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The paper deals with prognosis estimation for industrial systems in a series configura-
tion, modeled by superimposed renewal processes (SRP), when the cause of failures is not
available. In the presence of missing information, an SRP is commonly approximated by
a Poisson process or a virtual age model. The performance of the approximations was
assessed in the ideal configuration where all parameters of the models are known. The
current article adopts a practitioner’s perspective by assuming that the parameters of
the models are unknown and must be estimated. In addition to inference procedures, the
assessment of the prognosis indicators, such as the remaining useful life, is discussed.
Finally, we investigate a fleet of infrastructure components of the Norwegian railway
network operated by Bane NOR.

Keywords: applied probability, reliability theory, simulation, stochastic modelling

1. INTRODUCTION

In this paper, the superposition of independent renewal processes (SRP) is discussed in
the context of reliability engineering [31,35,36] where it can be referred to as partial repair
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2 X. Liu et al.

model [3,2]. A maintainable system under partial repair is a series system such that after a
failure, the failed component is automatically identified and instantaneously replaced by a
new one of the same technology (as good as new). The non-failed components are assumed
to be minimally maintained (as bad as old) which implies that their respective failure rate is
the same before and after the maintenance activity. At a system level, this partial repair is
also characterized as imperfect repair [8,32]. The components are assumed to be statistically
independent and can represent either physical units or virtual ones [24] associated with an
independent failure mode.

Maintenance records are often incomplete, and the information on the identity of the
failed components is not necessarily available. Consequently, the observations are commonly
reduced to a pooled output [7], consisting of the failure times at a system level. Assessing
the health of the system such as its overall aging and the maintenance efficiency usually
starts off by estimating model parameters. When the number of components is known and
all components are identical, inference procedures have been carried out by Zhang et al.
[36] directly from an SRP using computational partitioning. Nevertheless, when the number
of pooled events is limited, or when the components are different from each other, direct
inference methods are hard to implement, which inspires diverse approximation approaches.

Alternately, an SRP is approximated by a homogeneous Poisson process [27], a renewal
process [34], an imperfect maintenance model [21,35] or a copula model [22]. The benefits
of preferring imperfect maintenance models or copulas to a renewal process, when the
parameters of the approximated SRP are known, have been highlighted in [22]: these models
account for the correlation between consecutive inter-occurrence times. In this paper, we
shall evaluate the above-mentioned approximation approaches when the model parameters
are estimated from the pooled output.

The contribution of the article is multi-fold. First, an innovative procedure to evaluate
the performance of five different approximation approaches is presented based on density
level sets. Second, the estimation procedures implemented for each approximating model of
an SRP are derived and compared. The third contribution consists of taking into account
periodic preventive maintenance within the pooled outputs. Condition-based maintenance
requires more complex modeling and is beyond the scope of the paper. Finally, we emphasize
the selection of particular approximation methods along with specific inference procedures
on a real data set from Norwegian railway signaling systems.

The rest of the paper is structured as follows. In Section 2, the SRP notations are intro-
duced before presenting a new performance-measuring procedure based on level-set. Section
3 addresses the inference procedures and evaluates the performance of the approximations.
An application to real data is proposed in Section 4. Most systems in the Norwegian railway
signaling network operated by Bane NOR can be assumed to be series systems under partial
repair with both corrective and potential preventive maintenances. The benefits of the afore-
mentioned approximations are highlighted through the modeling and estimation procedures
based on the pooled output of signaling systems and relevant prognosis indicators.

2. APPROXIMATION OF A SRP

2.1. Notation

Consider a maintainable series system under partial repair. A corrective maintenance (CM)
is carried out immediately after a failure and consists of replacing the failed component
while maintaining the others minimally. Periodic preventive maintenance (PM) is performed
at ∆, 2∆, 3∆ . . ., and ∆ = ∞ if no PM is implemented. It is also assumed that at t = 0,
the system is in its stationary regime, that is, has been functioning for a long while. The
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PERFORMANCE OF PROGNOSIS INDICATORS FOR SUPERIMPOSED RENEWAL PROCESSES 3

Figure 1. Illustrative trajectory of a CM process for a dwarf signal.

identity of the components causing the failures is assumed to be unknown. Observations
can be modeled by a colored point process: failure times are denoted by {Ti}i≥1, with
inter-arrival times {Xi}i≥1. The indicator of the maintenance types are {δi}i≥1 with δi = 0
for CM and δi = 1 for PM. Figure 1 presents an hypothetical trajectory of a maintenance
process for a dwarf signal, wherein the lamps are in series configuration: the four lights
function independently and are subject only to CM, and no identification regarding the
renewed bulbs is available. It is, therefore, reasonable to model the pooled failure times
{Ti}i≥1 by an SRP.

2.2. Reminder of the Current SRP Approximations

SRP are usually approximated by a standard renewal process [33,34]. In a first study [22],
we have highlighted the benefits of using virtual ages or copulas to approximate an SRP:

• A virtual age model [18] is an imperfect maintenance model which assumes that after
maintenance at time Ti, the system behaves as a new and unmaintained one of age
Ai. The virtual age model that approximates plausibly an SRP when components
are homogeneous is the arithmetic reduction of age with infinite memory, ARA∞

[11,25], which assumes that the virtual age of the system after a maintenance is
reduced proportionally:

Ai = (1 − ρ) (Ai−1 + Xi) , ρ ∈ [0, 1]. (1)

ARA∞ is a stable process [23] in the sense that its intervals converge in distribu-
tion. Like in an SRP, the failures in an ARA∞ model arrive at a constant rate,
asymptotically.

