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Abstract—In hyperspectral imagery, each subpixel target is
well-known as the target of interest that only occupies a fraction
of the pixel area. The remaining part of the pixel is then filled
with the background (at the same spatial location). In this
paper, we mainly discuss about a hyperspectral target detector
that is represented as a sparse hyperspectral image (HSI) that
ideally contains only the subpixel targets with the background is
suppressed. More precisely, with the help of a pre-learned target
dictionary constructed from some online spectral libraries, the
given HSI can be decomposed into a sum of low-rank background
HSI and a sparse target HSI, where the latter can be directly
used as the target detector. However, with this matrix separation
model, the detection of the target of interest may fail (or not
succeed without a lot of false alarms) when the subpixel target
has a very low fill-fraction and especially when its spectra is well
matched to the surroundings. To well alleviate this serious real
challenge, we prove via some synthetic experiments, that learning
an additional background dictionary and when included in the
matrix separation model, would be crucial.

Index Terms—Hyperspectral target detection, sparse target
HSI, background dictionary, target dictionary, low target fill-
fraction.

I. INTRODUCTION

The hyperspectral remote sensing system [1]–[9] has es-
sentially four basic parts: (1) the illumination source (ex. the
sun in passive remote sensing); (2) the atmospheric path; (3)
the targeted scene; and (4) the airborne hyperspectral imaging
sensor. In hyperspectral imagery, pixels are represented by
vectors whose entries correspond to spectral bands, and images
are represented by 3-D hypercubes. One of the most important
applications of hyperspectral imagery is target detection [1],
[2], [10]–[17], which can be viewed as a binary classification
problem where pixels are labeled as target or background
based on their spectral characteristics. Hyperspectral imagery
has many applications in areas such as military [12], [18], [19],
agricultural [20], [21], mineralogy [22], and medical fields. Its
rich spectral information allows for a more accurate material
identification. However, the big challenge lies in data variation
modelling due to material spectral variability, atmospheric
conditions, and sensor noise.

The hyperspectral image (HSI) contains both pure and
mixed pixels [2], [3]. A pure pixel represents only one
single material which can be either a pure target or a pure
background; Whereas a mixed pixel represents an aggregation
of multiple materials where the result can be either a pure

target, a pure background, or a mixture between the target
and background in the corresponding spatial location. It is
well-known that in hyperspectral imagery, every test pixel is
represented via a replacement signal model [2]. That is:

x = α t+ (1− α) b ,

where x is the hyperspectral test pixel, t is the spectrum of the
target, b is the spectrum of the background located at the same
spatial location of the target, and α ∈ [0, 1] is the target fill-
fraction. When α = 0, x is a background pixel (that is, fully
occupied by one or several background materials); whereas
when α ∈ (0, 1], the pixel x is fully or partially occupied by
one or several target materials.

A prior information about the target spectral signature is
often provided to the user and which can be collected from
some online spectral libraries. Given this target information,
a novel hyperspectral target detector has been recently devel-
oped in [23]–[25] mainly based on the assumption that the
background is low-rank and the targets are spatially sparse.
More precisely, with the great help of a target dictionary
constructed from some online spectral libraries, the original
HSI can be decomposed into a low-rank background HSI
(ideally contains only the background without the targets) and
a sparse target HSI (ideally contains only the targets with the
background is suppressed). The latter can be directly used as
the target detector [25]. This detector behaves well in high
dimensions and is well-known to be (1) distributional free,
(2) invariant to atmospheric variations; and (3) independent
from the completely unknown covariance matrix that needs
to be efficiently estimated under a non-Gaussian assumption
[14], [26]–[29] and especially in high dimensions [30]–[32]. In
[25], this sparse hyperspectral target detector has been further
evaluated to prove its efficiency on detecting two kinds of tar-
gets (e.g. Buddingtonite and Kaolinite) incorporated separately
in a pure Alunite Background HSI for different values of the
fill-fraction α. The Buddingtonite target is considered an easy
target with repsect to the alunite background since it is easily
recognized based on its unique 2.12µm absorption band;
whereas the Kaolinite target presents an overlapping spectral
features with the alunite mineral, and thus, is considered as
a very challenging target to be detected. However it has been
observed from the experiments in [25] that the proposed sparse
hyperspectral target detector fails on detecting both the targets



(and without a lot of false alarms) when α is small enough
(e.g. ≤ 0.1).

