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Abstract

We consider a system modeled by a semi-Markov process where we
include geometric renewal process for sojourn times. Pérez-Ocón and
Torres-Castro first study this system [1]. In our work here we con-
sider an extended state space for up and down times separately. This
allows us to use the standard theory for semi-Markov processes in
order to obtain all reliability related measurements as reliability, avail-
ability (point and steady-state), mean times and rate of mortality
of the system with general initial law. We proceed with a convolu-
tion algebra, which allows us to obtain final closed form formulas for
the above measurements. Moreover, we present numerical examples.
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1 Introduction

Semi-Markov processes are important tools in modeling real systems in a very
large number of domains [2–5]. Indeed, theses processes relax the condition of
identically exponentially distributed holding times of continuous time Markov
processes which are widely used in reliability engineering [2]. The relaxation
of this property permits to model various system behaviors and large range of
maintenance strategies.

In this paper, the focus is on the use of a semi-Markov process to deal with
reliability measure calculations of a geometric renewal process [6]. The start-
ing point of the work is the paper Pérez-Ocón and Torres-Castro [1] where
these authors model a repairable system with internal and external failures.
The main problem is that, during the successive failures of this system, the
performance level of the system decreases [7]. In fact, after repair, it is not
good as new and it is even worse than before. In this case, the above authors
make use of the geometric renewal process [8].

As in [1] it is supposed that there are two causes of system failure: exter-
nal and internal. An external failure occurs following a Poisson process and
can be repaired with a fixed probability p, otherwise the system is replaced
by a new one. Therefore, the corrective maintenance in this case is As Good
As New (perfect maintenance) with probability 1 ´ p. After N repairs, the
system is replaced upon failure without repair. Hence the replacement occurs
after N repair or at external failure with probability 1 ´ p. While the system
is operating, it is considered as in up state, while it is in under repair, it’s
considered in down state. The duration of replacement is considered neg-
ligible. After each repair, the system degrades and the repairman is more
experienced, modeled by a geometric process [8].

In this paper, each one of the states considered in [1] is split into two
states, for example, state i is split into i1 and i2, the first one i1 includes the
up time (working time) of the system after i repairs, and state i2 includes the
repair of the system after i1. This scheme, gives us the possibility to calculate
all reliability measures known as dependability (reliability, instantaneous
and steady-state availability, Mean Time to Failure(MTTF), Mean Time to
Repair(MTTR), Mean Up Time(MUT), Mean Down Time(MDT), rate of
occurrence of failures(ROCOF), etc.)in Markov scheme as presented in [9, 10],
in the standard semi-Markov scheme, as presented in [2, 11, 12]. Moreover we
obtain closed form solution formulas for all measures.

The paper is organized as follows. Section 2 presents the model, which
includes assumptions, semi-Markov kernel, and the transition kernel of the
Embedded Markov Chain (EMC). Section 3 presents reliability measures,
including reliability, availability, Mean Times and ROCOF. Section 4 presents
two numerical examples with formulas presented in this article.
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2 The Model

Let’s consider a system with only one component having two states up and
down. The component is in the up state while operating, and in the down state
while is being repaired. The system satisfies the following assumptions.

2.1 Introduction of the model

Let us consider a semi-Markov process (SMP) pZtqtě0, with finite state space
E, and the embedded Markov renewal process (MRP) pJn, SnqnPN, where
pJnqnPN is the Embedded Markov Chain (EMC) and S0 “ 0 ă S1 ă S2 ă
¨ ¨ ¨ ă Sn ă ¨ ¨ ¨ the jump times where pZtqtě0 changes the states. We have:

Zt “ Jn, Sn ď t ă Sn`1

Define also the semi-Markov kernel

Qijpxq “ PpJn`1 “ j, Sn`1 ´ Sn ď x|Jn “ iq

for i, j P E, x ě 0. We consider here the standard SMP with Qiipxq ” 0. Pour
plus de détails sur les semi-Markov processes see references [2–5]. For more
definitions and results on semi-Markov processes, see references [9, 10] concern
the Markov case.