• A copula model [16,30] is a convenient approach to characterize a joint distribution
by defining the marginal distributions and a copula function. The copula associated
with the observation of two consecutive inter-arrival times of an SRP in its steady
regime (Xi, Xi+1) has been employed to approximate an SRP. This modeling is
automatically more efficient than a renewal process as it characterize the distribution
of Xi+1 given Xi. This model is denoted by inter-arrival-time copula of memory 1
(IAT1).

When the parameters of the approximated SRP are known, ARA∞ and IAT1 out-
perform the renewal process approximation for giving more accurate estimation of the
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remaining useful life (RUL) [22], with the ARA∞ being marginally better than IAT1. In
addition, both ARA∞ and IAT1 capture the negative dependency between two consecu-
tive inter-arrival times when all the components have an increasing failure rate (IFR) [22].
The correspondence between SRP and ARA∞ can be emphasized further using one of the
strongest measures of negative dependence called reverse regular of order 2 (RR2) [1]. The
proof is presented in Appendix A.

Proposition 2. 1: Two successive intervals in an SRP, formed by components with increas-
ing failure rates, are RR2-dependent. Similarly, two successive inter-arrival times of an
ARA∞ process with increasing baseline failure intensity are RR2-dependent.

2.3. A Level-Set Procedure to Measure the Performance of the Models

Let us consider a risk α and a trajectory of SRP observations where the parameters of the
model and the age of each component are available. At time Ti, it is straightforward to
compute the confidence interval of smallest amplitude I = [Ti + a, Ti + b] with confidence
level 100(1 − α)% from the actual model. Next, an interval J = [Ti + a′, Ti + a′ + b − a] of
amplitude b − a can be determined which maximizes the confidence set of the approximating
model. The probability that Ti+1 belongs to I is naturally 1 − α, and the probability that
Ti+1 belongs to J is automatically less than 1 − α. The quality of the approximating model
lies in how the latter probability is close to 1 − α. This probability pα can be estimated
empirically from a unique and sufficiently long trajectory by assessing the proportion of
times when the prediction has been correct. Furthermore, the overall performance of the

approximated model can be synthesized by its Gini index G = 2
∫ 1

0
(1 − α − pα)dα. If G = 0,

the approximating model is indistinguishable from the actual model, and G = 1 is the
worst-case scenario where the approximating model is totally inconsistent with SRP.

Five approximated models are considered, and their parameters are assumed to be
known in this section only:

HPP. The homogeneous Poisson process (HPP) with a rate is equal to the asymptotic
rate of the SRP. This model is the simplest SRP approximation and is valid when
the number of sources in the SRP tends to infinity [12].

SIM. The stationary interval method (SIM; [33]) corresponds to a renewal process with
a generic distribution equal to the asymptotic distribution of the SRP.

IAT1. Inter-arrival-time copula of memory 1, as reminded in Section 2.2.

ARA∞. ARA∞ process, as reminded in Section 2.2.

BP. The Brown–Proschan model (BP; [4]). Belonging to imperfect maintenance mod-
els, BP assumes that maintenance is either perfect with probability p or imperfect
with probability 1 − p. Like an SRP, BP has a stationary regime [10]. It is conceiv-
able that SRP with heterogeneous components are relatively better approximated
by BP, wherein the maintenance is heterogeneous. The parameters chosen for the
BP model are the shape and scale parameters of the initial Weibull failure rate
and the parameter p which has the best goodness-of-fit (GOF) with the initial
SRP.

Five SRP configurations are studied as follows:

I. A system formed of three homogeneous components with a low wear-out rate. The
failure rate of each component follows a Weibull distribution W(η, β) with a shape
parameter β = 1.5 and a scale parameter η = 1.
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Figure 2. Level sets in the fast aging rate cases: homogeneous components (configuration
II).

II. A system formed of three homogeneous components with a fast wear-out rate where
each component follows a Weibull distribution W(η = 1, β = 3.5).

III. A system formed of three heterogeneous components with a low wear-out rate.
The failure rate of each component follows a Weibull distribution with β = 1.5 and
respective scale parameters 1, 2 and 10.

IV. A system formed of three heterogeneous components with a fast wear-out rate.
The failure rate of each component follows a Weibull distribution with β = 3.5 and
respective scale parameters 1, 2 and 10.

V. A system formed of six relatively homogeneous components with a moderate wear-
out rate. The components have a Weibull lifetime distributions: three are W(η =
1, β = 2.5) and three are W(η = 2, β = 2.5).

For each model and each configuration, the level set pα is computed and compared to
the initial confidence level 100(1 − α)% through the identity line. Figures 2 and 3 present
the results with a fast wear-out for the configurations II and IV, respectively. The figures
for other configurations are not presented as the plots are almost indistinguishable from the
identity line. In addition, each Gini coefficient is provided in Table 1.

The analysis of the level sets and Gini index completes and refines the initial analysis
from [22]:

• For each model, the Gini index is relatively low, between 0.002 and 0.2, which
indicates that each model provides an efficient approximation of an SRP. The Gini
index are particularly low when the aging of the components are moderate or when
the number of components is important.

