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Multi-component system maintenance optimisation and masked data

Hasan Misaii1,2 and Firoozeh Haghighi2, Mitra Fouladirad3

Abstract— The paper discusses he maintenance optimization
of a multi-component system. The exact cause of failure is
unknown and only some information about it is available.
Opportunistic perfect preventive maintenance is considered
and optimized using cost criteria. Numerical implementations
illustrate the applicability of results.

I. INTRODUCTION

Maintenance planning for multi-component systems is an

important issue and not easy to address because of economic,

structural and/or failure dependency between components

[5], [6]. Maintenance policy optimization depends on the

available information at our disposal, this paper discusses

maintenance policy optimization in presence of incomplete

information. In the case of multi-component systems, the

maintenance can be perfect and maintain all the components

which is very costly or imperfect in sens that only failed

components are replaced. Imperfect maintenance can be

applied when the system or the component is not as good

as new after maintenance. Sometimes, the system is only

repaired in order to continue to operate where the failure

rate remains unchanged in comparison to the failure rate

before maintenance, that is called minimal maintenance [1].

Moreover, preventive maintenance actions can be planned in

order to avoid failure. The preventive action occurs before

the failure an is more cost-efficient since it permits to avoid

the failure and its induced cost and consequences. Preventive

maintenance planning is an important issue since a frequent

preventive maintenance could be costly and by reducing

the frequency of these actions, the occurence of failures

will be more likely which will induce higher costs and a

period of unavailability. That is why preventive maintenance

scheduling has attracted lot of attentions lately as well as in

high-tech industry as in basic production and manufacturing.

The preventive maintenance can be planned periodically

called period maintenance, based on the age of the system

called age-based maintenance, randomly according to the

maintenance teams availability or at failure of some compo-

nents called opportunistic maintenance or based on the health

indicator of the component or the system called condition-

based or predictive maintenance, for more details refer to

[1], [2], [3], [4], [7], [8], [9].

The choice of maintenance planning is strongly related

to the available data and information. In absence of regular
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monitoring of a health indicator or sensor measurements

on this latter, it is not possible to plan condition-based

or predictive maintenance actions. If only historical data

is available, periodic or age-based maintenance is carried

out. In the case of multi-component systems where it is not

sensible to replace the whole system at each maintenance, at

components failures some diagnosis can be made on other

components and carry out opportunistic maintenance based

on observations at maintenance date. However, the cause of

the failure of a multi-component system (the failed compo-

nent(s)) could be not always identified. In this framework,

the available data is called masked data. Dealing with this

kind of data in the framework of reliability calculation and

maintenance planning is a big challenge, [11], [10]. Since

it is important to take advantage of available information,

in the framework of masked data, opportunistic maintenance

polices could reduce maintenance costs.

In this paper, an opportunistic perfect preventive main-

tenance is considered in presence of masked data. The

preventive maintenance action replaces the failed component

as good as new. When the system fails besides the failed

component, some endangered components are replaced by a

new one thus the perfect preventive replacements are oppor-

tunistic. Inspections are periodic and inter-inspection interval

is optimized. The rest of the paper is organized as follows.

In section 2, the model is explained. The maintenance model

is presented in section 3. A numerical example is conducted

in order to illustrate the applicability of the proposed method

in section 4. Finally, the conclusion is given in section 5.

II. MODEL DESCRIPTION

A series system with J components is considered. When

the system fails we observe failure time, t, but the exact

cause of failure might be unknown but it is known that it

belongs to a subset of {1,2, ..., J} called MRS. Let M be

the MRS corresponding to the failure time t for the system.

The set M contains components that are possible to be the

cause of system failure and if M = {1, ..., J} then the system

cause of failure is called to be completely masked.

