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Abstract—Heart failure (HF) is a chronic heart condition
that increases mortality, morbidity, and healthcare costs. The
electrocardiogram (ECG) is a noninvasive and straightforward
diagnostic tool that can reveal detectable changes in HF. Because
of their small amplitude and duration, these changes can be
subtle and potentially misclassified during manual interpretation
or when analyzed by clinicians. This paper reports a 7-layer deep
convolutional neural network (CNN) model for HF automatic
detection. The proposed CNN model requires only minimal pre-
processing of ECG signals and does not require any engineered
features. The model is trained and tested using an unbalanced
and a balanced datasets extracted from the MIT-BIH and the
BIDMC databases, achieving an accuracy of 99.73%, a sensitivity
of 99.58%, and a specificity of 99.83% when the dataset is
unbalanced and an accuracy of 99.26%, a sensitivity of 99.37%,
and a specificity of 99.12% when the dataset is balanced.

Index Terms—Deep Learning, Binary Classification, Convolu-
tional Neural Network, Heart Failure, Electrocardiogram.

I. INTRODUCTION

Heart failure (HF) is the inability of the heart to pump

enough blood to meet metabolic demands or to supply venous

return. It is a clinical syndrome caused by muscular tissue

injuries in the heart. Ischemic heart disease, hypertension,

and diabetes are the leading causes of these injuries. As

the heart fails, patients experience a variety of symptoms

such as dyspnea due to pulmonary congestion, edema and

ascites due to impaired venous return. Common constitutional

symptoms include nausea, loss of appetite, and fatigue.

Several compensatory mechanisms occur as the failing heart

attempts to maintain adequate function, such as increasing

cardiac output, increasing ventricular volume and wall

thickness, and maintaining tissue perfusion with augmented

mean arterial pressure, among other things. Although these

mechanisms may be beneficial in the early stages of HF,

they all eventually lead to a vicious cycle of worsening HF [1].

According to statistics, HF affects 2 to 3% of the population

in developed countries: approximately 15 million Europeans

are affected by this syndrome [2]. Globally, more than 26

million people have been diagnosed with HF, creating a major

public health issue as well as a significant economic burden

[3]. The prevalence of this syndrome has been increasing in

recent years and is expected to rise further as the population

ages and even patients with cardiac conditions, which may

trigger the development of HF, live longer. Despite the

advances in HF care, the disease still has a high morbidity

and mortality rate: nearly half of all patients diagnosed with

HF die within five years. HF, on the other hand, is associated

with frequent hospitalization: in Europe, HF accounts for 5%

of all acute hospital admissions [2]. HF care accounts for 1 to

2% of total health-care costs in developed countries. The cost

of hospitalization accounts for the majority of total spending

[4].

A combination of signs and symptoms, corroborated

by tests, is required for the diagnosis of HF. The

electrocardiogram (ECG) is a non-invasive measurement

used to record the electrical activity of the heart. HF has an

effect on such a signal. However, visual evaluation of the

ECG signal obtained from the patient takes time, and manual

interpretation is subject to inter-observer variability. The

changes that hit the ECG signal are of a differential nature,

making them difficult to be detected with the naked eye. This

highlights the importance of using Computer Aided Diagnosis

(CAD) systems to detect such abnormalities, because of

their improved accuracy and reliability. A typical CAD

system consists of four key procedures: signal pre-processing,

extraction of unique features, selection of significant features,

and classification.

This paper proposes a novel model based on deep learning

to diagnose HF with a short-time record of ECG signals.

The proposed model is a deep Convolutional Neural Network

(CNN) having seven layers, with minimal pre-processing

requirements. The main advantage of using a CNN over

traditional machine learning methods is that it automatically

detects important features without any human intervention.

With its seven layers, the proposed architecture is smaller

than currently available architectures in the literature, and thus

it is less consuming in memory and computation time. This

approach is illustrated using real ECG signals acquired from

ambulatory holter and ECG recorders databases. Evaluation

metrics demonstrate better performances, even with 2s ECG

segments as input.
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The rest of the paper is organized as follows. Section II

presents related work. Section III describes the database and

the proposed method. Section IV presents and discusses the

obtained results. Finally, Section V provides the conclusion.

II. RELATED WORK

Many machine learning and deep learning techniques have

been proposed in the literature to address the HF diagnosis

issue. Asyali investigated the discrimination power of nine

commonly used long term Heart Rate Variability (HRV)

measures in his study [5]. He then used a Bayesian classifier

to classify ECG signals as Normal or HF based on the

standard deviation of NN intervals or SDNN. The obtained

accuracy equals 93.24%, with sensitivity and specificity of

81.82% and 98.1% respectively. Melillo et al. distinguished

between Normal and HF patients using a combination of

HRV measures fed into a Classification and Regression Trees

model (CART) [6]. The classification accuracy, sensitivity

and specificity were 96.36%, 89.74% and 100% respectively.