The model under ARA∞ assumption almost consistently provides the best index,
regardless of the heterogeneity of the components and the aging rates of the
components.
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Figure 3. Level sets in the fast aging rate cases: heterogeneous components (configuration
IV).

Table 1. Gini coefficients (10−3)

HPP SIM IAT1 ARA∞ BP

I 9.1 8.9 8.5 8.2 8.6
II 119.2 119.5 137.0 89.4 144.0
III 6.5 7.2 6.2 3.0 5.9
IV 222.7 230.1 116.1 133.8 204.5
V 2.8 4.3 4.3 3.0 5.6

• The IAT1 and BP models present satisfactory but more contrasting results. The
BP approximation is comparatively much less efficient when the components are
aging fast (configurations II and IV). The IAT1 approximation outperforms the
other models in the heterogeneous case with fast aging rates (configuration IV) but
provides, otherwise, similar results to the HPP approximations.

• The two static models HPP and SIM presents decent and very similar results. When
the aging rate is moderate, their efficiency has the same order of magnitude as
the other adaptive models, but they are clearly outperformed by ARA∞ when the
wear-out rate is fast.

• All the models are extremely efficient when the number of components is large,
particularly the HPP which is the theoretical limiting case when the number of
components tends to infinity [12].

3. PERFORMANCE OF THE APPROXIMATIONS WITH UNKNOWN PARAME-
TERS

The parameters of the models are commonly not known and need to be estimated first
from a relatively small data set. The performance of the inference procedures might put the
previous analysis into perspective.
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3.1. Configurations

The performances of the SRP approximations are discussed for the five models: HPP, SIM,
IAT1, ARA∞ and BP. The number of observations is assumed to be larger than 10 without
exceeding 200, and the system is assumed to be in its stationary regime at the beginning of
the observation. Three configurations previously studied in Section 2.3 are considered, two
with CM only and one with CM and periodic PM:

(A) The configuration II with three homogeneous components and a relatively fast wear-
out (W(η = 1, β = 3.5)) and CM only.

(B) The configuration IV with three heterogeneous components and a relatively fast
wear-out (W(ηi = {1, 2, 10}, β = 3.5)) and CM only.

(C) The configuration II with three homogeneous components and a relatively fast wear-
out with both CM and PM. The periodicity of the preventive maintenance policy
is ∆ = 0.425. The periodicity has been chosen so that the proportion of PM in the
actual SRP model is 70%. The maintenance efficiency is assumed to be imperfect
but of great quality on each component. Therefore, it has been opted to assume that
PM efficiencies are ARA∞ with an improvement factor ρ = 0.7. The virtual age of
each component after a preventive maintenance action is 30% of its virtual age just
before the PM.

These three configurations are not exhaustive but are quite representative of the behav-
ior of an SRP with or without homogeneity. The PM policy in (C), which corresponds to
the case where imperfect PM are carried out simultaneously on all the components, is
investigated because it is easy to implement and widely applied in practice.

3.2. Measures of Performance

The objective is to quantify the efficiency of the approximation approaches when the num-
ber of observations is limited. Two predictors, the mean lifetime E[X∞] and the Pearson’s
correlation coefficient Corr between two successive inter-failure times, have been considered.
They are assumed to be known for the SRP models, either computed theoretically consider-
ing CM only or obtained based on Monte Carlo simulations at any given precision when both
CM and periodic PM are implemented. Given a sample size N of an SRP configuration, the
mean squared error (MSE) of the two predictors E[X∞] and Corr are derived empirically
for the five approximated models based on 5,000 replicates of histories. A general structure
of the simulation procedure is presented in Algorithm 1.

3.3. Inference Procedures

Additional information is provided on the estimation methods for the five models corre-
sponding to lines 7 and 8 in Algorithm 1. In the case of no PM, the observations consist of
the inter-failure times {Xi}i=1...N or equivalently the maintenance times {Ti}i=1...N . In the
case of both PM and CM, the observations additionally comprise the maintenance types
{δi}i=1...N .

3.3.1. Homogeneous Poisson process The failure rate λ in an HPP can be assessed by
MLE:

λ̂ =
n −

∑n

i=1 δi

Tn

. (2)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964820000327
https://www.cambridge.org/core


8 X. Liu et al.

Algorithm 1 Empirical MSE computation
1: Select a SRP configuration

2: Compute the predictors e=E[X∞] and r=Corr
3: for N ∈ {10, 20, 50, 100, 200} //N=length of a trajectory
4: for k=1 : 5000 //kth sample
5: Simulate a SRP trajectory Hist of length N
6: for i=1 : 5 //ith model (HPP, SIM, IAT1, ARA∞, BP)
7: Assess the parameters of the ith model from Hist

8: Estimate the predictors by êi(k) and r̂i(k)
9: end for

10: end for
11: for i=1 : 5
12: Compute the empirical MSE of each measure for a trajectory of

length N and the approximated model i:

13: ̂MSEE(i,N)=1/5000
∑5000

k=1 (êi(k) − e)2

14: ̂MSECorr(i,N)=1/5000
∑5000

k=1 (r̂i(k) − r)2

15: end for
16: end for

The first predictor, E[X∞], equals 1/λ̂. The second predictor, Corr, is 0 since the
intervals are independent in an HPP.

