior information about the target spectral signature is
often provided to the user and can be collected from some
online spectral libraries. Given this target information, a novel
hyperspectral target detector has recently been developed in
[21]–[23], mainly based on the assumption that the background
is low-rank and the targets are spatially sparse. More pre-
cisely, with the great help of a target dictionary constructed
from some online spectral libraries, the original HSI can be
decomposed into a low-rank background HSI (ideally contains
only the background without the targets) and a sparse target
HSI (ideally contains only the targets with the background
is suppressed). The latter can be used directly as the target
detector [23]. This detector behaves well in high dimensions
and is well known to be (1) distributionally free, (2) invariant
to atmospheric variations; and (3) independent of the com-
pletely unknown covariance matrix that needs to be efficiently
estimated under a non-Gaussian assumption [12], [24]–[27]
and especially in high dimensions [28]–[30]. In [23], this
sparse hyperspectral target detector has been further evaluated
to prove its efficiency in detecting two kinds of targets (e.g.,
Buddingtonite and Kaolinite) incorporated separately in a pure
Alunite Background HSI for different values of fill-fraction
α. The Buddingtonite target is considered an easy target with
respect to the Alunite background since it is easily recognized
based on its unique 2.12µm absorption band; The Kaolinite
target presents overlapping spectral characteristics with the
Alunite mineral and therefore is considered a very challenging
target to detect. However, it has been observed from experi-
ments in [23] that the proposed sparse hyperspectral target



detector fails to detect both targets without a lot of false alarms
when α is small enough (e.g. ≤ 0.1).

In this paper, our main objective is to add a simple update to
the proposed target detector in [23] to make it capable of de-
tecting targets of interest without or with very few false alarms,
even when the value of α is quite small. More precisely,
our update concerns supporting the proposed background and
target matrix separation model in [21]–[23] with an additional
pre-learned background dictionary (ideally containing only
the background pixels without the targets) [31], [32]. Note
that further considering a background dictionary [31] in the
work in [23] has already been proposed in [32] with some
additional constraints about the spatial smoothness of the
background pixels and the sparsity of the targets. Our main
contribution in this paper is just to prove that by constructing
a “perfect”1 background dictionary may be sufficient to detect
targets of interest without or with very few false alarms even
when the value of α is quite small and especially when
the target is well matched to the surroundings. The perfect
background dictionary constructed, which helps us achieve the
best target detection results, will be used as a reference for
our subsequent research to compare with any other adaptive
background dictionary construction approaches that we are
currently working on.

This paper is structured along the following lines. First
comes in section II a mathematical derivation of the sparse
hyperspectral target detector already developed in [21]–[23]
with our added simple update by incorporating an additional
pre-learned background dictionary into the background and
target matrix separation model. Section III presents synthetic
experiments to gauge the effectiveness of our updated target
detector for hyperspectral target detection. The paper ends with
a summary and some directions for future work.

Summary of Main Notations: Throughout this paper,
we depict vectors in lowercase boldface letters and matrices
in uppercase boldface letters. The notation (.)

T and Tr (.)
represent the transpose and trace of a matrix, respectively. A
variety of norms on the matrices will be used. For example,
M is a matrix, Mi,j and [M]:,j are the (i, j) th element
and jth column, respectively. The matrix l2,1-norm is defined
as ∥M∥2,1 =

∑
j

∥∥∥[M]:,j

∥∥∥
2
. The Frobenius norm and the

nuclear norm are defined as ∥M∥F =
(∑

i

∑
j M

2
i, j

) 1
2

, and

∥M∥∗ = Tr
(
MTM

) 1
2 , respectively.

II. OUR UPDATED SPARSE HYPERSPECTRAL TARGET
DETECTOR

In this section, our aim is to simply add a little update to
the background and target matrix separation model proposed
in [21]–[23]. More precisely, in addition to the prior target
information, our update concerns adding a further prior infor-
mation about the background.

1By “perfect” we mean that the background dictionary is purely constructed
from the background pixels (without any target contamination) that completely
represent all the background information of the given HSI.

