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tariff.
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ICD-LOSI, University of Technology of Troyes

12 rue Marie Curie CS 42060 - 10004 Troyes Cedex - France

Abstract
This study investigates the minimization of total electricity cost in a two-machine permutation flow
shop scheduling problem under the most common electricity tariff, Time-of-Use (ToU). We pro-
vide a new property and solution approach to enhance existing methods in the literature. First, we
provide an overview of the optimal cases for some specific ToU pricing structures that consist of
only two pricing intervals. When the electricity price decreases, Johnson’s rule and dynamic pro-
gramming give rise to an optimal solution. On the other hand, when the electricity price increases,
we provide a condition of optimality for Johnson’s rule. Second, we develop a property based
on Johnson’s rule to determine the optimal sequence for general ToU pricing structures. Third,
we propose a new mixed-integer linear programming. Then, we design an exact method based on
“Logic-based Benders decomposition” to solve the problem. Finally, the numerical tests show that
our proposed approach significantly improves the quality of existing results in the literature.

Keywords: Scheduling; Flow shop; Electricity cost; Time of use tariff.

1. Introduction

In 2015, 195 countries signed the first-ever universal, legally binding global climate deal at the
Paris Climate Conference (COP21). The Paris Agreement aims to reduce Greenhouse Gas Emis-
sions and keep the rise of the global average temperature below 2°C above pre-industrial levels
(COP21 (2016)). This challenge is enormous and requires profound social as well as technological
change. Since electricity is responsible for the prominent source of emissions, accounting for 42%
of the global total in 2016, its efficiency have become the focus of today’s debate (IEA (2019)).
Improving electricity efficiency and reforming energy pricing play essential role in the mitigation
mechanisms of CO2 emissions (Akpan and Akpan (2012)).

Additionally, the industrial sector is responsible for 38% of carbon dioxide emissions (IEA
(2019)). In recent years, there has been a growing interest in power-saving strategies in manufac-
turing. There are different perspectives for improving energy efficiencies such as product-level,
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machine-level and system-level (Dai et al. (2013)). At the product-level, the researchers focus
on product redesign to reduce the intrinsic energy. Meanwhile, the development or redesigning
of more energy-efficient machines is an important approach at the machine-level. Finally, the
system-level considers energy efficiency alongside traditional performance indicators in planning
and scheduling problems. (Drake et al. (2006)) show that production operations consume only
19% of energy in the mass production environment. The energy utilization of idle machines can
be considerable due to the inefficiency of scheduling. With the regulation of electricity usage
via participating demand response (DR) programs, this approach may achieve non-negligible im-
provements without significant investment for manufacturing companies.

Moreover, with the growth of Smart Grid, Demand Side Management (DSM) is essential to
improve energy efficiency and optimize the allocation of power. DSM consists of three concepts:
Demand Response (DR), Energy Efficiency (EE), and Energy Conservation (Dabur et al. (2012)).
From an industrial perspective, the EE and DR of DSM should work significantly to improve elec-
tricity utilization in most manufacturing companies. The EE looks for reducing energy consump-
tion without decreasing productivity. Meanwhile, DR refers to changing customers’ consumption
patterns with regards to electricity price fluctuation over time (Gong et al. (2016)). “Time of use”
is one of the most common pricing policies of DR (Sharma et al. (2015)). This tariff prescribes
variable prices for electricity from one period to other periods. Therefore, it encourages users to
manage their demand for energy consumption to minimize the electricity cost.

As a response to these circumstances, we studied a two-machine flow shop scheduling problem
to minimize total electricity cost under Time-of-use (ToU) tariffs. This work aims to improve the
manufacturing system in economic, ecological and social indicators. The primary contributions of
this paper are threefold:

• First, we develop a property based on Johnson’s rule (Johnson (1954)) to determine the
optimal sequence in each pricing interval.

• Second, we propose a new mixed-integer linear model for a two-machine flow shop schedul-
ing problem to minimize total electricity cost under ToU tariffs.

• Third, we propose an exact method to solve the problem using Logic-based Benders decom-
position (Hooker and Ottosson (2003)) which exploits the property developed and dynamic
programing (Wang et al. (2018b)).

The remainder of this paper is organized as follows. In Section 2, we provide a literature review
regarding the optimizing of energy in the manufacturing industry. In Section 3, we describe the
scheduling problem for a two-machine flow shop under energy consideration. In Section 4, we
remind the reader of two results of literature that are appropriate to our study. In Section 5, we
develop properties based on Johnson’s rule. In Section 6, we formulate the mathematical model.
In Section 7, we describe the Logic-based Benders decomposition to solve the problem. In Section
8, we provide computation experiments and results. Finally, Section 9 concludes by summarizing
the contribution of this research and discusses future extensions.
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2. Literature review

(Subai et al. (2006)) is one of the first studies in scheduling that considered energy consumption
in manufacturing. This work studied a treatment surface line and the associated robot’s moves
scheduling problem. They considered the cost of energy consumption and environmental criteria
with the traditional metric to characterize a nonlinear global cost function. Since (Subai et al.
(2006)), researchers have developed several methods for energy optimization in the production
system. Furthermore, the electricity demand management (EDM) has been developed in response
to this trend. This section reviews the scientific literature relative to two principal axes of EDM
for energy optimization in scheduling problems: EE and DR.

2.1. Energy efficiency
EE investigates the transparency of machine energy utilization. Following this, EE seeks

frameworks to reduce energy consumption without declining the production outputs (Gong et al.
(2016)). In this section, we review methodologies and techniques regarding EE in the literature.

One of the earliest techniques to reduce energy consumption in production scheduling is the
“turn off/turn on” strategy of the machine. In this, non-bottleneck machines consume considerable
energy as they lay idle. This method either leaves the machine idle or turns the machine off for
a predetermined amount of time to reduce energy consumption. (Mouzon et al. (2007)) proposed
several dispatching rules to establish an effective “turn off/turn on” plan based on the prediction of
the arrival jobs to reduce energy utilization efficiency. (Dai et al. (2013)) studied this “turn off/ turn
on” strategy in the flexible flow shop scheduling problem. (May et al. (2015)) investigated a multi-
objective energy-efficient job shop scheduling where they optimized makespan and total electricity
cost. (Liu et al. (2016)) considered this method in a bi-objective optimization problem to minimize
the total non-processing electricity consumption and total weighted tardiness in a job shop. (Che
et al. (2017)) named the “turn off/turn on” strategy as “power-down” mechanism in their study.
They simultaneously minimized total energy consumption and maximum tardiness in a single-
machine scheduling problem. To enhance the quality of the Pareto front, they proposed a basic
ε- constraint method integrated with local search and preprocessing technique. The preprocessing
technique helps divide jobs into several sorted clusters based on job release time and due dates
that significantly reduce the solution space.

Another technique of EE is the speed scaling framework. In some workshops, machines and
appliances can process tasks at different speed levels. They consume more energy while working at
a higher speed and vice versa. (Fang et al. (2013)) conducted one of the first studies on speed scal-
ing in the manufacturing scheduling problem. They studied the problem of permutation flow shop
scheduling with a restriction on peak power consumption. (Fang and Lin (2013)) studied a parallel
machine scheduling where computing speeds of the machine were allowed to be adjusted. (Man-
souri et al. (2016)) considered a two-machine permutation flow shop scheduling problem with
sequence-dependent setup times where machines had variable speed. (Zhang and Chiong (2016))
studied the job shop scheduling problem by minimizing two objectives: total weighted tardiness
and total energy consumption. They considered a machine speed scaling framework where the
processing speed of each machine could be selected from a finite and discrete set. (Zhang et al.
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(2019)) addressed a hybrid flow shop green scheduling problem with variable machine processing
speeds.

In EE, we have other relatively less studied areas apart from the “turn off/turn on” strategy
and speed scaling framework. (Li et al. (2015)) studied the trade-off between the makespan, the
maximum energy consumption and the carbon footprint associated with total energy utilization
in the flow shop scheduling problem. (Mokhtari and Hasani (2017)) studied a flexible job shop
scheduling problem with three objective functions: minimizing total completion time, maximizing
the system’s total availability, and minimizing total energy cost. They considered the total energy
cost for both production and maintenance operations. (Liu et al. (2017)) considered a flow shop
scheduling problem consisting of a series of processing stages and one final quality check stage.
In this study, energy consumption was associated with product quality, processing speed, and
equipment status. (Jiang and Wang (2019)) considered the setup and transportation time in a bi-
objective energy-efficient permutation flow shop scheduling problem. (Chen et al. (2019)) studied
a single machine scheduling problem with machine reliability constraints. In their study, they
modeled the relationship between machine reliability and processing energy consumption. (Ji
et al. (2013)) studied a uniform parallel machines scheduling problems where each machine had
a different processing speed and energy charge. The objective was to determine an assignment
of jobs for the machines such that the total resource consumption, including energy, could be
minimized and the makespan did not exceed a certain level. They demonstrated that the problem
was NP-hard. Subsequently, they developed a heuristic and particle swarm optimization to solve
the problem. (Rager et al. (2015)) presented a scheduling problem in a parallel machine shop by
minimizing the sum of the squared deviations of the current energy consumption with the desired
level. They developed a genetic algorithm and two memetic algorithms to solve the problem.

2.2. Demand response
The growing infrastructure for advanced metering, related communication, and control tech-

nologies is motivating more and more electricity suppliers to implement variable pricing. This
trend helps balance electricity supply and demand to improve the reliability and efficiency of elec-
trical power grids (Braithwait et al. (2007)). DR for energy optimization considers the volatile
electricity price. It encourages the customer to shift their electricity use from peak period to
off-peak period to benefit from a lower price. In this program, we can enumerate three basic elec-
tricity pricing rates: ToU, Critical Peak Pricing (CPP) and Real-Time Pricing (RTP) (Albadi and
El-Saadany (2008)).

In ToU pricing, the rates of electricity price per unit consumption differ in different blocks
of time. Usually, ToU has three types of time blocks: the peak, the semi-peak and the off-peak.
The electricity price during the on-peak period can be many times higher than during off-peak
periods. The difference offers opportunities to users to minimize the electricity cost by assigning
jobs to available cheaper periods. (Fang et al. (2016), Aghelinejad et al. (2018a), Aghelinejad
et al. (2018b), Chen et al. (2018)) and (Chen and Zhang (2019)) studied single machine schedul-
ing problems under variable ToU tariffs. Research on scheduling jobs in the shop environment
under the ToU electricity tariff seems to be relatively sparse. (Ding et al. (2015)) considered an
unrelated parallel machine scheduling problem. (Wang et al. (2018b), Pilerood et al. (2018)) min-
imized total electricity cost on a two-machine permutation flow shop scheduling problem under
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ToU electricity tariffs. (Zheng et al. (2019)) studied a two-stage blocking permutation flow shop
scheduling problem under ToU tariffs and variable speed machines.

