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DETECTABILITY OF DEFECTS IN THE PRESENCE OF LINEAR
NUISANCE PARAMETERS AND IMAGES SIGNAL-DEPENDENT NOISE

Rémi Cogranne

Troyes University of Technology (UTT), Troyes, FRANCE

ABSTRACT

This paper addresses two general problems of imaging sys-
tems used for visual inspection and defect detection. On the
one hand, the inspected object should be carefully removed
in order to detect a potential defect or an anomaly. On the
other hand, one of the features of imaging systems is that the
noise level depends on the image intensity and so does the
detectability of defects. In addition, due to the aging of the
acquisition system (LEDs, Reflector), the intensity of the il-
lumination decreases gradually over time. The present paper
addresses jointly the impact of aging imaging systems and its
ensuing impact on the detectability of a defect in the presence
of linear nuisance parameters and signal-dependent noise.

Index Terms— Nondestructive testing, Signal-dependent
noise, Nuisance parameters, Defects detection.

1. INTRODUCTION

Imaging system for process monitoring and non-destructive
are nowadays widespread in the industrial sector for a very
wide range of objects such as fabrics [1–3], nuclear fuel
rods [4], steel [5–7] or even food [8]. In brief, such a mon-
itoring process rest on two pillars ; on the one hand, an
imaging system capture a photograph of products. On the
other hand, a model of an acceptable product is given. The
system should inspect the image and verify that the product
complies with the model provided. For a vast majority of
inspected products, this conformity check does not raise an
alarm. However, some products do not pass this test and
hence are classified as defective. Depending on the specific
application a reliability criterion is usually prescribed as a
constraint on either false-alarm or missed-detection rates.

The prior methods for detection of defects based on com-
puter vision can be divided into three categories [1, 9]: 1)
Several highly flexible techniques do not require a precise
prior knowledge of inspected objects and instead rely on
usual tools for image processing and defect enhancements
such as edge detection, contrast enhancement and pattern
recognition, see for instance [2, 10]. 2) Specific methods can
be designed using a ground truth or examples of a reference
object [9]. Detection methods of this group are usually simple
as they are often based on differences between the reference

and the inspected image. 3) Methods based on computer
vision and image processing see [11, Chap. 15] usually re-
quires prior information on the non-anomalous object. Two
main approaches have been proposed to introduce statistical
prior knowledge: Bayesian and non-Bayesian approaches.
Methods of the first group usually lack precise description
of non-anomalous products and hence achieve a limited de-
tection performance. On the opposite, methods based on
examples of references are usually simple and accurate but
are extremely sensitive to acquisition condition and settings.
For a more detailed review on methods for automatic defects
detection, the reader is referred to [9, 12].
Regardless of the inspection method, their common under-
lying goal is to deal with a nuisance parameters that the
non-anomalous product is; the defect is to be detected within
a possible complex “background” which should be care-
fully considered. In addition, the detectability of defects
always depends on the “defect-to-noise” ratio and one of the
specificities of imaging system lies in its well-known signal-
dependent noise [13,14] which is due Poisson noise resulting
from the photon-counting process.

Within this context, the present paper studies the impact
of the unavoidable aging of imaging system elements on the
detectability of defects in the presence of a nuisance param-
eter (the non-anomalous object “background”) and the spe-
cific image signal-dependent noise. Using hypothesis test-
ing theory, we model the degradation of detection accuracy of
an optimal test for defect detection in the presence of a lin-
ear nuisance parameter [15, 16]. The proposed methodology
can be applied to almost every non-destructive system that
is based on computer vision and for which a minimal level
of defect detection accuracy is required. In addition we pro-
pose a simple yet efficient method for taking into account the
signal-dependent noise characteristics and show that the loss
of performance is rather limited.

The present paper is organized as follows. First, Section 2
recalls the heteroscedastic model of noise corrupting images.
Then Section 3 presents the main results of our previous work
on the application of hypothesis testing to the problem of de-
fect detection in the presence of a linear nuisance parame-
ter [15–19]. Then Section 4 studies the impact of illumination
system aging and also presents the method proposed to deal



with signal-dependent noise. Eventually, Section 5 presents
numerical results for a real practical case of wheels coating
inspection and Section 6 concludes the paper.

