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Abstract—The one-period trinomial option pricing model is
well-known in the literature as it considers three possible move-
ment directions of the asset price. However, by equating the price
of the option to the self-financing hedging portfolio at maturity,
this yields a linear system of three equations with two unknowns
that correspond to the coefficients for the delta-hedging portfolio.
Hence, the trinomial model is said to be incomplete, that is, there
exists an infinite number of equivalent martingale measures.
To deal with this incompleteness, this paper aims to price
options via some robust linear regression techniques in order
to mainly handle the problem of outliers that the least squares
fails to consider. The proposed robust techniques are evaluated
on numerical data, and the results of which demonstrate their
effectiveness for European call option pricing.

Index Terms—Asset prices, Trinomial model, European call
option pricing, Least squares, Robust linear regression.

I. INTRODUCTION

Option pricing theory [1] is considered one of the most
important topics in finance. It has initially began with the
French mathematician Louis Bachelier in 1900 after he devel-
oped an option pricing formula with the assumption that the
asset prices increments are independent and follow a Brow-
nian motion [2]. Since then, several notable contributions for
pricing options, under the difficulty of estimating certain non-
observable parameters, have been developed with Sprenkle in
1961 [3], Rosett in 1963 [4], Ayres in 1963 [5], Boness in
1964 [6], Samuelson in 1965 [7], Samuelson et al. in 1969 [8],
and Merton in 1972 [9]. However, one of the biggest influence
finance had on operation markets started when Myron Scholes
met Fisher Black in the fall of 1968 and began working
together to discover one of the most influential mathematical
model that accurately prices options1. This Black and Scholes
option pricing model appeared in the journal of political
economy in 1973 [11], supported by another article on the
theory of rational option pricing that was published by Robert
Merton in the same year [12].

A European call option is basically the right but not the
obligation to buy an asset only at maturity and at a fixed price
(known as the strike price) specified at the initial date of the
contract. At maturity, there is no need for any mathematical
formulation to price an option since its value would simply be
equal to (asset price at maturity − strike price)+ and which is

1See the online conversation [10] with Myron Scholes who briefly explained
his work with Fisher Black.

well known by the PAYOFF. By replacing the asset price at
maturity by its current price (at any time before maturity),
the strike price by its present value, and by determining the
probability that the call option will finishes in the money (after
making certain assumptions about how the asset price will
behave), Black and Scholes came up with a parametric non-
arbitrage option pricing model that accurately prices options
with a closed-form formula that does not depend on the risk
aversion of the investor. This pioneering work of Black and
Scholes lies on the assumption that the market is complete
where the equivalent martingale measure is unique, and hence,
the option can be replicated by the self-financing hedging
portfolio of the underlying basic assets in the market. However,
one of the major limitations of this model is its lack of
robustness since it considers a very specific dynamics about
the asset prices.

To move on from a parametric to robust European option
pricing, the one-period discrete-time binomial model was
the first non-arbitrage discrete pricing contribution that was
developed in 1978 by William Sharpe and then formalized
in 1979 by Cox, Ross, and Rubenstein [13]. More precisely,
the asset price at maturity, denoted as S1 ≥ 0, can only goes
up or down with respect to its price at initial date (that is,
S0 ≥ 0). After equating the price of the option to the self-
financing hedging portfolio at maturity, this yields a linear
system of two equations with two unknowns that correspond to
the coefficients for the delta-hedging portfolio. As the number
of equations and unknowns in the linear system are equal
to each other, the delta-hedging coefficients, in general, can
be determined by a unique analytical solution. However, this
model assumes that the asset price can never remain the same
for two consecutive discrete time steps (e.g. S1 ̸= S0 almost
surely) and which does not reflect well the real market.

To complete the binomial model, the one-period discrete-
time trinomial option pricing model was derived by Phelim
Boyle in 1986 [14] to incorporate three possible movement
directions of the asset price S1, with respect to S0: (1) going
up with a factor eu, u > 0; (2) remains the same, or (3)
going down with a factor ed, d < 0. Hence, pricing options
under the trinomial model represents a more realistic but more
complex structure than the binomial one. However, equating
the price of the option to the self-financing hedging portfolio
at maturity yields an over-determined linear system of three



equations with two unknowns that correspond, again, to the
coefficients for the delta-hedging portfolio. As the number
of equations in the linear system exceeds that of unknowns,
a solution for the delta-hedging coefficients, in general, can
not be guaranteed. Hence, the trinomial market model is said
to be incomplete, that is, there exists an infinite number of
equivalent martingale measures.