CPP is similar to ToU pricing, except there is a period called the critical peak. CPP imposes
a much higher rate during the critical peak period on an event day and offers discounted prices
during others. The maximum number of event days per year is predetermined, but the specific
dates when the events will occur are not. Consequently, it gives consumers opportunities to reduce
their total electric bill by shifting electric use from CPP events to other periods (Wang and Li
(2016)). (Modos et al. (2017)) studied a single machine scheduling problem with the minimization
of total tardiness. In their study, the total energy consumption was limited during the specified
time intervals. There is a substantial penalty fee if the manufacturer can not comply with the
total energy use limits. They considered that uncertainties occurring during the execution of the
schedule might lead to unexpected delays and violations of the energy consumption limits.

RTP is the most complex tariff under DR. RTP reflects the price and availability of electricity in
real-time and helps shape end-use load. It requires advanced technology to communicate the price
change between the utilities and the buyers. Recently, the rise of the smart grid and smart meters
have promoted RTP (Gelazanskas and Gamage (2014)). (Shrouf et al. (2014)) considered a single
machine scheduling problem with minimization of energy consumption costs under variable en-
ergy prices, over one day. (Gong et al. (2017)) investigated a single machine production scheduling
that considered energy and labor costs under RTP. Usually, the labor wage is higher during periods
with lower electricity prices. (Gong et al. (2019)) studied a many objective integrated energy and
labor aware flexible job shop scheduling problem which minimized five objectives: makespan,
total energy cost, total labor cost, maximal workload, and total workload.

With growing attention towards optimizing energy in the manufacturing industry, there are
still many studies that we could not mention in this section. We provide three summary tables that
compare relevant aspects of works on optimizing energy consumption in scheduling problems in
Table (1), Table (2) and Table (3). The tables include studies that we have mentioned and have
not mentioned in the previous paragraphs. The list is not exhaustive, but we hope to provide the
readers an overview of this problem - Table (1) summarizes relevant aspects of works on a single
machine; Table (2) summarizes relevant aspects of works on flow shop; Table (3) summarizes
relevant aspects of works on job shop and parallel machines. Some notations for objective function
are as follows:

∑Ci : Total completion time; ∑Ei : Total energy consumption; T EC: Total electricity costs;
TC: Total costs; ∑wiCi: Total weighted completion time. ∑Ti: Total tardiness; LC: Labor cost.
Cmax: The maximum completion time; ∑wiTi: Total weighted tardiness; TAS: Total availability of
system; CE: Carbon emission; ∑NPEi: Total non-processing energy.

3. Problem description

In this work, we study a two-machine permutation flow shop scheduling problem with elec-
tricity costs. (Wang et al. (2018b)) studied this problem and noted it as a TMPFSEC problem for
short. The electricity price in this work is the ToU tariff scheme. By using Graham’s notation
(Graham et al. (1979)), we can refer the problem as:

F2|bi,di,ToU |T EC
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Table 1: Relevant aspects of works on optimizing energy consumption in scheduling problem on a single machine and
on other shop environment

Reference Objective Energy aspect Shop feature Solution approach
Mouzon et al. (2007) Min ∑Ci “Turn off/Turn on” Single machine Proposed dispatching rules based on the prediction of the arrival jobs.

Min ∑Ei Mixed Integer Linear mathematical model with weighted sum of
objectives

Fang et al. (2016) Min T EC Time-of-use tariffs Single machine Studied two cases: uniform and scalable machine’s speed.
In both cases, non-preemptive version is NP-hard.
In both cases, preemptive version is polynomial.
For uniform speed problem, if all jobs have the same
workload and the electricity prices are pyramidal structure,
then the problem is polynomial.

Aghelinejad et al. (2018b) Min T EC “Turn off/Turn on” Single machine The uniform speed problem is polynomial.
Speed scaling Fixed sequence The speed scalable problem is pseudo-polynomial.
Time-of-use tariffs

Aghelinejad et al. (2018a) Min T EC “Turn off/Turn on” Single machine When job’s sequence is fixed:
Time-of-use tariffs A mixed integer linear mathematical model is proposed.

When job’s sequence is not predetermined:
Mixed integer mathematical model is proposed.
A heuristic and a genetic algorithm are proposed.

Chen et al. (2018) Min ∑wiCi +T EC Time-of-use tariffs Single machine Unweighted version is polynomial.
Preemptive schedule Weighted version is NP-hard.
Unrelated machines A polynomial-time approximation scheme for the weighted

version.
Unrelated machines scheduling version is polynomial.

Chen and Zhang (2019) Min T EC Time-of-use tariffs Single machine The feasible schedule needs to satisfy some scheduling
criteria: Deadline, Bounded lateness, Bounded flow-time.
Established the computational tractability of the problem:
For general ToU tariffs structure, the problem is NP-hard.
Identified some special ToU structures for which efficient
algorithms exist

Modos et al. (2017) Min ∑Ti Energy consumption Single machine Branch and Bound and Logic-based Benders decomposition.
limits Production uncertainties Tabu search heuristic to design robust production schedules.

Shrouf et al. (2014) Min T EC Real time pricing Single machine Assumed that the jobs’ sequence is predetermined.
“Turn off/Turn on” Aimed to determine the launch times for job processing,

machine’s state, etc.
Mixed integer linear mathematical model.
Genetic algorithm

Gong et al. (2017) Min T EC+LC Real time pricing Single machine Labor wage is higher during periods with lower electricity price.
Case study for a blow molding process in a Belgian plastic bottle
manufacturer.
Mixed integer linear mathematical model
Genetic algorithm

Liang et al. (2019) Min TC: Single machine Capacitated production planning and scheduling problem.
Inventory costs. Sequence dependent setup Multi-products, each type of product need a different processing
Change-over costs. technique.
Energy costs. Processing technique indicates different set of processing parameters.

Each processing technique has a different energy consumption rate.
A mixed integer linear programming.
Proposed a fix and optimize heuristic.

Chen et al. (2019) Min ∑Ti +T EC Single machine Modeled the relationship between reliability and processing energy
consumption.
New mathematical model incorporating machine’s reliability.
Ant colony optimization algorithm embedded with modified
Emmons rules.

Che et al. (2017) Min ∑Ti “Turn of/Turn on” Single machine Mixed interger linear mathematical model
Min ∑Ei ε-constraint method with a preprocessing technique that sorts jobs

into different clusters and defines the precedence relationship between
clusters.

Li et al. (2015) Min CE Speed scaling Computer numerical A quantitative model to evaluate cardon emission of CNC system.
control machining system

6



Table 2: Relevant aspects of works on optimizing energy consumption in scheduling problem on flow shop.

Reference Objective Energy aspect Shop feature Solution approach
Dai et al. (2013) Min Cmax “Turn off/Turn on” Flexible flow shop A simulated annealing algorithm in conjunction with genetic algorithm.

Min ∑Ei Speed scaling
Fang et al. (2013) Min Cmax Speed scaling Permutation flow shop Considered cases of discrete speeds and continuous speeds.

Power consumption In the cases of continuous machine’s speeds:
constraints The power consumption is an exponential function of speeds.

Proposed two mixed integer linear programs: the “disjunctive formulation”
and the “assignment and positional formulation”

Liu et al. (2017) Min ∑Ei Speed scaling Flow shop Total energy consumed, ∑Ei, includes : Processing energy (PE),
“Turn off/Turn on” Reprocessing unqualified Reprocessing energy (RPE), Non-processing energy (NPE).

product. At each processing stage, there is a set of machine’s processing speeds.
A higher speed leads to shorter processing time but a higher risk of
product quality degradation. Unqualified product need to be reprocessed.
A three-stage decomposition approach :
1st Determine the processing speed of each job on each machine
2nd Determine jobs starting time to reduce NPE.
3rd Determine machine state to futher reduce NPE.

Jiang and Wang (2018) Min Cmax Speed scaling Flow shop The transportation time is controllable by the speed of the transmission belt.
Min ∑Ei “Turn off/Turn on” Sequence-dependent Min ∑Ei comprising: the consumption in setup, in transportation, in idle
Min ∑Ei setup time. and the consumption in processing.

Controllable transportation Mixed integer linear mathematical model.
time. An improved multi-objective evolutionary algorithm

Decompose the problem into several sub-problems
Dynamic strategy to adjust the mating relationship between
solutions and sub-problems.

Mansouri et al. (2016) Min Cmax Speed scaling Two-machine permutation Mixed integer linear mathematical model.
Min ∑Ei flow shop. Proposed constructive heuristic.

Sequence dependent
setups time.

Pilerood et al. (2018) Min T EC Time-of-use tariffs Flow shop Continuous-time mixed integer linear mathematical model.
Two machines Two-stage greedy heuristic.

Wang et al. (2018b) Min T EC Time-of-use tariffs Flow shop Mixed integer linear mathematical model
Two machines Dynamic programming for fixed job’s sequence problem.

Two heuristics based on Johnson’s rule and dynamic programming.
Iterated local search method incorporating problem tailored procedures.

Zheng et al. (2019) Min T EC Time-of-use tariffs Two-stage permutation Mixed integer linear mathematical model.
Min Cmax Speed scaling flow shop. Multi-objective hybrid ant colony optimization algorithm

Parallel batch processing Max–min pheromone restriction rules and local search rule are proposed.
machines.

Zhang et al. (2019) Min Cmax Speed scaling Hybrid flow shop The total energy consumption includes energy consumption when the
Min ∑Ei machine is in the processing state, in the setup state and in the stand by state.

A multi-objective discrete artificial bee colony algorithm.
Current Min T EC Time-of-use tariffs Two-machine permutation New mixed integer linear mathematical model.
paper flow shop Developed properties based on Johnson’s rule.

Logic-Based Benders Decomposition.
Luo et al. (2013) Min T EC Time-of-use tariffs Hybrid flow shop Multi-objective ant colony optimization meta-heuristic.

Min Cmax Right-shift procedure which delays operations without affecting Cmax
to reduce T EC.

Ding et al. (2021) Min T EC Time-of-use tariffs Flexible flow shop Multi-objective hybrid particle swarm optimization.
Min ∑Ti Speed scaling Multi-objective tabu search procedure.

Badri et al. (2021) Min T EC Time-of-use tariffs Flow shop Mixed integer linear mathematical model.
Transform bi-objective model into two single-objective problems by using
Bellman and Zadeh fuzzy decision making principle and Zimmermann
fuzzy programming method.

Cui and Lu (2021) Min T EC Time-of-use tariffs Flow shop Two-layer math-heuristic approach:
Min ∑Ti “Turn off/Turn on” Maintenance planning 1. Outer layer optimizes the jobs’ sequence by using genetic algorithm.

2. Inner layer optimizes the maintenances’ planning by using dynamic.
programming.

Schulz et al. (2020) Min T EC Time-of-use tariffs Hybrid flow shop Two multi-objective mixed integer programming formulations.
Min ∑Ti Speed scaling Eps-constraint method.