2. SIGNAL-DEPENDENT IMAGE NOISE MODEL

Because the present paper focuses on imaging systems based
monitoring processes, it is proposed to start modelling the
noise of digital cameras. Without loss of generality, let us
denote the recorded image z as a vector of M pixels: z =
{zm} , m ∈ {1, . . . ,M}. A very popular model for image
representation that is widely used in image processing [13–
15, 20–23] consists in assuming that an image can be repre-
sented as:

z = µ+N, (1)

where µ = {µm} , m ∈ {1, . . . ,M} is the vector represent-
ing the expectation of pixels, that is the “theoretical image
value”, and N = {nm} , m ∈ {1, . . . ,M} denotes the addi-
tive.

Most visual inspection system prevents processing the ac-
quired image before its analysis ; therefore we will use the
well-established signal-dependent noise model. It comes, on
the one hand, from the photon-counting process give birth to
a Poisson noise and, on the other hand, from a while Gaus-
sian noise which is caused by various sources (thermal noise,
electronic and readout noise, etc.). In addition, on the photo-
sensor, it can be observed that pixels’ value are uncorrelated,
see [13,14]. Using the Gaussian approximation of the Poisson
law for large numbers allows the modelling of pixel values as
the following Gaussian random variable:

zm ∼ N (µm, σ2
m), (2)

where N denotes the Gaussian distribution and the variance
of pixel zm is given as an affine function of expectation µm

as:
σ2
m = aµm + b. (3)

In Equation (3) the parameters (a, b) of the so-called het-
eroscedastic noise model remain the same for all the pixels
as they only depend on the acquisition parameters (such as
the ISO sensitivity, the exposure time and the photosensor)
which are constant in a regular monitoring process [13, 14].
Using the same vector representation as in Eq. (1), the het-
eroscedastic noise model can be represented as:

z ∼ N (µ,Σ), (4)

where the diagonal covariance matrix Σ is given by Σm,k =
0 for all m ̸= k and Σm,m = σ2

m = aµm + b.

3. DEFECT DETECTION IN THE PRESENCE OF A
LINEAR NUISANCE PARAMETER

Though the present paper has been applied in the specific ap-
plication appearance detection on wheels’ surface, see Sec-

tion 5and our prior works [15, 16], is applied more gener-
ally to the broad problem of unknown defect detection in the
presence of linear nuisance parameters. This model is often
used in hypothesis testing as it offers great flexibility and a
good tradeoff between accuracy and simplicity [15–19]. Us-
ing this model, the vector of all pixels expectation, for a non-
anomalous object, is modelled as

µ = Hd. (5)

The matric H of size (M,n) represent the non-anomalous
“background” over which the potential defect can occur.

Taking into account the heteroscedastic model described
in Section 2 the problem of unknown defect detection in the
presence of a linear nuisance parameter can be formalized as
a choice between the following statistical hypotheses:{

H0 : {z ∼ N (Hd,Σ)} ,
H1 : {z ∼ N (Hd+ θ,Σ) , θ ̸= 0} .

(6)

In the Equation (6) the unknown vector θ represents the po-
tential defect it is aimed at detecting.
One can note from the definition of the detection problem (6)
several difficulties ; first the non-anomalous “background”
µ = Hd is a nuisance parameter in the sense that it has no
interest for the detection of defect θ while it must be care-
fully taken into account. Besides the variance changes for
each pixel as, within the signal-dependent noise model (3)-
(4), it depends on their expectation which is unknown. Last,
on a more practical point of view, because of the aging of the
overall imaging system, the illumination decreases gradually.
One must thus take into account the impact of this declining
brightness on the statistical performance of the defect detec-
tion problem (6) especially to maintain the desired require-
ment on detection accuracy and this is the main scope of the
present paper. Surprisingly, to the best of our knowledge, this
has never been studied.