2.2 Assumptions of the model

The following assumptions are formulated as in [1], except that in this paper
each state is split into two states: up state (operational) and down state
(under repair). Instead of N ` 1 states in [1], we have 2N ` 1 states. The
difference is situated in Assumption 7.

Assumption 1

There are two system failure causes: internal and external. The external fail-
ure occurs following a Poisson process with rate λ. Bernoulli trials determine
whether theses failures are repairable with probability p, or non-reparable
with a probability q (q “ 1 ´ p). Internal failure occurs by aging, which is
always non-repairable.

Assumption 2

All failures occur independently of each other.

Assumption 3

The system is replaced by a new one when a non-repairable failure occurs
or after N repairs. We consider the replacement as a perfect maintenance
which restores the system to its initial state. Moreover, the replacement is
instantaneous.
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Assumption 4

Let set Un as the lifetime of the system after its n repairs. The lifetime of a
new system has Cumulative distribution Function F . The system deteriorates
after each repair and the distribution function of Un is given by

Fnpxq “ PpUn ď xq “ F panxq, x ě 0

where a is called operational factor, a ą 0. F has a finite mean.

Assumption 5

A repairman deals with repairable failures. Let set Dn the repair time after its
nth failure. Let G be the Cumulative Distribution Function of the repair time
of the first failure. The distribution function of nth repair is given by

Gnpxq “ PpDn ď xq “ Gpbnxq, x ě 0

where b is called repair factor, b ą 0; G has finite mean.

Assumption 6

Sequences tUn, n ě 1u and tDn, n ě 1u are independent, and each one of both
sequences is independent but not identically distributed.

Assumption 7

The states of the system are E “ t01, 02, 11, 12, ..., N ´ 11, N ´ 12, N 1u,
which contains up states U “ t01, 11, 21, ..., N 1u and down states
D “ t02, 12, 22, ..., N ´ 12u, where the state 01 refers to the perfect state when
the system is new or replaced as good as new. This system can be represented
by the following graph in Figure 1.

Fig. 1 State transition graph of the system
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2.3 The Semi-Markov Kernel

Based on the previous assumptions and the graph in Figure 1, we introduce the
Semi-Markov kernel of this process, presented by matrix function Qpxq, x ě 0.

Qpxq “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0 0 0 ¨ ¨ ¨ 0
Q

0102 pxq

1´P
0101

0 0 ¨ ¨ ¨ 0

Q
1101 pxq 0 0 ¨ ¨ ¨ 0 0 Q

1112 pxq 0 ¨ ¨ ¨ 0

Q
2101 pxq 0 0 ¨ ¨ ¨ 0 0 0 Q

2122 pxq ¨ ¨ ¨ 0

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.
.
.

.

.

.

Q
N´1101 pxq 0 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0 Q

N´11N´12 pxq

Q
N101 pxq 0 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0 0

0 Q
0211 pxq 0 ¨ ¨ ¨ 0 0 0 0 ¨ ¨ ¨ 0 0

0 0 Q
1221 pxq ¨ ¨ ¨ 0 0 0 0 ¨ ¨ ¨ 0 0

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

0 0 0 ¨ ¨ ¨ Q
N´12N1 pxq 0 0 0 ¨ ¨ ¨ 0 0

˛
‹‹‹‹‹‹‹‹‹‹‚

“

ˆ
Q0 Q01

Q10 Q1

˙

Where Q0 includes transitions from up states U to up states U; Q1 includes
transitions from down states D to down states D; Q01 includes transitions
from up states U to down states D; Q10 includes transitions from down states
D to up states U.

Remark

Here a standard SM kernel is built, which means that Qiiptq “ 0. The

difference with the initial SM kernel, say qQ, is only in the first line and
in particular in the entries p01, 01q and p01, 02q. For the initial SM kernel,
qQ0101 pxq ‰ 0 and qQ0102 pxq ‰ 0, while for the standard form: Q0101 pxq ” 0 and

Q0102 pxq “
qQ
0102 pxq

1´P
0101

. The other terms are the same.

