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The multi-trip vehicle routing problem with increasing profits for
the blood transportation: An iterated local search metaheuristic

Abstract

This paper studies a multi-trip routing problem of a shuttle fleet to transport blood units

from collection sites to a blood center. In this problem, the blood units intended to produce

platelets and cryoprecipitate must be processed within eight hours from their donation and

arrive at the blood center at a time less than its closing time to guarantee enough processing

time. Since it is assumed that blood units are donated at a collection site following a

constant ratio over its operating hours, this problem is modeled as a multi-trip vehicle routing

problem with increasing profits for which a mixed-integer linear programming formulation is

proposed. A hybrid iterated local search metaheuristic and an extended version are developed

as solution methods. The extended version includes a mixed-integer linear programming

component into the local search of the hybrid metaheuristic to optimize the decision on the

departure times of the trips. The solution methods are tested on a new set of instances based

on the blood collection system of Bogota, Colombia.
Keywords: Healthcare logistics, Blood supply chain, Perishable products, Variable profits,

Hybrid metaheuristics, Optimization

1. Introduction

The blood, when extracted from the human body, is a perishable product that can

be used for medical treatments such as surgery, organ transplantation, and cancer. The

main blood products are whole blood (WB), red blood cells, platelets (PLTs), plasma, and

cryoprecipitate (cryo) (American Red Cross, 2017). The last four products are known as the5

Abbreviations: BC: blood center, BCP: blood collection problem, BKS: best-known solution, BSC: blood
supply chain, cryo: cryoprecipitate, CS: collection site, ILS: iterative local search, MILP: mixed-integer linear
programming, MT-VRPIP: multi-trip vehicle routing problem with increasing profits, PLT: platelet, TOP:
team orienteering problem, VND: variable neighborhood descent, VRP: vehicle routing problem, WB: whole
blood
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main blood components and can be mechanically separated from a unit of WB. For details

about methods to obtain the blood components, the reader is referred to the technical manual

published by the American Association of Blood Banks (2014).

The blood supply chain (BSC) manages the flow of blood products from donors to patients

through five echelons: donors, collection sites (CSs), blood centers (BCs), demand nodes or10

transfusion points, and patients (Pirabán et al., 2019). These echelons must be coordinated

to perform the main processes: collection, transportation, testing, component processing,

storage, and transfusion (Pirabán et al., 2019).

The BSC seeks to avoid two main problems: shortage and wastage. The shortage is

unwanted as it may result in postponed surgeries, untreated patients, and deaths (WHO,15

2017). Roberts et al. (2019) estimated with a statistical analysis that 119 of 195 (61%)

countries did not have sufficient blood supply to satisfy their demand in 2017 because of

limited donations. Additionally, discarded blood units generate a wastage cost considering

both the effort expended in manufacturing and additional disposal processing (Custer et al.,

2005). As reported by the WHO (2017), the average discard rate worldwide was 8.07%20

in 2013, especially because of the fact that 33% of units had passed their expiration date.

Regarding the consequences of both shortage and wastage within the BSC, it is crucial to

optimize the operational processes to increase the service level and reduce the wastage cost.

Transportation of WB units from CSs to BCs is performed by mobile CSs and shuttles.

The mobile CSs are vehicles that collect blood units at frequented sites (e.g., parks, central25

stations, or universities) and then transport the blood units to a BC. Besides, shuttles are

used to transport the collected units from fixed CSs or support the transportation activities

of mobile CSs (Sahinyazan et al., 2015). This transportation process should be done on the

same day of collection to ensure proper refrigeration of WB units.

The transportation process must meet two main constraints. First, the WB units to30

obtain PLTs and cryo must be processed within 8 h from their donation time (American

Association of Blood Banks, 2014). This time limit is called the processing time limit.

Second, the WB units intended to produce PLTs and cryo must be delivered to the BC at a

time considerably less than its closing time, called the arrival time limit, to guarantee that

the BC would have enough time to test and process the WB units.35
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Therefore, this paper seeks to answer the following question: How to optimize the routing

of shuttles transporting WB units from CSs to a BC and considering the processing and

arrival time limits?. The planning of shuttle routes, including the processing and arrival

time limits, has not been addressed in the BSC literature to the best of our knowledge.

Also, the risk of expiration is reduced since the time between the collection and processing is40

controlled when considering these time constraints. Hence, the general objective of this paper

is to develop a mixed-integer linear programming (MILP) formulation and a metaheuristic

to optimize the routing of shuttles considering the processing and arrival time limits.

The problem studied in this paper assumes that the CSs are located in a set of scattered

nodes. Each CS has a WB donation level or profit, which is collected at a constant ratio over45

the operating hours of the CS. All WB units collected by the CSs must be delivered to the

BC using a fleet of shuttles. For this activity, each shuttle can perform up to two consecutive

trips. The first trips visit the necessary CSs to supply the demand for WB units intended to

produce PLTs and cryo. Hence, the first trips must respect the processing and arrival time

limits. If the number of WB units collected with the first trips is less than the demand, a50

shortage cost is imposed per missing unit. The second trips of the shuttle fleet are used to

pick up the remaining units in each CS. This problem is denoted as the multi-trip vehicle

routing problem with increasing profits (MT-VRPIP), which has the objective of minimizing

the shortage, transportation, and delay costs.

The MT-VRPIP is a variant of the well-known vehicle routing problem (VRP), which55

was introduced by Dantzig & Ramser (1959) and is extensively studied by several authors.

General surveys on the VRP and its variants can be found in Golden et al. (2008), Eksioglu

et al. (2009), and Vidal et al. (2020). Additionally, the MT-VRPIP is NP-hard since it is an

extension of the VRP, which is well-known to be NP-hard. It means no exact methods are

providing optimal solutions in polynomial time for any size of the problem.60

Since metaheuristics provide high-quality solutions on larger problems (Toth & Vigo,

2014), a hybrid iterated local search (hybrid-ILS) framework is developed as a solution

method for the MT-VRPIP. This method determines the departure time of the shuttle trips

within the local search component based on a set of possible times. It is required since the

departure time of each shuttle trip can significantly change the number of collected donations65
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given the increasing profits. Additionally, one extension of the hybrid-ILS framework is

proposed. In this extension, the local search component includes a MILP model to optimize

the subset of decisions modeling the departure times of shuttle trips with fixed routing

variables. This extension is named the hybrid-ILS+MILP. The developed solution methods

are tested on a new set of instances based on the blood collection system of Bogota, Colombia.70

The paper has several contributions. First, it provides a formalization of the MT-VRPIP,

which includes WB units to produce all the blood components, processing and arrival time

limits, increasing linear functions to represent donations at CSs, and multiple trips for the

shuttle fleet. Second, it presents two metaheuristic frameworks based on the ILS to solve

the MT-VRPIP. Third, it describes a new set of instances for the MT-VRPIP based on the75

blood collection system of Bogota, Colombia. Fourth, the experimental results given in this

paper demonstrate the applicability of the methods and provide the best-known solutions

(BKSs), which can be a point of comparison to other studies.

The rest of the document is structured as follows. In Section 2, a review of related

literature is discussed. In Section 3, the MT-VRPIP and its corresponding mathematical80

model are presented. The hybrid-ILS and hybrid-ILS+MILP metaheuristics proposed as

solution methods are described in Section 4. The testing instances and computational results

are shown in Section 5. Finally, Section 6 provides conclusions and future research directions.

2. Literature review

Works related to the problem studied in this paper are reviewed under two groups: (i)85

VRPs focusing on the transportation of blood units from CSs to BCs also known as the

blood collection problem (BCP) and (ii) other related vehicle routing variants. The literature

related to the first group is searched using the scope and review methodology proposed by

the survey of Pirabán et al. (2019), but considering scientific research published between

2005 and 2021. Interested readers are also referred to Beliën & Forcé (2012) and Osorio90

et al. (2015) for surveys on BSC management.
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2.1. Transportation of donated blood units from CSs to BCs

The BCP was introduced by Prastacos (1984). The BCP selects the CSs to be visited by

a vehicle fleet to achieve a collection target and designs the routes of the fleet to minimize

the transportation cost. Variants of the BCP are reviewed under two subgroups: (i) BCPs95

that design vehicle routes to visit fixed CSs in a single period and (ii) BCPs that locate CSs

at potential sites and design vehicle routes to visit the located CSs over a planning horizon.

Within the first subgroup, four articles are found in the literature (Doerner et al., 2008;

Ghandforoush & Sen, 2010; Mobasher et al., 2015; Özener & Ekici, 2018). The four papers

studied the routing problem of an uncapacitated fleet of shuttles to transfer blood units100

to a BC. They considered multiple visits to each CS in the same period and included the

processing time limit. These authors assumed uncapacitated vehicles since blood bags are

small compared to the capacity of shuttles. Additionally, some of these papers allowed a

single trip to each shuttle (Doerner et al., 2008; Ghandforoush & Sen, 2010) and others

allowed multiple trips to each shuttle (Mobasher et al., 2015; Özener & Ekici, 2018).105

Doerner et al. (2008) assumed that a shuttle can pick up all the blood units collected

in a period by a CS when the shuttle visits the CS within a fixed time window at the end

of the period. Contrary, Ghandforoush & Sen (2010) stated a number of blood units that

can be collected from a CS when a shuttle visits it at fixed times during the period and

attempted meeting demand with all blood units collected by the shuttles. The objectives110

were to minimize the traveled distance for Doerner et al. (2008) and the production and

transportation costs for Ghandforoush & Sen (2010). The former developed a MILP model,

while the latter proposed a branch-and-bound algorithm and several constructive heuristics.

The integrated collection and appointment-scheduling problem introduced by Mobasher

et al. (2015) and the maximum blood collection problem exposed by Özener & Ekici (2018)115

allowed multiple trips per shuttle. Both papers proposed a cluster-first-route-second heuristic

as a solution method. Mobasher et al. (2015) focused on scheduled donors, which allow the

decision-makers to plan staff and resources effectively. In contrast, Özener & Ekici (2018)

focused on walk-in donors, which are the most common in organizations, like the MT-VRPIP.

The MT-VRPIP mainly differs from the problems exposed by Mobasher et al. (2015)120

and Özener & Ekici (2018) in five aspects. First, the MT-VRPIP involves transporting
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WB to produce all the main components, while the other problems focused uniquely on

PLTs. Consequently, the MT-VRPIP can force compliance with the processing time limit

only to extract PLTs and cryo and relax this constraint for the other products. Second,

the MT-VRPIP imposes a minimal quantity of WB units, which must meet the processing125

time limit. In contrast, the other problems sought to maximize the number of WB units

collected by shuttles without considering demand. Third, the MT-VRPIP guarantees that

the trips intended to meet the processing time limit reach a BC before the arrival time

limit in contrast to the other problems. Therefore, the MT-VRPIP ensures the BC will

have enough time to process the WB units before the end of the period. Fourth, Mobasher130

et al. (2015) and Özener & Ekici (2018) used the scheduled appointments of donors and an

irregular pattern of donations, respectively, to calculate the number of WB units collected

by a shuttle when it visits a CS. The irregular pattern consists of a different donation level

per time slot within the operating hours of each CS. Contrary, the MT-VRPIP calculates the

number of WB units collected by a shuttle based on a constant ratio of donations per hour135

over the operating hours of each CS. Finally, MT-VRPIP avoids the constraint proposed by

Mobasher et al. (2015) and Özener & Ekici (2018) that assigns the same shuttle to visit a

fixed cluster of CSs. According to these authors, this assumption makes the solution more

practical since a driver visits the same set of locations and recognizes the area. However,

since in the MT-VRPIP, the trips do not necessarily visit all the CSs, this assumption is140

unpractical. Moreover, eliminating this constraint could lead to solutions that minimize

transportation costs but increasing the problem complexity.

Within the BCPs variants that locate CSs over a planning horizon, one paper without

shuttles (Gunpinar & Centeno, 2016) and two papers using shuttles to pick up the collected

blood (Sahinyazan et al., 2015; Rabbani et al., 2017) are found. In Gunpinar & Centeno145

(2016), a mobile CS could visit several locations each period to collect their uncertain supply

and meet demand. The different locations of the mobile CS define its routing. A robust

optimization approach and a branch-and-price algorithm were presented to solve the problem.

Sahinyazan et al. (2015) designed the routes of a limited-uncapacitated fleet of shuttles

assuming that a CS can receive a single visit of a shuttle at the end of the collection day.150

They decided the number of periods each CS is located at a potential site and proposed a
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two-stage heuristic to solve the problem. Rabbani et al. (2017) assumed that a shuttle, from

a capacitated-homogeneous fleet, must arrive at a CS within a fixed time window. First, they

presented a fuzzy mathematical programming model, which locates the CSs considering a

fuzzy PLT potential of possible locations. Second, they implemented a simulated annealing155

algorithm to design the routes of shuttles. Since the objective for Gunpinar & Centeno

(2016) and Sahinyazan et al. (2015) was to minimize the traveled distance, they included a

constraint to ensure demand fulfillment. In contrast, since Rabbani et al. (2017) excluded

demand, they maximized the collected blood units and minimized the operational costs.