To deal with pricing options under the incompleteness of
the trinomial model, one can build a self-financing hedging
portfolio which does not perfectly replicates the option price.
An estimation to the delta-hedging coefficients can simply be
done via the least squares technique [15], [16]. The latter is
derived with the idea of minimizing the sum of the squared “er-
rors”, that is, to adjust the unknown delta-hedging coefficients
such that the sum of the squares of the differences between
the original and predicted PAYOFF values is minimized. As a
result, the least squares estimates is the regression equivalent
to the sample mean which is well known to be very sensitive
to outliers2, and therefore, often fails to provide good fits to
the bulk of the data. In addition, the least squares is derived
under the Gaussian assumption, and which proves its lack
of robustness against the outliers. Hence, the detla-hedging
coefficients will not be estimated precisely and which has a
major bad effect on the prediction of the option price.

In this paper, we mainly aim to alleviate the effect of outliers
in order to efficiently predict the PAYOFF as well as the option
price at initial date. We achieve this by two different option
prediction strategies:

1) The first one would be to estimate the delta-hedging
portfolio coefficients via some robust linear regression
techniques in order to deal with the outliers that the
least squares fails to consider. More precisely, by ex-
ploiting some linear regression M -estimators [17], [18],
the delta-hedging coefficients can be estimated quite
precisely (that is, their estimated values are too close
to those of the true unknown ones), and thus, the true
(known) PAYOFF values as well as the true (unknown)
option price at initial date will be predicted efficiently;

2) An alternative strategy would be to simply (1) clean the
data by manually removing the observations (outliers)
that are separated from the bulk of the data; and (2) use
the least squares estimation on the remaining data after
the outliers have been removed.

It is worthy to note that the two different possible positive
factors eu and ed by which the asset price S1 goes up or
down with respect to S0, respectively, are usually not known
in the real market, and thus, a single specific values for both
the parameters u and d should be chosen manually in order to
price the corresponding option. As a result, only three possible
observations are always used to construct the linear regression
model. However, using a very little number of observations
(ex. three) might be not sufficient to accurately predict the

2By outliers we mean the observations that deviate from the general pattern
of the data. For example, one and/or several points that deviate from the linear
regression line where all the remaining points are located.

option price under any regression model. Hence, to ensure
reliable prediction results, generating enough observations
may alleviate this challenge.

It is not surprising that the option price greatly depends
on the selection for both u and d. For example, the option
price always increases with the increase of the value for u.
We believe that generating enough observations may greatly
reduce the effect of the choice for both u and d on the option
price. Hence, instead of selecting a specific value for each
of these two parameters, we aim to price options under a
large set of values for u and d at once. This will help us
to generate enough observations that can lead to an accurate
estimation of the delta-hedging coefficients especially with
such a robust linear regression M -estimator. In addition, this
renders pricing the option much less sensitive to such a specific
single selection of both the two parameters u and d, and thus,
a more realistic option pricing model.

This paper is structured along the following lines. First
comes in section II a brief overview of the trinomial option
pricing model on assets as well as of the estimation of
the delta-hedging portfolio coefficients via the least squares
technique. The proposed two option prediction strategies for a
robust delta-hedging estimation are outlined in sec III. Section
IV presents the experiments to gauge the effectiveness of
the proposed prediction strategies for European call option
pricing. Finally, section V gives concluding remarks and some
directions for future work.

Notations: throughout this paper, we depict vectors in
lowercase boldface papers and matrices in uppercase boldface
papers. The notation (.)

T , (.)+, |.|, and (̂.) stand for the trans-
pose, positive part, absolute value, and estimated/predicted
value, respectively. A variety of norms on vectors will be used.
For instance, ∆ is a vector, and ∆j is the jth element. The
vector l2 and l1- norms are defined by ∥∆∥2 =

√∑
j ∆

2
j and

∥∆∥1 =
∑

j |∆j |, respectively.