The reader interested in the targeted application can
read [15, 16], without going much into details those works
proposed an original method for designing an auto-adaptive
data-driven linear parametric model such as in [18].

Let us start assuming that both the linear model H and the
noise covariance matrix Σ are known. In such a case, it has
been shown in [26] that two equivalent methods can be used.
First one can “normalize” the pixels:

z′ = Σ−1/2z. (7)

Because the covariance matrix Σ is symmetric positive defi-
nite, there exists a non-singular symmetric matrix Σ

1/2 such
that Σ = Σ

1/2Σ
1/2 and hence Σ−1 = Σ−1/2Σ−1/2.

It immediately follows from the multivariate Gaussian distri-
bution that the testing problem (6) becomes :H0 :

{
z′ ∼ N (Σ−1/2Hd, IM )

}
,

H1 :
{
z′ ∼ N (Σ−1/2Hd+Σ−1/2θ, IM ) , θ ̸= 0

}
,

(8)



where IM denotes the identity matrix of size M ×M . Then
the detection problem (8) can be addressed by leveraging the
invariance principle, see [24, Chap. 6] and [25, Chap. 4]. In
the present application, it can be used by projecting the “nor-
malized pixels” z′ onto the orthogonal complement of the
subspace spanned by the columns of Σ−1/2H, that is its null
space. Let

P⊥
H = IM −Σ−1/2H

(
HTΣ−1H

)−1
HTΣ−1/2, (9)

and let the WT = (w1, . . . , wM−h) be the matrix of size
(M,M −h) composed of the eigenvectors w1, . . . , wM−h of
P⊥

H corresponding to the eigenvalue 1, it satisfies the follow-
ing conditions: WΣ−1/2H = 0 and WT

(
WWT

)−1
W =

P⊥
H.

It is shown in [26] that the Wz is statistics maximal in-
variant H and, hence, that all invariant tests should depend
on z only via Wz. In addition, it is shown that a Uniformly
Best Constant Power (UBCP) test can be designed based on
the norm of the so-called residuals:

Λ(z) =
∥∥∥P⊥

HΣ−1/2z
∥∥∥2
2

(10)

= zTΣ−1/2WT
(
WWT

)−1
WΣ−1/2z. (11)

as follows:

δ =

{
H0 if Λ(z) < τ

H1 if Λ(z) ≥ τ,
(12)

In addition,the properties of the Gaussian distribution
yields that the maximal invariant statistics Λ(z) follows a
(non-central) χ2. The non-central parameter, denoted ϱ
equals 0 under hypothesis H1 while, on the opposite, it is
given, under hypothesis H1, by :

ϱ =
∥∥∥P⊥

HΣ−1/2θ
∥∥∥2
2
. (13)

Therefore, in order to guarantee the false-alarm probabil-
ity α0, the decision threshold τ is set as follows:

τ = F−1
χ2
Υ
(1− α0; 0), (14)

where Fχ2
Υ
(x, ϱ) and F−1

χ2
Υ
(x, ϱ) ) represent respectively the

non-central χ2 cumulative distribution function and its in-
verse with non-centrality parameter ϱ and Υ = M −h degree
of freedom.
Similarly the power function of the test is given by:

β(δ,θ) = Fχ2
Υ
(τ, ϱ). (15)

3.1. Impact of Illumination Aging on Defect Detection

Let us first emphasize that it follows from Eq. (14)-(15) that
the detectability of the defect is entirely characterized by the
“anomaly-to-noise” ratio (13). Therefore, it is sufficient to

investigate the evolution of the non-centrality parameter ϱ in
order to study the crucial effect that the illumination system
(or the light intensity) has on the accuracy of defect detection.
To this end, we will consider that the intensity in multiply by
a factor γ : µ2 = γµ1 (1)-(5) where γ ∈]0, 1[ represents
the impact of the system again on the illumination. Remind-
ing that under the signal-dependent noise model corrupting
raw images, used for the visual inspection system, it follows
from the signal-dependent noise model (3)-(4) that Σ1 =
diag(aµ1 + b) and Σ2 = diag(aµ2 + b) = diag(aγµ1 + b).
Here diag is the vector representing the (non-zero) elements
of diagonal matrices.