3.3.2. Stationary interval method The SIM method approximates an SRP by a renewal
process whose interval is distributed identically as X∞. This distribution can be roughly
estimated by the empirical survival function in case of CM only or by the Kaplan–Meier
estimator function in the presence of CM and PM.

To evaluate the accuracy of SIM approximation, E[X∞] is computed by numerically
integrating a piecewise-linear version of the estimated survival function, and the correlation
is 0 given that successive inter-arrival times are independent for a renewal process. Within
the course of the inference procedures, additional non-parametric estimations of the reli-
ability function have been tested using different kernels and several bandwidths, but the
piecewise-linear version of the Kaplan–Meier has been opted as it consistently provided the
best results.

In the presence of PM, the Kaplan–Meier estimator is not defined beyond the largest
observation if the longest interval is censored, which makes it impossible to compute the
expected value. We adopt therefore the common approach, that is change the largest
observation to a death time if it is censored [13].

3.3.3. Inter-arrival-time copula of memory 1 The IAT1 is a refined version of SIM:
it takes into account additionally the correlation between two successive intervals in the
stationary regime by defining a copula. A semi-parametric approach is carried out, wherein
the marginal survival functions is assessed in the same way as the SIM method using a
Kaplan–Meier estimator, and the copula function is estimated from the Frank copula family,
characterized by a single parameter θ as shown in Eq. (3). Both negative dependence (θ < 0),
positive dependence (θ > 0) and independence (θ = 0) can be modeled within the Frank
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family.

Cθ(u, v) = −
1

θ
log

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
. (3)

The choice of the Frank family is explained as follows. The configurations of the SRP
defined in Section 2.3 have been studied. After generating an SRP sequence of length N =
500, 000, several copula families (Gaussian, t, Frank, Gumbel, Clayton and independent
copula) are then fitted to the data. It has been found that there exists a certain convergence
between the families:

• The degree of freedom ν in the t-copula is systematically estimated to be extremely
large, corresponding to the Gaussian copula. Therefore, only the Gaussian copula is
maintained in the comparative study

• The parameter of the Gumbel family, θ̂Gumbel is evaluated to be 1 and that of the
Clayton family, θ̂Clayton is estimated to be 0+, which corresponds in both cases to the
independent copula. As the Gumbel and Clayton copulas do not take into account
the negative dependency, both models are not kept for the comparative study.

Since the correlation between the intervals is of interest to the current paper, the inde-
pendent copula, as well as the Gumbel and Calyton, are excluded from consideration.
Gaussian and Frank copula are now the two candidates. In the following, we investigate
whether they differ in estimating the tail dependence.

The concept of tail dependence describes the amount of dependence in the lower-left-
quadrant tail or the upper-right-quadrant tail of a bivariate distribution. Let F1 and F2 be
the marginal distributions of variables X1 and X2, respectively. A common measure of tail
dependence is given by the so-called upper/lower tail dependence function [14]:

λL(v) = P (F1(X1) ≤ v|F2(X2) ≤ v) =
C(v, v)

v
, (4)

λU(v) = P (F1(X1) ≥ v|F2(X2) ≥ v) =
1 − 2v + C(v, v)

1 − v
. (5)

An example of the tail dependence functions λL(v), v ∈ [0, 0.5] and λU(v), v ∈ [0.5, 1] are
shown, respectively, in Figures 4 and 5 for the SRP configuration II. The tail dependence
of the intervals in SRP is estimated empirically [5]. It is observed that the Frank (triangle
marker) and the Gaussian copulas (circle marker) are both close to the empirical SRP (cross
marker). The independent copula is clearly inadequate.

The GOF tests [15] are then used to assess to what extent the copula in an SRP
resembles a Frank copula or a Gaussian copula. The copula under null hypothesis is Frank
or Gaussian. Let α be the level of significance. With infinite data, an SRP copula can never
be approximated by a Frank/Gaussian copula, meaning that the null hypothesis will be 100
percent rejected (p-value less or equal to α). When the amount of observations are limited,
however, the SRP copula can be estimated very satisfyingly by a Frank/Gaussian copula.

Let α = 0.05. An SRP sequence of length N = 20 is generated 1, 000 times, and the
corresponding copula (which describes the dependence structure between two successive
intervals in an SRP) is tested against Frank/Gaussian, using the Cramer–von Mises statistics
[15]. The total proportion of an SRP copula being classified as Frank/Gaussian, is recorded
in Table 2, column “GOF Frank” and “GOF Gaussian.” It is found that the proportion of
SRP copula, which “look like” a Gaussian copula, is slightly higher than that for a Frank
copula.
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10 X. Liu et al.

Figure 4. Lower tail dependence function.

Figure 5. Upper tail dependence function.

Table 2. Estimated copula parameters and results of test of GOF

SRP θ in Frank copula ρ in Gaussian copula GOF Frank GOF Gaussian

I −0.7372 −0.1234 0.949 0.966
II −2.3652 −0.3634 0.926 0.952
III −0.6137 −0.1046 0.955 0.963
IV −2.0441 −0.3151 0.926 0.946

To sum up, both Frank and Gaussian copulas have similar performance in estimating
the tail dependence. In terms of the GOF test, Gaussian is slightly better than Frank.
Nevertheless, Frank copula admits an explicit formula which is not possible for Gaussian.
This facilitates greatly the inference procedure when missing/censored data is involved, as
shown later in the case studies.
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Once the marginal functions have been characterized, θ can be estimated by maximum
likelihood estimation, and the two predictors can be assessed. In the presence of both CM
and PM, the estimation procedure is more complex as it potentially involves doubly censored
bivariate data. This issue has been specifically addressed in [29].