II. THE STANDARD ONE-PERIOD TRINOMIAL PRICING
MODEL AND THE LEAST SQUARES

In this section, we first overview the standard one-period tri-
nomial option pricing model in subsection II-A, and in which
we briefly explain how can one generate an over-determined
linear system of three equations with two unknowns that
correspond to the delta-hedging portfolio coefficients. In order
to estimate those unknown coefficients, we present the least
squares technique in subsection II-B. Finally subsection II-C
proves, with a simple example, the sensitivity of the least
squares estimation to even a single outlier.

A. The (standard) one-period trinomial option pricing model

The one-period discrete-time trinomial market model con-
siders two primary assets: (1) a risk-free asset with price
D1 = D0e

r, with a risk-free rate r ≥ 0 and D0 > 0; and



(2) a risky asset with price S1, characterized by three jump
behavior as follows:

S1 =


S0e

u with probability pu < 1

S0 with probability p0 = 1− pu − pd < 1 ,

S0e
d with probability pd < 1

where u > 0, d < 0, pu, pd ∈ (0, 1), and pu + pd < 1.
Interestingly, for the market to be arbitrage-free, the follow-

ing condition is necessary [16]:

u > r,
eu − er

eu − 1
> p0 > 0 . (1)

However, once condition (1) is satisfied, this implies that

pu > 0 , pd > 0 , and pu + pd < 1 .

Hence, the couple (pu, pd) defines well a probability if and
only if condition (1) is satisfied.

Now, assume an investor’s portfolio is constructed by
∆S ∈ R risky asset and ∆D ∈ R risk-free asset, where
∆S and ∆D represent the unknown delta-hedging coefficients
that are linearly independent and which need to be estimated
efficiently. The self-financing portfolio can be defined as

C1 − C0 = ∆S (S1 − S0) + ∆D (D1 −D0) .

More precisely, one has:

At initial date :
C0 = ∆S S0 +∆D D0 .

At maturity :
C1 = ∆SS1 +∆DD1

=


∆S (S0e

u) + ∆D (D0e
r) = y1

∆S (S0) + ∆D (D0e
r) = y2 ,

∆S

(
S0e

d
)
+∆D (D0e

r) = y3

where y1 = (S0e
u −K)+, y2 = (S0 −K)+, and y3 =(

S0e
d −K

)
+

, represent the value of the call option at ma-
turity (that is, the PAYOFF) when the asset price S1 goes
up, remains the same, or goes down with respect to S0,
respectively. As we can see, this yields an over-determined
linear system of three equations with only two unknowns (∆S

and ∆D). We denote the corresponding vector of dependent
variables by y = [y1, y2, y3]

T ∈ R3
+. In general, the vector y

does not span the column space of the matrix of independent

variables X =

−− xT
1 −−

−− xT
2 −−

−− xT
3 −−

 =

S0e
u D0e

r

S0 D0e
r

S0e
d D0e

r

 ∈ R3×2
+ ,

and hence, a solution for ∆ = [∆S , ∆D]
T ∈ R2 does not exist

if one forces y to be exactly equal to X∆, that is, y = X∆.

B. Estimation of ∆ via the least squares

As it is generally impossible to solve the linear system y =
X∆ when the number of equations exceeds that of unknowns,

it is possible, however, to project y into the column space of
X. Consider the following linear regression model:

y = X∆+ ϵ ,

where ϵ ∼ N
(
0, σ2I3

)
with I3 is an identity matrix of size

3× 3, and y ∼ N
(
X∆, σ2I3

)
.

The likelihood under the Gaussian assumption is defined as:

L (y1, y2, y3; ∆, σ) =

3∏
i=1

1

σ
√
2π

e

(
− 1

2σ2 (yi−xT
i ∆)

2
)
.

Maximizing the log-likelihood w.r.t. ∆ under the Gaussian
assumption gives the usual estimation known as the ordinary
least squares estimator. More precisely, we have:

∆̂ = argmin
∆

{
3∑

i=1

(
yi − xT

i ∆
)2}

= argmin
∆

{
∥y −X∆∥22

}
,

=
(
XTX

)−1
XTy =

[̂
∆S

∆D

]
∈ R2 .