To the best of our knowledge, no articles in the literature jointly consider WB to produce160

all blood components, an increasing linear function to represent donations at CSs, the

processing and arrival time limits, and a shuttle fleet that can perform multiple trips.

Additionally, no article has developed a matheuristic (hybrid-ILS+MILP) as a solution

method. Therefore, the MT-VRPIP addressed in this article, its mathematical formulation,

and the proposed solution methods represent a contribution to the BSC literature.165

2.2. Related vehicle routing problems

The MT-VRPIP is related to two variants of the VRP: the multi-trip VRP and the

team orienteering problem (TOP). The multi-trip VRP, first exposed by Fleischmann (1990),

allows multiple trips to each vehicle during a period. Cattaruzza et al. (2016) presented a

review of the multi-trip VRP, which includes mathematical formulations, solution methods,170

and variants. The multi-trip VRP variant more related to the MT-VRPIP is the multi-trip

VRP with time windows in which the vehicle fleet should visit each customer within a time

interval (Hernandez et al., 2016; François et al., 2019; Neira et al., 2020; Pan et al., 2021).

In the TOP, visiting all clients is not mandatory. Therefore, a profit is associated with

each customer that makes such a customer more or less attractive (Chao et al., 1996). This175

problem first decides the customers to visit based on profits; then, it decides the vehicle routes

to serve the selected customers (Toth & Vigo, 2014; Tsakirakis et al., 2019; Hammami et al.,

2020; Panadero et al., 2020; Xu et al., 2021). The reader is also referred to the survey on

the orienteering problem of Gunawan et al. (2016).

The main difference between the MT-VRPIP and the VRP variants mentioned up to180
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now is the effect of removing a node or changing a departure time. When a node is removed

in the multi-trip VRP, a noncompliance in the demand of the node can be generated. In

contrast, if it is removed in the TOP and in the MT-VRPIP, the total profits collected by the

vehicle fleet can change. In the case of the TOP, the profit of a node is counted if the node

is visited. In the MT-VRPIP, the magnitude of the collected WB units also depends on the185

time the node is visited by a shuttle. Additionally, if the departure time of a trip changes

in the VRP variants with time windows, it can affect the fulfillment of the time windows.

Conversely, changing the departure time of the first trip of a shuttle in the MT-VRPIP can

change the collected blood units because of the increasing profits.

Furthermore, the TOP with variable profits are classified into two groups: (i) profits that190

depended on the arrival time at each vertex (Murat Afsar & Labadie, 2013) and (ii) profits

that depended on the service time at each vertex (Yu et al., 2019; Kim et al., 2020). The

MT-VRPIP is related to the first group because of the increasing profits. In contrast, Murat

Afsar & Labadie (2013) associated the profit to a decreasing function of time.

To the best of our knowledge, the VRP variants mentioned in this section excluded either195

the processing time limit or the increasing profit of a node over its time window. Therefore,

the MT-VRPIP represents a contribution to the literature on the mentioned VRP variants.

3. Problem statement and model formulation

The MT-VRPIP is defined on a weighted and directed graph G = (V ′, A) with a set of

vertices V ′ = {V ∪{0, n+ 1}} and a set of arcs A = {(i, j) i, j ∈ V ′, i 6= j}. V is the set of n200

CSs, and the nodes {0, n + 1} denote the BC or depot as the starting and ending points of

the routes to build, respectively. Each node i ∈ V ′ is characterized by a non-negative profit

pi, a service time si, and a time interval of activity [ei, li] being ei the opening time and li
the closing time. The profit represents the number of WB units that may be collected at

the node during its time interval of activity. By definition, the BC profits p0 and pn+1 equal205

zero. As shown in Fig. 1, the WB units collected at node i increases in the interval (ei, li)

with the rate λi = pi/(li−ei). Thus, λi equals zero in the interval [0, ei] and pi in the interval

[li,+∞). Finally, (i, j) ∈ A represents the arc linking nodes i and j with a travel time cij.

A set F of u uncapacitated shuttles located at the BC is used to pick up the WB units
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Figure 1: Profit of node i as a function of time

from the CSs and deliver them to the BC. Each shuttle f ∈ F can perform two types of trips210

grouped in the set K = {st, nd}. Hereafter, st and first-type trips will refer to one first-type

trip and the first-type trips of the u shuttles, respectively. Likewise, nd and second-type trips

will refer to one second-type trip and the second-type trips of the u shuttles, respectively.

The first-type trip of shuttle f ∈ F starts at the BC at time tst0f ≥ e0 and ends at the BC

at time tstn+1,f . The service starting time tstjf at node j ∈ V ∪ {n + 1} is at least the service215

starting time of the previous node i ∈ V ∪ {0} in the trip f plus the service time ei of node

i plus the travel time cij between nodes i and j. Each CS is visited at most once by the

first-type trips. If CS i ∈ V is visited by the first-type trip of shuttle f at time tstif ≥ ei, the

shuttle picks up a quantity of WB units yst
if = min{bλi(tstif − ei)c, pi}. The CSs visited by the

first-type trips constitute the set V st ⊂ V and provide the quantity yst
total = ∑

i∈V st
∑u
f=1 y

st
if .220

The first-type trips supply a demand q with their collected WB units yst
total.

This demand has two requirements. First, the demand must be supplied by WB units

with a maximum age amax, which represents the processing time limit. Therefore, the age

ai of WB units collected at CS i ∈ V by shuttle f ∈ F when they arrive at the BC at time

tstn+1,f must be less than or equal to amax. It is assumed that the age ai starts to count at225

the beginning of activities at CS i, i.e., ai = tstn+1,f − ei ≤ amax. Second, the demand must

be delivered to the BC before the arrival time limit tmax with en+1 ≤ tmax ≤ ln+1. This

constraint states that the first-type trip of shuttle f ∈ F must arrive at the BC at a time

less than or equal to tmax, i.e., tstn+1,f ≤ tmax.

The second-type trips pick up the remaining profit from CSs. The second-type trip of230

shuttle f ∈ F starts at the BC at time tnd
0,f greater than the end of its first-type trip, and

ends at the BC at time tnd
n+1,f . Each CS is visited at most once by the second-type trips.

CS i ∈ V is visited by a second-type trip at a time tnd
if greater than or equal to its closing
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time li if there is a remaining profit to collect, i.e., if ∑u
f=1 y

st
if < pi. If CS i is visited by a

second-type trip, the shuttle f picks up a quantity of WB units ynd
if = pi −

∑u
f=1 y

st
if .235

According to the description up to this point, each CS must receive a visit from a first-

or second-type trip at a time greater than or equal to its closing time of activity to collect

its total profit. Also, the second-type trips must deliver the WB units to the BC regardless

of the BC closing time. Therefore, the MT-VRPIP accepts delays at both the CSs and BC.

Allowing these delays makes the MT-VRPIP a problem with soft time windows (see details240

on soft time windows in Xia & Fu (2019) and He et al. (2021)). Note that no delay to the

BC for the first-type trips is possible due to the arrival time limit.

Although all delays are calculated in the MT-VRPIP, only two delay types are penalized.

First, the maximum delay of each first- and second-type trip considering only the delays

on the CSs. Second, the BC delay by the second-type trip of shuttle f denoted as245

βnd
n+1,f = max{tnd

n+1,f − ln+1, 0}. Only the maximum delay on CSs is penalized to minimize

the maximum time that the staff at CSs must wait once the collection is finalized to deliver

the WB units to the shuttle. Likewise, the BC delay is penalized to minimize the maximum

time that the BC staff must wait to receive the WB units from the second-type trips.

The MT-VRPIP considers a transportation cost ωt per unit of time, shortage cost ωs per250

WB unit, and delay cost ωd per unit of time to penalize the travel time, shortage, and delays,

respectively. The objective of the MT-VRPIP is to minimize the total cost determining (i)

at most u first-type trips, which visit at most once each CS, to supply the demand q of WB

units intended to produce PLTs and cryo and (ii) at most u second-type trips to pick up the

remaining profits subject to time limitations. The routing decisions are noted by boolean255

variables xkijf taking the value 1 if arc (i, j) is traversed by trip type k of shuttle f . The

service starting time at node i by trip type k of shuttle f is denoted by real variables tkif .

The routing and visit time decisions set the collected WB units and the delay at node i by

trip type k of shuttle f , which are denoted by integer variables ykif and real variables βkif ,

respectively. Additionally, the units of unsatisfied demand, noted by real variable d, and260

the maximum delay of shuttle f in trip type k considering delays on CSs, denoted by real

variables δkf , are set. For easy reference, the notations of this paper are listed in Table 1.

For a proper understanding of the problem, an example is provided in Fig. 2. The
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Sets
V Set of CSs, V = {1, ..., n}
V ′ Set of CSs and BC nodes, V ′ = {V ∪ {0, n+ 1}}
A Set of arcs, A = {(i, j) i, j ∈ V ′, i 6= j}
F Set of shuttles, F = {1, ..., u}
K Set of trip types that each shuttle may perform, K = {st, nd}
Parameters
n Number of CSs
u Number of shuttles
M Big value
pi Total donation level or profit of node i [WB units]
si Service time at node i [units of time]
ei Opening time of activities at node i [units of time]
li Closing time of activities at node i [units of time]
λi Collection rate of node i, λi = pi/(li − ei) [WB units/units of time]
cij Travel time between nodes i and j [units of time]
q Demand [WB units]
tmax Arrival time limit at the BC [units of time]
amax Processing time limit [units of time]
ωt Traveling cost per unit of time
ωs Shortage cost per WB unit
ωd Delay cost per unit of time
Decision variables
xkijf 1 if arc (i, j) is traversed by shuttle f in trip type k, 0 otherwise
tkif Service starting time at node i by shuttle f in trip type k
Auxiliary variables
ykif Collected WB units at node i by shuttle f in trip type k
d Units of unsatisfied demand q
βkif Delay at node i by shuttle f in trip type k
δkf Maximum delay of shuttle f in trip type k on CSs nodes

Table 1: Parameters and variables of the MT-VRPIP model.

instance presented in the example is one of the instances proposed for the MT-VRPIP (see

Section 5.1 for details). The solution of the example is optimal and was obtained with the265

software CPLEX V 12.8. The example presents a set of seven nodes comprising five CSs

{1, ..., 5} and two BCs {0, 6}, which are merged into the node 0 in Fig. 2. In Fig. 2 (top),

each node i ∈ {0, ..., 6} is presented with its total profit pi, service time si, and time interval

of activity [ei, li]. For the node 4, its collection rate λ4 equals 0.025 WB units per min since

λ4 = p4/(l4 − e4) = 9/(840 − 480) = 0.025. If a shuttle visited the node 4 at the minutes270

480 or 840, it would pick up 0 or 9 WB units, respectively. Additionally, the instance of the

example assumes having two shuttles, a demand q of 54 WB units, a processing time limit
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amax of 480 min or 8 h, and an arrival time limit tmax equals to 772 min.

{p4 = 9, s4 = 8}
[e4 = 480, l4 = 840]

0

5

{41, 9}
[480, 960]

{44, 17}
[690, 1080]

{60, 10}
[750, 1140]

{0, 0}
[480, 1020]

{28, 11}
[420, 780]3

4

2

1

{tst4,1 = 680, yst
4,1 = 5}

0

5

{702.44, 19}

{707.73, 2}

{733.12, 24}3

4

2

1

{tst0,1 = 480, 0}
{tst6,1 = 764.54, 0}

Shuttle 1

Shuttle 2

{tst0,2 = 480, 0}
{tst6,2 = 768.60, 0}

c0,4 = 40.23

c4,1 = 4.22

c1,0 = 39.82

c0,2 = 42.5

c2,3 = 21.68
c3,0

= 24.
48

{tnd
4,1 = 840, ynd

4,1 = 4, βnd
4,1 = 0}

0

5

{960, 22, 0}

{1080, 42, 0}

{1146.20, 60, 6.2}

{tnd
0,1 = 764.54, 0, 0}

{789.02, 4, 9.02}3

4

2

1

Shuttle 1

{tnd
6,1 = 1168.12, 0, 148.12}

c0,3
= 24.4

8
c3,4 = 21.20

c 4
,2

=
8.

25

c2,1 = 5.10

c1,5 = 49.20

c5,0 = 11.92

Figure 2: Example for the problem statement. (top) Parameters. (middle) Solution for the first-type trips.
(bottom) Solution for the second-type trips. The notation is equivalent to that presented in Table 1. Node
6 is a copy of node 0. The units of time are minutes.

Fig. 2 (middle) presents the first-type trips. For instance, the shuttle 1 follows the trip

πst
1 = 〈0, 4, 1, 6〉 starting and ending at the BC at the minutes tst0,1 = 480 and tst6,1 = 764.54,275

respectively, with tst0,1 ≥ e0. The service starts at the node 4 at the minute tst4,1 = 680 with

tst4,1 ≥ e4. Therefore, the shuttle 1 picks up at the node 4 the quantity yst
4,1 equals to 5

WB units since yst
4,1 = min{λ4(tst4,1 − e4), p4} = min{0.025(680 − 480), 9} = 5. Note that
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although the arrival time at the node 4 would be at the minute 520.23, since tst0,1 +s0 + c0,4 =

480 + 0 + 40.23 = 520.23, the shuttle waits 159.77 min at the node 4 to start the service at280

the minute 680 and collect more WB units. This happens also at the nodes 1 and 2, while at

the node 3 the shuttle does not wait. The solution presented in Fig. 2 generates a shortage

equals to 4 WB units since the quantity collected by the first-type trips yst
total is 50 WB units.