Wang et al. (2020b) Min T EC Time-of-use tariffs Two-stage Bi-objective mixed integer programming formulations.
Min Cmax hybrid flow shop Eps-constraint method. Tabu search and ant colony algorithm.
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Table 3: Relevant aspects of works on optimizing energy consumption in scheduling problem on job shop and parallel
machines.

Reference Objective Energy aspect Shop feature Solution approach
Liu et al. (2016) Min ∑wiTi “Turn off/Turn on” Job shop As “Turn off/Turn on” strategy needs comparatively long idle period,

Min ∑NPEi they studied a scheduling technique to integrate fragmented short idle
periods into large ones.
Multi objective genetic algorithm based on NSGA-II implemented
two new steps:
1) “1 to n scheduling building” aims to exploit the “Turn off/Turn on”
strategy.
2) “Family creation and individual rejection” enhances the diversity
of solution pool.

May et al. (2015) Min Cmax “Turn off/Turn on” Job shop A green genetic algorithm combined by NSGA-II and SPEA-II
Min ∑Ei Studied the performance of different machine behaviour policies:

1) All the machines are switched on when the first operation is started.
2) The machines can be individually switched on.
3) The machines can be switched on and off when they are idle .
4) The machines have the standby state which consumes energy.

Zhang and Chiong (2016) Min ∑wiTi Speed scaling Job shop Mixed integer linear mathematical model
Min ∑Ei Multi-objective genetic algorithm enhanced with local searchs:

1) Min ∑wiTi under fixed machine speed.
2) Min ∑Ei under a fixed schedule.

Wu et al. (2019) Min ∑Ei Flexible job shop The processing time of jobs is not deterministic due to deterioration
Min Cmax Deterioration effect effect. The processing time is estimated based on a step-deterioration

effect model.
Proposed an energy consumption model for different machine’s states.
Multi-objective hybrid pigeon inspired optimization
Simulated annealing algorithm.

Masmoudi et al. (2019) Min T EC Power peak limit Job shop Two integer programming formulations: a disjunctive model
Time-of-use tariffs and a time-indexed model.

Wang et al. (2020a) Min T EC Time-of-use tariffs Flexible job shop Mixed integer programming model.
Min Cmax Machine selection Hybrid multi-objective evolutionary algorithm based on decomposition.

Ding et al. (2015) Min T EC Time-of-use tariffs Unrelated parallel Time-interval-based mixed integer linear mathematical model.
machine. Dantzig-Wolfe decomposition and column generation heuristic.

Jia et al. (2019) Min ∑Ei Parallel machines. The energy consumption of machine is equal to its processing power
Min Cmax Batch processing multiplied by the total processing time of the batches on that machine.

machines. Bi-objective ant colony optimization algorithm (BOACO).
Proposed an effective method to construct the feasible solutions.
Proposed a neighborhood-based local optimization to enhance BOACO.

Leung et al. (2012) Min T EC Unrelated parallel The machine cost is associated with the processing of a job on a given
Min ∑Ci machine. machine.
Min Cmax Preemptive schedule. The proposition of five specialized machine cost functions.

Nonpreemptive schedule. The proposition of six objectives:
- Two objectives based on the hierarchical structuring of ∑Ci and T EC.
- Two objectives are based on the hierarchical structuring of Cmax and T EC.
- Two objectives are based on the aggreation of ∑Ci, T EC, and Cmax
Determine the complexity status of the problems proposed.

Zhou et al. (2018) Min T EC Time-of-use tariffs Parallel machines Mixed integer linear mathematical model.
Min Cmax Batch processing Multi-objective discrete differential evolution algorithm.

machines.
Ji et al. (2013) Min ∑Ei Machine selection Uniform parallel They demonstrated that the problem is NP-hard.

machines. Particle swarm optimization algorithm.
Bounded makespan

Zhang et al. (2021) Min T EC Time-of-use tariffs Two-stage parallel Continuous-time mixed-integer linear programming model.
Speed scaling machines. Tabu search-greedy insertion hybrid algorithm.

Bounded makespan
Kong et al. (2021) Min T EC Time-of-use tariffs Parallel machines Variable neighborhood search algorithm with three novel swapping

Speed scaling Rescheduling. neighborhood structures.
“Turn off/Turn on” Deteriorating job.

Wang et al. (2018a) Min T EC Time-of-use tariffs Parallel machines Eps-constraint method.
Min Cmax Constructive heuristic method with a local search strategy.

NSGA-II algorithm.
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Where, bi is the unit power required of machine i when it is busy (processing some job), di
stands for unit power required when machine i is on idle.

An instance of F2|bi,di,ToU |T EC consists of a set J = 1,2, ..n of jobs and a set M = 1,2
of machines that are available to be processed at time zero. Each job j ∈ J has an amount of
processing time pi j on machine i ∈ M. They must be processed non-preemptively first on machine
1, then on machine 2. Each machine i will start “working” at time instant 0. That means the
machine either busy or idle since time zero and can be shut down only if all the jobs have been
completed. At any time, each machine can process only one job at most, and each job can only be
processed on one machine at most. Additionally, the machine i will consume bi as the amount of
energy per time unit when it processes job and di as the amount of energy per time unit when it is
idle.

We consider the fluctuation in energy price over periods according to the ToU tariff scheme.
Time horizon consists of a set t = 1,2, . . . ,T of time periods. Each period has an associated
electricity price ct > 0 per unit of energy. Generally, we have three levels of price in a day: off-
peak, on-peak and semi-peak. In this model, we divide the time horizon in set of l ≥ 2 pricing
intervals: G = {G1 = [ST1,ST2) , . . . ,Gl = [STl,STl+1)}.

Lg = STg+1 −STg > 0 is the length of pricing period Gg for g = 1, . . . , l, where STg is starting
time of pricing interval Gg and STl+1 = T . All time periods t in the same pricing interval g have
the same energy price ct = f cg,∀STg ≤ t ≤ STg+1.

An example of ToU electric price of Pacific Gas & Electric Company’s tariff during summer
months is illustrated in Figure (1) (Wang and Li (2016)).

The definition of the problem’s set, variables are given as follows:
Parameters:

• M: Set of machines.

– the machine index i.

• J: Set of job.

– the job index j,k.

• T : Planning horizon.

– the time index t.

• G: Set of pricing interval

– the pricing interval index g.

• bi: The amount of energy consumed per unit time when machine i processes jobs.

• di: The amount of energy consumed per unit time when machine i is idle.

• ct : The electricity price associated to period t.

• f cg: The electricity price associate to pricing interval g.
9



• pi j: Processing time of job j on machine i.

• STg: Starting time of pricing interval g.

• EDg = STg +Lg: Ending time of pricing interval g.

• V : Large positive number.

Variables:

• Si j: The starting time of job j on machine i.

• Ci j: The completion time of job j on machine i.

• Fi: The shutdown time of machine i.

• xit = 1 if machine i is working during time period t (either busy or idle), and = 0 otherwise
(i.e. shutdown).

• yit = 1 if machine i is on idle during time period t, and = 0 otherwise.

• zi jt = 1 if machine i processes job j during time period t, and = 0 otherwise.

• αi jg: The amount of processing time of job j on machine i during pricing interval g.

• βi jg = 1 if job j is processed on machine i during pricing interval g, and = 0 otherwise.

• δ jk = 1 if job j precedes job k, and = 0 otherwise.

• γ jg = 1 if job j is started on machine 2 during pricing interval g, and = 0 otherwise.

• ω
g
jk = 1 if job j and job k are started during the same pricing interval g, and = 0 otherwise.

• T EC: Total electricity cost.

4. Johnson’s rule and dynamic programming

Before tackling the problem, we briefly remind the readers of two of the results in the literature
that are appropriate to our solution approach. Firstly, the Johnson’s rule (Johnson (1954)) can
find the optimal solution in O(n logn) steps for F2|perm|Cmax problem. Secondly, the dynamic
programming (DP) proposed by (Wang et al. (2018b)) optimally solves F2|bi,di,ToU |T EC when
jobs sequence is predetermined.
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Figure 1: ToU charge profiles of PGE’s tariff during summer months

4.1. Johnson’s rule
For any instance of F2|perm|Cmax, base on job’s processing time, we distinguish two sets

J = {Ji ∈ J|p1i < p2i} and J = {Ji ∈ J|p2i < p1i}. Any job whose p1i = p2i can be placed arbitrary
either in J or J. To obtain a Johnson’s sequence, we use the following algorithm:

1. Sort J in non-decreasing order of processing time on machine 1.
2. Sort J in non-increasing order of processing time on machine 2.
3. The optimal sequence is obtained by concatenating two sets J and J after sorting.

4.2. Dynamic programming (Wang et al. (2018b))
We shortly remind the dynamic programming proposed by (Wang et al. (2018b)). For any given

job sequence π, DP searches for the optimal starting time of each job for F2|bi,di,ToU |T EC. Let
Ci,k and Ci,k be respectively the lower and upper bounds for the completion time of the kth job in π

on machine i. Because the time horizon T and the sequence π are given, we can calculate Ci,k and
Ci,k for all jobs k ∈ J. A possible completion time of job k must be satisfied: 1) C1,k ≤C1,k ≤C1,k

and 2) max{C1,k + p2,k,C2,k} ≤ C2,k ≤ C2,k. DP enumerates the set of possible completion time
for jobs in two machines in O(T 2). Then, DP determines the optimal completion time of job from
the set of possible completion time, which has the minimal total electricity cost. DP recurrently
processes from the first position to the last position of sequence π in O(nT 4) times to get the
minimum total electricity cost.

5. Property based on Johnson’s rule

In this section, we develop some properties based on Johnson’s rule to enhance the solution ap-
proach. First of all, we present some instances of configurations for two pricing intervals problem.
We show that in these configurations, Johnson’s rule (Johnson (1954)) with DP gives the optimal
solution. Then, we develop a property based on Johnson’s rule for general instances.

11



5.1. Two pricing intervals
We assume that the planning horizon consists of two pricing intervals g and g+ 1 with the

associated electricity prices being f cg and f cg+1 respectively; g precedes g+1.
Let π be Johnson’s sequence, δ1 be the shortest positive idle time on machine 2 between any

job j and its successor obtained when all jobs of π start as soon as possible. For each instance,
we can easily calculate A j =

p1 j−p2 j
min(δ1,p2 j)

,∀ j ∈ J. Note that b2 and d2 are the amount of energy
consumed when machine 2 processes jobs and idle, respectively.

Property 1. When F2|bi,di,ToU |T EC problem has only two pricing intervals, the application of
DP on Johnson’s sequence gives the optimal solution in the following cases:

1. f cg ≥ f cg+1.

2. f cg < f cg+1 and b2×( f cg+1− f cg)
d2× f cg

≤ A j,∀ j ∈ J.

Proof is to be found in Appendix A.