The only way to leave state i1 to state i2, is that the system fails externally,
and the failure can be repaired, which means

Qi1i2 pxq “

ż x

0

λe´λtpp1 ´ F pai
1

tqqdt, i1 P t0, ¨ ¨ ¨ , pN ´ 1q1u

The system is replaced by a new one after an internal failure or an non-
repairable external failure, it comes to state 01 with the following probability

Qi101 pxq “

ż x

0

λe´λtp1´pqp1´F pai
1

tqqdt`

ż x

0

e´λtdF pai
1

tq, i1 P t0, ¨ ¨ ¨ , pN´1q1u

To get to the state i2 from i` 11, a repairman interferes, which leads to

Qi2i`11 pxq “ Gpbi
1

xq, i1 P t0, ¨ ¨ ¨ , pN ´ 1q1u
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After N repairs the system is in state N 1, the system will be replaced directly
upon failure with the following probability:

QN 101 pxq “

ż x

0

λe´λtp1 ´ F paN
1

tqqdt`

ż x

0

e´λtdF paN
1

tq

2.4 Embedded Markov Chain

The EMC tJn, n ě 0u gives the successive visited states by the SMP pZtqtě0

after nth jump. Its transition matrix P “ pPij , i, j P Eq can be obtained by
taking limits: Pij “ lim

xÑ8
Qijpxq “ Qijp8q.

P “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0 0 0 ¨ ¨ ¨ 0 1 0 0 ¨ ¨ ¨ 0
P1101 0 0 ¨ ¨ ¨ 0 0 P1112 0 ¨ ¨ ¨ 0
P2101 0 0 ¨ ¨ ¨ 0 0 0 P2122 ¨ ¨ ¨ 0
...

...
...

...
...

...
. . .

. . .
...

PN´1101 0 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0 PN´11N´12

1 0 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0 0
0 1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0 0
0 0 1 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0 0
...

...
...
. . .

...
...

...
. . .

...
...

0 0 0 ¨ ¨ ¨ 1 0 0 ¨ ¨ ¨ 0 0

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

“

ˆ
P0 P01

P10 P1

˙

In this section, the stationary distribution of tJn, n ě 0u which is not
develloped in [1]. The model proposed by Pérez-Ocón and Torres-Castro [1], by
merging states pi1, i2q to i and denoting N 1 by N . In this case, the stationary
distribution can be defined for the EMC on the state space S “ t0, 1, ¨ ¨ ¨ , Nu
with the transition matrix is then

¨
˚̊
˚̊
˚̊
˚̊
˝

P0,0 P0,1 0 ¨ ¨ ¨ 0
P1,0 0 P1,2 0

P2,0 0 0
. . . 0

...
...

...
...

PN´1,0 0 0 ¨ ¨ ¨ PN´1,N

PN,0 0 0 ¨ ¨ ¨ 0

˛
‹‹‹‹‹‹‹‹‚
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Its stationary distribution is then given by a row vector υ “ pυ0, υ1, ¨ ¨ ¨ , υN q,
obtained by solving the usual equation υP “ υ with

ř
iPE

υi “ 1. Hence,

$
’’’’’&
’’’’’%

υ0 “ 1

1`
Nř

j“1

jś
k“1

Pk´1,k

υi “

iś
j“1

Pj´1,j

1`
Nř

j“1

jś
k“1

Pk´1,k

, i “ 1, ¨ ¨ ¨ , N

(1)

Let be ρ “ pρ01 , ¨ ¨ ¨ , ρN 1 , ρ02 , ¨ ¨ ¨ , ρN´12 q the the stationary distribution of
tJn, n ě 0u. Since,

ρi1 ` ρi2 “ υi, i “ 0, 1, ¨ ¨ ¨ , N (2)

then ρ “ pρ1, ρ2q, is obtained by solving Eq(2) as follows:

$
’&
’%

ρi1 “ υi

1`Pi1i2
i “ 1, ¨ ¨ ¨ , N ´ 1

ρi2 “ Pi1i2ρi1 “ Pi1i2υi

1`Pi1i2
i “ 1, ¨ ¨ ¨ , N ´ 1

ρN 1 “ υN i “ N

(3)