(2)

Hence, the least squares estimation of the true (known) PAY-
OFF can be given as:

ŷ = X∆̂ . (3)

As the option price should always be positive, thus, it would
be more realistic to consider the rectified linear unit of ŷ. That
is:

(ŷ)+ .

Once ∆ is estimated, the least squares estimator of the true
(unknown) call option price at initial date (that is, C0) can be
given as:

Ĉ0 = ∆̂SS0 + ∆̂DD0 . (4)

C. Problem of outliers with the least Squares: some numerical
investigations

Let fix r = 2%, D0 = $1, S0 = $100, and K = S0. We
assume that both u and d are known and so we aim to test on
different values for u ∈ {0.1, 0.3, 0.5, 0.8, 1, 2, 3, 5, 10},
and we choose d = −u. Table I presents the true PAYOFF
vector y = [y1, y2, y3]

T , the predicted PAYOFF vector via
the least squares ŷ = [ŷ1, ŷ2, ŷ3]

T and its rectified linear

unit version (ŷ)+, the prediction error
∥y−(ŷ)+∥2

∥y∥2
, as well

as the prediction via the least squares of the option price at
initial date Ĉ0, for the nine different values for u. We can
clearly observe that the least squares behaves badly for all
the values of u except when u is large enough where the
prediction error is very small, and so the option price at initial
date (that is, C0) can be predicted efficiently. However, the
option price increases progressively up to a certain limit (for
example around $50.98) with the increase of the value for u,
and thus, the option price will be very large when u is large
enough.



u S1 y (ŷ)+
∥y−(ŷ)+∥

2
∥y∥2

Ĉ0 (in $)

0.1 [110.5170, 100, 90.4837] [10.5170, 0, 0] [8.9363, 3.3277, 0] 0.3503 4.3178
0.3 [134.9858, 100, 74.08182] [34.9858, 0, 0] [30.7929, 9.8528, 0] 0.3060 10.8429
0.5 [164.8721, 100, 60.6530] [64.8721, 0, 0] [58.8285, 16.0078, 0] 0.2637 16.9978
0.8 [222.5540, 100, 44.9328] [122.5540, 0, 0] [115.0617, 24.1670, 0] 0.2064 25.1570
1 [271.8281, 100, 36.7879] [171.8281, 0, 0] [164.0932, 28.7605, 0] 0.1733 29.7505
2 [738.9056, 100, 13.5335] [638.9056, 0, 0] [633.8339, 42.5468, 0] 0.0670 44.5073
3 [2008.5536, 100, 4.9787] [1908.5536, 0, 0] [1906.3057, 47.3987, 0] 0.0248 48.3887
5 [14841.3159, 100, 0.6738] [14741.3159, 0, 0] [14740.9835, 49.6608, 0] 0.0033 50.6509
10 [2202646.5794, 100, 0.00454] [2202546.5794, 0, 0] [2202546.5772, 49.9977, 0] 2.2699× 10−6 50.9877

TABLE I
ESTIMATION OF THE OPTION PRICE VIA THE LEAST SQUARES METHOD.

Figure 1 exhibits the difference between y and ŷ, as well as
the difference between y and (ŷ)+, for u = 0.1 and d = −u.
From figure 1, we can observe that the entire least squares
regression red dashed line is skewed towards the observation
y3. Hence, the least squares has considered y3 as an outlier.
In other words, the bulk of the data is only formed by y1 and
y2, whereas y3 is the observation that deviates from it.
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Fig. 1. Performance of the least squares hedging portfolio at maturity.

III. ROBUST ESTIMATION OF THE DELTA-HEDGING
PORTFOLIO COEFFICIENTS

In this section, we develop two different prediction strate-
gies for the European call option price in order to alleviate
the effect of outliers that the least squares fails to consider.
The first strategy is presented in subsection III-B in which
we exploit the idea behind the robust M -estimators for linear
regression analysis [17], [18]; whereas the second one is
presented in subsection III-C and which simply aims to apply
the least squares after manually cleaning the data from the
outliers that are identified. However, we already mentioned in
the introduction that training a regression model with only
three observations (ex. the matrix X has only three rows)
might be not sufficient to accurately estimate the unknown
delta-hedging coefficients. That is why, we start this section
(that is, in subsection III-A) by presenting a method that allows
us to construct a linear regression model with 2n+ 1, n ≥ 1,
observations.