Mathematical derivation of the sparse hyperspectral target
detector in [21]–[23] with some additional little updates:

Consider that any given HSI is of size h×w× p, where h,
w and p represent height, width, and total number of spectral
bands, respectively. The sparse hyperspectral target detector is
mainly derived in the following steps:

1) Let assume that the HSI contains only 0 < q << e target
pixels, e = h× w, each of the form:

xi = αi ti + (1− αi) bi , i ∈ [1, q] ,

where ti ∈ Rp represents the target of interest that
replaces a fraction αi ∈ (0, 1] from the background
bi ∈ Rp at the same spatial location.

2) Every {ti}i∈[1, q] consists of similar target materials2, and
thus, each can be represented as a linear combination
of Nt ≥ 1 common target samples

{
atj
}
j∈[1, Nt]

, where
atj = [atj, 1, a

t
j, 2, · · · , atj, p]T ∈ Rp (the superscript t is

for target), but weighted with different set of coefficients
{βi, j}j∈[1, Nt]

.
3) Every {bi}i∈[1, q] consists of similar background ma-

terials3, and thus, each can be represented as a linear
combination of Nb ≥ 1 common background samples{
abk

}
k∈[1, Nb]

, where abk = [abk, 1, a
b
k, 2, · · · , abk, p]T ∈

Rp (the superscript b is for background), but weighted
with different set of coefficients {θi, k}k∈[1, Nb]

.
4) Each of the q target pixels, xi, i ∈ [1, q], can thus be

represented as:

xi = αi

Nt∑
j=1

(
βi, j a

t
j

)
+ (1− αi)

Nb∑
k=1

(
θi, k ab

k

)
.

5) By rearranging the HSI into a two-dimensional matrix
D ∈ Re×p, e = h×w, the latter can be decomposed into a
low-rank matrix ideally representing the pure background
residing in the background subspace, a sparse matrix
capturing only the targets of interest residing in the target
subspace, and a noise matrix. More precisely, our updated
background and target matrix separation model is:

D = (Ab L0)
T + (At C0)

T +N0 , (1)

where
• Ab is the background dictionary represented as[

| | · · · |
ab
1 ab

2 · · · ab
Nb

| | · · · |

]
∈ Rp×Nb ;

• At is the target dictionary represented as[
| | · · · |
at
1 at

2 · · · at
Nt

| | · · · |

]
∈ Rp×Nt ;

• L0 ∈ RNb×e is the low-rank coefficient ma-
trix representation of D with respect to Ab,

2It would be more realistic to assume that all {ti}i∈[1, q] consist of
different target materials. However, it is not really necessary as one will end
up with the same background and target separation matrix model in (1).

3It would be more realistic to assume that all {bi}i∈[1, q] consist of
different background materials. However, it is not really necessary as one
will end up with the same background and target separation matrix model in
(1). What really matters is how the background dictionary Ab is constructed
to efficiently represent all the background details of the given HSI.



ideally containing q columns each representing
(1− αi) [θi,1, · · · , θi,Nb

]T , i ∈ [1, q] ;

• (Ab L0)
T ∈ Re×p is the background HSI, ideally

with (e− q) rows representing the background pixels
when α = 0, and the remaining q rows represent the
background pixels of the form (1− αi)

{
bT
i

}
i∈[1, q]

(that is, after the αiti has been separated);
• C0 ∈ RNt×e is a coefficient matrix that should be a

sparse column matrix, ideally containing q non-zero
columns each representing αi[βi,1, · · · , βi,Nt

]T , i ∈
[1, q] ;

• (At C0)
T ∈ Re×p is the sparse target matrix, ideally

with q non-zero rows representing αi

{
tTi

}
i∈[1, q]

.

6) Recovering both L0 and C0 can be done iteratively via
an alternating minimization optimization problems:
• Update L(k+1) as:

argmin
L

{
τ ∥L∥∗ +

∥∥∥Ab L−
(
DT −At C

(k)
)∥∥∥2

F

}
, (2)

• Update C(k+1) as:

argmin
C

{
λ ∥C∥2,1 +

∥∥∥At C−
(
DT −Ab L

(k+1)
)∥∥∥2

F

}
, (3)

where τ > 0 and λ > 0 are two parameters to be tuned
manually and which control the rank of L and the sparsity
level in C, respectively. Both the matrix L and C can be
estimated by various methods, among which we adopt
the alternating direction method of multipliers (ADMM)
as briefly outlined in Algorithm 1.