3 Reliability

The initial law of the process pZtqtě0 is denoted by the row vector

α “ pα01 , ¨ ¨ ¨ , αN 1 , α02 , ¨ ¨ ¨ , αN´12 q “ pα0,α1q

Let us define the distribution function of sojourn time in state i, Hiptq “ř
jPE

Qijptq “ 1´Hiptq, i P U . In our case, we write the vector function Hptq as

follows

Hptq “

ˆ
H0ptq
0

˙
“

¨
˚̊
˚̊
˚̊
˚̊
˝

H01 ptq
...

HN 1 ptq
0
...
0

˛
‹‹‹‹‹‹‹‹‚

“

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

1 ´ Q
0102 ptq

1´P
0101

1 ´Q0111 ptq ´Q1112 ptq
...

1 ´QN´21N´11 ptq ´QN´11N´12 ptq
1 ´QN 101 ptq

0
...
0

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‚

Define also the Stieltjes convolution of a function ϕ : E ˆ R` Ñ R` by Q as
follows

Q ˚ ϕpi, tq “
ÿ

jPE

ż t

0

Qijpdsqϕpj, t´ sq
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From this definition, the n-fold convolution of Q by itself can be derived by
the following expression:

Q
pnq
ij ptq “

ÿ

kPE

ż t

0

QikpdsqQ
pn´1q
kj pt´ sq, n ě 1

and #
Q

p0q
ij ptq “ ✶R` ptqδij

Q
p1q
ij ptq “ Qijptq

where δij is the Kronecker’s symbol which means δij “ 1, if i “ j and 0
otherwise. As in [2], the Stieltjes convolution algebra is used with neutral
element

I :“ Iptq “

#
I if t ě 0

0 if t ă 0

where I is the identity matrix.

3.1 The Reliability function

From [2], we know that the reliability function of the system is:

Rptq “ α0pI ´Q0qp´1q ˚H0ptq

where pI´Q0qp´1q means the inverse of I´Q0 in the convolution sense. After
algebraic calculation in the convolution, we obtain the reliability function

Rptq “
Nÿ

i“0

αi1H01 ptq `
Nÿ

i“1

αi1Qi101 ˚Hi1 ptq

If the system begins surely at state 01, which means α0 “ p1, 0, ¨ ¨ ¨ , 0q, the
reliability of the system is simply

Rptq “ H01 ptq “ 1 ´
Q0102 ptq

1 ´ P0101

3.2 Availability

Here we present first the stationary distribution π of the SMP pZtqtě0 as
follows, see, e.g, [2]

πi “
ρimi

m
where

m “
ÿ

iPE

ρimi

We can now calculate the instantaneous availability by [2]

Aptq “ αpI ´Qqp´1q ˚Hptq
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To calculate pI´Qqp´1q, we here use the inversion of matrix in the convolution