5.2. Several pricing intervals
For more general instances, where property (1) is not valid, we present a property taken into

account in our approach. In the ToU electricity tariff, we assume that each pricing interval is
relatively long enough to execute not only one job but a set of jobs. For each pricing interval
g with its starting time STg and ending time EDg = STg + Lg, we can determine a set of jobs
whose starting times on machine 2 are executed during this pricing interval. We prove that by
ordering these jobs following Johnson’s rule, we can get a solution as best as any other sequence
in electricity cost.

Property 2. Let Jg ⊂ J be set of jobs whose starting times on machine 2 are executed during
pricing interval g (∀ j ∈ Jg,STg ≤ S2 j ≤ EDg). For any order of jobs belonging to Jg, reorder these
jobs following Johnson’s rule does not deteriorate the solution of F2|bi,di,ToU |T EC.

Proof is to be found in Appendix B.
Property (2) is illustrated by an example in Figure (2). In the example, we have three pricing

interval (g−1), g and (g+1) and a set of job Jg = {J1,J2,J3,J4} whose starting times on machine
2 are assigned to pricing interval g. The initial partial sequence π = J1 ≺ J2 ≺ J4 ≺ J3. Reorder
π according to Johnson’s rule, we have partial sequence π′ = J3 ≺ J4 ≺ J1 ≺ J2. As stated by the
property (2), we get T ECπ′ ≤ T ECπ.

Thus, property (2) is a rule for scheduling jobs in each pricing interval. This means the objec-
tive is to define sets of jobs to execute during each pricing interval and then schedule jobs following
the order given by property (2) (Johnson’s order in each mentioned set). In the following sections,
we present a new mathematical model and solution approach enhanced by property (2).

12



Machine 1 J1 J2 J4 J3

Machine 2 J1 J2 J4 J3

g−1 g g+1

(a) The sequence π

Machine 1 J3 J4 J1 J2

Machine 2 J3 J4 J1 J2

g−1 g g+1

(b) Sequence π′: reordering sequence π according to Johnson’s rule

Figure 2: Sequence π and π′: reordering π according to Johnson’s rule

6. New mathematical model

6.1. The mathematical model of (Wang et al. (2018b))
(Aghelinejad et al. (2019)) demonstrated that the single machine scheduling problem under

the ToU tariff scheme with several machine states is NP-hard. As a single machine scheduling
problem is a particular case of the flow shop scheduling problem, we can see that our problem is
also NP-hard.

We remind in this section the objective function and some constraints of (Wang et al. (2018b))
that are necessary to formulate a new mathematical model. The objective function given by (Wang
et al. (2018b)) and the constraints that determine the state of machine are given in equations (1)
and (2).
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minT EC = ∑
i∈M

∑
j∈J

∑
t∈T

ct ×bi × zi jt + ∑
i∈M

∑
t∈T

ct ×di × yit . (1)

Subject to:

∑
j∈J

zi jt + yit = xit ,∀i ∈ M, t ∈ T. (2)

The objective (1) aims to minimize the total electricity costs. The total electricity cost includes
two type of energy consumption cost:

• When machines are busy: ∑i∈M ∑ j∈J ∑t∈T ct ×bi × zi jt

• When machines are idle: ∑i∈M ∑t∈T ct ×di × yit .

Constraints (2) define the state of the machine i after turning on, either busy or idle .

6.2. New optimization objective’s formulation
To enhance the resolution approach, we propose a new objective function derived from the

function (1). Firstly, we propose new variables αi jg which are the amount of processing time of
job j on machine i during pricing interval g (Figure.3). Parameters f cg are the electricity price of
pricing interval g.

ct = f cg,∀STg ≤ t ≤ EDg

αi jg = ∑
STg≤t≤EDg

zi jt ,∀i ∈ M, j ∈ J,g ∈ G.

Then, the optimization objective proposed by (Wang et al. (2018b)) can be reformulated as follows:

T EC = ∑
i∈M

∑
j∈J

∑
g∈G

f cg × (bi −di)×αi jg + ∑
i∈M

∑
t∈T

ct ×di × xit . (3)

As stated in equation (3), we can estimate the total electricity cost of a sequence by the assign-
ment of the amount processing time during each pricing interval (αi jg) and by the shutdown times
of two machines (xit). When two solutions have the same shutdown times of two machines, they
hold the same subset of xit . Their second term in T EC gets the same value. Thus the difference is
located in the assignment of processing time during each pricing interval.

Machine 1 J1

Machine 2 J1
α11(g−1)

α11g

g−1 g

Figure 3: Example of variables αi jg for processing of job J1 on machine 1 during two pricing intervals (g−1) and g
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6.3. New mathematical model (M1)

minT EC = ∑
i∈M

∑
j∈J

∑
g∈G

f cg × (bi −di)×αi jg + ∑
i∈M

∑
t∈T

ct ×di × xit . (4)

Subject to:

βi jg ≤ 1−
(Si j −EDg)

V
,∀i ∈ M, j ∈ J,g ∈ G. (5)

βi jg ≤ 1+
(Ci j −STg)

V
,∀i ∈ M, j ∈ J,g ∈ G. (6)

∑
g∈G

αi jg = pi j,∀i ∈ M, j ∈ J. (7)

αi jg ≤ (EDg −Si j)+V × (1−βi jg),∀i ∈ M, j ∈ J,g ∈ G. (8)

αi jg ≤ (Ci j −STg)+V × (1−βi jg),∀i ∈ M, j ∈ J,g ∈ G. (9)

αi jg ≤ (EDg −STg)×βi jg,∀i ∈ M, j ∈ J,g ∈ G. (10)

Ci j = Si j + pi j,∀i ∈ M, j ∈ J. (11)

C1 j ≤ S2 j,∀ j ∈ J. (12)

Fi ≥Ci j,∀i ∈ M, j ∈ J. (13)

Fi ≤ t +V × xit ,∀i ∈ M, t ∈ T. (14)

Fi ≥ t +1−V × (1− xit),∀i ∈ M, t ∈ T. (15)

Fi ≤ T,∀i ∈ M. (16)

δ jk +δk j ≤ 1,∀ j,k ∈ J : j ̸= k. (17)

Ci j ≤ Sik +V × (1−δ jk),∀i ∈ M, j,k ∈ J : j ̸= k. (18)

Cik ≤ Si j +V ×δ jk,∀i ∈ M, j,k ∈ J : j ̸= k. (19)

Ci j,Si j,αi jg ≥ 0,∀i ∈ M, j ∈ J,g ∈ G. (20)

βi jg,xi j,δ jk ∈ {0,1},∀i ∈ M, j,k ∈ J,g ∈ G. (21)

The objective (4) aims to minimize the total electricity cost.
Constraints (5) ensure that during pricing intervals which are before the starting time of job j

on machine i, none of the processing time of j is executed. If Si j > EDg, then Si j −EDg > 0. That
leads to Si j−EDg

V > 0, then 1− Si j−EDg
V < 1. So in this case, βi jg < 1, the only value βi jg can take

is zero. That means if the starting time of job j on machine i is after the ending time of pricing
interval g (Si j > EDg), none of the processing time of j is executed in this pricing interval βi jg = 0.

Constraints (6) ensure that during pricing intervals which are after the completion time of job
j on machine i, none of the processing time of j is executed. If Ci j < STg, then Ci j − STg < 0.
That leads to Ci j−STg

V < 0, then 1+ Ci j−STg
V < 1. So in this case, βi jg < 1, the only value βi jg can
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take is zero. That means if the completion of job j is before the starting time of pricing interval g
(Ci j < STg), none of the processing time of j is executed in this pricing interval βi jg = 0.

Constraints (7), (8), (9) and (10) allocate processing time of job j on machine i to each pricing
interval according to job’s starting time and it’s completion time. Constraints (11) ensure that
jobs are processed non-preemptively. Constraints (12) ensure that any job j must be processed on
machine 1 and then on machine 2. Constraints (13), (14), (15) and (16) define the shutdown time
of machine i. Constraints (17), (18) and (19) determine the sequence. Constraints (20) and (21)
give variables’ definition.

Table (4) gives the comparison between models MC and M1. Table (4a) shows the number
of constraints, decision variables in terms of number of machines (M), number of jobs (J), time
horizon (T ), and number of pricing intervals(G). In Time-of-use tariffs, the number of pricing in-
tervals is considerably small compared to the period in the time horizon. So based on the formulas
given in Table (4a), the number of binary variables in M1 has been significantly reduced compared
to MC. A few good examples are given in Table (4b) to illustrate the reduction of binary variables
in model M1. These reductions help in improving the running time of model M1.

Table 4: Comparison of the number of constraints, the number of decision variables between the model MC and M1.

(a) Number of constraints, number of decision variables of models MC and M1

MC M1
Number of

decisions variables
Binary |M||T |(2+ |J|)+ |J||J| |M||T |+(|M||J|+1+ |J|)|G|+ |J||J|

Continuous |M|(2|J|+1)+1 |M|(2|J|+ |J||G|+1)+1
Number of constraints |M|[|T |(4+2|J|)+5|J|+1]+ |J||J|+ |J| |M|[2|T |+ |J|(5|G|+3)+2]+ |J||J|+ |G|

(b) The difference in the number of binary variables between MC and M1 in instances of 4 pricing intervals.

Instance Model Difference of binary variables number
between MC and M1Number of jobs Time horizon MC M1

20 350 15800 1344 14456
30 400 26500 1564 24936
40 450 39400 1784 37616
50 500 54500 2004 52496

7. Logic-based Benders decomposition

7.1. Introduction
Benders decomposition uses a problem-solving strategy that can deal with large-scale mixed-

integer programming models (Benders (1962)). It partitions the variables of a problem into two
vectors x and y. Firstly, it fixes y to a trial value by optimally solving a mixed-integer Master
Problem (MP). The MP is a relaxation of the global model. Then, the value of y is then used
to define a sub-problem (SP) that contains only x. The solution of SP may reveal that the trial
value of y is unacceptable, and the solution will be used to generate a Benders cut. The Benders
cut eliminates the unacceptable value of y from the solution set. Then we obtain the next set of
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trial values of y by solving the MP containing all the Benders so far generated. We solve the
MP iteratively to optimality and use the solution to generate sub-problems until the MP and SP
converge in value.

As a F2|bi,di,ToU |T EC problem requires making two different decisions, ordering jobs to
form an optimal sequence and scheduling starting time of each job, a decomposition approach
may be well suited. However, the classical Benders decomposition requires that MP should be
a mixed integer model, and the SPs should be a linear or nonlinear programming problem. We
utilize a logic-based Benders Decomposition (LBBD) approach (Hooker and Ottosson (2003))
which excluding that necessity in modeling MP and SPs. In this study, the mixed-integer MP
assigns jobs to pricing intervals and then, base on Johnson’s rule property previously developed,
we can obtain a global jobs’ sequence. Then the SP utilizes dynamic programming (Wang et al.
(2018b)) to determine the optimal starting times for each job of the sequence given by the master
problem solution. In the next sections, we go into the details of the Master Problem, the Sub
Problem and Benders cut.