3.3.4. Arithmetic reduction of age with infinite memory Using imperfect maintenance
models such as the ARA∞ virtual age assumption is an alternate possibility to approximate
an SRP. Inference procedures have already been implemented for virtual age models when
the system, under CM only, is assumed to be in its stationary regime at the beginning of
the observations [9] for any given initial intensity. In the following, it is assumed that the
initial intensity follows a Weibull distribution, which is a common assumption for aging
systems in reliability engineering. For the configurations A and B, three parameters need
to be estimated: η and β, respectively, the scale and shape parameter of the initial Weibull
intensity and ρ0 ∈]0, 1], which characterizes the maintenance efficiency. In the presence of
CM and PM such as in configuration C, it is also assumed that the PM efficiency follows
an ARA∞ assumption with a parameter ρ1, with traditionally ρ1 > ρ0. The parameters
of the models can be estimated by maximum likelihood estimation in a similar way as in
[9]. Let us denote λ(t) = (β/η)(t/η)β−1 the initial Weibull intensity and Λ(t) = (t/η)β the
cumulative intensity. First, the likelihood function La0

associated with the observation of
the n first maintenance times and types (X, δ)1...n and an initial age a0 can be expressed
as in Eq. (6). The effective ages in Eq. (6) can be obtained by induction given a0 and using
ai = (1 − ρδi

)(ai−1 + xi).

La0
((X, δ)1...n) =

n∏

i=1

(λ (ai−1 + xi))
1−δi × exp

(
n∑

i=1

−Λ (ai−1 + xi) + Λ (ai−1)

)
. (6)

Second, as the SRP is assumed to be in its stationary regime at the beginning of the
observations, the same assumption is proposed for its approximating model. It implies that
a0 is the realization of the limiting age distribution AARA

∞ with pdf fARA
A∞ . The resulting

likelihood function L associated with the observation of the n first maintenance times and
types (X, δ)1...n and an initial mixing distribution AARA

∞ is presented in Eq. (7). The mixing
distribution AARA

∞ has been characterized theoretically in Nguyen et al. [25] for CM only
and can be derived empirically from intensive simulations considering CM and PM.

L((X, δ)1...n) =

∫ ∞

0

La((X, δ)1...n)fARA
A∞

(a)da. (7)

Finally, once the parameters of the model estimated, E[X∞] and Corr can be computed
numerically, as shown in Nguyen et al. [25] and Liu et al. [22], respectively.

3.3.5. Brown–Proschan model The BP virtual age assumption is another candidate to
approximate an SRP as both converge to a stationary regime. Consider an initial Weibull
intensity. Estimation methods have been presented in Lim [20], Doyen [10] and specifically
in the case of initial steady-state in Dijoux et al. [9] for CM only. With only CM, the
parameters to estimate are the scale and shape parameters of the Weibull distribution
and the CM efficiency p0 ∈]0, 1]. With both CM and PM, the PM efficiency is assumed
to follow a BP assumption with a parameter p1. The likelihood function associated with
the observation of n maintenance times and types can be derived in three steps. First, the
likelihood function LNHPP

a0
associated with the observation of a system with initial age a0
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under minimal repair are reminded in Eq. (8) using the classic results of non-homogeneous
Poisson processes (NHPP) [28].

LNHPP
a0

((X, δ)1...n) =

n∏

i=1

(λ (a0 + ti))
1−δi × exp (−Λ (a0 + tn) + Λ (a0)) . (8)

Second, the likelihood function LBP
a0

associated with the observation of a system with
initial age a0 and BP efficiencies are derived recursively in Eq. (9) using a similar approach
as in [9].

LBP
a0

((X, δ)1...n) =

[
n−1∏

k=1

(1 − pδk
)

]
× LNHPP

a0
((X, δ)1...n

+

n−1∑

i=1

LBP
a0

((X, δ)1...i)pδi

[
n−1∏

k=i+1

(1 − pδk
)

]
× LNHPP

0 ((X, δ)i+1...n). (9)

Finally, the initial age a0 is traditionally not known and can be assumed to be the real-
ization of a random variable ABP

∞ , limiting distribution of the effective age in the stationary
regime. The resulting likelihood function LBP associated with the observation of the n first
maintenance times and types (X, δ)1...n and an initial mixing distribution ABP

∞ is presented
in Eq. (10).

LBP((X, δ)1...n) =

∫ ∞

0

LBP
a ((X, δ)1...n)fABP

∞

(a)da. (10)

The distribution of ABP
∞ has been expressed theoretically in [10] with CM only. With

CM and PM, the pdf of ABP
∞ can be obtained numerically. Once the parameters of the

models are estimated, the predictors can be obtained from a plugged-in version of their
theoretical expressions or numerically.

3.4. Results

The MSE of the two predictors E[X∞] and Corr are, respectively, plotted in Figures 6
and 7 for configuration A, Figures 8 and 9 for configuration B and Figures 10 and 11 for
configuration C.