sens by block formula. Put M “

ˆ
A B

C D

˙
, where A and D are square bloc

matrices function of t.
As in our case, we have D “ I, then

M p´1q “

ˆ
X Y

Z U

˙

“

ˆ
Xp´1q ´Xp´1q ˚B

´C ˚Xp´1q I ` C ˚Xp´1q ˚B

˙

Where X :“ A´B ˚ C “ I ´Q0 ´Q01 ˚Q10

Based on the previous representation we get the inverse of pI ´Qq as follows

detpXq “ 1 ´
Nÿ

k“1

Qk101

1 ´ P0101

˚
k´1ź

l“0

Ql1l2 ˚Ql2l`11

The transpose of the convolution of X is

comJX “

¨
˚̊
˚̊
˚̋

1 X01 ¨ ¨ ¨ X0j ¨ ¨ ¨ X0N

X10 1 ´ X11 ¨ ¨ ¨ 1 ´ X1j ¨ ¨ ¨ 1 ´ X1N

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

Xi0 Xi1 ¨ ¨ ¨ 1 ´ Xii ¨ ¨ ¨ 1 ´ XiN

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

XN0 XN1 ¨ ¨ ¨ XNj ¨ ¨ ¨ 1 ´ XNN

˛
‹‹‹‹‹‚

Where

Xij “

$
’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’%

j´1ř
k“i`1

Q
k101

1´P
0101

˚
ś

lPJ0,k´1Kztiu

Ql1l2 ˚ Ql2l`11 , j ą i ą 1

ř
kPJ1,NKztiu

Q
k101

1´P
0101

˚
ś

lPJ0,k´1Kztiu

Ql1l2 ˚ Ql2l`11 , i “ j ą 1

ř
kPJj`1,NK

Q
k101

1´P
0101

˚
ś

lPJ0,k´1Kztiu

Ql1l2 ˚ Ql2l`11 , i ą j ą 1

j´1ś

l“0

Q
l1l2 ˚Q

l2l`11

1´P
0101

, i “ 0, j ą 0

Nř
k“1

Qk101 ˚
k´1ś
l“j

Ql1l2 ˚ Ql2l`11 , i ą 0, j “ 0

j´1ř
k“1

Qk101 ˚
k´1ś
l“1

Ql1l2 ˚ Ql2l`11 , i “ 1, j ą 1

Nř
k“2

Qk101 ˚
k´1ś
l“2

Ql1l2 ˚ Ql2l`11 i “ j “ 1

0 i “ j “ 0

Hence,
X “ pdetpXqqp´1q ˚ comJX
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And

´ C ˚ com
J
X “

¨
˚̊
˚̊
˚̊
˚̊
˚̋

Q
0211 ˚ X10 Q

0211 ˚ p1 ´ X11q ¨ ¨ ¨ Q
0211 ˚ p1 ´ X1jq ¨ ¨ ¨ Q

0211 ˚ p1 ´ X1N q
Q

1221 ˚ X20 Q
1221 ˚ X21 ¨ ¨ ¨ Q

1221 ˚ p1 ´ X2jq ¨ ¨ ¨ Q
1221 ˚ p1 ´ X2N q

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

Qi2i`11 ˚ Xi`1,0 Qi2i`11 ˚ Xi`1,1 ¨ ¨ ¨ Qi2i`11 ˚ p1 ´ Xi`1,jq ¨ ¨ ¨ Qi2i`11 ˚ p1 ´ Xi`1,N q

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

QN´12N1 ˚ XN0 QN´12N1 ˚ XN1 ¨ ¨ ¨ QN´12N1 ˚ XNj ¨ ¨ ¨ QN´12N1 ˚ p1 ´ XNN q

˛
‹‹‹‹‹‹‹‹‹‚

Hence,
Z “ pdetpXqqp´1q ˚ p´C ˚ comJXq

We calculate ´comJX ˚B as follows

´ com
J
X ˚ B “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

Q
0102

1´P
0101

Q
1112 ˚ X01 ¨ ¨ ¨ Qj1j2 ˚ X0j ¨ ¨ ¨ QN´11N´12 ˚ X0,N´1

Q
0102

1´P
0101

˚ X10 Q
1112 ˚ p1 ´ X11q ¨ ¨ ¨ Qj1j2 ˚ p1 ´ X1jq ¨ ¨ ¨ QN´11N´12 ˚ p1 ´ X1,N´1q

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
Q

0102
1´P

0101
˚ Xi0 Q

1112 ˚ Xi1 ¨ ¨ ¨ Qj1j2 ˚ p1 ´ Xijq ¨ ¨ ¨ QN´11N´12 ˚ p1 ´ Xi,N´1q

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.
Q

0102
1´P

0101
˚ XN´1,0 Q

1112 ˚ XN´1,1 ¨ ¨ ¨ Qj1j2 ˚ XN´1,j ¨ ¨ ¨ QN´11N´12 ˚ p1 ´ XN´1,,N´1q
Q

0102
1´P

0101
˚ XN0 Q

1112 ˚ XN1 ¨ ¨ ¨ Qj1j2 ˚ XNj ¨ ¨ ¨ QN´11N´12 ˚ XN,N´1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

Hence,

Y “ detpXqp´1q ˚ p´com
J
Xq ˚ B

U “ I ` C ˚ X ˚ B “
¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

1 ` Q
0211 ˚

Q
0102

1´P
0101

˚ X10 ¨ ¨ ¨ Q
0211 ˚ Q

j1j2 ˚ p1 ´ X1jq ¨ ¨ ¨ Q
0211 ˚ Q

N´11N´12 ˚ p1 ´ X1,N´1q

.