7.2. Jobs assignment Master Problem (MP)
As stated in the previous section, we estimate the total electricity cost with respect to the

shutdown time of each machine and of workload assigned to each pricing interval. The MP assigns
jobs to pricing intervals. According to the jobs assignment, MP can estimate workloads in each
pricing interval and approximate shutdown times of each machine. Before formulating the MP as
a MIP model, we represent some interesting results that can enhance the model’s performance.

Each pricing interval has a certain duration and can contain at most a certain number of jobs.
Let Capi

g be the maximum number of jobs that can be started on machine i during interval g.
On each machine i, we order jobs according to shortest processing time rule (SPT). For each job
according to SPT’s order, Capi

g is increased by one when the total processing time on machine i
is not superior to the length of the interval g. By considering machine 1 and machine 2 separately,
we can obtain the maximum number of jobs assigned to each pricing interval on each machine.

As we know, Johnson’s rule provides an optimal solution for F2||Cmax in polynomial time. Let
π be Johnson’s sequence for F2||Cmax, for any sequences, their completion times on machine 1,
and on machine 2 are superior to that of π. To formulate the MP, we need some new variables and
parameters as follows:

Parameters :

• Capi
g: maximum number of jobs that can be started on machine i during interval g according

to SPT.

• FJohnson
i : shutdown time of machine i according to Jonhson’s rule for F2||Cmax problem.

Variables:

• γi
jg = 1 if job j is started on machine i during pricing interval g, and 0 otherwise.

• T ECh
1 is the total electricity cost found by MP at hth iteration.
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Objective function:

minT ECh
1 = ∑

i∈M
∑
j∈J

∑
g∈G

f cg × (bi −di)×αi jg + ∑
i∈M

∑
t∈T

ct ×di × xit . (22)

Subject to:

∑
g∈G

γ
i
jg = 1,∀i ∈ M, j ∈ J. (23)

∑
j∈J

∑
g∈G

γ
i
jg ≤Capi

g,∀i ∈ M. (24)

βi jg ≤ 1−
∑g1∈G γi

jg1 ×g1−g

l
,∀i ∈ M, j ∈ J,g ∈ G. (25)

βi jg ≤ 1+
∑g1∈G γi

jg1 ×EDg1 + pi j −STg

T
,∀i ∈ M, j ∈ J,g ∈ G. (26)

β1 jg ×g ≤ ∑
g1∈G,g1>g

γ
2
jg1 ×g1,∀ j ∈ J,g ∈ G. (27)

∑
g∈G

αi jg = pi j,∀i ∈ M, j ∈ J. (28)

∑
j∈J

αi jg ≤ EDg −STg,∀i ∈ M,g ∈ G. (29)

αi jg ≤ (EDg −STg)×βi jg,∀i ∈ M, j ∈ J,g ∈ G. (30)

γ
i
jg ≤ αi jg,∀i ∈ M, j ∈ J,g ∈ G. (31)

Fi ≥ βi jg ×STg + ∑
k∈J

αikg,∀i ∈ M, j ∈ J,g ∈ G. (32)

F1 ≤ F2. (33)

Fi ≥ FJohnson
i ,∀i ∈ M. (34)

Equations(14),(15),(16). (35)

MIP cuts. (36)

The objective (22) aims to minimize the total electricity costs.
Constraints (23) ensure that job j is started on machine i during at most one pricing interval g.
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Constraints (24) ensure that the number of jobs j which are started on machine i during interval
g respect its capacity.

Constraints (25) ensure that for any job j, if it starts on machine i during interval g1 so it can
not be processed on that machine during intervals g locating before g1, βi jg = 0 .

Constraints (26) determine for any job j whether it is processed on machine i during pricing
interval g (βi jg = 1) or not (βi jg = 0) in function of the time period where job j is started on
machine i and its processing time. If a job j is started on machine i during pricing interval g1
(γi

jg1 = 1), there is a possibility that job j started at the last time period of interval g1 (EDg1).
Hence, ∑g1∈G γi

jg1 ×EDg1 = EDg1. If the processing time of job j (pi j) is long enough, then
it’s processing will be continued and finished during next pricing interval (g1 + 1) (STg1+1 <
EDg1 + pi j < STg1+2). Then (EDg1 + pi j − STg1+1 > 0) and (EDg1 + pi j − STg1+2 < 0). We will

have: βi j(g1+1) ≤ 1 +
∑g1∈G γi

jg1×EDg1+pi j−STg1+1

T = 1 +
EDg1+pi j−STg1+1

T ≤ 1. So βi j(g1+1) = 0 or

βi j(g1+1) = 1. Contrarily, βi j(g1+2) ≤ 1+
∑g1∈G γi

jg1×EDg1+pi j−STg1+2

T = 1+ EDg1+pi j−STg1+2
T < 1. So

βi j(g1+2) = 0.
Constraints (27) ensure that for any job j, its starting time on machine 2 located after its starting

time on machine 1.
Constraints (28) ensure that jobs are processed entirely.
Constraints (29) ensure that total processing time during each pricing interval respects its du-

ration.
Constraints (30) ensure that job can only be processed during pricing intervals assigned.
Constraints (31) ensure that job j will be processed during the pricing interval where it started.
Constraints (32) ensure that the shutdown time of machine i must superior to the starting time

of all pricing intervals plus it’s processing time.
Constraints (33) ensure that machine 1 shut down before machine 2.
Constraints (34) ensure that shutdown time on each machine must be superior or equal to the

shutdown time of Johnson’s sequence for F2||Cmax.
Constraints (35) consist of equations (14)-(16) of model M1 that determine the state of each

machine in function of its shutdown time and ensure that all jobs will be processed during the
planning horizon.

Constraints (36) are Benders cuts. The Benders cuts are presented in section (7.3).

7.3. Starting time assignment Sub Problem and Bender’s cut
The solution of MP gives a set of jobs assigned to each pricing interval. Let W h be the set of

solutions at the iteration h of the MP, γ2
jg = 1. Thanks to the property (2), by knowing the jobs

assignment, we can get a global sequence. The SP determines the optimal starting time of sequence
deduced by MP. As proposed in (Wang et al. (2018b)), when the job sequence is fixed, a dynamic
algorithm can determine the optimal starting time of each on each machine in O(nT 4) time. So
we utilize the dynamic algorithm proposed by (Wang et al. (2018b)) for SPs to obtain solutions
with total electricity cost T ECh

2 . The solution obtained by SP at the iteration h helps to generate
a Benders cut added to the MP. A valid Benders cut in a given iteration must exclude the current
globally infeasible assignment in the MP without removing any globally optimal assignment. We
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propose a Benders cut based on the study of (Hooker and Ottosson (2003)) as follows:

T EC ≥ T ECh
2 − ∑

γ2
jg∈W h

(1− γ
2
jg)×V (37)

Where W h is set of γ2
jg = 1: the assignment of jobs’ starting time on machine 2 to pricing intervals

g.
The procedure of our solution approach is illustrated in Figure. (4) and Figure. (5). Figure.

(5) represents the solution approach of LBBD for an instance of 8 jobs. It shows how the Master
Problem and Sub Problem update the upper bound and lower bound of the global problem.

1. First, LBBD solves the Master Problem (MP) to optimality. Because Master Problem is a
relaxed version of our problem, so it’s solution is a lower bound.

2. Then, based on MP’s solution, LBBD solves the Sub Problem (SP). If SP finds that MP’s
solution is feasible, then it is our globally optimal solution. Otherwise, SP will generate a
Bender’s cut. We use SP’s solution to update the upper bound.

3. LBBP repeats this process until the MP and SP converge in value. In this example, MP and
SP converge to the optimal solution whose T EC = 16,8$ after 39 iterations.

8. Computational experiments and results

In this section, we investigate the performance of the approach we proposed in section 7
through computational study. In detail, we compare the performance of our proposed MILP model
M1 and the Logic-based Benders decomposition (LBBD) with the performance of solution ap-
proaches of the MILP model of (Wang et al. (2018b)). We named the MILP model of (Wang et al.
(2018b)) as MC.

We solve the mathematical models M1, MC with ILOG CPLEX. These MILP model and
LBBD are implemented on g++ (Ubuntu 7.4.0-lubuntu 18.04.1) 7.4.0 linked with Cplex Studio
IDE 12.9.0. The computational experiment was executed on an IntelCore i7-6820HQ CPU @2.7
GHz 2.7 GHz PC with 8 GB RAM and the Ubuntu 18.04.2 LTS operating system.

8.1. Data generation
The performance of the proposed approaches was evaluated by solving a set of experimental

test instances. The test instances were randomly generated whose characteristics are based on
(Wang et al. (2018b)). Firstly, we randomly generate the processing time of job pi j from the
uniform distribution on {1,2, . . . ,10}. Then to complete the set of instances, we generate the
following parameters:

• The planning horizon is determined by T =
⌈
0.8×∑

2
i=1 ∑ j∈J pi j

⌉
.

• For fluctuation of electricity prices, we divide the planning horizon into 4 pricing intervals:
off-peak, peak, off-peak, semi-peak. The pricing intervals have approximately equal dura-
tion T/4. To denote the stable and unstable electricity markets, the levels max{ct}/min{ct}=
3 and max{ct}/min{ct}= 6 are tested respectively.
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Jobs’ assignment Master Problem
See model MP in section (7.2)

T ECh
1 Solution’s set W h: γ2

jg = 1

Dynamic programming for W h
See in section (7.3)

T ECh
2

If T ECh
2 = T ECh

1

Global optimal solution

Add Benders cut to MP
T EC ≥ T ECh

2 −∑γ2
jg∈W h(1− γ2

jg)×V
See in section (7.3)

Yes

No

Figure 4: Logic-based Benders decomposition for F2|bi,di,ToU |T EC
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Electricity cost ($)

Iterations1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
14.5

15

15.5

16

16.5

17

17.5

Upper bound (Sub Problem) Lower bound (Master Problem)

Figure 5: An example of LBBD for solving F2|bi,di,ToU |T EC with instance of 8 jobs

• For energy consumption rates, we consider three scenarios of energy consumption rates on
machine: R1 : b1 = 2,d1 = 1,b2 = 2,d2 = 1, two machines are identical; R2 : b1 = 2,d1 =
1,b2 = 6,d2 = 2, machine 2 is more energy-intensive; and R3 : b1 = 6,d1 = 2,b2 = 2,d2 = 1,
machine 1 is more energy-intensive. We generate 30 instances for each scenarios R1,R2 and
R3.

Firstly, we test on small-size instances, n = 6,8 jobs, and then on large-size instances n =
20,30,40 and 50 jobs. We set a 30 minutes computational time limit on each instance.

8.2. Numerical results
To test the performance of our solution approaches, we compare our MILP (M1), LBBD with

the mathematical model of (Wang et al. (2018b)) (MC). (Wang et al. (2018b)) also proposed sev-
eral heuristics to solve this problem. We cite the two most efficient heuristics of (Wang et al.
(2018b)): ED11 and ILSDP.