The shortage could not be less, mainly due to time constraints. For example, the node 5

is excluded from first-type trips since picking up at least one WB unit of its profit represents285

a failure to meet the arrival time limit tmax of 772 min. Specifically, a shuttle f ∈ F would

pick up one WB unit at the node 5 if it started the service at minute 756.5. This time is

calculated according to the collection rate of the node. Therefore, shuttle f would return to

the BC at minute 778.42 since tst5,f +s5 + c5,0 = 756.5 +10 + 11.92 = 778.42. Also, the arrival

time limit tmax may prevent shuttles from picking up more WB units at the visited nodes.290

For example, to pick up 3 units instead of 2 units at the node 1, the service at this node

should start at minute 716.59 instead of at minute 707.73. However, starting the service

at the minute 716.59 would cause the shuttle 1 to arrive at the BC in a longer time than

tmax. Therefore, the shuttle 1 arrives at the BC a few minutes earlier than tmax because it is

infeasible to pick up an additional unit at the node 1.295

The shuttles meet the arrival time limit of 772 min since they finish their first-type trips

at the minutes 764.54 and 768.60. Besides, the age of the WB units collected at the node

4 when they reach the BC equals 284.54 min since a4 = tst6,1 − e4 = 764.54 − 480 = 284.54;

then, the processing time limit is met. The reader can verify that the age of the WB units

collected from the other nodes visited by the first-type trips meets the processing time limit.300

In Fig. 2 (bottom), one second-type trip πnd
1 = 〈0, 3, 4, 2, 1, 5, 6〉 is proposed, which starts

after the end of its first-type trip at the minute tnd
0,1 = 764.54 and ends at the BC at the

minute tnd
6,1 = 1168.12. The start of the service at CSs {1, ..., 5} is given in a time greater

than or equal to their closing times. All nodes must be visited by the second-type trip since

the WB units collected at each node by the first-type trips is less than its total profit.305

In the first-type trips presented in Fig. 2 (middle), all the nodes are visited within their

time windows so no delays are generated. Additionally, along route πnd
1 , there is a delay at

the node 3 of 9.02 min and node 5 of 6.20 min. However, only the maximum delay between
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these two delays is counted. Since the route πnd
1 reaches the BC at the minute tnd

6,1 = 1168.12

when its closing time is the minute l6 = 1020, the BC delay is βnd
6,1 = 148.12 min.310

The travel time of the first-type trips equals 172.92 min since (40.23 + 4.22 + 39.82 +

42.5 + 21.68 + 24.48) = 172.93 and the travel time of the second-type trips equals 120.15

min since (24.48 + 21.20 + 8.25 + 5.10 + 49.20 + 11.92) = 120.15. In summary, the total

travel time of the first- and second-type trips, shortage, maximum delay, and delay at the

BC equal 293.07 min, 4 WB units, 9.02 min, and 148.12 min, respectively. Finally, the total315

cost of the example equals 5036.80 USD assuming transportation, shortage, and delay costs

equal to 5 USD/min, 500 USD/WB unit, and 10 USD/min, respectively.

The following mixed-integer nonlinear programming model is stated for the MT-VRPIP,

Min ωt ∑
(i,j)∈A

∑
f∈F

∑
k∈K

cijx
k
ijf + ωd ∑

f∈F

∑
k∈K

(
βk(n+1)f + δkf

)
+ ωsd (1)

320

∑
j∈V

xk0jf =
∑
i∈V

xki(n+1)f ≤ 1 f ∈ F ; k ∈ K (2)

n∑
i=0

xkijf =
n+1∑
i=1

xkjif j ∈ V ; f ∈ F ; k ∈ K (3)

n∑
i=0

u∑
f=1

xkijf ≤ 1 j ∈ V ; k ∈ K (4)

tkif + si + cij −M
(
1− xkijf

)
≤ tkjf (i, j) ∈ A; f ∈ F ; k ∈ K (5)325

tstif ≥ ei
n+1∑
j=1

xst
ijf i ∈ V ′\ {n+ 1} ; f ∈ F (6)

tst(n+1)f ≤ tmax +M −M
n∑
i=1

xst
i(n+1)f f ∈ F (7)

tst(n+1)f − ei −M
2−

n+1∑
j=1

xst
ijf −

n∑
j=1

xst
j(n+1)f

 ≤ amax i ∈ V ; f ∈ F (8)

tnd
if ≥ li

n+1∑
j=1

xnd
ijf i ∈ V ; f ∈ F (9)

tnd
0f ≥ tst(n+1)f + sn+1 −M +M

∑
i∈V

xst
i(n+1)f f ∈ F (10)330
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tnd
0f ≥ e0

∑
j∈V

xnd
0jf f ∈ F (11)

tkif − βkif ≤ li +M −M
n∑
j=0

xkjif i ∈ V ′\ {0} ; f ∈ F ; k ∈ K (12)

δkf ≥ βkif i ∈ V ; f ∈ F ; k ∈ K (13)335

yst
if = bλi

(
tstif − ei

)
c i ∈ V ; f ∈ F (14)

ykif ≤ pi
n∑
j=0

xkjif i ∈ V ; f ∈ F ; k ∈ K (15)

u∑
f=1

∑
k∈K

ykif = pi i ∈ V (16)

∑
i∈V

u∑
f=1

yst
if ≥ q − d (17)

xkijf ∈ {0, 1} (i, j) ∈ A; f ∈ F ; k ∈ K (18)340

tkif , β
k
if , δ

k
f , d ∈ R+ i ∈ V ′; f ∈ F ; k ∈ K (19)

ykif ∈ Z+ i ∈ V ′; f ∈ F ; k ∈ K (20)

The objective function (1) minimizes the total cost comprising the transportation, delay,

and shortage costs. Constraints (2) guarantee that if a shuttle leaves the vertex 0 it must end345

at node n+1. Constraints (3) set the flow conservation of each trip; i.e., if a node j is visited,

it must have a precedent node and a successor node. In addition, each CS is visited at most

once by each type of trip because of the constraints (4). Constraints (5) define the visiting

time at each node. The respect of time limitation on the first-type trips is guaranteed by the

constraints (6)-(8). Constraints (9)-(11) guarantee the time limitation on the second-type350

trips. Constraints (12) calculate the delays and constraints (13) set the maximum delay δkf
of each trip considering the delays on CSs. The quantity of WB units collected by shuttles

in the first- and second-type trips is calculated using constraints (14)-(16). Constraints (17)

are related to demand satisfaction. Finally, constraints (18)-(20) fix the nature of variables.

To avoid the floor function in Constraints (14), the following constraints are proposed355
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instead,

yst
if ≤ λi

(
tstif − ei

)
i ∈ V ; f ∈ F (21)

Constraints (21) establish that the quantities collected by the first-type trip of shuttle f

when it visits node i is limited by the available quantity λi(tstif − ei), but not necessarily the360

shuttle must collect all the available quantity.

Therefore, the MILP model for the MT-VRPIP is provided in Eq. (1)-(13) and (15)-(21).

4. Solution method

This section describes the two methods proposed to solve the MT-VRPIP. The first

method is named the hybrid-ILS since it combines an ILS framework and a variable365

neighborhood descent (VND) algorithm. The ILS, introduced by Lourenço et al. (2003),

is an effective method to solve the VRP (Toth & Vigo, 2014). The ILS generates a sequence

of local optima by alternating local search and perturbation. To enhance the ILS, a VND

algorithm, introduced by Mladenović & Hansen (1997), is applied as a local search component

in the hybrid-ILS. The VND consists of a systematic change of neighborhood each time no370

improvement is achieved in the current one (Labadie et al., 2016). The pseudo-code of

the hybrid-ILS is sketched in Algorithm 1. First, an initial solution S is constructed using

a parallel insertion heuristic as described in Section 4.2. The solution characteristics are

presented in Section 4.1. Second, the VND component, detailed in Section 4.3, is carried to

obtain the best solution S∗ up to that step. Third, the perturbation, presented in Section375

4.4, and VND components are executed while the maximum number of iterations maxIte

and the maximum number of iterations without improvement noImp are not achieved.

Finally, Section 4.5 details the second method, which is named the hybrid-ILS+MILP since

it combines the hybrid-ILS with a MILP component for local search.

4.1. Search space380

A solution S = {πst
1 , ..., π

st
u } ∪ {πnd

1 , ..., πnd
u } is defined as a set of u first-type trips πst

and u second-type trips πnd. A trip r = 〈σr0, σr1, ..., σrnr
, σrnr+1〉 with r ∈ {πst, πnd} starts at

the BC denoted as σr0, visits nr CSs, and returns to the BC denoted as σrnr+1. Henceforth,
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Algorithm 1 Hybrid-ILS
1: procedure ILS(maxIte,noImp)
2: S := ParallelInsertion() . Procedure in Section 4.2
3: S∗ := VND(S) . Procedure in Algorithm 2
4: i := 0, j := 0
5: while i ≤ maxIte and j ≤ noImp do
6: S := Perturbation(S∗) . Procedure in Section 4.4
7: S := VND(S)
8: i := i+ 1, j := j + 1
9: if φ(S) < φ(S∗) then . Function φ(S) in Eq. 27
10: S∗ := S
11: j := 0
12: end if
13: end while
14: return S∗

15: end procedure

σrv denotes the vertex at each stop v = {0, ..., nr + 1} of trip r. Each CS i ∈ V may be

visited at most once by the first-type trips and at most once by the second-type trips. On385

the way to a node σrv, its service starting time is denoted as trv and its delay is given by

βrv = max{trv − lσr
v
, 0}. By definition, the service starting time trv of node σrv is grater than

or equal to its opening time eσr
v
. The following quantities characterize a trip r ∈ {πst, πnd}:

Travel time c(r) =
nr∑
v=0

cσr
v ,σ

r
v+1

(22)

Maximum delay δ(r) = max{βr1 , ..., βrnr
} (23)390

The cost φ(r) of trip r ∈ {πst, πnd} is defined as its traveling cost plus its maximum delay

cost plus its depot delay cost as presented in Eq. (24). Additionally, the collected WB units

at node σrv of trip r ∈ {πst} with v = {0, ..., nr + 1} is given by yrv = min{λσr
v
(trv − eσr

v
), pσr

v
}.

Thus, a trip r ∈ {πst} is also characterized by the quantity y(r), defined in Eq. (25).395

φ(r) = ωtc(r) + ωd[δ (r) + βrnr+1] (24)

Collected WB units y(r) =
nr∑
v=1

yrv (25)

The shortage cost U(S) of solution S is given in Eq. (26), where yst(S) represents the WB
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units collected by the first-type trips, i.e., yst(S) = ∑u
f=1 y(πst

f ). The cost φ(S) of solution S400

involving a set of trips πst and πnd is given by Eq. (27).

U(S) = ωs max
{
q − yst(S), 0

}
(26)

φ(S) =
u∑
f=1

φ(πst
f ) +

u∑
f=1

φ(πnd
f ) + U(S) (27)

4.2. Initial solution405

To build the initial solution of the hybrid-ILS, two procedures are executed to create the

first- and second-type trips. The procedure to create the first-type trips follows three steps.

In the first step, u empty first-type trips are built, including the BC node n + 1 with tmax

as the service starting time. In the second step, the set V st of possible nodes to be included

in the first-type trips is initialized with all the CSs. In the third step, the feasibility and410

new cost of the solution when inserting each CS i ∈ V st at the second position of each trip,

i.e., following a backward procedure, are evaluated. The feasibility evaluation verifies that

the processing time limit is met and the service starting time of the inserted node is greater

or equal than its opening time. The new cost of the solution is calculated according to Eq.

(27). When the evaluation of the feasibility and cost of each CS at each trip is completed,415

the solution is updated with the feasible insertion that generates the greatest decrease in the

total cost and the inserted node is removed from the set V st. The third step is performed

until the shortage cost of the solution equals zero, the size of the set V st equals zero, all

insertions increase the total cost, or all insertions are unfeasible.

The procedure to build the second-type trips follows also three steps. In the first step, u420

empty second-type trips are created, including the BC node 0 with a service starting time

equals to tmax. In the second step, all CSs with remaining profit to collect after building

the first-type trips are aggregated to the set V nd. The third step runs a set of iterations

until the size of the set V nd equals zero. In each iteration, the new cost of the solution when

inserting each CS i ∈ V nd at the penultimate position of each trip, i.e., following a forward425

procedure, is evaluated according to Eq. (27). The solution is updated in each iteration

with the insertion that generates the lowest increase in the total cost; and the inserted node

is removed from the set V nd just after.
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4.3. Local search: VND

The VND procedure is included as a local search component following a best improvement430

strategy. The proposed VND on a solution S considering a set of neighborhoods N st on

the first-type trips and a set of neighborhoods N nd on the second-type trips is presented in

Algorithm 2. The neighborhoods are detailed in Section 4.3.1 and the change in the objective

function with each neighborhood movement is explained in Section 4.3.2.