Let Tl; l = 1,2, ..., J be the lifetimes of the lth component

(independent components) and assume that the system fails

only due to one of the J components, therefore the system

failure time T is defined to be T = min(T1, ..., TJ). Let be

fl(t) and Rl(t) probability density and reliability functions

denoted by , respectively. The reliability function of T is

given by

R(t) = R(t; θ) = Pθ(T > t) =
J

∏
l=1

[1 − Fl(t)]
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θ = (θ1, ..., θJ) and θl is the set of parameters related to the

lth component and Fl is corresponding distribution function

of lth component. Let’s consider the cause of failure K as

random variable. Then the joint probability density function

of (T,K) is given by

fT,K(t, l) = fl(t)∏
j≠l

[1 − Fj(t)] (1)

and also F (j, t) = P(K = j, T ≤ t), or equivalently R(j, t) =
P(K = j, T > t) [12].

The probability

ptl(Mi) = P(M =Mi∣T = t,K = l)
is called the masking probability, where Mi is an observation

of M . Some authors such as Mukhopadhyay [13], Kuo and

Yang [14] and Cai and et al. [15], assumed

P(M =Mi∣T = t,K = l) = P(M =Mi∣K = l) = pl(Mi),

that is, the masking probability is independent of failure time,

but is dependent to the causes of failure. Similar to a new

approach that was presented to model the dependency of the

masking probability on the failure time and its exact cause

using the multinomial logistic regression model [16], we also

assume that the masking probability depends on the failure

time and its exact cause.

Suppose M be the set of all nonempty subsets of {1, ..., J}
that have 2J − 1 members. For l = 1, ..., J , define by

Ml = {M ∈M ∶ l ∈M}
the elements of M that include l, thus

ptl(Mi) = P(M =Mi∣K = l, T = t) = 0
∀Mi ∈Mc

l =M −Ml and

∑
Mi∈M

ptl(Mi) = ∑
Mi∈Ml

p
t
l(Mi) = 1, l = 1, ..., J

denote by Pl = {ptl(Mi) ∶Mi ∈Ml}, l = 1,2, . . . , J then the

set of all masking probabilities is P = (P1, ...,PJ).
The reliability function of the multi-component system is

given by

R(t) = ∫
∞

t

J

∑
l=1

fl(u)∏
j≠l

Rj(u)du.

This function depends on the reliability of components and

therefore on lifetime distribution of the components which

are unknown.

III. MAINTENANCE MODELING

The hypothesis of the maintenance framework are as

follows.

● The system is inspected periodically at times kτ ; k =
1,2, ..., with cost cins for the system and Mk the

corresponding masked sets.

● The time interval ((k−1)τ, kτ] is called the kth period.

● Inspections are carried out at the end of each period

● The time required for inspection and maintenance ac-

tions is negligible.

● The system failure is not self-announced

● The components are maintained independently.

● At the kth inspection time, kτ , a maintenance action is

performed if the system has been failed during ((k −
1)τ, kτ] interval. The probability of each cause in Mk

given possibly masked set and interval censored failure

time is given by

pjMk
= P(K = j∣Mk, u ∈ ((k − 1)τ, kτ])

= ∫ kτ

(k−1)τ P(Mk ∣j, u)fT,K(u, j)du

∫ kτ

(k−1)τ ∑l′∈Mk
P(Mk ∣l′, u)fT,K(u, l′)du

where u is the exact failure time. Note that pjMk
= 0

for j ∉Mk.

● If the system fails at ((k−1)τ, kτ] a maintenance action

is carried out for each component in Mk according to

a predetermined value of ρ; 0 < ρ < 1, as follows:

– If Tl > (k−1)τ and Tl < kτ then perfect corrective

maintenance (PCM) action is done for component

l with cost clc (that is, the failed component l is

replaced by a new one).

– If Tl > kτ and plMk
> ρ then opportunistic perfect

preventive maintenance (OPPM) action is done

for component l with cost clp < clc (that is, the

degraded component l is replaced by a new one).