• ED11 generates randomly ten sequences, which are difference from Johnson’s sequence and
then use the dynamic programming on these sequences and Johnson’s sequence.

• ILSDP is an iterated local search algorithm to solve the problem with problem-tailored pro-
cedures and move operators. Dynamic programming is then applied to the final solution to
improve the electricity cost.

We also proposed a new heuristic JohnsonDP. JohnsonDP applies dynamic programming on
Johnson’s sequence to reduce the electricity cost. So, for small-size instances (n = 6,8 jobs), and
medium-size instances (n = 20,30 jobs), we compared our MILP (M1), LBBD with MILP (MC)
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of (Wang et al. (2018b)). For large-size instances (n = 40,50 jobs), we compared LBBD with
several heuristics, JohnsonDP, ED11 and ILSDP. The results are reported in Tables (5) - (10) and
in Figure.(6) and Figure.(7).

For small-size instances (n = 6,8 jobs), all approaches provide the same T EC within the time
limit. So for these instances, we are interested only in the comparison between computational time.
On the other hand, for medium and large-size instances (n = 20,30,40,50 jobs), all approaches
can not provide the optimal solution within the time limit. All three approaches, (MC, M1, LBBD)
reached the same computational time of 30 minutes. Therefore, we only present the comparison
between all solution approaches with the “Best Known Solution” (BKS) obtained by all solution
approaches (M1, MC and LBBD, Johnson DP, ED11 and ILSDP). The Gapi represents the gap
between the solution of approach i and the best solution: Gapi =

T ECi−T ECBKS

T ECBKS .
Tables (5)-(7) summarize the computational results. In each table, Max, Average, and Min

stand respectively for maximum value, average value and minimum value of the solution’s set.
Table (5) reports the computational results of the entire instance’s set for each configuration n =
6,8,20,30,40 and 50 jobs. That gives an overview of the performance of the solution approaches
for all scenarios. Then Tables (6) - (7) give more details of numerical tests for each scenario. That
provides the behavior of solution approaches in dealing with the stable and unstable electricity
markets or with the different energy-intensity of machines. In each table, Max, Average, Min and
σ stand respectively for maximum value, average value, minimum value and standard deviation of
the solution’s set.

First of all, we focus on small-size instances, n = 6,8 jobs, to evaluate the performance of our
MILP M1, and LBBD. As all MILP give optimal solution in very short computational time, we
do not need heuristics for these problems. As shown in Table (5a) and Table (6), we obtain the
following observations:

• Table (5a) shows that the average computational time of M1 and LBBD are better than MC’s.
We have significantly reduced the computational time. In particular, for n = 8 jobs, M1 and
LBBD outperform strongly MC. For example, the maximum value of computational time of
all approaches are as follows: 26.0 seconds for LBBD, 304.0 seconds for M1 compared to
1626.0 seconds for MC.

• In Table (6), we can find that the performance of MC is relatively better on scenario R1
meaning on identical machines. However, the average computational time of new MILP M1
is better than MC’s on other scenarios. In particular, for n = 8 jobs and the level of price
equal to 6 (unstable electricity markets), the new MILP M1 outperform MC strongly. For
example, for scenario R2 where the machine 2 is more energy-intensive, the average compu-
tational time of M1 is 15.8 seconds compared to 116.5 seconds for MC. Regarding LBBD,
this approach outperforms other approaches on all scenarios for n = 8 jobs.

Then, for medium-size instances, we provide in Table (10) the gap to optimality of LBBD
given by CPLEX. From Table (5b), Table (7) and Table (10) we have following observations:

• For medium-size instances, the performances of MC deteriorate rapidly when n increases.
For some instances, MC gets a gap with BKS until 15.8% for n = 20 jobs and 60.76% for
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n = 30 jobs. Especially, we are interesting in instances of n = 30 jobs because the size is
close to industrial problem’s. In Table (7), we can find that the performance of M1 signifi-
cantly dominates MC for unstable electricity markets (Level of price equals 6). In addition,
in the scenario R2 where the machine 2 is more energy-intensive, the average gap to “Best
Known Solution” and the standard deviation of M1 in R2 is smaller than in R1 and R3. That
means M1 works better in scenario R2 than in other scenarios.

• Regarding LBBD, this approach outperforms all other existing solution approaches in terms
of T EC. LBBD provides the best solution for all instances. In addition, in Table (10), we
can see that the maximum gap to optimality given by CPLEX for LBBD is under 6.2% for
n = 20 and is under 3.3% for n = 30 within the time limit. Its average gap to optimality is
under 3%. By comparing the performances of LBBD with M1’s, we can see that the property
2 suits very well the decomposition approach and considerably improves the quality of the
solutions.

For large-size instances, we compare the performance of LBDD with heuristics JohnsonDP,
ED11 and ILSDP. Two MILP M1 and MC are not designed to solve a large-size proble, their per-
formance has deteriorated rapidly for medium-size instances. From Table(5b), Table(8), Table(9),
Table(10) and two figures Figure.(6), Figure.(7), we have the following observations:

• For n = 20,30 jobs, we can see that LBBD outperforms significantly JohnsonDP and ILSDP
(for n= 20 jobs, Gap of JohnsonDP and ILSDP are 6.6% and 12.65% respectively compared
with LBBDs’ solutions in some instances). ED11 has a similar performance with LBBD in
these cases (Gap of ED11 is smaller than 2%). However, the computational time of ED11
is not significantly different from that of LBBD (for some instances, ED11 needs until 1790
seconds, compared with 1800 seconds of LBBD). In addition, from Table(10), the average
gap to optimality given by CPLEX of LBBD is small (under 5%). So for medium-size
instances ( n = 20,30 jobs), LBBD can assure the best solution in terms of electricity cost
within a reasonable computational time (30 minutes). ED11 is a good alternative method to
have a shorter running time and a small gap compared to “Best Known Solution”.

• For = 40,50 jobs, LBBD still outperforms all the heuristics. It provides the best solutions
among all the approaches. However, the gap between heuristics and LBBD gets smaller
when n increases. First of all, the computational time of ED11 rapidly increases and sur-
passes that of LBBD (for some instances of n = 50, ED11 needs 2331 seconds compared
to 1800 seconds of LBBD). JohnsonDP and ILSDP give approximate performance as ED11
within a shorter time. Hence, ED11 is not favorable for large-size instances. Secondly, in
Figure.(6), we can see that JohnsonDP and ILSDP work well in the case of a stable electric-
ity market (Level of price equal to 3). The average gap of JohnsonDP and ILSDP to “Best
Known Solution” is under 2%. On the other hand, in Figure. (7), for unstable electricity
market (level of price equal to 6) and energy-intensity of two machines are not identical
(scenario R2 and R3), the maximum gap of JohnsonDP and ILSDP are significant (until
6.37% and 10.10% respectively). In theses cases, we consider a trade-off between elec-
tricity cost and computational time. LBBD assure the best solution in almost all instances
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within 30 minutes with an average gap to optimality under 5%. JohnsonDP and ILSDP pro-
vide good solutions within a shorter computational time (around 10 minutes) but can have a
maximum gap until 10% compared with “Best Known Solution”.

Hence, for large-size instances, we evaluate our approach (LBBD) in terms of the objective
function value (electricity cost) and in terms of computational time.

• In terms of electricity cost, LBBD outperforms all heuristics. It provides the best solution
for all instances. Especially, when the electricity market is unstable and two machines are
not energy-intensive identical, LBBD outperforms significantly other approaches.

• In terms of computational time, JohnsonDP and ILSDP provide good solutions within a
short computational time. However, in the worst case, their solution cost up to 10% more
expensive than LBBD’s solution. For n = 50 jobs, the difference in terms of computational
time between LBBD (30 minutes) with JohnsonDP and ILSDP (around 10 minutes) is rea-
sonable for an operational problem as a scheduling problem.

• In addition, LBBD provides good solutions. The average gap to optimality of LBBD given
by CPLEX is under 5%. That helps assure the solution’s quality.

We have Figure. (8) and Table (11) to evaluate the performance of LBBD. These two demon-
strate the computational efforts of the LBBD method decomposed on its two main components:
the master problem (MP) and the subproblem (SP). Figure. (8) shows the breakdown of the aver-
age solution times by both the MP and SP in percentages, for all instances, in two scenarios: the
level of price equals 3, and the level of price equals 6. The breakdown of the average solution
times in each scenario is then detailed in Table (11). From Figure. (8) and Table (11), we have
some observations. First, MP takes a large part of the computational efforts (more than 90% for
small-size instances, and more than 80% for large-size instances). Second, the more the number
of jobs, the greater the computational efforts allocated to SP. Last, for unstable electricity market
instances, less computational efforts are allocated to MP (in average 70%) compared to the stable
electricity market (MP takes in average 80% of computational times). We can explain these
observations as follows:

• SP utilizes the dynamic programming of (Wang et al. (2018b)). The complexity of the
dynamic programming is O(nT 4). When the number of jobs increases, the planning horizon
T also increases to cover all jobs. Therefore, the computational time required is longer when
the number of jobs increases.

• The complexity of MP is still an open question that we will address in our future research.
However, we can see that the stable electricity market instances required more computa-
tional efforts to solve MP than the unstable electricity cases. One reason may be that the
stable electricity market cases contain more equivalent solutions. Therefore, it requires more
global search efforts of the solution space in MP for stable electricity cases. This also ex-
plains why LBBD slightly outperforms other approaches in stable electricity markets but
strongly dominates in unstable electricity markets.
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Based on previous observations, when the production plant steps into an environment with
TOU tariff from an environment without TOU tariff, we need to consider whether the electricity
market is stable or unstable.

• If the electricity market is unstable, LBBD strongly outperforms other solution approaches
in terms of electricity cost. Especially, when the electricity market is unstable and two
machines are not energy-intensive identical, LBBD is favorable for all instances (small-,
medium- and large-size instances). It provides good quality solutions within reasonable
computational time.

• If the electricity market is stable, we distinguish between small-, medium- and large-size
instances.

– For small-size instances, LBBD, M1, MC and ED11 deliver approximate performance,
both in terms of electricity cost and computational time. The manager can use any
solution approaches above for small-size instances.

– For medium-size instances, LBBD provides best solutions in terms of electricity cost.
However, ED11 is a good alternative method with a shorter running time and a small
gap compared to the “Best Known Solution”.

– For large-size instances, LBBD still outperforms all the heuristics. LBBD provides the
best solutions in all instances. However, the gap between heuristics and LBBD shrinks
when the number of jobs increases. The average gap of JohnsonDP and ILSDP from
the “Best Known Solution” is under 2%. Hence, JonhsonDP and ILSDP are favorable
in this configuration.

9. Conclusion

This work studies a two-machine flow shop scheduling problem with minimization of total
electricity cost under Time-of-use tariffs. F2|bi,di,ToU |T EC. The planning horizon is divided
into pricing intervals. Firstly, to enhance the solution approach, we proposed a property based
on Johnson’s rule. The property determines the optimal sequence for a given pricing interval’s
job assignment. Secondly, we developed a new mixed-integer linear model with a new objective
function. Thirdly, we proposed an exact method, “Logic-based Benders Decomposition” to solve
the problem. Finally, we tested the performance of our proposed solution approaches with the
mathematical model of (Wang et al. (2018b)).