The VND for the MT-VRPIP initiates with the procedure V NDforF irstTrips by435

exploring the first neighborhood of the setN st. If the exploration does not obtain a lower-cost

solution in the current neighborhood, the next one is explored. In contrast, if the search

yields a lower-cost solution, the procedure V NDforF irstTrips restarts the exploration in

the first neighborhood of the set N st. The procedure V NDforF irstTrips continues in the

same way with successive neighborhoods of the setN st until it explores the last neighborhood440

and no lower-cost solutions are found. Then, the procedure V NDforSecondTrips explores

the set N nd similarly to the procedure V NDforF irstTrips. The VND is executed while

the procedures V NDforF irstTrip and V NDforSecondTrips improve the solution.

Algorithm 2 VND procedure on a solution S for the MT-VRPIP
1: procedure VND(S,N st,N nd)
2: imp := true
3: while imp = true do
4: imp := false
5: S̃ := VNDforFirstTrips(S,N st)
6: S̃ := VNDforSecondTrips(S̃,N nd)
7: if φ(S̃) < φ(S) then . φ(S) is presented in Eq. 27
8: S := S̃; imp := true
9: end if
10: end while
11: return S
12: end procedure

4.3.1. Neighborhoods

The set of neighborhoods for the VND is composed of classic operators: swap, relocate,445

and 2-opt∗. The following operators are implemented on trips r, r̃ ∈ {πk} of type k ∈ {st, nd}:

- swapIntra: Swap nodes σrv and σrw at positions v, w = {1, ..., nr} of trip r with v 6= w.
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- relocateIntra: Remove node σrv from position v of trip r and reinsert it at position w

of the same trip with v, w = {1, ..., nr} and v 6= w.

- swapInter: Swap nodes σrv and σr̃w at positions v = {1, ..., nr} and w = {1, ..., nr̃} of450

two distinct trips r and r̃.

- relocateInter: Remove node σrv from position v = {1, ..., nr} of trip r and reinsert it

at position w = {1, ..., nr̃} of a distinct trip r̃.

- 2opt∗: Swap sequences 〈σrv, ..., σrnr
〉 and 〈σr̃w, ..., σr̃nr̃

〉 of two distinct trips r and r̃ with

v = {0, ..., nr − 1} and w = {0, ..., nr̃ − 1}.455

Additionally, three operators are proposed on the unvisited CSs by the first-type trips.

For this, a dummy set π̄st = 〈σr̄1, ..., σr̄nr̄
〉 with the unvisited CSs is defined. As it is a dummy

set, its traveling time c(π̄st), maximum delay δ(π̄st), and collected quantity y(π̄st) are set to

zero. The following neighborhoods are implemented on the trips r ∈ {πst} and r̄ ∈ {π̄st}.

- swapUnv: Swap nodes σrv and σr̄w at positions v = {1, ..., nr} and w = {1, ..., nr̄} of460

trips r and r̄, respectively.

- add: Remove an unvisited node σr̄v from position v = {1, ..., nr̄} of trip r̄ and reinsert

it at position w = {1, ..., nr} of trip r.

- remove: Remove a visited node σrv from position v = {1, ..., nr} of trip r and reinsert

it at any position of trip r̄.465

Henceforth, the intra-, inter-, and unvisited-movements will refer to the set

of neighborhoods {swapIntra, relocateIntra}, {swapInter, relocateInter, 2opt∗}, and

{swapUnv, add, remove}, respectively. Since the unvisited CSs by the second-type trips

depend on the collected quantities by the first-type trips, the VND does not consider

operators on the unvisited CSs by the second-type trips. The effect of the first-type trip470

operators on the second-type trips and the order in which the neighborhoods are applied are

discussed in Section 4.3.2 and 5.2, respectively.

4.3.2. Move evaluation

Evaluating moves in the MT-VRPIP implies to compute the change in the travel, delay,

and shortage costs. Any such movement can be viewed as a separation of routes into475
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subsequences, which are then concatenated into new routes (Vidal et al., 2013). For instance

in Fig. 3, the swapInter movement between two trips r ∈ {πst, πnd} and r̃ ∈ {πst, πnd}
of the same type produces indeed two new trips 〈σr0, ..., σrv−1〉 ⊕ 〈σr̃w〉 ⊕ 〈σrv+1, ..., σ

r
nr+1〉 and

〈σr̃0, ..., σr̃w−1〉 ⊕ 〈σrv〉 ⊕ 〈σr̃w+1, ..., σ
r̃
nr̃+1〉 where ⊕ represents the concatenation operator.

depot v − 1 v v + 1

w − 1 w w + 1

r

r̃

6 6

6 6

Figure 3: Swap between trips r ∈ {πst, πnd} and r̃ ∈ {πst, πnd} of the same type.

For each subsequence σr of a trip r ∈ {πst, πnd}, the accumulated traveling time C(σr)480

and the earliest E(σr) and latest L(σr) times to visit the first vertex are computed. E(σr) and

L(σr) minimize the accumulated waiting times and delays of the subsequence. Moreover, the

minimum duration D(σr), maximum delay B(σr), and accumulated waiting time WT (σr)

are calculated for the subsequence when starting between E(σr) and L(σr).

In addition, for each subsequence σr of a first-type trip, i.e. r = πst, it is computed485

the earliest departure time ES (σr) and the collected quantities QE(σr) and QL(σr) when

starting the sequence at E(σr) and L(σr), respectively. Also, the maximum time M(σr)

to visit the first vertex of the sequence is computed, which avoid the minimization of the

accumulated waiting times and delays but meeting the arrival time limit tmax. Then, the

duration DM(σr), maximum delay BM(σr), and collected quantity QM(σr) are calculated490

for the subsequence when starting at M(σr). Finally, for each subsequence σr of a

second-type trip, i.e. r = πnd, it is computed the BC delay DD(σr).

Initial values for the quantities computed for a subsequence involving a single vertex σri ,

with r ∈ {πst, πnd}, are given by Eq. (A.1)-(A.11) in Appendix A. The data characterizing

the concatenation of two subsequences σr = 〈σri , ..., σrj 〉 and σr̃ = 〈σr̃v, ..., σr̃w〉 of the same495

type of trip with r, r̃ ∈ {πst, πnd} are computed using Eq. (B.1)-(B.14) in Appendix B.

The cost of a new solution S̃ that modify an initial first-type trip πst from an initial

solution S to get a final trip π̃st through an intra- or unv-movement is calculated following

five steps. In the first step, it is verified that trip r̃ = π̃st, also represented by sequence σr̃,

meets the time limits amax and tmax. For this verification of feasibility, ∆genE and ∆genM are500
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defined as the time that can elapse from E(σr̃) and M(σr̃), respectively, without exceeding

amax and tmax. ∆genE is calculated in Eq. (28) and ∆genM is computed using Eq. (28) but

changing E(σr̃) and D(σr̃) for M(σr̃) and DM(σr̃), respectively. The trip π̃st is feasible if

∆genE ≥ 0 or ∆genM ≥ 0. If π̃st is feasible, the remaining steps are executed. In contrast, if

π̃st is infeasible, it is discarded and another movement is applied on the initial trip πst.505

∆genE = min{amax − E(σr̃)−D(σr̃) + sn+1 + ES(σr̃), tmax − E(σr̃)−D(σr̃) + sn+1} (28)

In the second step, it is determined the set T r̃ of possible departure times for the new

trip r̃ = π̃st. If ∆genE = 0, only the time E(σr̃) is added to the set T r̃. In contrast, if

∆genE > 0, the following four times are added to the set T r̃, but avoiding the repetition of510

times within the set. First, L(σr̃ ⊕ σr) if it is less or equal to E(σr̃) + ∆genE. L(σr̃ ⊕ σr) is

calculated using Eq. (B.3) and represents the latest time to visit the first vertex of first-type

trip σr̃ when this trip and its second-type trip σr are concatenated. Second, L(σr̃) if it is

less than or equal to E(σr̃) + ∆genE. Third, E(σr̃) + ∆genE if it is less than L(σr̃). Fourth,

the time tq if (i) the collected quantity with the earliest element of the set T r̃ is less than515

the remaining demand to supply qrem, and (ii) the collected quantity of the latest element is

greater than qrem. Then, when starting the trip π̃st at time tq, it collects a quantity equals

to qrem, which is calculated as qrem = max{0, q − yst(S) + y(πst)}. Finally, if ∆genM ≥ 0 and

M(σr̃) is different to all the possible departure times mentioned before, M(σr̃) is added to

the set T r̃.520

In the third step, the change in the cost of the initial solution S is calculated for each

time t ∈ T r̃. An intra- or unv-movement on a first-type trip generate a change in (i) the

cost of the trip, (ii) the shortage cost, and (iii) the cost of the second-type trips. The change

on the cost of the trip πst and on the shortage cost of the initial solution S when applying

an intra- or unv-movement on the trip πst and starting the resulting trip π̃st at time t ∈ T r̃525

is calculated using Eq. (29) and (30), respectively. In Eq. (30), yt(π̃st) is defined as the

collected quantity in the trip π̃st when starting at time t. If t = E(σr̃), t = L(σr̃), or

t = M(σr̃), yt(π̃st) equals QE(σr̃), QL(σr̃), or QM(σr̃), respectively. If t equals another
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time, yt(π̃st) is calculated in a complexity O(n).

∆t
φ(πst) =


ωt[c(πst)− C(σr̃)] + ωd[β(πst)−BM(σr̃)] if t = M(σr̃)

ωt[c(πst)− C(σr̃)] + ωd[β(πst)−B(σr̃)] otherwise
(29)530

∆t
U(S) = U(S)− ωs[max{0, q − yst(S) + y(πst)− yt(π̃st)}] (30)

The change on the cost of the second-type trips by applying an intra- or unv-movement

on the first-type trip πst and starting the resulting trip π̃st at time t ∈ T r̃ is calculated as

follows. First, it is determined the set LN of CSs visited at their closing times by the initial535

trip πst and the set L̃N of CSs visited at their closing times when starting the new trip π̃st

at time t ∈ T r̃. Second, the elements of sets LN and L̃N are compared. If a node in LN

does not belong to L̃N , this node must be randomly added to a second-type trip. If a node

in L̃N does not belong to LN , this node must be removed from its second-type trip. Then,

the second-type trips affected by the comparison of LN and L̃N form the set Π. Third, the540

change on the cost ∆t
φ(r) of the initial second-type trip r = πnd, which becomes trip π̂nd ∈ Π

when starting the new first-type trip π̃st at time t ∈ T r̃ is calculated using Eq. (31). The

sequences σr and σr̂ are used to represent the trips πnd and π̂nd, respectively.

∆t
φ(r) = ωt[c(r)− C(σr̂)] + ωd[δ(r)−Bẗ(σr̂)]+ (31)

ωd[βrnr+1 −max{0, ẗend +Dẗ(σr̂)− sn+1 − ln+1}]545

In Eq. (31), ẗend represents the ending time of the first-type trip r̈ = π̈st, which precedes

the second-type trip π̂nd. Quantities Bẗ(σr̂) and Dẗ(σr̂) refer to the maximum delay and

accumulated duration, respectively, of sequence σr̂ when the first vertex of the first-type

trip π̈st is visited at time ẗ. The quantities ẗend, Bẗ(σr̂), and Dẗ(σr̂) are calculated as in Eq.550

(C.1)-(C.3) of Appendix C.