.

.

.
.
.

.

.

.

.

.

.

Q
i´12i1 ˚

Q
0102

1´P
0101

˚ Xi´1,0 ¨ ¨ ¨ Q
i´12i1 ˚ Q

j1j2 ˚ Xi´1,j ¨ ¨ ¨ Q
i´12i1 ˚ Q

N´11N´12 ˚ p1 ´ Xi´1,N´1q

.

.

.

.

.

.

.
.
.

.

.

.

Q
N´12N1 ˚

Q
0102

1´P
0101

˚ XN´1,0 ¨ ¨ ¨ Q
N´12N1 ˚ Q

j1j2 ˚ XN´1,j ¨ ¨ ¨ Q
N´12N1 ˚ Q

N´11N´12 ˚ XN´1,N´1

˛
‹‹‹‹‹‹‹‹‹‹‚
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After all the above calculations, we finally get the availability formula:

Aptq “α01 pdetpXqqp´1q ˚ pH01 `
Nÿ

j“1

X0j ˚Hj1 qptq

`
Nÿ

i“1

αi1 pdetpXqqp´1q ˚ p
i´1ÿ

j“0

Xij ˚Hj1 `
Nÿ

i“1

p1 ´Xijq ˚Hj1 qptq

` α02 pdetpXqqp´1q ˚ p
Q0102

1 ´ P0101

˚H02 `
N´1ÿ

j“1

Qj1j2 ˚X0j ˚Hj2 qptq

`
N´1ÿ

i“1

αi2 pdetpXqqp´1q ˚
Q0102

1 ´ P0101

˚Xi0 ˚H02 ptq

`
N´1ÿ

i“1

αi2 pdetpXqqp´1q ˚Qj1j2 ˚ p
i´1ÿ

j“0

Xij ˚Hj2 `
Nÿ

i“1

p1 ´Xijq ˚Hj2 qptq

In particular, if the system begins with the perfect state, the previous formula
gives

Aptq “ pdetpXqqp´1q ˚ pH01 `
Nÿ

j“1

X0j ˚Hj1 qptq

We can also get the steady-state availability as limit of the pointwise
availability Aptq as t goes to infinity [2]

A “
ÿ

iPU

πi “

ř
iPU

ρimi

m

3.3 Mean times

Let define the mean sojourn time vector m:

m “

ˆ
m0

m1

˙
“

¨
˚̊
˚̊
˚̊
˚̊
˝

m01

...
mN 1

m02

...
mN´12

˛
‹‹‹‹‹‹‹‹‚
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Here we introduce m0 explicitly

m0 “

¨
˚̊
˚̊
˚̊
˝

ş8

0
r1 ´ Q

0102

1´P
0101

ptqsdtş8

0
r1 ´Q1101 ptq ´Q1112 ptqsdt

...ş8

0
r1 ´QN´1101 ptq ´QN´11N´12 ptqsdtş8

0
r1 ´QN 101 ptqsdt

˛
‹‹‹‹‹‹‚

The formulas of several mean times are presented in [12]:

MTTF “ α0pI ´ P0q´1m0

MTTR “ α1p1 ´ P1q´1m1

MUT “
π0m0

π1P10✶r

MDT “
π1m1

π0P01✶d´r

After calculation, we obtain:

MTTF “ α01m01 `
Nÿ

i“1

αi101 pm01Pi101 `mi1 q

MTTR “
N´1ÿ

i“0

αi2mi2

MUT “

řN

i“0
ρi1m2

i1

N´1ř
i“0

ρi2mi2

MDT “

N´1ř
i“0

ρi2m2

i2

Nř
i“0

ρi1mi1

If the system begins surely at state 01, which means α0 “ p1, 0, ¨ ¨ ¨ , 0q, we
have the mean time to failure