Liu et al. described a method for detecting HF using three

other combinations of HRV measures and a Support Vector

Machine (SVM) classifier [7]. The model was perfect in terms

of accuracy, sensitivity and specificity. Masetic et al. used

feature extraction and classification to achieve the same goal

[8]. The autoregressive burg method was used to extract the

features, which were then fed into a Random Forest classifier,

which achieved 100% accuracy, sensitivity, and specificity.

Data pre-processing is an essential step in machine

learning techniques because the quality of the data, and thus

the information that can be extracted from it, directly affects

the network’s learning ability. Another important step in

machine learning is feature selection. The selection process

can be time-consuming and labor-intensive. Deep learning

models have been used to optimize the performance of a CAD

system in order to avoid the pitfalls of traditional machine

learning. Chen et al. used RR interval segments to detect HF

using a deep learning model based on sparse auto-encoders

(SAE) [9]. The SAE were used to extract some features,

which were then fed to a Deep Neural Network (DNN)

for classification. The results showed a 72.44% accuracy, a

50.93% sensitivity, and a 80.93% specificity. Wang et al.

presented a deep learning method based on Long Short Term

Memory (LSTM) to classify ECG signals as Normal or HF

[10]. A 500-point RR intervals segment was fed into the

network. The model’s accuracy was 84.91%, its sensitivity

was 75.49%, and its specificity was 90.06%. Acharya et al.

proposed an 11-layer Convolutional Neural Network (CNN)

for categorizing ECG signals as Normal or HF [11]. The

accuracy was 98.97%, the sensitivity was 98.87%, and the

specificity was 99.01%. Wang et al. used LSTM and an

inception module to detect HF. For an input of 500 points

RR interval segment, the network achieved 86.42% accuracy,

74.91% sensitivity, and 91.21% specificity [12]. Padmavathi

et al. discussed an 11-layer CNN approach for detecting

TABLE I
EVALUATION METRICS (IN %) OF THE DIFFERENT METHODS FOUND IN

THE LITERATURE

Method Classifier Accuracy Sensitivity Specificity

[5] Bayesian Classifier 93.24 81.82 98.1

[6] CART 96.36 89.74 100

[7] SVM 100 100 100

[8] RF 100 100 100

[9] DNN 72.44 50.93 80.93

[10] LSTM 84.91 75.49 90.06

[11] CNN 98.97 98.87 99.01

[12] Inception Module LSTM 86.42 74.91 91.21

[13] CNN 80.1 81 79.3

[14] CNN 98.5 99.3 97.89

HF [13]. The model had an 80.10% accuracy rate, an 81%

sensitivity, and a 79.30% specificity. Lih et al. created a

16-layer CNN-LSTM model for ECG signal classification.

This one achieved 98.5% accuracy, 99.3% sensitivity and

97.89% specificity [14]. Table I summarizes the evaluation

metrics of the different methods found in the literature.

III. MATERIALS AND METHOD

A. Database Description

The ECG signals used in this retrospective study are ob-

tained from two publicly accessible databases: the MIT-BIH

normal sinus rhythm (MIT-BIH NSR) database [15] and the

BIDMC congestive heart failure (BIDMC CHF) database [16].

The former database contains eighteen long-term ECG signals

from five healthy men aged 26 to 45 and thirteen healthy

women aged 20 to 50. The ECG signals are sampled at 128

Hz and cover 20h of recordings. The latter database contains

fifteen long-term ECG signals from eleven men aged 22 to

71 and four women aged 54 to 63 who are diagnosed with

heart failure. The HF ECG signals are sampled at a frequency

of 250 Hz, also with 20h of recordings. To ensure that all

ECG signals are sampled at the same frequency, the MIT-BIH

NSR recordings are upsampled to 250 Hz. The signals are

then segmented into 2s fragments. This leads to 36 000 2-s

ECG segments per signal. Following that, the segments are

regularized using Z-score normalization to ensure that they

all contribute equally to the analysis. Table II summarizes the

characteristics of each database.

TABLE II
DATABASES CHARACTERISTICS

Databases Number of Signals Properties

MIT-BIH NSR 18 Long-Term ECG Signals

5 men between 26 and 45
13 women between 20 and 50

fs=128Hz

BIDMC CHF 15 Long-Term ECG Signals

11 men between 22 and 71
4 women between 54 and 63

fs=250Hz
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The generated dataset lacks balance, with unequal

representation of the two classes (60 % normal and 40 %

HF). A balanced dataset is created to avoid the problem of

data imbalance by taking equal numbers of ECG segments

from the MIT-BIH NSR and the BIDMC CHF databases. The

resulting dataset is composed of 240 000 2s-ECG fragments,

with 120 000 for each class, normal or HF. More fragments

could be taken, at the cost of higher computation times and

memory consumption. In order to involve equally all subjects

for each class, with 18 normal subjects and 15 HF patients:

out of the 18 normal subjects, 15 are randomly chosen, and

8000 2-s ECG samples are randomly selected per patient. The

obtained dataset will be used in the following for training

and testing the model.