● A perfect corrective repair (PCR) is done for component

l, l ∈Mk, if the system fails at ((k − 1)τ, kτ] and

Tl > (k − 1)τ & Tl < kτ.
Define Pcl(kτ) as probability of perfect corrective re-

pair for component l; l = 1,2, ..., J , at kth inspection

time.

● An opportunistic perfect preventive repair (OPPR) is

done for component l, l ∈ Mk, if the system fails at

((k − 1)τ, kτ] and

Tl > kτ & plMk
> ρ.

Define Ppl(kτ) as the probability of the opportunistic

perfect preventive repair for component l; l = 1,2, ..., J ,

at kth inspection time,

The time from the component installation to its first

replacement or the time between two successive replacement

of each component is referred to as a renewal cycle. Let L

and Lj denote the average long-run maintenance cost per

unit of time for the system and component j, respectively.

Therefore, based on the renewal reward theorem, [20], the

expected long-run maintenance cost rate for component j is

Lj(τ, ρ) = lim
t→∞

Cj(t)
t
= E(Crj)
E(Trj)

where E(Crj) and E(Trj) are total expected cost during a

replacement cycle and expected length of the replacement

cycle for component j, respectively such that

E(Crj) =
∞

∑
k=1

[(kcins
J
+cjp)Ppj(kτ)+(

kcins

J
+cjc)Pcj(kτ)]
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and

E(Trj) =
∞

∑
k=1

kτ[Ppj(kτ) + Pcj(kτ)].

Finally, the total expected long-run maintenance cost rate for

the series system until time t is given by [18], [19]

L(τ, ρ) =
J

∑
j=1

Lj(τ, ρ).

The aim is to propose an inspection interval τ which

minimises L(τ, ρ):

τ∗ = argminL(τ, ρ) =
J

∑
j=1

Lj(τ, ρ)

This joint optimisation of costs permits to take into account

all the components reliability in the optimisation procedure.

IV. NUMERICAL EXAMPLE

A series system with J = 3 components is considered.

The system is inspected periodically at times kτ ; k =
1,2, ..., with cost cins for the system and Mk; k = 1,2, ...
are corresponding masked sets, thus the collected data are

(kτ,Mk); k = 1,2, .... When the system fails, an oppor-

tunistic perfect preventive replacement is carried out for

components that are in the masked set with pl > ρ and a

perfect corrective replacement is made for failed component

with costs clp and clc, respectively. Two illustrative examples

have been constructed to clarify previous sections. In both

of them, it is assumed that the lifetime of components

are independent and follow the Weibull distribution with

parameter set (αj , βj); j = 1,2,3, as follows:

fTj
(tj) = αj

βj

(
tj

βj

)(αj−1) exp(−(
tj

βj

)αj).

We set parameters as in Table I

TABLE I: The optimal inter-inspection interval value (τ ) as

decision parameter with different cost rates and ρ

unit costs

cins 1

c1p 1.5

c2p 2.5

c3p 3.5

c1c 2

c2c 4

c3c 5

All masked sets are considered as completely masked

sets which is similar to missing setup, that is, Mk =
{1,2, ..., J}; k = 1,2, ..., thus

pjMk
=P (K = j∣Mk, u ∈ ((k − 1)τ, kτ])

= ∫
kτ

(k−1)τ fT,K(u, j)du

∫
kτ

(k−1)τ ∑l′∈Mk
fT,K(u, l′)du

since ∀j ∈ {1,2, ..., J} and t ∈ [0,∞)

P (Mk =M ∣K = j, t) =
⎧⎪⎪⎨⎪⎪⎩
1 if M = {1,2, ..., J}
0 if M ≠ {1,2, ..., J}

where the inter-inspection interval, τ , is considered as deci-

sion parameter and should be optimized through maintenance

optimization problem.