In this paper, we mainly aim to add a simple update to
the proposed target detector in [25] to render it capable
of detecting the targets of interest without or with a very
little false alarms even when the value of α is quite small.
More precisely, our update concerns supporting the proposed
background and target matrix separation model in [23]–[25]
with an additional pre-learned background dictionary (ideally
containing only background pixels without the targets) [33],
[34]. Note that further considering a background dictionary
[33] into the work in [25] has been already proposed in [34]
with some additional constraints about the spatial smoothness
of the background pixels and the sparsity of the targets.
Our main contribution in this paper is just to prove that
by constructing a “perfect”1 background dictionary may be
sufficient to detect the targets of interest without or with a very
little false alarms even when the value of α is quite small and
especially when the target is well matched to the surroundings.
The constructed perfect background dictionary which helps us
to achieve the best target detection results, will be used as a
reference for our later research in order to compare with any
other adaptive background dictionary construction approaches
that we are currently working on.

This paper is structured along the following lines. First
comes in section II a mathematical derivation of the sparse
hyperspectral target detector already developed in [23]–[25]
with our added simple update by incorporating an additional
pre-learned background dictionary into the background and
target matrix separation model. Section III presents synthetic
experiments to gauge the effectiveness of our updated target
detector for hyperspectral target detection. The paper ends with
a summary and some directions for future work.

Summary of Main Notations: Throughout this paper, we
depict vectors in lowercase boldface letters and matrices in
uppercase boldface letters. The notation (.)

T and Tr (.) stands
for the transpose , and trace of a matrix, respectively. A
variety of norms on matrices will be used. For instance M
is a matrix, Mi,j and [M]:,j are the (i, j) th element and
jth column, respectively. The matrix l2,1-norm is defined
as ∥M∥2,1 =

∑
j

∥∥∥[M]:,j

∥∥∥
2
. The Frobenius norm and the

nuclear norm are defined as ∥M∥F =
(∑

i

∑
j M

2
i, j

) 1
2

, and

∥M∥∗ = Tr
(
MTM

) 1
2 , respectively.

II. OUR UPDATED SPARSE HYPERSPECTRAL TARGET
DETECTOR

In this section, we simply aim to add a little update into the
proposed background and target matrix separation model in
[23]–[25]. More precisely, our update concerns, in addition to
the prior target information, adding a further prior information
about the background.

1By “perfect” we mean that the background dictionary is purely constructed
from the background pixels (without any target contamination) that completely
represent all the background information of the given HSI.

Mathematical derivation of the sparse hyperspectral target
detector in [23]–[25] with some additional little updates:

Consider that any given HSI is of size h × w × p, where
h, w and p represent the height, width, and the total number
of spectral bands, respectively. The sparse hyperspectral target
detector is mainly derived under the following steps:

1) Let assume that the HSI contains only 0 < q << e target
pixels, e = h× w, each of the form:

xi = αi ti + (1− αi) bi , i ∈ [1, q] ,

where ti represents the target of interest that replaces a
fraction αi ∈ (0, 1] from the background bi at the same
spatial location.

2) Every {ti}i∈[1, q] consists of similar target materials2, and
thus, each can be represented as a linear combination
of Nt > 0 common target samples

{
atj
}
j∈[1, Nt]

, where
atj = [atj, 1, a

t
j, 2, · · · , atj, p]T ∈ Rp (the superscript t is

for target), but weighted with different set of coefficients
{βi, j}j∈[1, Nt]

.
3) Every {bi}i∈[1, q] consists of similar background ma-

terials3, and thus, each can be represented as a linear
combination of Nb > 0 common background samples{
abk

}
k∈[1, Nb]

, where abk = [abk, 1, a
b
k, 2, · · · , abk, p]T ∈

Rp (the superscript b is for background), but weighted
with different set of coefficients {θi, k}k∈[1, Nb]

.
4) Each of the q target pixels, xi, i ∈ [1, q], can thus be

represented as:

xi = αi

Nt∑
j=1

(
βi, j a

t
j

)
+ (1− αi)

Nb∑
k=1

(
θi, k ab

k

)
.

5) By rearranging the HSI into a two-dimensional matrix
D ∈ Re×p, with e = h×w, the latter can be decomposed
into a low-rank matrix ideally representing the pure
background residing in the background subspace, a sparse
matrix capturing only the targets of interest residing in the
target subspace, and a noise matrix. More precisely, our
updated background and target matrix separation model
is as follows:

D = (Ab L0)
T + (At C0)

T +N0 , (1)

where

• Ab =

[
| | · · · |
ab
1 ab

2 · · · ab
Nb

| | · · · |

]
∈ Rp×Nb ;

• At =

[
| | · · · |
at
1 at

2 · · · at
Nt

| | · · · |

]
∈ Rp×Nt ;

• (Ab L0)
T ∈ Re×p: is the background HSI, ideally with

(e− q) rows representing only the background pixels

2It would be more realistic to assume that the ti, i ∈ [1, q], consist of
different target materials. However, it is not really necessary as one will end
up with the same background and target separation matrix model in (1). Hence,
to detect different types of targets located in the same HSI, one has to construct
a target dictionary that includes the corresponding target samples.