A. Increasing the number of observations from 3 to 2n + 1,
n ≥ 1

In order to estimate the option price at initial date, that is,
C0, independently from any such a specific single value for
each of the parameters u > 0 and d < 0, we propose to

replace the single possible values for u and d by a n-vector
u = [u1, u2, · · · , un]

T and d = [d1, d2, · · · , dn]T , with
n ∈ N, n ≥ 1, u1 > u2 > · · · > un > r > 0, and dn <
dn−1 < · · · < d1 < 0. As a result, one has to expect 2n + 1
different values for S1. That is:

S1 =



S0e
u1 with probability pu1 < 1

...
S0e

un with probability pun < 1

S0 with probability p0 < 1 ,

S0e
d1 with probability pd1

< 1
...
S0e

dn with probability pdn
< 1

with

p0 = 1− pu1
− · · · − pun

− pd1
− · · · − pdn

> 0 .

Based on these different 2n+ 1 possibilities for S1, we have
now the possibility to construct an over-determined linear
system of 2n+ 1 equations with only 2 unknowns. That is:

C1 =



∆S (S0e
u1) + ∆D D1 = y1

∆S (S0e
u2) + ∆D D1 = y2

...
∆S (S0e

un) + ∆D D1 = yn

∆SS0 +∆D D1 = yn+1 ,

∆S

(
S0e

d1
)
+∆D D1 = yn+2

∆S

(
S0e

d2
)
+∆D D1 = yn+3

...
∆S

(
S0e

dn
)
+∆D D1 = y2n+1

where y1 = (S0e
u1 −K)+, y2 = (S0e

u2 −K)+, yn =
(S0e

un −K)+, yn+1 = (S0 −K)+, yn+2 =
(
S0e

d1 −K
)
+

,
yn+3 =

(
S0e

d2 −K
)
+

, and y2n+1 =
(
S0e

dn −K
)
+

. We
can observe that when n = 1, we return back to the standard
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Fig. 2. From top to bottom: the predicted PAYOFF vector via the least
squares ŷ = [ŷ1, ŷ2, · · · , ŷ11]T ∈ R11

+ , its rectified linear unit version
vector (ŷ)+ = [(ŷ1)+ , (ŷ2)+ , · · · , (ŷ11)+]T ∈ R11

+ .

(one-period) trinomial option pricing model already described
in subsection II-A.

What happens to the least squares estimation of ∆ with 2n+1,
n ≥ 1, observations?

Let fix r = 2%, S0 = $100, K = S0, and D0 = $1.
Instead of specifying a single specific value for u as we did in
the example in subsection II-C, we predict the PAYOFF with
the least squares under a set of 5 possible evenly spaced values
for u > 0 at once, that is, a vector u = [u1, u2, · · · , u5]

T ,
u1 > u2 > · · · > u5 > r. We choose u5 = r+ ϵ, ∀ϵ > 0, and
u1 = 1. We also fix d = [−u5, −u4, · · · , −u1]

T . Hence, we
have 11 true (known) possible PAYOFF values, that is, y =
[y1, y2, · · · , y11]T ∈ R11

+ . Figure 2 exhibits the difference
between the true PAYOFF values and the predicted ones via
the least squares. We can clearly observe that the observations
y7, y8, y9, y10, and y11 deviate from the pattern of the data
formed by the remaining 6 observations (that is, y1, y2, y3, y4,
y5, and y6), and thus, can be identified as outliers. Therefore,
it becomes obvious that the least squares regression line will
be highly skewed towards these identified outliers as can be
seen from the red dashed-line in figure 2.

B. Estimation of ∆ via robust regression M -estimators

Recall that the least squares is derived under the Gaussian
assumption which does not take into consideration the outliers.
In order to not consider any specific kind of distribution (ex.
the Gaussian assumption), we are going to assume that the yi’s,
i ∈ [1, 2n + 1], n ≥ 1, are independent and not identically
distributed with any density of the form 1

σf0

(
yi−xT

i ∆
σ

)
. The

likelihood under this density function can be written as [17],
[18]:

L (y1, · · · , y2n+1; ∆, σ) =

2n+1∏
i=1

1

σ
f0

(
yi − xT

i ∆

σ

)
.