When no PM is involved (configurations A and B), HPP has the smallest error in the
estimation of E[X∞] (see Figures 6 and 8). Virtual age models (ARA∞ and BP) perform
better than IAT1 and SIM. With more than 50 data, the differences between the MSEs
given by the tested models are less important.

As for the error of the predictor Corr (see Figures 7 and 9), HPP and SIM have the
largest error since their intervals are independent. BP is an auto-correlated process with a
weak dependence between intervals, but its estimation of correlation is far from accurate.
IAT1 has the smallest MSE when the SRP are homogeneous, which may support the practice
of using a Frank copula to approximate the dependence structure in such an SRP. If the
SRP differ strongly from each other as in configuration B, ARA∞ outperforms other models
in estimating the correlation between adjacent intervals.

When periodic PM are implemented (Figures 10 and 11), the SIM and IAT1 have a
considerable error in E[X∞]. HPP performs the best when estimating E[X∞], but with
more data, the advantage of HPP over BP/ARA∞ is less significant. As for the correlation
estimator, the performance of the tested models depend on the data length: with less than
50 data, HPP outperforms the others; otherwise, BP and ARA∞ are the best. It should
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Figure 6. Configuration A: MSE of E[X∞].

Figure 7. Configuration A: MSE of Corr.

be emphasized that the implementation of periodic PM results in a non-null correlation in
HPP/SIM sequences.

4. A BANE NOR CASE STUDY

4.1. General Overview and Data Presentation

Signaling is essentially a sophisticated traffic light system for the railway. The complexities
of moving trains around such a large network, keeping them safely apart, and allowing
for their long stopping distances, means that the signaling system is very complicated and
comprises a great many parts.
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Figure 8. Configuration B: MSE of E[X∞].

Figure 9. Configuration B: MSE of Corr.

The signals themselves are the line-side pieces of equipment that tell train drivers
when it is safe to proceed and what route their train will take. A light signal comprises
(1) signal head with light sources, background screen and shadow screens; (2) mast with
platform/ladder when needed and (3) devices for controlling the signal with interface to
interlocking equipment.

In this section, we focus on the sub-system of the light sources in a signal head, formed
by two to five lights of different colors (red, green, yellow and white). One lamp can be
either LED or incandescent. A priori, there is no manifest heterogeneity in the lights of the
same type, but the maintenance strategy depends on the importance of the lamp: since the
failure of a red light which gives the signal “stop” is often more severe than a failure of a
green one, preventive maintenances have been performed only on the signals that consists of
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Figure 10. Configuration C: MSE of E[X∞].

Figure 11. Configuration C: MSE of Corr.

red light bulbs. Both corrective and preventive maintenances consist in replacing the light
bulb, burned or still working, by a new one. Some preventive maintenances, like periodic
inspection or cleaning, are planned for other parts of the signal (cables, covering glass, etc.),
and are not considered here.

However, the information regarding the maintenance actions is incomplete. When a
burned light bulb is replaced, its position in the system is usually not recorded. Thus, the
failure history of an individual light bulb is not available and the failures of the system must
be treated as a whole. An SRP can, therefore, be used to describe the successive failures of
the light sources in a signal.

In the following, three case studies are presented where the proposed five approximation
models are fitted to the failures times of dwarf signals. The first study is on a single asset,
showing how to use these models to compute the expectation of RUL and evaluating the
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Table 3. A summary of the case studies

Object Inference Censoring No. asset

Case study 1 Asset 012110 Individual No 1

Case study 2 Signals having 7+ failures Grouped Yes 16
Case study 3 All dwarf signals Grouped Yes 1608

Table 4. Inter-failure times of asset 012110

133 10 283 763 19 378 203 920

Table 5. Parameters of the models fitted to asset 012110

Parameters A0 E[X] Expected value of 9th lifetime

ARA∞ α = 3.34 × 10−10

β = 2.9737 1717.1 321.38 239.83
ρ = 0.1577

BP α = 3.27 × 10−10

β = 3.3571 460.77 321.91 293.36
p = 0.4113

HPP 339.08 0 339.08 339.08
IAT1 θ = −1.32 0 281.52 210.49
SIM 0 281.52 281.52

virtual age; the second one focuses on signals having numerous failure records (more than
7), with the assumption that despite the geographical heterogeneity, these signals could be
described by models of the same parameters; the third one studies all the dwarf signals
composed by four incandescent light without redundancy (single filament lamp).

The maintenance records provided by Bane NOR contains not only failure histories
(CM) but also some invalid PM plans. The earliest date that appeared in a PM record is
considered as the beginning of the individual observation window. For the first case studies,
the observations start from the first recorded CM; in the second and third case study, the
beginning of observation is the earliest date of the planned PM, determined individually
for each asset; and the end of observation is the last date of CM, which is March 28, 2019.
Thus, for each asset, there is at least one right-censored data (Table 3).

4.2. Case Study 1: Asset 012110

The investigated signal is located in Dovre Line, a main national connection between Eastern
Norway and Trøndelag and further north for passenger and freight traffic. The consecutive
lifetimes are shown in Table 4.