3It would be more realistic to assume that the bi, i ∈ [1, q], consist of
different background materials. However, it is not really necessary as one
will end up with the same background and target separation matrix model
in (1). Hence, what really matters is how the background dictionary Ab is
constructed to efficiently represent all the background details of the given
HSI.



when α = 0, and the remaining q rows represents the
background pixels of the form (1− αi)

{
bT
i

}
i∈[1, q]

(that is, after the αiti has been separated).
• (At C0)

T ∈ Re×p: is the sparse target matrix, ideally
with q non-zero rows representing αi

{
tTi

}
i∈[1, q]

.
6) Recovering both L0 and C0 can be done iteratively

via an alternating minimization of the following two
optimization problems:

L(k) = argmin
L

{
τ ∥L∥∗ +

∥∥∥Ab L−
(
DT − (At C)

)∥∥∥2
F

}
, (2)

and

C(k) = argmin
C

{
λ ∥C∥2,1 +

∥∥∥At C−
(
DT − (Ab L)

)∥∥∥2
F

}
,

(3)
where τ > 0 and λ > 0 are two parameters to be
tuned manually and which controls the rank of L and the
sparsity level in C, respectively. Both the matrix L and
C can be estimated by various methods, among which
we adopt the alternating direction method of multipliers
(ADMM) as briefly outlined in Algorithm 1.

7) Once L and C are estimated, the matrix (At C)
T will

be used directly for detection. More precisely, the target
detector is just a sparse HSI, generated automatically
from the original one, and which only contains the targets
of interest with the background is suppressed.

III. SOME SYNTHETIC EXPERIMENTS

We evaluate the updated hyperspectral target detector in
section II on detecting two different targets (Buddingtonite
& Kaolinite) that are incorporated (at a very small target
fill-fraction α) into an HSI of size 100 × 100 × 186 that
was manually created from 72 Alunite mineral background
pixels (see the experiments and analysis section in [25]). We
follow the same experiments in [25] to generate both the
Buddingtonite and kaolinite targets that will be incorporated
into the Alunite HSI. For the selection of both τ and λ: we
choose them manually to achieve the best target detection
results without any false alarms. All our experiments are
conducted on MATLAB 2021a.

We construct the background dictionary Ab via the exact 72
alunite minerals that were picked to construct the alunite HSI
in the experiments section in [25], that is, Nb = 72. Hence,
we have Ab ∈ R186×72. In this regard, the constructed Ab

is a perfect dictionary, that is, it exactly represents the entire
background details of the Alunite background HSI in [25].

Seven target blocks (each of size 6× 3) are incorporated in
the background Alunite HSI at a very small target fill-fraction
α, and placed in long convoy formation. We are interested on
three target detection scenarios:

1) The seven target blocks correspond to only “Budding-
tonite” targets. The target dictionary At is constructed
in the same way as in the experiments in [25], that is,
from three Buddingtonite target samples extracted from
the online Advanced Spaceborne Thermal Emission and
Reflection spectral library [35].

Algorithm 1 Solving problem (2) and problem (3) via ADMM
Input: data matrix D, At, Ab, parameter τ > 0 and λ > 0 .

Initialize: k = 0, L(0) = 0, J(0) = 0, Z(0)
1 = 0, C(0) = 0,

F(0) = 0, Z(0)
2 = 0, ρ(0)1 = 10−4, ρ(0)2 = 10−4, maxρ1

= 107,
maxρ2

= 107, ϵ = 10−4 .
While not converged do:

1. Find solution to problem (2): while not converged do:
1a) update L(k+1) by:(

AT
b Ab + ρ

(k)
1 Ib

)−1 (
AT

b

(
DT −AtC

(k)
)
+ ρ

(k)
1 J(k) − Z

(k)
1

)
,

where Ib is an identity matrix of size Nb ×Nb.
1b) update J(k+1) by:

argmin
J

{
ρ
(k)
1

2

∥∥∥∥∥J−
(
L(k+1) +

1

ρ
(k)
1

Z
(k)
1

)∥∥∥∥∥
2

F

+ τ ∥J∥∗

}
.

1c) update Z
(k+1)
1 by:

Z
(k)
1 +

(
L(k+1) − J(k+1)

)
.

1d) update ρ
(k+1)
1 by:

min
(
1.1 ρ

(k)
1 , maxρ1

)
.

1e) check the convergence condition:∥∥∥L(k+1) − J(k+1)
∥∥∥
F

≤ ϵ .