7) Once L and C are estimated, the matrix (At C)
T will

be used directly for detection. More precisely, the target
detector is just a sparse HSI, generated automatically
from the original one, and which only contains the targets
of interest with the background is suppressed.

III. SOME SYNTHETIC EXPERIMENTS

We evaluate the updated hyperspectral target detector in
section II for the detection of two different targets (Budding-
tonite & Kaolinite) that are incorporated (with a very small
target fill-fraction α) into an HSI of size 100×100×186 that
was manually created from 72 Alunite mineral background
pixels (see the section of experiments and analysis in [23]).
We follow the same experiments as in [23] to generate both the
Buddingtonite and Kaolinite targets that will be incorporated
into the Alunite HSI. For the selection of both τ and λ: we
manually choose them to achieve the best target detection
results without false alarms.

We construct the background dictionary Ab through the
exact 72 Alunite minerals that were picked to construct the
Alunite HSI in the experiment section in [23], that is, Nb = 72.
Hence, we have Ab ∈ R186×72. In this regard, the constructed
Ab is a perfect dictionary, that is, it exactly represents the
entire background details of the Alunite background HSI in
[23]. Seven target blocks (each of size 6×3) are incorporated
in the background Alunite HSI at a very small target fill-
fraction α, and placed in long convoy formation. We are
interested in three target detection scenarios:

Algorithm 1 Solving problem (2) and problem (3) via ADMM
Input: data matrix D, At, Ab, parameter τ > 0 and λ > 0 .

Initialize: k = 0, L(0) = 0, J(0) = 0, Z(0)
1 = 0, C(0) = 0,

F(0) = 0, Z(0)
2 = 0, ρ(0)1 = 10−4, ρ(0)2 = 10−4, maxρ1

= 107,
maxρ2

= 107, ϵ = 10−4 .
While not converged do:

1. Find solution to problem (2): while not converged do:
1a) update L(k+1) by:

argmin
L

{∥∥∥Ab L−
(
DT −At C

(k)
)∥∥∥2

F

+
ρ
(k)
1

2

∥∥∥∥∥L− J(k) +
1

ρ
(k)
1

Z
(k)
1

∥∥∥∥∥
2

F

}
.

1b) update J(k+1) by:

argmin
J

{
ρ
(k)
1

2

∥∥∥∥∥J−
(
L(k+1) +

1

ρ
(k)
1

Z
(k)
1

)∥∥∥∥∥
2

F

+ τ ∥J∥∗

}
.

1c) update Z
(k+1)
1 by:

Z
(k)
1 + ρ

(k)
1

(
L(k+1) − J(k+1)

)
.

1d) update ρ
(k+1)
1 by:

min
(
1.1 ρ

(k)
1 , maxρ1

)
.

1e) check the convergence condition:∥∥∥L(k+1) − J(k+1)
∥∥∥
F

≤ ϵ .

2. Find solution to problem (3): while not converged do:
2a) update C(k+1) by:

argmin
C

{∥∥∥At C−
(
DT −Ab L

(k+1)
)∥∥∥2

F

+
ρ
(k)
2

2

∥∥∥∥∥C− F(k) +
1

ρ
(k)
2

Z
(k)
2

∥∥∥∥∥
2

F

}
.

2b) update F(k+1) by:

argmin
F

{
ρ
(k)
2

2

∥∥∥∥∥F−
(
C(k+1) +

1

ρ
(k)
2

Z
(k)
2

)∥∥∥∥∥
2

F

+λ ∥F∥2,1

}
.

2c) update Z
(k+1)
2 by:

Z
(k)
2 + ρ

(k)
2

(
C(k+1) − F(k+1)

)
.

2d) update ρ
(k+1)
2 by:

min
(
1.1 ρ

(k)
2 , maxρ2

)
.

2e) check the convergence condition:∥∥∥C(k+1) − F(k+1)
∥∥∥
F

≤ ϵ .

3. Stop when the convergence conditions are satisfied:∥∥∥(AbL
(k+1)

)T −
(
AbL

(k)
)T ∥∥∥

F

∥D∥F
≤ ϵ ,∥∥∥(AtC(k+1)

)T −
(
AtC(k)

)T ∥∥∥
F

∥D∥F
≤ ϵ .