We will investigate the effect of illumination again by
comparing ϱ1 and ϱ2 (13). It follows that:

ϱ2 =
∥∥∥P⊥

HΣ2
−1/2γθ

∥∥∥2
2
= γ2

∥∥∥P⊥
HΣ2

−1/2θ
∥∥∥2
2
. (16)

Because pixels are independent the covariance matrices are
diagonal and hence:

ϱ1 =

M∑
m=1

(
P⊥

Hθ
)2
m

aµm + b
, (17)

and similarly

ϱ2 = γ2
M∑

m=1

(
P⊥

Hθ
)2
m

aγµm + b
. (18)

Let us now study is the decrease of illumination decreases the
non-centrality parameter and hence the detection accuracy:

ϱ2 < ϱ1 ⇔ γ2
M∑

m=1

(
P⊥

Hθ
)
m

aγµm + b
<

M∑
m=1

(
P⊥

Hθ
)
m

aµm + b
, (19)

⇔
M∑

m=1

(
P⊥

Hθ
)2
m

(
γ2

aγµm + b
− 1

aµm + b

)
< 0. (20)

Because the first part of Eq. (20) is positive the inequality
holds true if the second part is negative which immediately
yields:

γ2(aµm + b)− γ(aµm)− b < 0. (21)

Solving the quadratic Eq. (21) immediately shows that:

ϱ2 < ϱ1 ⇔

{
0 < γ < 1 if b ≥ 0

−b
aµm+b < γ < 1 ifb < 0andµm > − 2b

a

(22)
For a vast majority of the sensor, the parameter b > 0 and the
first case (22) applies. This confirms that when the illumina-
tion decreases, so does the detectability of a potential defect.
Note that there are some sensors for which b < 0 because of
a pedestal parameter which is added to pixel value. However,
even in this case, the value of parameter a and b which en-
sures that pixels expectation µ always satisfies µ > −2b

a in
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Fig. 1. Examples of the impact of the wheels illumination
intensity on the detectability of the very same defect.

practice.
This impact of illumination aging is pictured in the Figure 1.
It especially helps visualize that a decrease in the illumina-
tion degrades the detectability by (1) reducing the strength of
the defect itself and (2) degrading the “defect-to-noise ratio”
ϱ due to the signal-dependent noise of images.

4. PROPOSED METHODOLOGY FOR DEALING
WITH SYSTEM ILLUMINATION AGING

In practice the approach defined in the Section 3 is hardly ap-
plicable because the expectation of pixels is unknown (mostly
because the nuisance parameter Hd is unknown) and so does
is the covariance matrix Σ under the signal-dependent noise
model (3)-(4). To deal with this problem, we propose a two
steps approach. First, a coarse estimation of pixel expectation
is made without taking into account the variation of variance
using a simple ordinary Least-Square (LS):{

µ̃ls = H
(
HTH

)−1
HTz,

Σ̃ls = IM × (a µ̃ls + b),
(23)

Secondly, this rough estimation of the covariance is reused to
update the estimation of the expectation using the well-known
Weighted Least-Square (WLS) given by: µ̃ = Σ̃

−1/2

ls H
(
HTΣ̃

−1

ls H
)−1

HTΣ̃
−1/2

ls z,

Σ̃ = IM × (a µ̃+ b).
(24)

Here, µ̃ represents the non-anomalous background of pixels
from z. Finally, the statistical test (12) is applied using the es-
timations of pixels expectation and variance as given in (24):

δ =

{
H0 if Λ̃(z) < τ

H1 if Λ̃(z) ≥ τ,
(25)

with the test statistics :

Λ̃(z) =

∥∥∥∥P̃⊥
HΣ̃

−1/2
z

∥∥∥∥2
2

(26)

and P̃⊥
H = IM − Σ̃

−1/2
H

(
HTΣ̃

−1
H
)−1

HTΣ̃
−1/2

. (27)