MTTF “ m01

And for α1 “ p1, 0, ¨ ¨ ¨ , 0q, the mean time to repair is

MTTR “ m02
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3.4 Rate of Occurrence of Failure

Devote by Nf ptq the counting process of transitions from Up states U to down
states D at time t, so ❊rNf ptqs is the expected number of failures that have
occured by time t. Then the ROCOF, roptq, at time t, is defined by

roptq :“
d

dt
❊rNf ptqs

For semi-Markov process the ROCOF is obtained in [13], for several semi-
Markov processes is [11], for Markov processes is [10].
Here we will suppose that the semi-Markov kernel pQijq has derivatives
(Radon-Nikodym)

qijptq “
d

dt
Qijptq

According to [13], the ROCOF of a SM system is given by the formula

roptq “
ÿ

iPU

ÿ

jPD

ÿ

lPE

ż t

0

αlψlipduqqijpt´ uq (4)

The Markov renewal function is expressed as

ψptq :“ pI ´Qqp´1qptq

If we put the Markov renewal function ψ in bloc matrix form, following the
partition U and D of E, we have

ψptq “

ˆ
ψ0 ψ01

ψ10 ψ1

˙
ptq

The representation of ROCOF from (3) can be written as

roptq “ α0ψ0 ˚ q01ptq✶d´r ` α1ψ10 ˚ q01ptq✶d´r (5)

where ✶d´r “ p1, ¨ ¨ ¨ , 1qJ with d´ r ones.
If the system begins in its perfect state as explained before, then we get

roptq “ pdetpXqqp´1q ˚
´ q0102

1 ´ P0101

`
N´1ÿ

j“1

X0j ˚ qj1j2

¯

In our case, the SMP is irreducible and we suppose that the mean sojourn
times are finite, then we have [13]

lim
tÑ8

roptq “
ÿ

iPU

ÿ

jPD

Pij

µii
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where µii is the mean recurrence time to state i P E, for the SMP pZtq

µii “
m

ρi

So we obtain the limit of ROCOF

lim
tÑ8

roptq “

ř
iPU

ρiPi1i2

m

4 Numerical examples

4.1 Example 1

To compare with the results in [1], we have chosen the same parameters
along with same distributions assumed as follows. The external failure occurs
following a Poisson process with rate λ “ 0.02{h. External failures can be
repairable with a probability p “ 0.87, or be non-repairable with a probability
q “ 1 ´ p “ 0.13. The lifetime of the system follows Phase-type distribu-
tions (PH distribution [14]) with representation pα, aiT q, i “ 0, 1, ¨ ¨ ¨ , N . The
repairman deals with repairable external failure with a PH distribution with
representation pβ, biSq. The deterioration after each repair is a “ 1.25, and
the coefficient of skill is b “ 0.9. The system begins in perfect state 0’, and is
replaced directly after 3 repairs (N=3), this implies that the total number of
states are 7 with 4 Up states.
Matrix T and S are given by

T “

¨
˝

´0.001 0.001 0
0 ´0.08 0.08
0 0 ´0.01

˛
‚, S “

¨
˝

´0.5 0.5 0
0.01 ´0.08 0.07
0.005 0 ´0.2

˛
‚

With formulas presented in this article, we get the transition matrix

P “

¨
˚̊
˚̊
˚̊
˚̊
˝

0 0 0 0 1 0 0
0.1464 0 0 0 0 0.8536 0
0.1538 0 0 0 0 0 0.8462

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

˛
‹‹‹‹‹‹‹‹‚

Then the stationary law of the EMC is

ρ “
`
0.1556 0.1442 0.1236 0.1931 0.1556 0.1231 0.1046

˘
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The mean sojourn time in each state is

m “

¨
˚̊
˚̊
˚̊
˚̊
˝

48.8302
49.0573
48.6301
48.6301
4.0816
4.5351
5.0391

˛
‹‹‹‹‹‹‹‹‚

and m “ 31.6885. Finally from the above formulas MTTF “
64.5150,MTTR “ 3.4140,MUT “ 78.1686,MDT “ 4.4885, A “
0.9286, lim

tÑ8
roptq “ 0.0159

Considering a prefect initial state, in Figures 2, 3 and 4, the reliability, the
instantaneous availability and the point-wise rate of occurrence are depicted
respectively. If the initial law of system follows uniform distribution, which
means α0 “ p 1