B. Method

This paper proposes a 7-layer CNN. The main advantage

of using a CNN over its predecessors is that it can detect

important features automatically without human intervention.

Its low reliance on pre-processing reduces the need for human

effort while expanding its capabilities. The model consists of

two convolutional layers, two max-pooling layers, and three

fully-connected layers. The convolutional layer is made up

of a fixed number of filters and is used to extract the maps

of the features. Convolutional layers perform the convolution

of different filters with the input signal according to equation

1 in which Y is the result of the convolution of the signal

x by the kernel f , n and k are positional indexes, and N is

the size of the signal. The max-pooling layer, which takes

the maximum value in a specific filter region, is used to

reduce the network’s dimensionality. The fully connected

layer, which is usually placed before the output layer, is used

to aggregate data from the final feature map and generate the

final classification. Fig. 1 shows the general structure of the

proposed network.

Yn =
N−1∑

k=0

xk fn−k, (1)

The first layer takes the 2-s ECG segment of 500 points

as input. It is a convolutional layer with five 1 × 13 filters

applied with a stride of 1 i.e. five feature maps are generated

by convolving the different filters with the input 500 points

ECG signal. The second layer is a max-pooling layer with

a pool size of two and a stride of 4. This layer reduces

the dimensions of the features maps by convolving a 1 × 2
filter with each of the previously generated feature maps. As

a result, the number of parameters to learn is reduced, as

is the amount of processing in the network. Consequently,

the model is more robust to changes in feature position in

the input. Following that, another convolutional layer of ten

filters of size 1 × 9 each is applied with a stride of 1. This

set of filters is applied to the dimensionally reduced feature

maps extracting a higher-level features. The fourth layer is

Fig. 1. General structure of the proposed model

a max-pooling layer with the same properties and tasks as

the second layer. After that are three fully connected layers,

each with 40, 20, and 2 units. The input to the first layer is

nothing but a flattened version of the previous layer’s output.

Except for the final layer, which uses the softmax activation

function, all layers use the Leaky ReLU activation function.

3



The model weights are initialized using Glorot uniform

initialization, and they are updated using backpropagation with

a batch size of 10. The model is built up over a period of

sixty epochs. Let yi be the label of segment i of the training

databaset, that is yi = 1 if the segment i is taken from a

HF signal and yi = 0 otherwise. Consider p̂i the predicted

probability that the segment i is HF, obtained at the output of

the network. For the binary classification problem, the binary

cross entropy function is used to calculate the model’s loss,

as shown in the following equation:

L(q) =
−1

M
ΣM

i=1
yi. log(p̂i) + (1− yi). log(1− p̂i),

where M is the total number of segments taken in the

training phase and q is the index of the epoch. The cross

entropy computes a score that represents the mean difference

between the actual and the predicted values. The score is to

be minimized, where the 0 value is a perfect cross entropy.

IV. RESULTS AND DISCUSSION

The model is validated using stratified 10-fold cross

validation over the dataset of 208 000 segments. The dataset

is divided into ten equal parts with an equal percentage of

each class in each part, and the training and the validation

are performed ten times, each time using 9 folds for

the training and the remaining one for the validation.

Following this stratified 10-fold cross-validation procedure,

a blindfold validation of normal and HF ECG segments

from 4 patients (32 000 segments) with complete holdout is

conducted in order to further assess the proposed model. This

process is repeated 10 times and Tables III and IV display

and summarize the results from this fully held-out test set

considering the unbalanced and balanced datasets respectively.

The test set of fully unseen patients shows that the proposed

classifier achieves an overall average classification accuracy

of 99.263%, correctly categorizing 99.374% of normal ECG

fragments and 99.124% of ECG fragments exhibiting indica-

tions of HF. Three evaluation metrics are used in this paper

to assess the performance of the proposed model that are

accuracy, sensitivity and specificity, as listed below:

Accuracy =
TP + TN

TP + FN + TN + FP

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

where TP , TN , FP and FN denote the true positive, the

true negative, the false positive and the false negative rates.