Finally, the change on the cost of second-type trips ∆φ(Π) is calculated as follows:

∆t
φ(Π) =

∑
f∈Π

∆t
φ(f) (32)
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Therefore, the change in the cost of the initial solution S when starting the new first-type

trip π̃st at time t ∈ T r̃ is calculated as follows:555

∆t
φ(S) = ∆t

φ(πst) + ∆t
U(S) + ∆t

φ(Π) t ∈ T r̃ (33)

In the fourth step, the time t ∈ T r̃ that generates the greatest-positive change is selected
as the departure time of the new trip π̃st and is denoted as tbest. If no positive changes are

found, the new trip is discarded and another movement is applied on the initial trip πst.560

In the fifth step, the cost of the new solution S̃ when applying an intra- or unv-movement

on the initial trip πst to get a new trip π̃st is calculated as follows:

φ(S̃) = φ(S)−∆tbest

φ(S) (34)

The cost of a new solution S̃ that modify two initial first-type trips πst
v and πst

w to get565

two final trips π̃st
v and π̃st

w through an inter-movement is calculated following the five-step

procedure to compute the cost of a solution when applying an intra-movement, but with

some modifications. In the first step, the feasibility of both trips π̃st
v and π̃st

w is verified using

∆genE and ∆genM as in the previous procedure. In the second step, two sets T r̃v and T r̃w

of possible departure times are determined for each trip π̃st
v and π̃st

w , respectively. These570

sets are determined as in the second step of the previous procedure but assuming that

qrem = q − yst(S) + y(πst
v ) + y(πst

w ). In the third step, the change in the cost of the initial

solution S if the new trips π̃st
v and π̃st

w start at times t ∈ T r̃v and t̃ ∈ T r̃w , respectively, is

calculated as:

∆t,t̃
φ(S) = ∆t

φ(πst
v ) + ∆t̃

φ(πst
w ) + ∆t,t̃

U(S) + ∆t,t̃
φ(Π) t ∈ T r̃v , t̃ ∈ T r̃v (35)575

where ∆t
φ(πst

v ) and ∆t̃
φ(πst

w ) are calculated using Eq. (29) and ∆t,t̃
U(S) is calculated as follows:

∆t,t̃
U(S) = U(S)− ωs[max{0, q − yst(S) + y(πst

v ) + y(πst
w )− yt(π̃st

v )− yt(π̃st
w )}] (36)

The term ∆t,t̃
φ(Π) in Eq. (35) is computed by following the four steps to calculate Eq. (32),580
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but modifying the sets LN and L̃N . Here, LN groups the visited CSs at their closing times

by both trips πst
v and πst

w and the set L̃N groups the visited CSs at their closing times by the

trips π̃st
v and π̃st

w when starting at the times t ∈ T r̃v and t̃ ∈ T r̃w , respectively. The fourth

step is the same as in the previous procedure but selecting the combination between times

t ∈ T r̃v and t̃ ∈ T r̃w that generates the greatest-positive change denoted as (t, t̃)best. In the585

fifth step, the cost of a new solution S̃ when an inter-movement is applied on two initial trips

πst
v and πst

w to obtain two trips π̃st
v and π̃st

w is calculated using the Eq. (34) but changing the

term ∆tbest

φ(S) by the change in the cost ∆(t,t̃)best

φ(S) .

The change in the cost of a second-type trip r = πnd when applying an intra-, unv- or

inter-movement to get a new second-type trip π̂nd is calculated as follows:590

∆φ(r) = ωt[c(r)− C(σr̂)] + ωd[δ(r)−Bẗ(σr̂)]+ (37)

ωd[βrnr+1 −max{0, tr̈nr̈+1 +Dẗ(σr̂)− sn+1 − ln+1}]

where σr̂ represents the new trip π̂nd and tr̈nr̈+1 represents the ending time of the first-type

trip r̈ = πst before the new second-type trip π̂nd. Additionally, Bẗ(σr̂) and Dẗ(σr̂) refer to595

the maximum delay and accumulated duration, respectively, of sequence σr̂ when the first

vertex of the first-type trip r̈ = πst is visited at time ẗ = tr̈0. Bẗ(σr̂) and Dẗ(σr̂) are calculated

using Eq. (C.2) and (C.3) but changing ẗend by tr̈nr̈+1 . Therefore, the cost of a new solution S̃

when applying an intra-movement on a second-type trip is calculated using the Eq. (34) but

changing the term ∆tbest

φ(S) by the change in the cost ∆φ(r) of the trip r = πnd. Additionally,600

the cost of a new solution S̃ when applying an inter-movement on two second-type trips πnd
v

and πnd
w is calculated using the Eq. (34), but changing the term ∆tbest

φ(S) by the change in the

costs ∆φ(r) and ∆φ(r) of both trips, respectively.

4.4. Perturbation

The perturbation used in the hybrid-ILS consists of three procedures. The first procedure605

modifies a fraction of nodes in the first-type trips by following three steps. First, the µ

percentage of CSs in the first-type trips is removed from these trips. Second, the ξ percentage

of CSs in the first-type trips is removed from these trips and added to the set V rem. Third, a

number of iterations are executed until the size of the set V rem equals zero. In each iteration,
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a CS is randomly removed from the set V rem and inserted in a random feasible position of610

the first-type trips. The feasibility evaluation verifies that the insertion of the selected CS

in the random position meets the processing time and arrival time limits. Conversely, if all

positions are infeasible, the selected CS is added to the dummy set π̄st.

The second procedure locates and fixes in that location one unvisited CS in a first-type

trip the λ percentage of the iterations of the hybrid-ILS with the following three steps. First,615

the set V unv is loaded with all the unvisited CSs of the set π̄st. Second, a random number

is generated. If the random number is less than λ, the third step executes a number of

iterations until one unvisited CS has been fixed or the size of the set V unv equals zero. In

each iteration, one random CS is removed from the set V unv and located in a random feasible

position of the first-type trips. The feasibility evaluation verifies that the insertion meets the620

processing time and the arrival time limits. The located CS is not allowed to be removed

from the first-type trips until the next perturbation step of the hybrid-ILS.

Finally, the third procedure randomly relocates in a different position the µ+ξ percentage

of CSs in the second-type trips.

4.5. Hybrid-ILS+MILP625

As exposed in Section 4.3.2, the hybrid-ILS selects the departure times of the first-type

trips directly involved in a movement from a set of possible departure times. However,

applying a movement on one or two routes may imply a change in the departure times not

only of the involved trips but also of the other first-type trips. Therefore, a new component

is implemented in the hybrid-ILS to evaluate the movements on first-type trips through a630

MILP. This variation is called the hybrid-ILS+MILP.

The proposed MILP for the hybrid-ILS+MILP decides the service starting time at node

i by trip type k of shuttle f , denoted by real variables tkif . These decisions set the collected

WB units and the delay at node i by type trip k if shuttle f , which are denoted by integer

variables ykif and real variables βkif , respectively. Additionally, the visit time decisions set the635

units of unsatisfied demand, noted by real variable d, and the maximum delay of shuttle f

in trip type k considering delays on CSs, denoted by real variables δkf . The proposed MILP

for the hybrid-ILS+MILP seeks to minimize the delay and shortage costs as exposed in Eq.
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(38) subject to constraints in Eq. (6), (9), (11), (13)-(17), (19), (20), and (39)-(43). The

Eq. (6), (9), (11), (13)-(17), (19), and (20) are used but decision variables xkijf are replaced640

with the parameters x̃kijf , which set the first- and second-type trip. x̃kijf takes a value of 1 if

the arc (i, j) ∈ A is traversed by the trip of type k ∈ K of shuttle f ∈ F . The constraints

in Eq. (39)-(43) are homologous to the Eq. (5), (7), (8), (10), (12), respectively.

Min ωd ∑
f∈F

∑
k∈K

(
βk(n+1)f + δkf

)
+ ωsd (38)

645

x̃kijf
(
tkif + si + cij

)
≤ tkjf (i, j) ∈ A; f ∈ F ; k ∈ K (39)

tst(n+1)f

n∑
i=1

x̃st
i(n+1)f ≤ tmax f ∈ F (40)

n+1∑
j=1

x̃st
ijf

n∑
j=1

x̃st
j(n+1)f

(
tst(n+1)f − ei

)
≤ amax i ∈ V ; f ∈ F (41)

tnd
0f ≥

(
tst(n+1)f + sn+1

) n∑
i=0

x̃st
i(n+1)f f ∈ F (42)650

n∑
j=0

x̃kjif
(
tkif − βkif

)
≤ li i ∈ V ′\ {0} ; f ∈ F ; k ∈ K (43)

The proposed MILP for the hybrid-ILS+MILP is run after it is determined that a

movement generates an improvement with the method explained in Section 4.3.2.

5. Computational experiments655

This section presents the results of the computational experiments performed on a set of

103 instances, which are created for the MT-VRPIP and are based on the blood collection

system of Bogota, Colombia. Three solution methods are used: the optimizers in the software

CPLEX V 12.8, the hybrid-ILS, and the hybrid-ILS+MILP. The methods are implemented

in JAVA and are executed on a machine with an Intel(R) Core(TM) i7-3770S processor with660

3.10 GHz speed and 8 GB RAM.

The process of the instance generation is detailed in Section 5.1. Then, the parameter

setting of the hybrid-ILS and the hybrid-ILS+MILP is presented in Section 5.2. The results

on the set of instances are provided in Section 5.3. In addition, BKSs are highlighted for the
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proposed instances. Section 5.4 compares the performance of the three solution methods.665

5.1. Instances

The BC of each instance is randomly selected from the set of 16 BCs located in Bogota,

Colombia (Secretaria Distrital de Salud, 2017). For each BC, the profit and service time are

assumed to be zero. The opening and closing times of activity for each BC are set equals to

its operating hours on week days, which are obtained from its web site.670

The number n of CSs for each instance is randomly selected from the set of 58 CSs

reported by the blood collection system of Bogota in 2017 (Secretaria Distrital de Salud,

2017), which are shown in Fig. 4. Additionally, n = {5− 15, 20, 25, 30, 35, 40, 45, 50, 58}.
The service time of each CS is generated following a discrete uniform distribution between 5

and 20 min. Only 48 CSs reported their donation level or profit and only 14 included their675

time intervals of activity. Therefore, the remaining values are randomly generated.

Figure 4: Mobile CSs reported by the blood collection system of Bogota, Colombia in 2017 (Secretaria
Distrital de Salud, 2017)

To generate the missing values, the 58 CSs are classified into five CS categories: malls,

institutions (schools, universities, or companies), churches, public sites (parks or sites without

closing time), and transportation stations. For each CS category, two characteristics are

identified. The first characteristic is the distribution function that fits with the highest680
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p-value the reported profits. The second characteristic is the probability of an early-starting

priority based on the number of CSs starting the collection activity in the morning. Table 2

summarizes the distribution functions and the probabilities of an early-starting priority.

Table 2: Probability distributions to generate profits and time intervals of activity.

Probability of
Category Probability distribution of profits an early-starting priority
Mall Triangular with a = 39, c = 39, b = 130 0.2
Institution Uniform with a = 9, b = 58. 0.8
Church Triangular with a = 19, c = 19, b = 72.6 0.8
Public site Exponential with λ = 53.5 0.67
Transportation station Uniform with a = 37, b = 80 0.8

Each missing profit is generated following the distribution function of its CS category.

Additionally, each missing time interval of collection activity [e, l] is calculated following two685

steps. The first step consists of randomly assign an early-starting priority according the

probabilities of its CS category as exposed in Table 2. In the second step, the missing time

interval of activity is calculated using the following equations:

e =


max {420, er + 60}

max {min {1140, lr} − dur, er + 60}

if the CS has an early-starting priority

otherwise
(44)

l =


min {max {420, er + 60}+ dur, lr}

min {1140, lr}

if the CS has an early-starting priority

otherwise
(45)690

In Eq. (44) and (45), variable dur represents the collection journey duration (in min) and

was randomly selected from the set {360, 390, 420, 450, 480}. Variables er and lr represent

the opening and the closing (in min), respectively, of the node where the CS was located

and were consulted in the web site of the node. The values 420, 1140, and 60 represent the695

earliest minute to start the journey (7 am), the latest minute to end the journey (7 pm) and

the number of minutes to set-up, respectively.

For each value of n, a set of values for the number of shuttles u is calculated. Initially, the

maximum number of shuttles uMax is obtained by rounding up the quotient between n and

the minimum number of CSs visited per shuttle nMin. Considering that the minimum value700
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of n is 5, nMin is randomly set between 1 and 5 as 3.3 CSs. Second, the natural numbers

from 1 to min {5, uMax} (both included) are added to the set of values for u. Then, if uMax

is greater than 5, this set is completed with the natural numbers from 5 to uMax (uMax

included) in increments of two. For example, the set of values for u when n equals 45 is

u = {1− 5, 7, 9, 11, 13, 14} since uMax = 45/3.3 = 13.64 ≈ 14.705

A set of 103 instances is created, which comprises the combination of each possible value

for n with each possible value for u. For each instance, the arrival time limit tmax is set

randomly between the 50% and 60% of the time interval of activity of the BC, and the

demand q is randomly defined between 30% and 40% from the total sum of profits of all CSs

in the instance. For all instances, the travel times between each pair of nodes are obtained710

with the API Google Maps assuming a symmetric matrix. Additionally, the processing time

limit amax, the traveling cost ωt, the shortage cost ωs, and the delay cost ωd are fixed to

480 min, 5 USD/min, 500 USD/WB unit, and 10 USD/min, respectively, based on the BSC

literature. Finally, the set of 103 instances is presented in Appendix D.