Maximizing the log-likelihood w.r.t. (∆, σ) is thus equivalent
to the following (minimization) optimization problem:

max
∆,σ

{
− (2n+ 1) log (σ) +

2n+1∑
i=1

log

(
f0

(
yi − xT

i ∆

σ

))}

≡ min
∆,σ

{
(2n+ 1) log (σ) +

2n+1∑
i=1

ρ

(
yi − xT

i ∆

σ

)}
,

(5)

where −log
(
f0

(
yi−xT

i ∆
σ

))
= ρ

(
yi−xT

i ∆
σ

)
for any non-

constant function ρ (.). One can clearly observe that the least

squares is a special case when ρ
(

yi−xT
i ∆

σ

)
=
(

yi−xT
i ∆

σ

)2
.

By taking the derivative of the objective function in (5) with
respect to ∆ and σ and set it to zero, we obtain [17]:

2n+1∑
i=1

ρ′

(
yi − xT

i ∆̂

σ̂

)
xi = 0 ,

and

1

(2n+ 1)

2n+1∑
i=1

(
yi − xT

i ∆̂

σ̂

)
ρ′

(
yi − xT

i ∆̂

σ̂

)
= 1 ,

respectively.
Note that the function ρ (.) must be chosen to respect the

following conditions [17]:
• ρ (x) should be a non-decreasing function of |x| ;
• ρ (0) = 0 ;
• ρ (x) is increasing for x > 0 such that ρ (x) < ρ (∞) ;
• if ρ is bounded, it is also assumed that ρ (∞) = 1 .

In this paper, we mainly focus on five types of ρ(.)-functions
(see table II) in order to estimate the delta-hedging coefficients,
and thus, the prediction of the PAYOFF as well as the true
(unknown) call option price at initial date C0.

1) The sample mean estimator: recall that the least squares
estimates, already described in subsection II-B, is the
regression equivalent to the sample mean which is well
known to be very sensitive to outliers.

2) The sample median estimator: To deal with the outliers
in the data, the first intuition that comes into our mind
is to work with the sample median [17], [18] which is
much more robust to outliers than the sample mean. The
estimator ∆̂ that minimizes problem (5) with this ρ(.)
function is known as the L1-estimator of ∆. As 2n+1
is always odd, the derivative of the objective function in
(5) with respect to xT

i ∆ exists and which is everywhere
except for the observations y1, · · · , y2n+1, and it is
equal to −

∑2n+1
i=1 sign

(
yi − xT

i ∆
)

which can never
be zero. Thus, the minimizer must occur at one of the
points y1, · · · , y2n+1 where the objective function in (5)
is indeed not differentiable. However, it is a continuous
function and is decreasing when xT

i ∆ < y 2n+2
2

and



Estimators ρ

(
yi−xT

i ∆

σ

)
Sample mean

(
yi−xT

i ∆

σ

)2

Sample median
∣∣∣∣ yi−xT

i ∆

σ

∣∣∣∣
Winsorized mean


(

yi−xT
i ∆

σ

)2

if
∣∣∣∣ yi−xT

i ∆

σ

∣∣∣∣ ≤ κ

2κ

∣∣∣∣ yi−xT
i ∆

σ

∣∣∣∣− κ2 if
∣∣∣∣ yi−xT

i ∆

σ

∣∣∣∣ > κ

Bisquare


1−

(
1−

(
yi−xT

i ∆

σκ

)2
)3

if
∣∣∣∣ yi−xT

i ∆

σ

∣∣∣∣ ≤ κ

1 if
∣∣∣∣ yi−xT

i ∆

σ

∣∣∣∣ > κ

Trimmed mean


1
2

(
yi−xT

i ∆

σ

)2

if
∣∣∣∣ yi−xT

i ∆

σ

∣∣∣∣ ≤ κ

1
2
κ2 if

∣∣∣∣ yi−xT
i ∆

σ

∣∣∣∣ > κ

TABLE II
THE DIFFERENT ρ (.)-FUNCTIONS.

increasing when xT
i ∆ > y 2n+2

2
. Hence, the minimizer

is given by xT
i ∆̂ = y 2n+2

2
. However, unlike the least

squares, there is no explicit expression for the mini-
mizer of (5) since the l1-norm is not differentiable at
zero. However, one can find recursive algorithms that
are able to solve it. For example, in our experiments
later, we use a Matlab software for disciplined convex
programming (e.g., CVX Matlab) to estimate the delta-
hedging coefficients.