Our new mixed-integer linear models M1 outperforms the MILP of (Wang et al. (2018b)) for
small size and large size instance. The new MILP works better for unstable electricity market
and when machine 2 is more energy-intensive. In addition, we proposed an exact method “Logic-
based Benders Decomposition” to solve the problem. Within the time limit, LBBD provides the
best solution comparing with solution approaches in the literature for almost all instances. For
large-size instances, LBBD gives solutions with an average gap to lower bound under 2.8%. The
gap to lower bound can also be utilized to evaluate the performance of other heuristics.
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Table 5: The overview of numerical results

(a) Average computational time (second).

Number of jobs
Approches

LBBD M1 MC JohnsonDP ED11 ILSDP

6

Max 16.0 9.0 35.0 — — —
Average 2.0 2.2 6.5 — — —

Min 1.0 1.0 1.0 — — —

8

Max 26.0 304.0 1626.0 — — —
Average 1.2 20.8 66.1 — — —

Min 1.0 1.0 3.0 — — —

20

Max *** *** *** 51.30 1501.00 52.63
Average *** *** *** 30.45 766.19 31.65

Min *** *** *** 10.94 15.00 10.94

30

Max *** *** *** 261.77 1790.00 318.57
Average *** *** *** 161.15 994.18 228.73

Min *** *** *** 74.78 246.00 125.61

40

Max *** *** *** 473.09 1967.22 533.73
Average *** *** *** 370.31 1156.21 373.56

Min *** *** *** 206.72 337.11 206.72

50

Max *** *** *** 626.02 2331.23 586.07
Average *** *** *** 475.46 1514.27 476.23

Min *** *** *** 377.84 475.02 342.75
*** : reach the limit computational time (1800s) — : Test is not performed

(b) Average gap (%) to BKS for large size instances

Number of jobs
Approches

LBBD M1 MC JohnsonDP ED11 ILSDP

20

Max 0.00 3.66 15.80 7.68 2.68 12.65
Average 0.00 0.26 4.26 3.57 0.77 4.60

Min 0.00 0.00 0.00 0.00 0.00 0.00

30

Max 0.00 18.02 60.76 4.57 1.33 7.91
Average 0.00 0.87 23.53 2.12 0.39 2.43

Min 0.00 0.00 0.22 0.00 0.00 0.00

40

Max 0.00 — — 6.37 6.37 10.10
Average 0.00 — — 1.89 1.86 2.97

Min 0.00 — — 0.00 0.00 0.11

50

Max 0.00 — — 4.83 4.83 6.93
Average 0.00 — — 1.23 1.22 1.93

Min 0.00 — — 0.00 0.00 0.00
— : Test is not performed
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Table 6: Comparison of computational time between solution approaches for instances of 6.8 jobs.
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Table 7: Comparison of gap (%) to “BKS” between solution approaches LBBD.M1 and MC for instances of 20.30
jobs.
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Table 8: Comparison of gap (%) to “BKS” between solution approaches LBBD,JohnsonDP,ED11 and ILSDP for
instances of 20,30 jobs.
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Table 9: Comparison of gap (%) to “BKS” between solution approaches LBBD,JohnsonDP,ED11 and ILSDP for
instances of 40,50 jobs.
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Table 10: Gap (%) to optimality given by CPLEX of LBBD for instance of 20.30.40 and 50 jobs

Level
of

price
Scenario

Gap(%) to optimality
20 jobs 30 jobs 40 jobs 50 jobs

Max Average Min Max Average Min Max Average Min Max Average Min

3

1 6.2 2.8 0.1 2.7 0.7 0.1 7.4 5.3 1.0 9.7 5.1 4.6
2 4.4 2.4 0.3 3.3 1.5 0.1 3.7 3.1 2.2 9.3 4.8 2.6
3 3.4 1.3 0.1 2.1 0.7 0.1 2.9 0.4 0.1 8.3 3.6 0.1

6

1 4 1.8 0.0 2.2 0.9 0.1 4.3 2.1 0.2 8.6 4.8 0.5
2 4.1 2.2 0.2 2.2 0.9 0.1 3.2 2.3 0.3 9.2 3.3 1.8
3 3.2 1.3 0.1 2.1 0.4 0.1 0.4 0.2 0.1 7.2 1.5 0.1

Figure 6: Gap (%) between JohnsonDP, ED11 and ILSDP with LBBD for instances of stable electricity markets (level
of price=3)
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Figure 7: Gap (%) between JohnsonDP, ED11 and ILSDP with LBBD for instances of unstable electricity markets
(level of price =6)

Figure 8: Breakdown of the average solution times (%) by MP and SP for the level of price = 3 and the level of price
= 6.
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Table 11: Breakdown of the average solution times by MP and SP (%) for each scenario.

Level of
price Scenario Component

Number of jobs

6 jobs 8 jobs 20 jobs 30 jobs 40 jobs 50 jobs

3

1
Master problem 94,68 93,34 98,96 98,16 89,23 92,85

Subproblem 5,32 6,66 1,04 1,84 10,77 7,15

2
Master problem 94,34 93,00 97,46 95,90 90,65 76,30

Subproblem 5,66 7,00 2,54 4,10 9,35 23,70

3
Master problem 94,02 94,39 98,59 97,65 83,60 71,04

Subproblem 5,98 5,61 1,41 2,35 16,40 28,96

6

1
Master problem 93,35 93,92 98,75 94,70 88,37 73,59

Subproblem 6,65 6,08 1,25 5,30 11,63 26,41

2
Master problem 93,30 92,38 91,85 87,51 87,44 70,07

Subproblem 6,70 7,62 8,15 12,49 12,56 29,93

3
Master problem 94,77 94,46 94,82 84,30 78,11 63,16

Subproblem 5,23 5,54 5,18 15,70 21,89 36,84

We also found that by changing the variables and reformulating the objective function, we
significantly improved the performances of mixed-integer linear models. For large-size instances,
we reduced the maximum gap to “BKS” from 60.76% of MC to 18.02% of M1. The manager
or decision-makers can use our proposed approaches LBBD or the mathematical model M1 to
improve the solution’s quality. For future work, it might be interesting to design and analyze
a lower bound more performance for the problem in order to evaluate or improve the solution
approaches. To better exploit our developed property, it is interesting to build a heuristic or a
meta-heuristic integrating the property to reduce computation time. We can also consider the
case of several machine states, several operating speeds that consume different amounts of energy
to extend our mathematical model. A multi-objective optimization problem could be good to
study the trade-off between productivity and the cost of electricity. A bi-objective study of the
scheduling of a two-machine flow shop with the minimization of electricity costs and makespan
offers managers more possibilities according to the Pareto front.
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Appendix A. Two pricing intervals

Johnson’s solution has an interesting characteristic that plays an important role in this study:
for any sequence π, we can always delay some jobs in Johnson’s sequence to obtain C∗

2Johnson =C2π

and C∗
1Johnson =C1π. (C∗

2Johnson and C∗
1Johnson are the completion time on machine 2 and on machine

1 respectively of Johnson’s sequence after being delayed).
We can demonstrate this characteristic as follows:

1. First of all, Johnson’s rule provides the optimal solution for F2|perm|Cmax whose C1Johnson ≤
C1π and C2Johnson ≤C2π for any sequence π. We can recognize that with two constant quanti-
ties QJohnson = (C2Johnson−C1Johnson) and Qπ = (C2π−C1π), we always have QJohnson ≤ Qπ.

2. Then, we can always delay some jobs on machine 1 in Johnson’s sequence to obtain C∗
1Johnson =

C1π. So we obtain new makespan value for Johnson’s sequence

C∗
2Johnson =C∗

1Johnson +QJohnson ≤C∗
1Johnson +Qπ =C1π +Qπ =C2π

3. As C∗
2Johnson ≤C2π, we can delay jobs on machine 2 to obtain C∗

2Johnson =C2π.

Appendix A.1. The electricity prices decrease f cg > f cg+1

In this section, the planning horizon consists of two pricing intervals g and (g + 1). The
interval g corresponds to peak period with the electricity price associated f cg, the interval (g+1)
corresponds to off-peak period with the electricity price associated f cg+1, f cg > f cg+1.

Let π be an optimal solution that does not follow the Johnson’s rule. As demonstrated pre-
viously, we can always delay some jobs in Johnson’s sequence to obtain C∗

2Johnson = C2π and
C∗

1Johnson =C1π.
Let ∆1 and ∆2 be “idle” time on machine 1 and on machine 2 respectively. We have ∆1 =

C1π −∑ j∈J p1 j and ∆2 = C2π −∑ j∈J p2 j. For any sequence which has the same C2π and C1π gets
the same ∆1 and ∆2. If f cg = f cg+1, we can get T ECJohnson = T ECπ = (∑ j∈J p1 j×b1+∑ j∈J p2 j×
b2)× f cg +(∆1 ×d1 ×+∆2 ×d2)× f cg. In case of f cg ̸= f cg+1, the difference of T EC arises on
the difference of assignment of jobs processing workload on machine 2 in each pricing interval.

For instance, we consider the electricity cost on machine 1 of a sequence π : T EC1
π. Let WLπ

1,g
and WLπ

1,g+1 be jobs processing workload of machine 1 of sequence π in pricing interval g and
(g+1) respectively. Let ∆π

1,g and ∆π
1,g+1 be the “idle” time of machine 1 of sequence π in pricing

interval g and (g+1) respectively.

T EC1
π = (WLπ

1,g ×b1 +∆
π
1,g ×d1)× f cg +(WLπ

1,g+1 ×b1 +∆
π
1,g+1 ×d1)× f cg+1

With:

• WLπ
1,g +WLπ

1,g+1 = ∑ j∈J p1 j.

• ∆π
1,g +∆π

1,g+1 = ∆1.

• WLπ
1,g +WLπ

1,g+1 +∆π
1,g +∆π

1,g+1 = ∑ j∈J p1 j +∆1 =C1π
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We can also obtain the electricity cost on machine 1 of any sequence π′ whose C1π′ =C1π in a
similar way.

T EC1
π′ = (WLπ′

1,g ×b1 +∆
π′
1,g ×d1)× f cg +(WLπ′

1,g+1 ×b1 +∆
π′
1,g+1 ×d1)× f cg+1

With:

• WLπ′
1,g +WLπ′

1,g+1 = ∑ j∈J p1 j.

• ∆π′
1,g +∆π′

1,g+1 = ∆1.