4.1. Impact of Linear Nuisance Parameter Estimation

Last but not least, it is important to measure the effect of us-
ing an estimation of both pixels expectation and variance on
the statistical performance of the test (25). To this end, let
us recall that using the proposed linear model for nuisance
parameter (5) as well as the signal-dependent noise of raw
images (3) the pixels follow a multivariate Gaussian distribu-
tion z ∼ N (Hd,Σ) with Σ = diag

(
σ2
1 , . . . , σ

2
M

)
.

When the covariance matrix Σ is unknown, it immediately
follows from the properties of multivariate Gaussian distribu-
tion that:

P̃⊥
HΣ̃

− 1
2 z ∼ N

(
P̃⊥

HΣ̃
− 1

2Hd, P̃⊥T

H Σ̃
− 1

2
T

ΣΣ̃
− 1

2 P̃⊥
H

)
(28)

Regarding the expectation is it straightforward that:

P̃⊥
HΣ̃

−1/2
Hd

= Σ̃
−1/2

Hd− Σ̃
−1/2

H
(
HTΣ̃

−1
H
)−1

HTΣ̃
−1

H︸ ︷︷ ︸
=Ih

d

= Σ̃
−1/2

Hd− Σ̃
−1/2

Hd = 0.

From which one eventually has

P̃⊥
HΣ̃

−1/2
z ∼ N

(
0, P̃⊥T

H Σ̃
−1/2T

ΣΣ̃
−1/2

P̃⊥
H

)
(29)

This shows that the estimation of pixels’ expectation is unbi-
ased and, therefore, so does is the estimation of pixels’ vari-
ances.
The only source of loss of detection performance due to the
estimation and rejection of nuisance parameters is due to the
variance of the estimation of the covariance matrix.

5. EXPERIMENTS AND RESULTS

The application targeted in the present paper is the control of
wheels during its manufacturing process and especially the
detection of coating defects. The image 2 shows a typical ex-
ample of an image used to carry out the coating inspection
and the defect detection. This image shows, on the one hand,
the different parts of the wheels (in white) and, on the other
hand, the feature elements (in red). The latter are used to split
the locate the different parts. Thanks to this localization of
the feature elements, the image can be split in order to inspect
each part separately after being transformed into a rectangle



Fig. 2. An example of an image wheel obtained with our
imaging system along with the description of main parts.
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Fig. 3. An example of a real evolution of the mean value
of pixels showing the illumination system aging impact of
brightness.

to help the inspection. An illustrative result of such a transfor-
mation of the galbe zone in illustrated in Figure 1. The reader
is referred to [15, 16] for more detail on the linear model of
pixels’ expectation µ = Hd as in Eq. (5).

Nevertheless, the present problem is more general and ap-
plies to all monitoring process based on a computer vision
in which light source and reflector are undoubtedly subject
to aging [27].The Figure 3 presents a typical example of de-
crease in the average pixels’ values resulting from again of
artificial light sources and deposit of dust on light reflector
surface.
This issue is important since as shown in Sections 3-4 the de-
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Fig. 4. Simulated of the mean value of pixels illustrating the
illumination system aging impact of brightness.

tectability highly depends on the acquired image brightness.
For an industrial application of such a computer vision system
for monitoring, one should warrant a certain level of defect
detection accuracy and hence signal when the illumination is
not sufficient anymore. Our methodology consists in using
a minimal defect θmin for which the illumination complies
with a “defect-to-noise” ratio ϱ (13) that allows maintaining a
minimal detection power βmin (15) under a false-alarm con-
straint (14).

To verify the sharpness and the relevance of the proposed
method we have simulated illumination system again at an
accelerated pace (simply by decreasing light intensity regu-
larly). The Figure 4 show the accelerated evolution of the
illumination via the average value of all pixels from wheel
images. Contrast the real value (in red) with the estimation
obtained using the method described in Eq. (23)-(24).