Parameters of fitted models and some reliability indicators are gathered in Table 5. The
second column A0 represents the expected virtual age at the beginning of the observation
and needs to be calculated only for imperfect maintenance models, namely ARA∞ and BP.
E[X] is the unconditional expected lifetime in each model. For the models which are not
renewal processes, the expected value of the 9th lifetime is smaller than E[X] since the last
observed lifetime is relatively large.

The calculation of conditional E[X] under ARA∞ and BP is recalled here. In ARA∞,
A0 is derived along with the parameters, then the consecutive effective virtual ages are
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Figure 12. Virtual ages in the approximating ARA∞ model.

calculated iteratively by Eq. (1) and plotted in Figure 12. Denote by Aend the virtual age
after last observation: the conditional reliability of the next interval is RARA∞

(t|Aend) =

exp(−α(t + Aend)β + αAβ
end).

As for BP, one should first retrieve the maintenance effects, which is described in [20].
The repair effect of the 1st–7th maintenance actions can be represented by a binary vector
B = [0, 0, 1, 0, 1, 0, 1], where 0 signifies a minimal repair and 1 a perfect one. Remark that
the maintenance effect after the last CM is non-identifiable in the absence of further data.
A0 is calculated [10] and the consecutive virtual ages are plotted in Figure 13. After the
8th repair, the system is assumed to be as good as new. The repair after the last observed
lifetime has the probability p0 to be perfect and 1 − p0 to be minimal. Thus, the reliability
of the 9th interval can be expressed as RBP(t|B) = p · exp(−αtβ) + (1 − p) · exp(−α(t +

Xend)β + αXβ
end), where Xend is the last observed lifetime.

It can be observed from Figures 12 and 13 that the asset seems to be older under
ARA∞ assumption than it is under the BP model. This is because (1) a low maintenance
efficiency was estimated for ARA∞, which limits the reduction of age at each repair and
(2) three maintenances are estimated to be perfect in the BP model, making the asset
relatively young. Consequently, the remaining lifetime predicted by ARA∞ is smaller than
that evaluated by BP (Figure 14).

4.3. Case Study 2: the Most Frequently Failed Assets

We investigate the inference and the hazard rate in the 16 most frequently failed assets. One
may assume that there exist some clusters of assets in which all members are considered
similar and share the same parameters of a certain model. The clustering can be based either
on physical/geometrical features, that is, assets located at the same station and composed
by lamps of the same type, or on lifetimes features, that is, a bunch of signals whose MTBF
are significantly different from the others. The inference procedure for clustered assets is to
maximize the sum of the log-likelihood function of all group members.
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Figure 13. Virtual ages in the approximating BP model.

Figure 14. Survival functions of the inter-failure times of asset 012110.

The model parameters and reliability indicators are gathered in Table 6, and the uncon-
ditional survival functions are plotted in Figure 15. It can be observed that the exponential
curve fits well the Kaplan–Meier estimate, signifying a weak dependence between inter-
vals. The parameter of IAT1 indicates a weak positive dependence, whereas ARA∞ and BP
suggest an increasing failure rate.
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Figure 15. Survival function of the inter-failure times derived from the 16 most frequently
failed assets.

Table 6. Reliability indicators for the 16 most frequently failed assets

Parameters A0 E[X]

ARA∞ α = 2.16 × 10−12

β = 3.5363 1706.1 502.97
ρ = 0.2277

BP α = 2.55 × 10−7

β = 2.2417 575.07 509.63
p = 0.4698

HPP 460.27 0 460.27
IAT1 θ = 0.1365 0 440.12
SIM 0 440.12

Table 7. Distribution of the number of recorded CM

No.. failure 0 1 2 3 4 5 6 7 8 9 10 11
No. asset 821 419 178 95 51 17 11 8 2 4 0 2

4.4. Case Study 3: All Dwarf Signals

1,608 assets are investigated, half of which has no CM record. Table 7 gathers the
distribution of number of CM of these assets.

The data set is therefore highly censored. Ignoring the heterogeneity and assume that
the failure histories share the same model parameters, the inference results are gathered in
Table 8.

Since the Kaplan–Meier estimator is not defined beyond the largest observation which
is right-censored, the expected lifetime in the SIM model is calculated by changing the
largest observation to a “death.” The survival functions given by each model are shown in
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Table 8. Parameters and reliability indicators for all 1,608 dwarf signals

Parameters A0 E[X]

ARA∞ α = 0.2619
β = 0.1948 13,448 474,963 (1,300 years)
ρ = 0.9723

BP α = 0.0043
β = 0.5625 0 26195 (72 years)
p = 1.0000

HPP 6227.1 0 6227.1 (17 years)
SIM 0 2576.1 (7 years)

Figure 16. Survival functions derived from the failure times of all dwarf signals.

Figure 16. It can be observed that ARA∞ and BP differ in terms of the tail distribution
(see Figure 17), resulting in a significant difference in the mean lifetime.

The fact that the empirical survival curve crosses its exponential fit once only, and
from below, suggests strongly the possibility that the failure distribution has a decreas-
ing failure rate (DFR) [26]. Both ARA∞ and BP exhibits the DFR via a Weibull shape
parameter smaller than 1, and their unconditional survival function is much closer to the
Kaplan–Meier estimate than the exponential fit. It has been pointed out in [6], however,
that the observed DFR is possibly related to a heterogeneous population. In our case, the
“observed” heterogeneity results directly from some measurable covariates, that is, working
environment (average temperature, humidity and precipitation) and usage (total lighted
time of the lamps), whereas the “unobserved” heterogeneity includes the variation in the
quality or robustness of the lamps. For instance, some of the light bulbs are so robust that
they can survive the fluctuation of voltage that could kill the others. Without external
damage, their lifetime can be up to several decades.
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Figure 17. Tails of the survival function under ARA∞ and BP models.