2. Find solution to problem (3): while not converged do:
2a) update C(k+1) by:(

AT
t At + ρ

(k)
2 It

)−1 (
AT

t

(
DT −AbL

(k+1)
)
+ ρ

(k)
2 F(k) − Z

(k)
2

)
,

where It is an identity matrix of size Nt ×Nt.
2b) for l ∈ [1, e], update [F]

(k+1)
:,l by:

max

(∥∥∥∥∥[C]
(k+1)
:,l +

1

ρ
(k)
2

[Z2]
(k)
:,l

∥∥∥∥∥
2

−
λ

ρ
(k)
2

, 0

)

×

 [C]
(k+1)
:,l + 1

ρ
(k)
2

[Z2]
(k)
:,l∥∥∥∥[C]

(k+1)
:,l + 1

ρ
(k)
2

[Z2]
(k)
:,l

∥∥∥∥
2

 .

2c) update Z
(k+1)
2 by:

Z
(k)
2 +

(
C(k+1) − F(k+1)

)
.

2d) update ρ
(k+1)
2 by:

min
(
1.1 ρ

(k)
2 , maxρ2

)
.

2e) check the convergence condition:∥∥∥C(k+1) − F(k+1)
∥∥∥
F

≤ ϵ .

3. stop when the following convergence condition is satisfied:∥∥∥(AbL
(k+1)

)T −
(
AbL

(k)
)T ∥∥∥

F

∥D∥F
≤ ϵ ,

and

∥∥∥(AtC(k+1)
)T −

(
AtC(k)

)T ∥∥∥
F

∥D∥F
≤ ϵ .



Hence, we have At ∈ R186×3. Figure 1 exhibits the ob-
tained target detection performances when the Budding-
tonite target blocks are incorporated with α = 0.0002.
It is important to note that if we consider α < 0.0002,
the detection performance of our updated target detector
will start to deteriorate and the false alarms will start to
appear.
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Fig. 1. From top left to bottom right: the original Alunite HSI containing
the incorporated seven Buddingtonite targets with α = 0.0002, our updated
target detector, the ROC curve of our updated target detector, the ROC curve
of our updated target detector for low probability of false alarms.

2) The seven target blocks correspond to only “Kaolinite”
targets. The target dictionary At is constructed in the
same way as in the experiments in [25]), that is, from six
Kaolinite target samples extracted from the online United
States Geological Survey spectral library [36]. Hence,
we have At ∈ R186×6. Figure 2 exhibits the obtained
target detection performances when the Kaolinite target
blocks are incorporated with α = 0.002. We choose this
specific value of α because the updated detector will
behave poorly in detecting the Kaolinite target pixels
when α < 0.002 and as a lot of false alarms will start to
appear.

3) The seven target blocks are distributed between four
“Kaolinite” target blocks and three “Buddingtonite” target
blocks. We are thus interested to detect two types of
targets of interest (Buddingtonite and Kaolinite) in the
same HSI. The target dictionary is constructed from the
union of the Buddingtonite and kaolinite target samples
considered in the first two scenarios. Hence, we have
At ∈ R186×9. Figure 3 exhibits the obtained target
detection results when the three Buddingtonite and four
Kaolinite target blocks are incorporated with α = 0.0003.
When α < 0.0003, the detection performance starts to
deteriorate and a lot of false alarms start to appear.

IV. CONCLUSION AND FUTURE WORK

In this paper, we added a little update to the proposed
sparse and low-rank matrix decomposition model that has been
already developed in [23]–[25]. More precisely, in addition
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Fig. 2. From top left to bottom right: the original Alunite HSI containing
the incorporated seven Kaolinite target blocks with α = 0.002, our updated
target detector, the ROC curve of our updated target detector, the ROC curve
of our updated target detector for low probability of false alarms.
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Fig. 3. From top left to bottom right: the original Alunite HSI containing
the incorporated four Kaolinite and three Buddingtonite target blocks with
α = 0.0003, our updated target detector, the ROC curve of our updated target
detector, the ROC curve of our updated target detector for low probability of
false alarms.

to the prior target information (via a target dictionary At),
we have proved that further considering a prior information
about the background (via a “perfect” background dictionary
Ab) can improve the target detection performance significantly
especially when the target fill-fraction α is very small and the
target of interest is well matched to the surroundings. In this
paper, we have constructed the dictionary Ab perfectly from
all the background samples that completely represent all the
background details of the given HSI. We are currently working
on developing adaptive small size dictionary Ab construction
approaches that should generate a dictionary being close to
perfect, that is, helps us to obtain almost the same detection
performance as if Ab is constructed perfectly. More precisely,
we are working on exploiting clustering techniques to be
applied on the estimated low-rank background matrix after αt
is completely separated from (1− α)b (see figure 4 in [24]).
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