Figure 5 presents the empirical and theoretical distribu-
tions of the proposed test statistics Λ̃(z), see Eq [?]. Those
results were obtained with real data using the following exper-
imental protocol: a single wheel with the defect was placed in
the imaging device of visual inspection system. The conveyor
was halted and many images were captured successively with-
out modifying the illumination. We extracted a small area of
20 × 20 pixels over which the defect θ is present. We have
measured that for this illumination, for which pixels mean
value was about µ = 3400 the defect detectability was about
ϱ ≈ 340, see Eq. (13).
As it can be seen in Figure 5 the theoretical and the empiri-
cal distributions match almost perfectly. Note the shift in the
expectation of the distribution that corresponds to the defect
testability (the χ2 distribution non-centrality parameter). In-
terestingly, one can note the very small increase of variance
(especially under H1) that is due to the use of the estimation
of variance obtained using estimated pixels expected values
as described in Eq. (23)-(24).

Last, Figure 6 compares the empirical and theoretical de-
tection power functions. Again, those results have been ob-
tained on real wheels image using the same protocol except
that now the power of LEDs was reduced every 500 images.
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For the sake of the presentation, we assumed that the defect
corresponds to the minimal one that it is wished to detect
θmin. Note this experimental setup was used to obtain data
for Figure 1. In our present case, the minimal detection accu-
racy is βmin = 0.8 and the false alarm rate is α0 = 0.02.
We calculated the theoretical detection power β (15) when
the variance of pixels is known and when it is estimated as in
Eq. (23)-(24). The empirical detection power matches very
well the theoretical findings. Note that the empirical data
is very noisy because we used “only” 500 images for every
brightness level while using a low false alarm rate α0 = 0.02.
Here again the theoretically established power match almost
perfect with the one theoretically established. Note that in
order computed the power function when the pixel expecta-
tion is to know we simply averaged pixel values over the 500
images with the same illumination: this provides a practical
rather very accurate upper bound (shown in green) that can
be used practically using a simple photometer in the visual

inspection system.

6. CONCLUSION

This paper shows how the signal-depend noise model of im-
age impact defects detectability and focuses on the impact of
decreasing illumination due to the aging of the illumination
system. We propose a simple yet efficient method for dealing
with the signal dependent noise it limited impact on the de-
tection accuracy. While the paper focuses on the application
of wheels inspection, it addresses a general problem for mon-
itoring defect detectability and proposes a practical for which
numerical results show the high accuracy and relevance. A
future work will study how to use several images as well
as the optimal detection when the light intensity reaches the
limit defined according to the prescribed detection perfor-
mance.



7. REFERENCES

[1] A. Kumar, “Computer-vision-based fabric defect detec-
tion: a survey,” IEEE Trans. on Industrial Electronics,
vol. 55, no. 1, pp. 348–363, 2008.

[2] R. Stojanovic, & al., “Real-time vision-based system
for textile fabric inspection,” Real-Time Imaging, vol. 7,
no. 6, pp. 507–518, 2001.

[3] Y. Zhang, & al., “Fabric defect detection and classifi-
cation using gabor filters and gaussian mixture model,”
Computer Vision–ACCV 2009, pp. 635–644, 2010.

[4] R. Cogranne and F. Retraint, “Detection of defects in ra-
diographic images using an adaptive parametric model,”
Signal Processing, vol. 96, Part B, pp. 173–189, 2014.

[5] N. Neogi, & al., “Review of vision-based steel surface
inspection systems,” EURASIP Journal on Image and
Video Processing, vol. 2014, no. 1, pp. 50, 2014.

[6] W.B. Li, & al., “A local annular contrast based real-time
inspection algorithm for steel bar surface defects,” Ap-
plied Surface Science, vol. 258, no. 16, pp. 6080–6086,
2012.

[7] D. Naso, & al., “A fuzzy-logic based optical sensor for
online weld defect-detection,” IEEE Trans. on Indus-
trial Informatics, vol. 1, no. 4, pp. 259–273, 2005.