(k − 1)τ < T < kτ

l ∈Mi

Set:

l = 1

(k − 1)τ < Tl < kτ

L(τ,ρ)

Algorithm 1: Imperfect Corrective Maintenance Policy

Yes

Tl > kτ & pl > ρ
Tl > kτ & pl ≤ ρ

OPPM PCM

clp clc

Ll(τ,ρ)

l = l + 1

l ≤ J

l > J

No

TABLE II: The optimal inter-inspection interval value (τ ) as

decision parameter with different cost rates and ρ considering

a constant failure rate (αj = 1 for j = 1,2,3)

τ
∗

ρ Cost Rate

0.03 0.00 154.38
0.04 0.00 125.23
0.05 0.10 102.16
0.06 0.10 92.90
0.07 0.10 86.11
0.09 0.10 69.64
0.11 0.10 62.42
0.14 0.10 55.72
0.17 0.10 48.73
0.26 0.10 36.90
0.27 0.10 34.14
0.31 0.10 32.96
0.42 0.10 24.21
0.44 0.10 23.16
0.50 0.10 21.13
0.53 0.10 20.10
0.54 0.10 19.90

It can be noticed in Tables II and III that the cost rate is

very sensitive to the failure rate distribution. Indeed with the

same maintenance unit costs, the total cost rate can be very

high for an increasing failure rate. When the failure rate is

increasing a with the same masking probability threshold the

impact of a missing failure can be very high between two
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TABLE III: The inter-inspection interval value (τ ) as deci-

sion parameter with different cost rates and ρ considering an

increasing failure rate

τ ρ Cost Rate

0.01 0.00 368.44
0.01 0.20 445.45
0.02 0.20 234.48
0.03 0.10 161.29
0.04 0.10 123.22
0.10 0.20 56.15
0.30 0.20 24.18
0.40 0.20 19.50
0.50 0.20 16.30
0.70 0.20 12.72
0.80 0.20 11.42
0.82 0.20 11.20
0.85 0.20 10.88
0.86 0.20 10.77
0.87 0.20 10.68

inspections.

Fig. 1: The optimal value of ρ as decision parameter con-

sidering (α1, α2, α3) = (1.25,2,2.5) and (β1, β2, β3) =
(2.5,2.25,2.75) for the optimal inspection interval τ = 0.67.

In Figure 1, 2 and 3, the cost rate is depicted in function

of component cause probability threshold ρ considering the

optimal inspection. In Figure 1, since all the failure rates

are non-decreasing the cost rate is convex for decision

parameters and we can easily identify an optimal value. The

optimal inspection interval is relatively small which requires

frequent inspections and the cause probability threshold is

close to 50%. Since the inspections are frequent the risk of

missing the cause is not very high.

In Figure 2 and 3, since all the failure rates are decreasing

the minimal cost rate exists but the cost rate variations around

the optimal value are not very high. Indeed in this framework

the system is getting better even though the failures occurs,

by relatively frequent inspections and a low cause probability

the maintenance operations are occurs frequently. However,

since failures are less frequent the maintenance decision rule

is more often postponed.

As the failure rate is decreasing (the failure rates in Figure

3 decrease faster than in Figure 2) the flatness around the

optimal value is more obvious. The inspections are less

frequent and the cause probability threshold still very low.

Fig. 2: The optimal value of ρ as decision parameter con-

sidering (α1, α2, α3) = (0.5,0.25,0.7) and (β1, β2, β3) =
(1.5,1.25,1.75) for the optimal inspection interval τ = 0.88.

Fig. 3: The optimal value of ρ as decision parameter consid-

ering α = (0.5,0.25,0.7) and (β1, β2, β3) = (0.25,0.5,1.5)
under different failure rates, for the optimal inspection inter-

val τ = 1.11.

V. CONCLUSIONS

In this paper an opportunistic maintenance is proposed for

a multi-component system with masked data. The mainte-

nance policy is described and a cost criterion optimisation is

proposed. A numerical example illustrate the methoddology.
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