5.2. Parameter setting715

The hybrid-ILS requires seven parameters: µ, ξ, λ, the orders to execute the movements

on first- and second-type trips, maxIte, and noImp. The parameters µ and ξ are fixed by

assuming that µ+ξ = λ. This assumption keeps a balance between the percentage of visited

nodes to modify (µ+ ξ) and the percentage of permutations that modify the unvisited nodes

(λ). Then, it is assumed that µ = 0.3(µ+ξ), which means that 30% of the number of nodes to720

modify will be deleted while the 70% will be relocated. Additionally, it is assumed that (i) the

intra-movements are executed before the inter-movements since the complexity of the former

is less compared with the latter and that (ii) the order within the intra- and inter-movements

is randomly fixed. Therefore, swapIntra-relocateIntra-2opt∗-swapInter-relocateInter is

the order to execute the movements on second-type trips.725

A 2-factor experiment is designed to investigate the effect of two factors on the

performance of the hybrid-ILS and set the remaining parameters λ, the order to execute

the movements on first-type trips, maxIte, and noImp. Interested readers are referred to

the work of Montgomery & Runger (2010) for details on factorial experiments. The first
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factor is λ with three levels: 0.15, 0.20, and 0.25. The second factor is the order to execute730

the movements on first-type trips with three levels: unv-inter-intra, intra-unv-inter, and

intra-inter-unv. The terms intra, inter, and unv will be used in this section to denote the sets

of intra-, inter-, and unvisited-movements, respectively. The unv-movements are randomly

ordered as add-remove-swapUnv. As result, the experiment presents nine treatments or

possible combinations between the levels of the factors.735

For each treatment, five replicates are tested. Each replica consists of running the

hybrid-ILS for a limited time on a random subset of 15 instances, which represent the

15% of the total set of instances. A single-factor experiment is designed to determine which

time limit should be used to provide the maximum average gap with the CPLEX objective

function. Five limits are considered: 900, 1200, 1500, 1800, and 7200 s. For details on this740

single-factor experiment, the reader is referred to Appendix E.1. As conclusion, the time

limits between 1200 and 7200 s produce approximately the same average gap. Therefore,

each replica of the 2-factor experiment is limited to 1200 s.

The criteria to evaluate the performance of the hybrid-ILS in each replicate of the 2-factor

experiment are: (i) the average gap ∆fCPLEX with the objective function of CPLEX, (ii) the745

average iteration iteBest where the best solution is found, and (iii) the average number of

iterations nIteNo between the best solution and the second best solution. The data for the

three criteria of each treatment are presented in Table 3.

The normality, homoscedasticity, and independence of the experiment data residuals are

verified by applying the Shapiro-Wilk, Levene, and Durbin-Watson tests. Details of the750

significance levels used in the tests of the 2-factor experiment and the p-values obtained

with each test are presented in Appendix E.2. Then, the experiment data are subjected to

the ANOVA test. It is concluded that the λ levels and the orders to execute movements on

first-type trips do not affect the average gap ∆fCPLEX. In contrast, these factors affect the

maximum iteration iteBest where the best solution is found and the maximum number of755

iterations nIteNo without improvement.

Tukey’s test is applied to find significant differences between the means of each pair of

treatments for both iteBest and nIteNo data. For the iteBest and nIteNo data, a significant

difference is found between the treatment with the lowest mean, which is underlined in Table
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Table 3: Results of the 2-factor experiment.

Intra-inter-unv Intra-unv-inter Unv-intra-inter
λ Rep. ∆fCPLEX iteBest nIteNo ∆fCPLEX iteBest nIteNo ∆fCPLEX iteBest nIteNo

0.15 1 -35.55% 1096 810 -35.55% 1606 1206 -35.54% 784 408
2 -35.55% 1387 1051 -35.55% 1080 772 -35.55% 732 320
3 -35.54% 1024 691 -35.55% 1465 734 -35.55% 358 198
4 -35.54% 921 551 -35.55% 1241 765 -35.55% 922 614
5 -35.55% 1228 821 -35.55% 1474 1044 -35.55% 537 349
Avg. -35.55% 1131 785 -35.55% 1373 904 -35.55% 667 378

0.2 1 -35.54% 603 341 -35.55% 1095 724 -35.55% 870 641
2 -35.54% 858 489 -35.55% 1213 816 -35.54% 1283 906
3 -35.54% 1128 633 -35.55% 1269 1087 -35.55% 1119 707
4 -35.54% 1183 568 -35.55% 1367 913 -35.54% 790 466
5 -35.54% 1303 759 -35.54% 1344 803 -35.54% 1361 929
Avg. -35.54% 1015 558 -35.55% 1258 869 -35.54% 1085 730

0.25 1 -35.54% 995 670 -35.55% 1306 871 -35.54% 1109 762
2 -35.54% 1234 895 -35.55% 983 627 -35.54% 1267 988
3 -35.54% 1244 810 -35.54% 654 406 -35.54% 1385 1132
4 -35.54% 1080 698 -35.54% 998 540 -35.55% 1282 846
5 -35.53% 853 559 -35.54% 574 370 -35.54% 975 621
Avg. -35.54% 1081 726 -35.54% 903 563 -35.54% 1204 870

Rep: replicate, Avg: average.

3, and the four treatments with the highest means, which are highlighted in italics in Table760

3. It is concluded that the combination unv-intra-inter with λ equals to 0.15 gives the same

average gap ∆fCPLEX with a smaller number of iterations.

For the hybrid-ILS and the hybrid-ILS+MILP, the parameters λ and the order to execute

the movements on first-type trips are set equal to 0.15 and unv-intra-inter, respectively.

For the hybrid-ILS, maxIte and noImp are set equal to 667 and 338, respectively. The765

hybrid-ILS+MILP is run the same time than the hybrid-ILS to compare the results of both

methods.

5.3. Results on the set of MT-VRPIP instances

The results are grouped into four categories: small, medium, large, and hard instances.

Small, medium, and large instances comprise instances with 5 to 11, 12 to 35, and 40 to 58770

CSs, respectively. Initially, CPLEX is run with a preference for optimality and a limit of 2 h

of computation. Next, if a null solution is obtained for any instance, the procedure is repeated

setting the preference from optimality to feasibility. Hard instances include instances that

could not be solved with CPLEX with either optimization priority or feasibility priority
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within 2 h of computation. From the set of 103 instances, 17, 45, and 36 are small, medium,775

and large instances, respectively, and 5 instances belong to the hard group of instances. The

hybrid-ILS and the hybrid-ILS+MILP are executed 10 for each instance.

Tables 4, 5, 6, and 7 present for each group of instances, respectively, the average cost

(φ) of the solution, the average gap (∆BKS) to the BKS, and the average time (t), which are

obtained using the three solution methods. Twelve small instances obtain optimal solution780

with CPLEX, while the remaining five obtain feasible solutions. The 12 optimal solutions are

also reached by the hybrid-ILS and hybrid-ILS+MILP. Additionally, 40 medium instances

obtain a feasible solution with an optimality preference and five with a feasibility preference.

Finally, a feasible solution is obtained for 27 large instances by setting optimality preference

and for nine large instances with a feasibility preference.785

Table 4: Results on the small MT-VRPIP instances

Instance
Pref. BKS

CPLEX Hybrid-ILS Hybrid-ILS+MILP
n u φ ∆BKS t φ ∆BKS t φ ∆BKS t

5 1 opt 13954.68* 13954.68 0.00% 1.32 13954.68 0.00% 1.15 13954.68 0.00% 1.16
5 2 opt 1873.00* 1873.00 0.00% 1.31 1873.00 0.00% 1.37 1873.00 0.00% 1.38
6 1 opt 1587.85* 1587.85 0.00% 0.56 1587.85 0.00% 1.31 1587.85 0.00% 1.32
6 2 opt 8433.33* 8433.33 0.00% 117.07 8433.33 0.00% 0.99 8433.33 0.00% 0.99
7 1 opt 4774.18* 4774.18 0.00% 3.04 4774.18 0.00% 0.92 4774.18 0.00% 0.92
7 2 opt 3358.75* 3358.75 0.00% 173.61 3358.75 0.00% 0.98 3358.75 0.00% 0.98
8 1 opt 34874.84* 34874.84 0.00% 215.97 34874.84 0.00% 1.07 34874.84 0.00% 1.07
8 2 opt 4368.66* 4368.66 0.00% 3383.31 4368.66 0.00% 1.59 4368.66 0.00% 1.59
9 1 opt 2957.51* 2957.51 0.00% 19.22 2957.51 0.00% 1.14 2957.51 0.00% 1.14
9 2 opt 2261.51* 2261.51 0.00% 84.95 2261.51 0.00% 2.79 2261.51 0.00% 2.79
9 3 opt 2220.51* 2220.51 0.00% 481.97 2220.51 0.00% 1.77 2220.51 0.00% 1.77
10 1 opt 3938.41 3938.41 0.00% 7200.00 3938.41 0.00% 3.40 3938.41 0.00% 3.41
10 2 opt 33311.41 33311.41 0.00% 7200.00 33311.41 0.00% 2.48 33311.41 0.00% 2.48
10 3 opt 5156.10 5156.10 0.00% 7200.00 5156.10 0.00% 1.77 5225.60 1.35% 1.80
11 1 opt 25271.33 25271.33 0.00% 7200.00 25271.33 0.00% 2.70 25271.33 0.00% 2.71
11 2 opt 37641.34 37652.16 0.03% 7200.00 37641.34 0.00% 2.34 37641.34 0.00% 2.36
11 3 opt 2388.75* 2388.75 0.00% 5204.56 2388.75 0.00% 1.75 2388.75 0.00% 1.82

BKS in USD, φ: average cost of the solution in USD, ∆BKS: average gap to the BKS, t: average run-time in seconds,
n: number of CSs, u: number of shuttles, and opt: optimality preference. Optimal solutions are marked with *.

5.4. Comparison of methods

Table 8 summarizes the results obtained with CPLEX, hybrid-ILS, and

hybrid-ILS+MILP. This table presents the percentage of BKSs found, the average

gap with respect to the BKSs (∆BKS) and the average run-time (t) of each method according

to each group of instances and the entire set of instances.790
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Table 5: Results on the medium MT-VRPIP instances

Instance
Pref. BKS

CPLEX Hybrid-ILS Hybrid-ILS+MILP
n u φ ∆BKS t φ ∆BKS t φ ∆BKS t

12 1 opt 37574.59 38005.92 1.15% 7200.00 37574.59 0.00% 2.25 37574.59 0.00% 2.25
12 2 opt 4176.50 4176.50 0.00% 7200.00 4176.50 0.00% 3.29 4282.47 2.54% 3.31
12 3 opt 2015.68 2015.68 0.00% 7200.00 2015.68 0.00% 2.77 2015.68 0.00% 2.78
12 4 opt 37114.41 37449.99 0.90% 7200.00 37114.41 0.00% 2.41 38000.44 2.39% 2.43
13 1 opt 83477.76 83477.76 0.00% 7200.00 83477.76 0.00% 2.31 83477.76 0.00% 2.31
13 2 opt 30595.98 30659.17 0.21% 7200.00 30595.98 0.00% 3.44 31154.59 1.83% 3.45
13 3 opt 62153.35 62611.26 0.74% 7200.00 62153.35 0.00% 3.59 62153.35 0.00% 3.59
13 4 opt 41619.83 41676.59 0.14% 7200.00 41619.83 0.00% 3.85 41619.83 0.00% 3.85
14 1 opt 7295.49 7399.01 1.42% 7200.00 7295.57 0.00% 6.37 7295.49 0.00% 6.37
14 2 opt 37851.86 38359.27 1.34% 7200.00 37851.86 0.00% 4.24 37851.86 0.00% 4.24
14 3 opt 5597.42 5845.09 4.42% 7200.00 5597.42 0.00% 5.65 5597.42 0.00% 5.66
14 4 opt 35599.08 35719.91 0.34% 7200.00 35599.08 0.00% 4.71 35647.71 0.14% 4.73
15 1 opt 3591.75 3591.75 0.00% 7200.00 3620.41 0.80% 12.40 3620.41 0.80% 12.41
15 2 opt 33809.43 35439.27 4.82% 7200.00 33809.43 0.00% 5.05 33809.43 0.00% 5.05
15 3 opt 95610.00 97204.34 1.67% 7200.00 95610.00 0.00% 4.04 95610.00 0.00% 4.05
15 4 opt 3655.59 3752.23 2.64% 7200.00 3699.07 1.19% 7.24 3655.59 0.00% 7.29
15 5 opt 8698.32 8745.73 0.55% 7200.00 8698.32 0.00% 5.88 8712.90 0.17% 5.88
20 1 opt 5441.28 5441.28 0.00% 7200.00 6331.14 16.35% 20.11 6331.14 16.35% 20.11
20 2 opt 7025.32 7616.58 8.42% 7200.00 7025.32 0.00% 19.04 7038.82 0.19% 19.05
20 3 opt 142970.70 145152.94 1.53% 7200.00 142970.70 0.00% 7.85 145073.87 1.47% 7.86
20 4 opt 7441.33 7668.33 3.05% 7200.00 7441.33 0.00% 13.37 7441.33 0.00% 13.38
20 5 opt 7645.34 8017.26 4.86% 7200.00 7645.34 0.00% 23.35 7712.26 0.88% 23.35
20 6 opt 16189.48 19206.82 18.64% 7200.00 16189.48 0.00% 20.38 16221.48 0.20% 20.39
25 1 opt 65485.81 68875.22 5.18% 7200.00 65485.81 0.00% 17.08 65485.81 0.00% 17.08
25 2 opt 5857.74 9672.43 65.12% 7200.00 5857.74 0.00% 54.60 5912.68 0.94% 54.60
25 3 opt 77747.34 107916.88 38.80% 7200.00 77747.34 0.00% 18.48 77941.69 0.25% 18.48
25 4 opt 97543.24 172961.17 77.32% 7200.00 97543.24 0.00% 25.56 97543.24 0.00% 25.57
25 5 opt 113844.51 205212.45 80.26% 7200.00 113844.51 0.00% 17.55 113844.51 0.00% 17.55
25 7 opt 49634.74 65050.13 31.06% 7200.00 49634.74 0.00% 21.51 49634.82 0.00% 21.62
25 8 opt 10716.56 76333.39 612.29% 7200.00 10716.56 0.00% 23.98 10716.56 0.00% 23.99
30 1 opt 55409.90 58195.44 5.03% 7200.00 55409.90 0.00% 73.42 55409.90 0.00% 73.49
30 2 opt 108201.12 116238.72 7.43% 7200.00 108201.12 0.00% 27.83 108204.80 0.00% 27.83
30 3 opt 37367.17 126763.89 239.24% 7200.00 37367.17 0.00% 45.17 37367.17 0.00% 45.22
30 4 opt 9540.23 23849.86 149.99% 7200.00 9647.25 1.12% 66.59 9540.23 0.00% 66.86
30 5 opt 6223.58 7292.85 17.18% 7200.00 6223.58 0.00% 61.82 6333.68 1.77% 61.85
30 7 opt 10981.33 156534.14 1325.46% 1929.97 10981.33 0.00% 60.34 11266.74 2.60% 60.41
30 9 opt 60385.75 161922.79 168.15% 7200.00 60385.75 0.00% 46.41 62656.47 3.76% 46.77
35 1 opt 141893.60 160491.07 13.11% 7200.00 141893.60 0.00% 61.31 141893.60 0.00% 61.32
35 2 feas 32200.65 59599.66 85.09% 7200.00 32200.65 0.00% 47.25 32200.65 0.00% 47.27
35 3 feas 45748.58 105024.98 129.57% 7200.00 45748.58 0.00% 84.54 48315.74 5.61% 84.56
35 4 opt 5608.83 132941.26 2270.22% 937.25 5608.83 0.00% 65.59 5677.08 1.22% 66.20
35 5 feas 62151.67 163098.73 162.42% 1418.65 62151.67 0.00% 103.33 62151.67 0.00% 103.40
35 7 feas 6391.67 140806.25 2102.96% 2576.41 6391.67 0.00% 130.22 7831.63 22.53% 130.28
35 9 opt 89996.34 173613.05 92.91% 7200.00 89996.34 0.00% 50.07 89996.34 0.00% 50.30
35 11 feas 73624.07 135011.36 83.38% 7200.00 73624.07 0.00% 51.47 75033.59 1.91% 51.52