3) The Winsorized mean estimator: For the first impression,
one can directly think to propose an estimator that
combines the robustness of the sample median (under the
non-Gaussian assumption) and the low-variance of the
sample mean (under exact normality). Hence, for a fair
compromise between the mean and median, the function
ρ (.) can be chosen to belong to the family of Huber
functions. Figure 3 exhibits both the ρ (.)- and ρ′ (.)-
functions under this family of Huber functions. Note
that the solution xT

i ∆̂ is closely related to Winsorizing
[18].
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Fig. 3. From left to right: the huber ρ- and ρ′- functions (with κ = 1.345).

4) The bisquare (re-descending) etimator: From figure 3,
we can observe that the function ρ (.) aims to tend
to infinity at infinity, whereas its derivative, that is,
the function ρ′ (.), is continuous but always shifted by
±κ = 1.345. These findings demonstrate that both the

gross as well as the moderately large outliers are going
to be treated in the same manner. In this regard, thinking
about using a function ρ′ (.) that re-descend smoothly to
zero at infinity (see figure 4) may be quite helpful since
in this case the gross outliers will be completely rejected
and the moderately large outliers will be completely
ignored.
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Fig. 4. From left to right: the bisquare ρ- and ρ′- functions (with κ = 4.685).

5) The trimmed mean estimator: In addition to the sample
median and winsorized mean, one can think of discard-
ing a proportion of the largest and smallest values. This
is well-known as the trimming procedure [18] and which
can be much more robust to outliers than the sample
mean and sample median.

C. Strategy2: Estimation of ∆ via least squares after the
manual removal of the outliers

As we have seen from the example in subsection III-A, it
is possible to identify the nature of the observations (outliers)
that deviate from the bulk of the data. Hence, it would be
very beneficial to first manually remove these outliers from the
data, and then apply the least squares to estimate the delta-
hedging coefficient vector ∆. It is obvious to mention that
in the case when K = S0, and for any n ≥ 1, the PAYOFF
values y1, · · · , yn+1 will always belong on the regression line,
and so they can form the true bulk of the data. Whereas the
remaining PAYOFF values, that is, yn+2, · · · , y2n+1 are equal
to zero, and so they can be considered as the observations that
deviate from the general pattern of the data.

As we are now able to identify the nature of the outliers,
it becomes easy to manually remove them from the data and
then apply the least squares only on the remaining observations
(that is, after the outliers have been removed).

IV. EXPERIMENTS

In this section, we mainly aim to evaluate both the predic-
tion strategies of option pricing already described in subsection
III-B and subsection III-C. The evaluations are done on two
different scenarios for n:

• n = 1 (the standard one-period trinomial option pricing
(see subsection II-A)): a single value for each of u > 0
and d < 0 is specified to price the call option. The value
for d is always fixed to be equal to −u;

• n > 1 (our proposed extension of the one-period tri-
nomial option pricing model (see subsection III-A)): a
vector of u = [u1, · · · , un]

T and d = [d1, · · · , dn]T



are specified to price the option. The vector d is always
fixed to be equal to [−un, −un−1, · · · , −u1]

T .
In all the experiments, we fix r = 2%, D0 = $1, and we
assume that the asset price at initial date is S0 = $100. A
call on the asset is available with a strike price K = S0,
expiring at maturity. To keep it simple, we assume that the
underlying asset pays no dividend during the life of the call,
neither counterparty to the transaction is at risk of default,
and all the transaction costs, margin requirements and taxes
are completely ignored. All our experiments3 are conducted
on MATLAB 2021a.

Note that we use the robustfit package in MATLAB to
simultaneously estimate both ∆ and σ for the sample median,
winsorized mean, bisquare, and trimmed mean estimators.
This package uses an iteratively reweighted least squares to
compute the delta-hedging coefficients.