1) The seven target blocks correspond to only “Budding-
tonite” targets. The target dictionary At is constructed
in the same way as in the experiments in [23], that is,
from three Buddingtonite target samples extracted from
the online Advanced Spaceborne Thermal Emission and
Reflection spectral library [33]. Hence, we have At ∈
R186×3. Figure 1 exhibits the obtained target detection
performance when the Buddingtonite target blocks are
incorporated with α = 0.0002. It is important to note that
if we consider α < 0.0002, the detection performance of
our updated target detector will start to deteriorate and
the false alarms will start to appear.
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Fig. 1. From top left to bottom right: the original Alunite HSI containing
the incorporated seven Buddingtonite targets with α = 0.0002, our updated
target detector, the ROC curve of our updated target detector, the ROC curve
of our updated target detector for low probability of false alarms.

2) The seven target blocks correspond to only “Kaolinite”
targets. The target dictionary At is constructed in the
same way as in the experiments in [23], that is, from six
Kaolinite target samples extracted from the online United
States Geological Survey spectral library [34]. Hence,
we have At ∈ R186×6. Figure 2 exhibits the obtained
target detection performance when the Kaolinite target
blocks are incorporated with α = 0.002. We choose this
specific value of α because the updated detector will
behave poorly in detecting the Kaolinite target pixels
when α < 0.002 and a lot of false alarms will appear.

3) The seven target blocks are distributed between four
“Kaolinite” target blocks and three “Buddingtonite” target
blocks. We are thus interested to detect two types of
targets of interest (Buddingtonite and Kaolinite) in the
same HSI. The target dictionary is constructed from the
union of the Buddingtonite and Kaolinite target samples
considered in the first two scenarios. Hence, we have
At ∈ R186×9. Figure 3 exhibits the obtained target
detection results when the three Buddingtonite and four
Kaolinite target blocks are incorporated with α = 0.0003.
When α < 0.0003, the detection performance starts to
deteriorate and a lot of false alarms start to appear.
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Fig. 2. From top left to bottom right: the original Alunite HSI containing
the incorporated seven Kaolinite target blocks with α = 0.002, our updated
target detector, the ROC curve of our updated target detector, the ROC curve
of our updated target detector for low probability of false alarms.
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Fig. 3. From top left to bottom right: the original Alunite HSI containing
four Kaolinite and three Buddingtonite target blocks with α = 0.0003, our
updated target detector, the ROC curve of our updated target detector, the
ROC curve of our updated target detector for low probability of false alarms.

IV. CONCLUSION AND FUTURE WORK

In this paper, we add a little update to the sparse and low-
rank matrix decomposition model that has been developed in
[21]–[23]. In addition to the prior target information (through
a target dictionary At), we have proved that further considera-
tion of the prior background information (through a “perfect”
dictionary Ab) can significantly improve target detection, espe-
cially when the target fill-fraction α is very small and the target
of interest is well matched to the surroundings. Regarding
future enhancements, a likely first step would be to develop
small-size adaptive background dictionary Ab construction
approaches [35] which can generate a dictionary that is close to
perfect. Other promising avenues for further research include
improving the construction of the target dictionary [36]–[38]
mainly due to the fact that there are usually not enough spectral
signatures in the online spectral libraries.
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[20] B. Hörig, F. Kühn, F. Oschütz, and F. Lehmann, “HyMap hyperspectral
remote sensing to detect hydrocarbons,” International Journal of Remote
Sensing, vol. 22, pp. 1413–1422, May 2001.

[21] A. W. Bitar, L. Cheong, and J. Ovarlez, “Target and background
separation in hyperspectral imagery for automatic target detection,” in
2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), April 2018, pp. 1598–1602.

[22] A. W. Bitar, L.-F. Cheong, and J.-P. Ovarlez, “Sparse and low-rank
matrix decomposition for automatic target detection in hyperspectral im-
agery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57,
no. 8, pp. 5239–5251, 2019.

[23] A. W. Bitar, J.-P. Ovarlez, L.-F. Cheong, and A. Chehab, Automatic
Target Detection for Sparse Hyperspectral Images. Cham: Springer
International Publishing, 2020, pp. 435–462.

[24] J. M. F. Pons, “Robust target detection for hyperspectral imaging,”
Ph.D. dissertation, CentraleSupélec, 2014. [Online]. Available:
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