BKS in USD, φ: average cost of the solution in USD, ∆BKS: average gap to the BKS, t: average run-time in seconds, n: number
of CSs, u: number of shuttles, opt: optimality preference, and feas: feasibility preference.

For small instances, the hybrid-ILS obtains 100% of the BKSs in 0.06% of the CPLEX

time, while CPLEX finds 94.12% of the BKSs. For the medium and large instances, the

hybrid-ILS finds more than 90% of the BKSs while the hybrid-ILS+MILP finds less than

60% of the BKSs in the same computation time. Additionally, the gap to the BKSs of
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Table 6: Results on the large MT-VRPIP instances

Instance
Pref. BKS

CPLEX Hybrid-ILS Hybrid-ILS+MILP
n u φ ∆BKS t φ ∆BKS t φ ∆BKS t

40 1 opt 195388.99 226351.45 15.85% 7200.00 195388.99 0.00% 77.31 195388.99 0.00% 77.32
40 2 opt 212902.24 290185.83 36.30% 6099.35 212902.24 0.00% 47.37 212902.24 0.00% 47.46
40 3 feas 9092.48 26596.11 192.51% 7200.00 9092.48 0.00% 264.12 9322.92 2.53% 264.15
40 4 feas 79899.73 159430.14 99.54% 7200.00 79899.73 0.00% 100.11 81492.17 1.99% 100.39
40 5 opt 8827.76 359291.91 3970.02% 7200.00 8827.76 0.00% 97.26 8904.78 0.87% 97.29
40 7 opt 8416.17 138060.38 1540.42% 7200.00 8416.17 0.00% 98.88 9402.47 11.72% 98.97
40 9 opt 20137.81 208377.71 934.76% 3398.44 20137.81 0.00% 107.45 20550.08 2.05% 107.45
40 11 opt 6417.14 238405.66 3615.14% 2506.16 6417.14 0.00% 133.59 6482.90 1.02% 134.48
45 1 opt 88010.55 139142.09 58.10% 7200.00 88010.55 0.00% 157.25 88010.55 0.00% 157.25
45 2 opt 13187.37 186986.96 1317.92% 4115.05 13187.37 0.00% 193.82 13387.16 1.52% 193.82
45 3 opt 125695.33 317050.39 152.24% 2478.04 125695.33 0.00% 105.84 126498.52 0.64% 106.03
45 4 opt 185186.08 409815.85 121.30% 3605.15 185186.08 0.00% 145.22 186265.33 0.58% 145.22
45 5 opt 90189.57 414577.02 359.67% 5155.10 90189.57 0.00% 101.67 90189.57 0.00% 101.79
45 7 opt 19893.27 463613.24 2230.50% 7200.00 19893.27 0.00% 219.31 20380.17 2.45% 220.00
45 9 opt 6706.09 125842.04 1776.53% 4726.92 6706.09 0.00% 172.91 6874.18 2.51% 173.42
45 13 opt 227044.71 502881.92 121.49% 2195.95 227044.71 0.00% 136.08 228841.91 0.79% 136.53
45 14 feas 15117.89 424630.54 2708.79% 2161.23 15117.89 0.00% 214.49 15336.92 1.45% 214.49
50 1 opt 216788.26 275306.09 26.99% 7200.00 216788.26 0.00% 162.20 216788.26 0.00% 162.22
50 2 opt 13026.40 284139.28 2081.26% 846.27 13173.54 1.13% 248.65 13026.40 0.00% 248.65
50 4 opt 52281.74 438470.86 738.67% 3997.75 52281.74 0.00% 254.85 52281.74 0.00% 255.00
50 7 feas 8093.67 71703.85 785.92% 5582.48 8093.67 0.00% 276.10 8804.42 8.78% 276.25
50 9 feas 8309.82 534161.31 6328.07% 1959.71 8309.82 0.00% 350.92 9129.75 9.87% 351.15
50 11 feas 122245.42 412309.35 237.28% 7200.00 122245.42 0.00% 191.11 124492.33 1.84% 191.15
50 13 feas 15586.20 400965.91 2472.57% 2614.65 15586.20 0.00% 201.52 16124.60 3.45% 203.06
50 15 opt 8571.74 279882.02 3165.17% 7200.00 8571.74 0.00% 242.64 9112.24 6.31% 243.74
58 1 opt 352766.86 530521.89 50.39% 7200.00 352766.86 0.00% 247.29 352766.86 0.00% 247.30
58 2 opt 204295.55 436105.99 113.47% 7200.00 204295.55 0.00% 310.47 204295.55 0.00% 310.47
58 3 opt 10812.48 110641.53 923.28% 7200.00 10812.48 0.00% 728.30 11095.79 2.62% 728.38
58 4 opt 297779.49 545872.04 83.31% 4146.75 297779.49 0.00% 173.69 324848.61 9.09% 173.75
58 5 opt 9590.56 485768.61 4965.07% 5569.11 9645.56 0.57% 795.71 9590.56 0.00% 795.84
58 7 opt 74571.49 548985.41 636.19% 2961.77 74571.49 0.00% 264.93 77605.04 4.07% 265.12
58 9 opt 9544.31 443716.00 4549.01% 7200.00 9544.31 0.00% 594.92 9925.15 3.99% 595.03
58 11 opt 61036.81 548468.89 798.59% 2637.81 61036.81 0.00% 386.50 62306.83 2.08% 386.78
58 15 feas 10048.00 590261.57 5774.42% 4734.22 10048.00 0.00% 305.33 12951.03 28.89% 308.51
58 17 feas 10132.65 564134.28 5467.49% 5395.41 10132.65 0.00% 494.54 10430.62 2.94% 495.59
58 18 opt 8762.14 511358.96 5736.01% 5287.19 8762.14 0.00% 362.46 9612.39 9.70% 363.07

BKS in USD, φ: average cost of the solution in USD, ∆BKS: average gap to the BKS, t: average run-time in seconds, n: number
of CSs, u: number of shuttles, opt: optimality preference, and feas: feasibility preference.

Table 7: Results on the hard MT-VRPIP instances

Instance
BKS

Hybrid-ILS Hybrid-ILS+MILP
n u φ ∆BKS t φ ∆BKS t

40 12 6699.72 6699.72 0.00% 134.97 7009.22 4.62% 135.24
45 11 47715.92 47715.92 0.00% 101.75 48112.89 0.83% 102.90
50 3 122589.83 122589.83 0.00% 223.78 123140.57 0.45% 223.79
50 5 178504.34 178504.34 0.00% 165.13 178504.34 0.00% 165.50
58 13 16912.77 16912.77 0.00% 399.16 17238.18 1.92% 400.91

BKS in USD, φ: average cost of the solution in USD, ∆BKS: average gap to the
BKS, t: average run-time in seconds, n: number of CSs, and u: number of shuttles.

35



the hybrid-ILS is less than 1% for these groups of instances while the hybrid-ILS+MILP795

generates gaps of 1.50% and 3.44% for medium and large instances, respectively. In the hard

instances, the hybrid-ILS finds 100% of the best solutions while the hybrid-ILS+MILP finds

20% in the same computation time. However, the hybrid-ILS+MILP is on average within a

gap of less than 2% of the BKSs in the hard group of instances.

Considering all instances, the hybrid-ILS and hybrid-ILS+MILP achieve gaps to the800

BKSs of 0.21% and 1.95%, respectively, in 2.00% of the CPLEX time, while CPLEX obtains

a gap of 734.73%. In addition, the hybrid-ILS obtains 94.17% of the BKSs with a gap of less

than 1% while the hybrid-ILS+MILP obtains 50.49% of the BKSs with a gap of 1.95% in the

same computational time. It is concluded that the hybrid-ILS and hybrid-ILS+MILP are

superior to CPLEX in both computation time and gap to the BKSs and that the hybrid-ILS805

outperforms the hybrid-ILS+MILP in terms of gap to the BKSs over the total set of instances.

Table 8: Summary of results for each solution method

Metric Instances CPLEX Hybrid-ILS Hybrid-ILS+MILP
% BKS Small 94.12% 100.00% 94.12%

Medium 11.11% 91.11% 55.56%
Large 0.00% 94.44% 27.78%
Hard 0.00% 100.00% 20.00%
All 20.39% 94.17% 50.49%

∆BKS Small 0.00% 0.00% 0.08%
Medium 173.76% 0.43% 1.50%
Large 1782.90% 0.05% 3.44%
Hard - 0.00% 1.56%
All 734.73% 0.21% 1.95%

t Small 44.80 0.03 0.03
Medium 112.24 0.50 0.50
Large 84.94 4.15 4.16
Hard 120.00 3.42 3.43
All 91.94 1.84 1.84

∆BKS: average gap to the BKS, t: average run-time in minutes.

Some additional metrics are presented in Table 9 to compare the hybrid-ILS with the

hybrid-ILS+MILP for each group of instances and the total set of instances. The metrics

included in this table are as follows. First, the number of iterations and the percentage of time

spent on the VND. Second, the percentage of the VND that is employed in the evaluation810
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of the movements using the evaluation method described in Section 4.3.2 (noMILP), and

using the evaluation method described in Section 4.5 (subMILP). Third, the number of

first-type and second-type movements and the number of improvements found with each

type of movements. Fourth, the percentage of improvements of the first-type movements

that are found with the noMILP and subMILP evaluation methods.815

Over the entire set of instances, the hybrid-ILS executes four times more iterations

than the hybrid-ILS+MILP. Therefore, the hybrid-ILS runs five times more first-type and

second-type movements and finds five times more improvements than the hybrid-ILS+MILP.

Therefore, each iteration of the hybrid-ILS+MILP takes longer than each iteration of the

hybrid-ILS due to the execution of the MILP within the subMILP evaluation method.820

Even though the MILP within the subMILP evaluation method in the hybrid-ILS+MILP

is executed when an improvement is found with the noMILP evaluation method, the

subMILP evaluation method accounts for 76.56% of the VND time while the noMILP

evaluation method accounts for 4.16% of the VND time. The increase in the time per

iteration using the subMILP evaluation method allows improving the solution obtained with825

the noMILP evaluation method 2.24% of the times.

It is concluded that the way of evaluating the movements in the hybrid-ILS is effective

compared to the inclusion of the subMILP evaluation method in the hybrid-ILS+MILP.