Tables III and IV summarize the aforementioned measures

for the executed ten folds. As can be seen, the presented

model achieves an average accuracy of 99.73%, with an

TABLE III
TEN FOLDS EVALUATION METRICS (UNBALANCED DATASET)

Fold Accuracy (%) Sensitivity (%) Specificity (%)

1 99.70 99.62 99.75

2 99.94 99.96 99.91

3 99.98 99.97 100

4 99.95 99.93 99.96

5 99.83 99.53 99.80

6 99.91 99.97 99.82

7 98.90 97.50 99.89

8 99.40 99.56 99.27

9 99.99 99.98 99.99

10 99.95 100 99.90

Average (%) 99.73 99.58 99.83

TABLE IV
TEN FOLDS EVALUATION METRICS (BALANCED DATASET)

Fold Accuracy (%) Sensitivity (%) Specificity (%)

1 96.74 99.95 94.25

2 99.85 99.68 100

3 99.91 99.80 100

4 99.98 99.96 100

5 99.05 99.27 99.12

6 99.97 99.98 99.96

7 98.44 96.22 100

8 99.74 99.13 100

9 99.69 99.82 99.58

10 99.15 99.93 98.33

Average (%) 99.26 99.37 99.12

average sensitivity of 99.58% and an average specificity of

99.83% with an unbalanced dataset and an average accuracy

of 99.26%, with an average sensitivity of 99.37% and an

average specificity of 99.12%, with respectively low standard

deviations with a balanced dataset. The number of epochs

chosen is sufficient for the loss function to converge and

reach a stable minimum. The model’s average loss is 0.024

when the dataset is unbalanced and 0.08 when the dataset is

balanced. The code was written in Python and implemented

in Google Colab.

In order to illustrate the performances of the proposed

method, a comparison is established between the achieved

results and those of other HF diagnosis methods using the

same databases. Three existing methods are thus considered.

The authors of [6] explored the discrimination power of

various Heart Rate Variability (HRV) measures and chose

three combinations of these measures to form the input to

a CART classifier. The method in [11] used an 11-layer CNN

to classify 2s ECG fragments, with minimal pre-processing,

into N or HF. The authors of [13] upsampled the ECG signals

to a common frequency, filtered them using empirical mode

decomposition, and performed R-peak detection prior to beats

segmentation. For classification, the beats were fed into an

11-layer CNN. Table V shows the test evaluation metrics of

methods of the literature compared to the proposed model. The

results of the method in [11] given in Table V are obtained

with an unbalanced dataset in the higher row. When balanced

4



TABLE V
EVALUATION METRICS (IN %) OF DIFFERENT METHODS FOUND IN THE

LITERATURE

Method Accuracy Sensitivity Specificity

[6] 96.36 89.74 100

[11]-unbalanced 98.97 98.87 90.01

[11]-balanced 94.40 94.68 94.12

[13] 80.10 81 79.30

Proposed Model
(Unbalanced dataset)

99.73 99.58 99.83

Proposed Model
(Balanced dataset)

99.26 99.37 99.12

data are considered, the accuracy drops to 94.40%, as do the

sensitivity and the specificity, which drop from 98.87% to

94.68% and from 99.01% to 94.12%, respectively, as shown

in the lower row. The results show that the proposed model

performs better than existing methods. A higher specificity is

achieved with method of [6], however it is at the cost of the

sensitivity and the accuracy that are lower than the obtained

one with the proposed model. The use of deep learning in

the presented method, along with an efficient training and a

suitable architecture, ensures high performances compared to

traditional machine learning methods. Indeed, deep learning

capabilities enable more reliable signal abstraction in high-

dimensional space without the need for human intervention.

When compared to the deep models architectures in [11] and

[13], the proposed model is smaller, with 7 layers instead of

11, and faster when training time is taken into account.

V. CONCLUSION

An automated ECG classification system for the detection

of heart failure is proposed in this paper. The proposed model

consists of a 7-layer CNN and is fully automatic, with no pre-

processing or feature selection stages required. Normal ECG

recordings are obtained from the MIT BIH NSR database, and

heart failure ECG recordings are obtained from the BIDMC

CHF database. The two databases are freely accessible on

the internet. To avoid data imbalance issues, the dataset is

created with 120000 normal ECG segments and 120000 ECG

segments from heart failure patients. The presented CNN

classifier, which achieved high metrics, plays an important role

in the detection and classification of ECG signals, as evidenced

by its accuracy of 99.73%, sensitivity of 99.58% reflecting the

true positive rate, and specificity of 99.83% which represents

the true negative rate, when the dataset is unbalanced, and

its accuracy of 99.26%, sensitivity of 99.37%, and specificity

of 99.12%, when the dataset is balanced. Future work may

include the fusion of various medical data, such as times

series, punctual measurements and clinical notes, to ensure

an efficient monitoring of the state of a subject over time and

to offer a more precise classification with a stratification of

the patients into different levels of heart failure. The problem

of classification would then be defined as a multi-class hybrid

classification, combining data of different natures.
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