A. Tuning selection of κ

To choose the best parameter value for κ for every robust
regression technique (e.g. winsorizing, bisquare, and trimmed
mean), we decide to vary κ between 1 and 5 by step of 10−4.

The parameter value κ that minimizes the criterion
∥y−(ŷ)+∥2

∥y∥2

will be selected as the optimal value.

B. European option pricing

Let fix ϵ = 10−6.
• When n = 1: we choose to evaluate both the option

pricing prediction strategies in subsection III-B and III-C
on a set of 100 single evenly spaced values for u between
r + ϵ and 5. Figure 5 exhibits, as a function of u, the
error results in the prediction of y, the prediction results
of C0, as well as the different obtained optimal values of
κ for the bisquare, winsorized mean and trimmed mean.
As we can observe from figure 5, the robust regression
M -estimators behave poorly for all the different values
of u. However, Strategy2 (that is, when applying the least
squares after the manual removal of the outliers) achieves
the lowest prediction error for all the values of u and
presents a stable Ĉ0 always varying around $1.98013.

• When n > 1: for any un ≥ r+ ϵ, both the option pricing
prediction strategies in subsection III-B and III-C are
evaluated on an interval u = [u1, · · · , un]

T containing
n > 1 evenly spaced values. Figure 6 exhibits, as a
function of n ∈ {2, · · · , 100} in steps of 1, and for
u1 = 1, the error results in the prediction of y, the
prediction results of C0, as well as the different obtained
optimal values of κ for the bisquare, winsorized mean
and trimmed mean. From the top row of figure 6, it is
important to note that the bisquare behaves well (that is, a
low error in the prediction of y) only when n is between
2 and 39 where the prediction error is negligeable (about
1.33× 10−15). Whereas the trimmed mean behaves well
when n is between 8 and 70. In these two specific ranges

3The MATLAB code of the proposed work and all the experiments is
available upon request.
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∥y−(ŷ)+∥

2
∥y∥2

, the predicted European call option pricing at initial date
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of n, the predicted option price Ĉ0 is about $1.98013.
It is true that Strategy2 always perform the best for all
the possibilities for n, it can be seen, however, that it
presents higher variance in the values of Ĉ0 compared to
the bisquare and trimmed mean (see the bottom left plot
of figure 6). Figure 7 exhibits the difference between y
and (ŷ)+ for the bisquare (when n = 39), trimmed mean
(when n = 70), and Strategy2 (when n = 100). As we
can observe, the PAYOFF vector y can be predicted very
efficiently.
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V. DISCUSSION AND FUTURE WORK

A. Conclusion

The trinomial European call option pricing model is well
known to be incomplete, and thus, the least squares linear
regression technique can simply be used to build a self-
financing hedging portfolio that does not perfectly replicates
the call option. However, the least squares is quite sensitive
to even a single outlier in the data, and thus, the prediction
of the PAYOFF and the option price at initial date can well
deviate from their true values. This paper has briefly outlined
two different option pricing prediction strategies that alleviate
the problem of outliers. The first strategy exploits some robust
linear regression M -estimators such as the median, winsorized
mean, bisquare, and trimmed mean. Whereas the second
strategy simply applies the least squares but after the removal
of the outliers. Both the strategies have been evaluated on
numerical experiments, and the results of which demonstrate
their effectiveness for European call option pricing.

B. Some Directions for Future Work

For future enhancements, a likely first step would be to
extend the proposed work to the multi-period case. Other
promising avenues for further research include the improve-
ment of the financial risk management by buying European
options on assets as well as on exchange rates at the same
time. More precisely, when the option is in the money, that
is, S1 > K, it would be very beneficial for any buyer to
exercise the option especially if K is much lower than S1.
However, one of the several reasons that can prevent the buyer
to exercise may be the potential fall of the domestic currency
value, mainly caused by the huge increase of the exchange
rate with respect to the foreign currency. In this regard, it
would be quite important for any buyer to buy an option on
the underlying asset and also another option on the exchange
rate at the same time in order to prevent any huge fluctuations

of the exchange rate that can not be for the benefit of the
buyer.
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