Table 9: Summary of metrics for the hybrid-ILS and the hybrid-ILS+MILP

Hybrid-ILS Hybrid-ILS+MILP
Metric Small Medium Large Hard All Small Medium Large Hard All
Iterations 388.47 479.24 571.06 435.40 494.22 100.06 110.20 128.75 57.80 112.47
% time VND 92.58% 97.62% 98.94% 99.46% 97.34% 98.12% 99.28% 99.49% 99.89% 99.19%
% time noMILP 61.71% 60.46% 61.26% 55.67% 60.71% 4.11% 4.54% 4.03% 1.84% 4.16%
% time subMILP 0.00% 0.00% 0.00% 0.00% 0.00% 76.71% 75.21% 76.93% 85.61% 76.56%
First-type mov. 7690.65 16847.78 29770.03 23204.60 20161.50 1943.53 3587.13 5421.14 3013.60 3929.03
First-type imp. 945.59 3437.36 8230.14 6427.20 4846.38 245.71 731.76 1473.69 816.80 914.98
% imp. noMILP 100.00% 100.00% 100.00% 100.00% 100.00% 99.49% 97.68% 96.96% 98.43% 97.76%
% imp. subMILP 0.00% 0.00% 0.00% 0.00% 0.00% 0.51% 2.32% 3.04% 1.57% 2.24%
Second-type mov. 4788.59 14128.40 30845.58 23450.80 18882.32 1185.71 3064.02 6206.11 3238.20 3860.67
Second-type imp. 1208.18 6333.64 17934.81 13202.80 9875.92 314.00 1453.24 3888.78 1865.00 2136.46
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6. Conclusions and perspectives

In this paper, the multi-trip vehicle routing problem with increasing profits (MT-VRPIP)830

is introduced. This new problem arises from the context of optimizing the routing of a

shuttle fleet to transport whole blood (WB) units from collection sites (CSs) to a blood

center (BC), while meeting two time constraints. The first one refers to the 8-h processing

limit that WB units intended to produce platelets and cryoprecipitate must meet. The

second one guarantees that the WB units with the 8-h processing limit arrive at the BC835

before a reception time limit. With this last constraint, the BC will be able to process the

platelets and cryoprecipitate before the closure of the facility. An additional characteristic

of the MT-VRPIP is that donations at CSs follow a linear increasing function, which allows

calculating the number of WB units collected by the shuttles when they visit the CSs.

To solve the MT-VRPIP, a mixed-integer linear programming model and two solution840

methods, based on the iterated local search metaheuristic, are proposed. Additionally, a

new set of instances based on the blood collection system of Bogota, Colombia is designed.

The computational experiments on the new set of instances show that the two proposed

methods are efficient since they get the best-known solutions in the 2.00% of the average

time expended by the software CPLEX.845

From a managerial point of view, the problem and solution methods presented in this

article are tools for decision makers in the blood supply chain. Specifically, these tools allow

decision-makers to (i) optimize operational decisions such as transportation decisions in the

WB collection process, (ii) consider time constraints related to the production process such as

the 8-h processing limit, and (iii) manage additional decisions if the optimal transportation850

plan generates shortages and delays in the shuttle routes. If a shortage occurs, decision

makers can generate additional supply through actions such as contacting other BCs for

additional WB units or increasing the capacity of the collection fleet. If delays occur, decision

makers may plan the staff who must wait for the shuttles at the CSs or BC.

In future research, other donation patterns could be tested, such as the irregular pattern855

proposed by Özener & Ekici (2018) or a step function. Another research perspective is to

explore additional decisions such as the location of CSs, the determination of the shuttle

fleet size, and/or inventory decisions.
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Appendix A. Initial values for a subsequence involving a single node

Initial values for a sequence involving a single vertex σri of a first- or second-type trip,860

i.e. r ∈ {πst, πnd}, are given by:

C(σri ) = B(σri ) = WT (σri ) =0 σri ∈ V ′, r ∈ {πst, πnd} (A.1)

E(σri ) =



eσr
i

eσr
i

lσr
i

if σri ∈ V ′, r = πst

if σri ∈ {0, n+ 1}, r = πnd

if σri ∈ V , r = πnd

(A.2)865

L(σri ) =


min{lσr

i
, tmax}

lσr
i

if σri ∈ V ′, r = πst

if σri ∈ V ′, r = πnd
(A.3)

D(σri ) = sσr
i

σri ∈ V ′, r ∈ {πst, πnd} (A.4)

Additional initial values for a sequence involving a single vertex σri of a first-type trip,

i.e. r = πst, are given by the following equations where emax = max {e1, ..., en} represents870

the maximum earliest-opening time of the CSs.

ES(σri ) =


emax

eσr
i

if σri ∈ {0, n+ 1}

if σri ∈ V
(A.5)

QE(σri ) = 0 σri ∈ V ′ (A.6)

QL(σri ) = QM(σri ) = min{max{0, λσr
i
(tmax − eσr

i
)}, pσr

i
} σri ∈ V ′ (A.7)

M(σri ) = tmax σri ∈ V ′ (A.8)875

DM(σri ) = sσr
i

σri ∈ V ′ (A.9)

BM(σri ) = max{0, tmax − lσr
i
} σri ∈ V ′ (A.10)

The additional initial value for a subsequence involving a single vertex σri of a second-type
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trip, i.e. r = πnd, is given by:880

DD(σri ) = max{0, L(σri )− ln+1} σri ∈ V ′ (A.11)

Appendix B. Values for the concatenation of two subsequences

The concatenation of two subsequences σr = 〈σri , ..., σrj 〉 and σr̃ = 〈σr̃v, ..., σr̃w〉 of the same

type of trip, i.e., r, r̃ ∈ {πst, πnd}, is characterized by the following data:885

C(σr ⊕ σr̃) = C(σr) + C(σr̃) + cσr
jσ

r̃
v

(B.1)

E(σr ⊕ σr̃) = max{E(σr̃)−∆, E(σr)} −∆WT (B.2)

L(σr ⊕ σr̃) = max{min{L(σr̃)−∆, L(σr)}+ ∆β, E(σr ⊕ σr̃)} (B.3)

D(σr ⊕ σr̃)

.

= ∆ +D(σr̃) + ∆WT −min{E(σr ⊕ σr̃)− E(σr),WT (σr)}−

= min{E(σr ⊕ σr̃) + ∆ + ∆WT − E(σr̃),WT (σr̃)}
(B.4)

B(σr ⊕ σr̃) =


max{B(σr), B(σr̃)} if L(σr ⊕ σr̃) + ∆ + ∆WT ≤ L(σr̃)

max{B(σr), Bnew(σr̃)} otherwise
(B.5)890

WT (σr ⊕ σr̃)

.

= WT (σr) +WT (σr̃) + ∆WT −min{E(σr ⊕ σr̃)− E(σr),WT (σr)}−

= min{E(σr ⊕ σr̃) + ∆ + ∆WT − E(σr̃),WT (σr̃)}
(B.6)

In Eq. (B.2)-(B.6) and hereafter, ∆ = D(σr)+cσr
jσ

r̃
v
, ∆WT = max{E(σr̃)−∆−L(σr), 0},

and ∆β = max{E(σr) + ∆ − L(σr̃), 0}. Additionally, in Eq. (B.5), Bnew(σr̃) refers to the

new maximum delay of subsequence σr̃ and is calculated in complexity O(n) starting the895

subsequence at time L(σr ⊕ σr̃) + ∆ + ∆WT.

In addition, the concatenation of two subsequences σr = 〈σri , ..., σrj 〉 and σr̃ = 〈σr̃v, ..., σr̃w〉
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of a first-type trip, i.e. r, r̃ = {πst}, is also characterized by the following data:

ES(σr ⊕ σr̃) = min{ES(σr), ES(σr̃)} (B.7)

QE(σr ⊕ σr̃) =



QE(σr) if E(σr ⊕ σr̃) = E(σr)

QL(σr) if E(σr ⊕ σr̃) = L(σr)

QEnew(σr) otherwise


+ (B.8)900



QE(σr̃) if E(σr ⊕ σr̃) + ∆ + ∆WT = E(σr̃)

QL(σr̃) if E(σr ⊕ σr̃) + ∆ + ∆WT = L(σr̃)

QEnew(σr̃) otherwise



QL(σr ⊕ σr̃) =



QE(σr) if L(σr ⊕ σr̃) = E(σr)

QL(σr) if L(σr ⊕ σr̃) = L(σr)

QLnew(σr) otherwise


+ (B.9)



QE(σr̃) if L(σr ⊕ σr̃) + ∆ + ∆WT = E(σr̃)

QL(σr̃) if L(σr ⊕ σr̃) + ∆ + ∆WT = L(σr̃)

QLnew(σr̃) otherwise


905

M(σr ⊕ σr̃) = max{M(σr̃)−∆M + ∆βM, E(σr ⊕ σr̃)} (B.10)

QM(σr ⊕ σr̃) =


QM(σr) if M(σr ⊕ σr̃) = M(σr)

QMnew(σr) otherwise

+ (B.11)


QM(σr̃) if M(σr ⊕ σr̃) + ∆M = M(σr̃)

QMnew(σr̃) otherwise


DM(σr ⊕ σr̃) =DM(σr) +DM(σr̃) + cσr

jσ
r̃
v

(B.12)

BM(σr ⊕ σr̃) =


max{BM(σr), BM(σr̃) + ∆βM} if M(σr ⊕ σr̃) = M(σr)

max{BMnew(σr), BM(σr̃) + ∆βM} otherwise
(B.13)910

In Eq. (B.10)-(B.13) and hereafter, ∆M = DM(σr)+cσr
jσ

r̃
v
and ∆βM = max{E(σr)+∆M−

M(σr̃), 0}. QEnew(σr), QLnew(σr), and QMnew(σr) refer in Eq. (B.8)-(B.11) to the collected

41



quantity in the sequence σr and are calculated in O(n) when starting that sequence at times

E(σr ⊕ σr̃), L(σr ⊕ σr̃), and M(σr ⊕ σr̃), respectively. Additionally, QEnew(σr̃), QLnew(σr̃),915

and QMnew(σr̃) refer to the collected quantity in the sequence σr̃ and are calculated in O(n)

when starting that sequence at times E(σr ⊕ σr̃) + ∆ + ∆WT, L(σr ⊕ σr̃) + ∆ + ∆WT, and

M(σr⊕σr̃) + ∆M, respectively. Finally, BMnew(σr) refers in Eq. (B.5) to the new maximum

delay of subsequence σr and is calculated in complexity O(n) starting that subsequence at

time M(σr ⊕ σr̃).920

Finally, the concatenation of two subsequences σr = 〈σri , ..., σrj 〉 and σr̃ = 〈σr̃v, ..., σr̃w〉 of
a second-type trip, i.e. r, r̃ = {πnd}, is also characterized by the following data:

DD(σr ⊕ σr̃) = max{0, E(σr ⊕ σr̃) +D(σr ⊕ σr̃)− sσr̃
w
− ln+1} (B.14)

Appendix C. Additional functions925

The ending time ẗend of the first-type trip σr̈, which starts at time ẗ and precedes

the second-type trip σr̂, is calculated as in Eq. (C.1). The values Bẗ(σr̂) and Dẗ(σr̂) of

second-type trip σr̂ are calculated as in Eq. (C.2) and (C.3), respectively, with ∆
W̃T

=

max{0, E(σr̂)− ẗend} and Bnew(σr̂) calculated in complexity O(n).

ẗend =


ẗ+DM(σr̈) if ẗ = M(σr̈)

ẗ+D(σr̈) otherwise
(C.1)930

Bẗ(σr̂) =


B(σr̂) if ẗend + ∆

W̃T
≤ L(σr̂)

Bnew(σr̂) otherwise
(C.2)

Dẗ(σr̂) =


D(σr̂) if ẗend + ∆

W̃T
≤ L(σr̂)

D(σr̂)−min{ẗend + ∆
W̃T
− E(σr̂),WT (σr̂)} otherwise

(C.3)

Appendix D. Supplementary material

Supplementary material associated with this article can be found in the online version935

(Mendeley data).
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Appendix E. Experimental design

Appendix E.1. Single-factor experiment

Five replicates of one random treatment from the 2-factor experiment are run with five

possible time limits: 900, 1200, 1500, 1800, and 7200 s. Fig. E.5 presents a box plot with940

the results of each possible time limit in terms of the average gap with the CPLEX objective

function. The x in Fig. E.5 represents the mean of the five replicates.
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Figure E.5: Box plot with the results of the single-factor experiment

Shapiro-Wilk, Levene, and Durbin-Watson tests are applied for a significance level of 5%

on the residuals of the data to verify their normality, homoscedasticity, and independence,

respectively. P-values of 0.096, 0.52, and 0.21 are obtained in the tests, respectively. Then,945

the average gaps are normally distributed, with homogeneous variance, and independent.

The data are subjected to the ANOVA test for a significance level of 5%, which reported

a p-value equals to 0.009. Therefore, it is concluded that at least one of the means of the

possible time limits is different. Then, Tukey’s test is applied for a significance level of 5% to

find significant differences between the means of the possible time limits. Only a significant950

difference is found in the mean of the 7200-s and 900-s time limits with a p-value equals to

0.016. Therefore, the time limit for the 2-factor factorial experiment is set to 1200 s.

Appendix E.2. P-values of the 2-factor experiment
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