N`1
¨ ¨ ¨ 1

N`1
q, therefore MTTF “ 36.4347,MTTR “ 3.4140

and the reliability function is presented in Figure 5

Fig. 2 Reliability with initial perfect state Fig. 3 Availability with initial perfect state

Fig. 4 ROCOF with initial perfect state
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Fig. 5 Reliability with Uniform initial law

4.2 Example 2

We have implemented the model in Matlab program [14] for numerical exam-
ples. The parameters are assumed as follows. The external failure occurs
following a Poisson process with rate λ “ 0.02{h, which means the arrival
meantime is 500h. External failures can be repairable with a probability
p “ 0.87, or be non-repairable with a probability q “ 1 ´ p “ 0.13.
We suppose that the lifetime of the system follows a Weilbull distribution,
F pxq “ 1 ´ expp´p x

α
qβq with parameter α “ 1, β “ 1.5, which shows that the

system degrades by time. The repairman deals with repairable external failure
with a Weilbull distribution function, where α1 “ 1, β1 “ 0.9, which means
the repairman treats failures faster each time. The coefficient of deterioration
after each repair is a “ 1.25, and the coefficient of skill is b “ 0.9. We sup-
pose the system begins in perfect state, and is replaced directly after 3 repairs
(N “ 3), this implies that the total number of states are 7 with 4 Up states.
With formulas presented in this article, we get the transition matrix of the
EMC

P “

¨
˚̊
˚̊
˚̊
˚̊
˝

0 0 0 0 1 0 0
0.9876 0 0 0 0 0.0124 0
0.9900 0 0 0 0 0 0.0100

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

˛
‹‹‹‹‹‹‹‹‚

Then the stationary law of the EMC is

ρ “
`
0.4923 0.0151 0.0002 0.0000 0.4923 0.0002 0.0000

˘
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The mean sojourn time in each state is

m “

¨
˚̊
˚̊
˚̊
˚̊
˝

0.6584
0.7146
0.5729
0.4591
1.0522
1.1691
1.2990

˛
‹‹‹‹‹‹‹‹‚

and m “ 0.8532. Moreover, from the above formulas MTTF “
0.6584,MTTR “ 0,MUT “ 0.6803,MDT “ 1.0522, A “ 0.3927, lim

tÑ8
roptq “

0.5770.
In Figure 6, for a perfect initial state, the reliability is depicted respectively.
If the initial law of system follows an uniform distribution, which means
α “ p 1

N`1
¨ ¨ ¨ 1

N`1
q, different mean time to failure and mean time to repair are

obtained MTTF “ 0.6237,MTTR “ 0.8801
The reliability function with an uniform initial distribution is presented in
Figure 7

Fig. 6 Reliability with initial perfect state Fig. 7 Reliability with Uniform initial law

5 Concluding Remarks

The extension of state space presented in this article allows us to obtain all
reliability indicators (transient and steady-state) in a standard way. The way
of convolution algebra used here allows us to obtain closed form solution for
reliability and steady-state indicators. Another way to obtain numerical results
is to consider the Markov renewal function ψptq as a series, i.e.

ψptq “
ÿ

ně0

Qpnqptq

In that case, a truncation test is needed, see [2] and [15]. An additional future
that we can face here, is to consider not instantaneous replacement of a new
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unit, but with a time duration, deterministic or stochastic. For this we can just
consider an additional state for this operation, of course, this consideration
leaves unchanged reliability and MTTF, while the other indicators will be
affected.
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