[8] T. Brosnan and D.W. Sun, “Improving quality inspec-
tion of food products by computer vision—-a review,”
Journal of Food Engineering, vol. 61, no. 1, pp. 3–16,
2004.

[9] D. Mery, & al., “A review of methods for automated
recognition of casting defects,” J. Brit. Inst. Non-
Destructive Testing, vol. 44, no. 7, pp. 428–436, 2002.

[10] J.B. Martens, “Adaptive contrast enhancement through
residue-image processing,” Signal Processing, vol. 44,
no. 1, pp. 1–18, 1995.

[11] H.H Barrett and K. J Myers, Foundations of image sci-
ence, John Wiley & Sons, 2013.

[12] C.H. Chen & al., Handbook of pattern recognition and
computer vision, vol. 27, World Scientific, 2010.

[13] A. Foi & al., “Practical poissonian-gaussian noise mod-
elling and fitting for single-image raw-data,” IEEE
Trans. on Image Processing, vol. 17, no. 10, pp. 1737–
1754, 2008.

[14] T.H. Thai, & al., “Statistical Model of Quantized DCT
Coefficients: Application in the Steganalysis of Jsteg
Algorithm,” IEEE Trans. on Image Processing, vol. 23,
no. 5, pp. 1980-1993, 2014.

[15] K. Tout,, & al., “Fully automatic detection of anomalies
on wheels surface using an adaptive accurate model and
hypothesis testing theory,” in Signal Processing Confer-
ence (EUSIPCO),. IEEE, 2016, pp. 508–512.

[16] K. Tout, & al., “Fully automatic detection of anomalies
using an adaptive statistical model and testing theory:
Application to wheel surface inspection,” Signal Pro-
cessing, vol. 144, pp. 430–443, 2018.

[17] T. Nguyen, & al., “Reliable detection of interest flood-
ing attack in real deployment of named data network-
ing,” IEEE Trans. on Information Forensics and Secu-
rity, vol. 14, no. 9, pp. 2470–2485, 2019.

[18] R. Cogranne, & al., “Detecting botclouds at large scale:
A decentralized and robust detection method for multi-
tenant virtualized environments,” IEEE Trans. on Net-
work and Service Management, vol. 15, no. 1, pp. 68–
82, 2018.

[19] I.V. Nikiforov, & al., “Sequential detection of a total in-
stantaneous blockage occurred in a single subassembly
of a sodium-cooled fast reactor,” Nuclear Engineering
and Design, vol. 366, pp. 110733, 2020.

[20] V. Sedighi, & al., “Content-adaptive steganography by
minimizing statistical detectability,” IEEE Trans. on
Information Forensics and Security, vol. 11, no. 2, pp.
221–234, 2016.

[21] R. Cogranne, & al., “Efficient steganography in jpeg im-
ages by minimizing performance of optimal detector,”
IEEE Trans. on Information Forensics and Security, vol.
17, pp. 1328–1343, 2022.

[22] Q. Giboulot, & al., “Multivariate side-informed gaus-
sian embedding minimizing statistical detectability,”
IEEE Trans. on Information Forensics and Security, vol.
17, pp. 1841–1854, 2022.

[23] Q. Giboulot, & al., “Detectability-based jpeg steganog-
raphy modelling the processing pipeline: The noise-
content trade-off,” IEEE Trans. on Information Foren-
sics and Security, vol. 16, pp. 2202–2217, 2021.

[24] E. L. Lehmann, Testing statistical hypotheses, Springer,
1986.

[25] T.S. Ferguson, Mathematical Statistics: A Decision
Theoretic Approach, Academic Press, 1967.

[26] M. Fouladirad, & al., “Optimal fault detection with nui-
sance parameters and a general covariance matrix,” Int.
J. Adapt. Control Signal Process., vol. 22, no. 5, pp.
431–439, 2008.

[27] N. Narendran and Y. Gu, “Life of LED-based white
light sources,” Journal of display technology, vol. 1, no.
1, pp. 167–171, 2005.