5. CONCLUSION

This paper introduces five approximating models of an SRP: two imperfect repair mod-
els (ARA∞ and BP), two renewal models (SIM and HPP) and IAT1, constructed by
the Kaplan–Meier estimated marginal distribution and a frank copula which captures the
dependence structure between successive intervals.

The performances of these models are evaluated by investigating the amplitude of errors
of mean interval length and correlations when the above-mentioned approximations are used.
Further, their capabilities in the prognosis of RUL is examined using the level-set approach
and the Gini index. It is hard to say which model is overall the best: the performances
depend on the aging rate as well as the available data amount.

Then, three case studies on signal failure data provided by Bane NOR are conducted
to complete the Monte Carlo simulations. It is observed that there may exist significant
heterogeneity between the signals: a few assets exhibit the IFR, but when all assets are
merged together, the DFR is revealed. The results may justify the current maintenance
plan where no PM is implemented. Several limits of the case studies should be emphasized:
first, the failure history of any individual signal is short; second, the “burn-in” phase of the
lamps has been observed, but this can hardly be modeled by the proposed approximations;
third, the DFR nature is related to the heterogeneity in the population, caused by different
working conditions or distinctive frequency of usage.

Future research involves a thorough study of the heterogeneity, which plays an impor-
tant role in survival analysis, especially the failure rate estimation. On the one hand, our
Monte Carlo simulations suggest that the when heterogeneous virtual age processes (i.e.,
ARA∞ processes that share same aging parameter β and repair effectiveness ρ but differ
in the scale parameter α) are merged, traditional ML estimation will under-estimate the
aging parameter and over-estimate the repair efficiency; on the other hand, the effect of
numerous covariate (environmental conditions, frequency of usage and manufacture) could
be analyzed through, for instance, the Cox proportional hazards model or random effect
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survival models. These studies shall reinforce our understanding about the aging mechanism
of signals and are helpful for the optimization of maintenance planning in signaling system.
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A. PROOF OF PROPOSITION 2.1

A.1 ABOUT RR2 FUNCTION

A pair of real-valued random variables (X1, X2) and its density function f(·, ·) are called reverse
rule of order 2 (RR2) ([19]) if

f(x1, y1)f(x2, y2) ≤ f(x2, y1)f(x1, y2), (A.1)

whenever x1 > x2 and y1 > y2. According to Karlin and Rinott [17], this is equivalent to

f(x, y)
∂2f

∂x∂y
≤

∂f

∂x

∂f

∂y
. (A.2)

A.2 ARA∞

The joint survival of two successive intervals in ARA in the stationary regime, conditioned on the
previous virtual age satisfies Eq. (A.2). The proof is given below:

R(x, y) = P (Xn+1 ≥ y, Xn ≥ x|An−1 = a)

=

∫ ∞

x

P (Xn+1 ≥ y|Xn = u, An−1 = a)fXn|An−1=a(u)du

=

∫ ∞

x

P (Xn+1 ≥ y|An = (1 − ρ)(a + u))

(
−

d

du
P (Xn ≥ u|An−1 = a)

)
du.
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Note Ra(t) = P (Xn ≥ t|An−1 = a) and Rb
u(t) = P (Xn+1 ≥ t|An = (1 − ρ)(a + u)). The

derivative of R(x, y) with respect to x, y and mixed derivative are, respectively:

∂R

∂x
= −Rb

x(y)

(
−

d

dx
Ra(x)

)
,

∂R

∂y
=

∫ ∞

x

d

dy
Rb

u(y)

(
−

d

du
Ra(u)

)
du,

∂2R

∂x∂y
= −

d

dy
Rb

x(y)

(
−

d

dx
Ra(x)

)
.

The derivative of survival function Rb
x(t)is the product of failure rate and survival:

−(d/dy)Rb
x(y) = λb

x(y)Rb
x(y). Therefore, R is RR2 if and only if

∫ ∞

x

Rb
u(y)

(
−

d

du
Ra(u)

)
duλb

x(y) ≤

∫ ∞

x

λb
u(y)Rb

u(y)

(
−

d

du
Ra(u)

)
du.

Using the mean value theorem, the right side is reformulated as

λb
s(y)

∫ ∞

x

Rb
u(y)

(
−

d

du
Ra(u)

)
du, s ∈ [x,∞].

When the system is IFR, λb
x(y) ≤ λb

s(y), leading to A.2.

A.3 SRP

We introduce the following corollary when the SRP are identical:

Corollary A.1: Note R, f the survival function and density function of an interval in the super-

posed RP. Define φ(t) =
∫ ∞
t

R(u)du. Then, two successive intervals in the SRP in stationary regime

is RR2-dependent if and only if

φ(t)f(t) ≤ R(t)2. (A.3)

The proof is straightforward. Inequality (A.3) is easily satisfied in the case IFR since

λ(t)

∫ ∞

t

e−Λ(u)du ≤

∫ ∞

t

λ(u)e−Λ(u)du = R(t).
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