• WLπ′
1,g +WLπ′

1,g+1 +∆π′
1,g +∆π′

1,g+1 = ∑ j∈J p1 j +∆1 =C1π

By comparing the difference of electricity cost on machine 1 between π and π′, we can get :

T EC1
π −T EC1

π′ = [(WLπ
1,g −WLπ′

1,g)×b1 +(∆π
1,g −∆

π′
1,g)×d1]× f cg

+[(WLπ
1,g+1 −WLπ′

1,g+1)×b1 +(∆π
1,g+1 −∆

π′
1,g+1)×d1]× f cg+1

= b1 × [(WLπ
1,g −WLπ′

1,g)× f cg +(WLπ
1,g+1 −WLπ′

1,g+1)× f cg+1]

+d1 × [(∆π
1,g −∆

π′
1,g)× f cg +(∆π

1,g+1 −∆
π′
1,g+1)× f cg+1]

With:

• (WLπ
1,g −WLπ′

1,g)+(WLπ
1,g+1 −WLπ′

1,g+1) = 0

• (∆π
1,g −∆π′

1,g)+(∆π
1,g+1 −∆π′

1,g+1) = 0

• (WLπ
1,g −WLπ′

1,g)+(WLπ
1,g+1 −WLπ′

1,g+1)+(∆π
1,g −∆π′

1,g)+(∆π
1,g+1 −∆π′

1,g+1) = 0

Let γ′1 = (WLπ
1,g+1 −WLπ′

1,g+1) be the difference in term of processing time workload on
machine 1 during off-peak pricing interval between the sequence π and π′. We can find that
−γ′1 = (WLπ

1,g −WLπ′
1,g).

Let γ′2 = (∆π
1,g −∆π′

1,g) be the difference in term of “idle” time during peak pricing interval on
machine 1 between the sequence π and π′. We can find that −γ′2 = (∆π

1,g+1 −∆π′
1,g+1).

Thus, the difference of electricity cost on machine 1 between π and π′ can be formulated as
follows:

T EC1
π −T EC1

π′ = [−γ
′
1 ×b1 + γ

′
2 ×d1]× f cg

+[γ′1 ×b1 +(−γ
′
2)×d1]× f cg+1

=−γ
′
1 ×b1 × ( f cg − f cg+1)+ γ

′
2 ×d1 × ( f cg − f cg+1)

Because C1π′ = C1π, we can always delay or advance some jobs of π′ on machine 1 to get
γ′1 = 0 and γ′2 = 0. Then T EC1

π = T EC1
π′ for any sequence π′|C1π′ =C1π.
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Because T EC1
π = T EC1

π′ for any sequence π′|C1π′ =C1π, so the difference of T EC arises only
on the difference of assignment of jobs processing workload on machine 2 in each pricing interval.

We compare now the difference of T EC between π and Johnson’s solution whose C∗
2Johnson =

C2π and C∗
1Johnson =C1π. As demonstrated previously, T EC1

π −T EC1
Johnson = 0.

↔T ECπ −T ECJohnson = T EC2
π −T EC2

Johnson +T EC1
π −T EC1

Johnson

= T EC2
π −T EC2

Johnson

=−γ1 ×b2 × ( f cg − f cg+1)+ γ2 ×d2 × ( f cg − f cg+1)

↔ T ECJohnson −T ECπ = γ1 ×b2 × ( f cg − f cg+1)− γ2 ×d2 × ( f cg − f cg+1)

Where:

• γ1 is the difference of processing time workload on machine 2 during off-peak pricing inter-
val between π and Johnson’s sequence. γ1 = (WLπ

2,g+1 −WLJohnson
2,g+1 ).

• γ2 is the difference of “idle” time during peak pricing interval between π and Johnson’s
sequence. γ2 = (∆π

2,g −∆Johnson
2,g )

As Johnson’s solution has the smallest total “idle” time on machine 2 comparing to any other
sequences (Johnson (1954)), then γ2 = (∆π

2,g −∆Johnson
2,g ) ≥ 0. We can always delay some jobs

of Johnson’s sequence to obtain γ1 = 0, which means the processing times in off-peak and peak
period are the same between Johnson’s sequence and π. As the electricity prices are decreasing
( f cg − f cg+1 ≥ 0), that leads to T ECJohnson − T ECπ ≤ 0. So Johnson’s rule gives the optimal
solution in terms of total electricity cost.

Appendix A.2. The electricity prices increase f cg < f cg+1

In this section, the planning horizon consists of two pricing intervals g and (g + 1). The
interval g corresponds to off-peak period with the electricity price associated f cg, the interval
(g+1) corresponds to peak period with the electricity price associated f cg+1, f cg < f cg+1.

We compare the total electricity cost between the Johnson sequence (T ECJohnson) and a se-
quence π (T ECπ). The sequence π is obtained by interchanging any two jobs Jk and J j in Johnson
sequence. We consider two possible cases as follows:

• 1st case: Jk,J j ∈ J or Jk,J j ∈ J. We have T ECJohnson ≤ T ECπ. Johnson’s rule gives the
optimal sequence because any interchange between Jk and J j leads to more “idle time” or
less exploiting the off-peak periods.

• 2nd case, Jk ∈ J and J j ∈ J.

– If p1J j > p1Jk , Johnson’s rule dominates because any interchange between Jk et J j leads
to more “idle time” in off-peak interval.

37



– If p1J j ≤ p1Jk , we can find in figures A.9a and A.9b an example for interchanging Jk and
J j of sequence π. We note the inactive period immediately before Jk on the machine 1
and on the machine 2 are ∆1 and ∆2 respectively. Let δ1 be the “idle time” on machine
2 of Johnson’s sequence and δ2 be the “idle time” on machine 2 of sequence π.
We have:

δ1 = ∆1 + p1J j −∆2

To estimate δ2, let Ji be the job succeeding directly the job Jk on Johnson’s sequence.
We consider two configurations.
If Ji ∈ J, according to Johnson’s rule p1Ji ≥ p1Jk . In this case, we have:

δ2 = ∆1 + p1J j + p1Ji − (∆2 + p2J j)

≥ ∆1 + p1J j + p1Jk − (∆2 + p2J j)

If Ji ∈ J, Ji precedes J j, so p2Jk ≥ p2J j conforming to Johnson’s rule. In this case,
if p1Ji ≤ p1Jk so the interchange between Ji and Jk leads to less “idle time” than the
interchange between Jk and J j. Thus, it is better to study the interchange between Ji
and Jk. We interchange Ji with Jk. With a change of index from i to j, we have:

δ2 = ∆1 + p1J j + p1Jk − (∆2 + p2J j)

.
So in all the cases, we have:

δ2 ≥ ∆1 + p1J j + p1Jk − (∆2 + p2J j)

We have:

δ2 −δ1 ≥ ∆1 + p1J j + p1Jk − (∆2 + p2J j)− (∆1 + p1Jk −∆2)

≥ p1J j − p2J j

Let T ECπ and T ECJohnson be the total electricity cost of sequence π and Johnson re-
spectively. Let “Gain” be the best gain by interchanging J j and Jk:

Gain = min(δ1, p2J j)×b2 × ( f cg+1 − f cg)

where b2 is the amount of energy consumption per unit of time of machine 2 when it
processes jobs.
“Gain” represents the gain in electricity cost by processing a quantity of job equal to
min(δ1, p2J j) during off-peak periods instead of processing them during peak periods.
Let “Loss” be the minimal loss, that means the minimal rise in electricity cost compar-
ing to Johnson’s sequence:

Loss ≥ (δ2 −δ1)×d2 × f cg

≥ (p1J j − p2J j)×d2 × f cg
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where d2 is the amount of energy consumption per unit time of machine 2 when it is
on “idle”.
“Loss” represents the rise in electricity cost. This rise is in the function of the difference
in “idle” times by interchanging J j and Jk. Additionally, we assume that these “idle”
time increased are located on off-peak interval.
We have:

T ECJohnson −T ECπ ≤ Gain−Loss
≤ min(δ1, p2J j)×b2 × ( f cg+1 − f cg)− (p1J j − p2J j)×d2 × f cg

Let A = Gain−Loss. If A ≤ 0, Johnson’s sequence dominates any others sequences in
term of total electricity cost:

min(δ1, p2J j)×b2 × ( f cg+1 − f cg)− (p1J j − p2J j)×d2 × f cg ≤ 0

↔min(δ1, p2J j)×b2 × ( f cg+1 − f cg)≤ (p1J j − p2J j)×d2 × f cg

↔
b2 × ( f cg+1 − f cg)

d2 × f cg
≤

p1J j − p2J j

min(δ1, p2J j)

We denote job J j by j to simplify the notation. Then in the cases of two pricing
intervals and the electricity prices are increasing, the Johnson’s rule gives the optimal
solution if

b2 × ( f cg+1 − f cg)

d2 × f cg
≤

p1 j − p2 j

min(δ1, p2 j)
,∀ j ∈ J

Appendix B. Property based on Johnson’s rule

Appendix B.1. Two pricing intervals g and g+1
We study a sequence π′ whose Jg ⊂ J and Jg+1 ⊂ J. We prove that reorder jobs of the subset

Jg and jobs of the subset Jg+1 according to Johnson’s rule do not increase the total electricity cost.

Appendix B.1.1. The set Jg

We have:

• Jg: set of jobs whose starting times on machine 2 are executed during pricing interval g.

• Siπ: starting time on machine i of sequence π.

• Ciπ: completion time on machine i of sequence π.

• ∆π
i,g total idle time of machine i of sequence π during pricing interval g.

• WLπ
i,g: total processing time workload of machine i of sequence π during pricing interval g.
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Machine 1 Jk J j

Machine 2 Jk J j

Off-peak Peak
δ1

∆1

∆2

(a) Johnson’s sequence

Machine 1 J j Jk

Machine 2 J j Jk

Off-peak Peak
δ1 δ2∆2

∆1

(b) The sequence π

Figure A.9: The comparaison of interchage between Jk et J j
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Let π∗ be the optimal order for jobs belonging to Ep.
As all jobs j of Jg start on machine 2 during pricing period g, we have:

∆
π∗
1,g+1 = 0. (B.1)

WLπ∗
1,g = ∑

j∈Jg

p1 j. (B.2)

∆
π∗
1,g +WLπ∗

1,g =C1π∗. (B.3)

WLπ∗
1,g+1 = 0. (B.4)

∆
π∗
2,g+1 = 0. (B.5)

WLπ∗
2,g+1 = max(0,C2π∗ −EDg). (B.6)

WLπ∗
2,g +WLπ∗

2,g+1 = ∑
j∈Jg

p2 j. (B.7)

STg +∆
π∗
2,g +WLπ∗

2,g +WLπ∗
2,g+1 =C2π∗. (B.8)

Jobs belonging to Jg start on machine 2 during pricing interval g, that is why their processing
on machine 1 must be finished before the ending time of interval g. Equations (B.1), (B.2) and
(B.4) represent that constraint.

The last job of sequence π∗ starts on machine 2 during pricing interval g so the job can be
finished either on interval g (WLπ∗

2,g+1 = 0) either on interval g+ 1 (WLπ∗
2,g+1 = C2π∗ −EDg). We

always have ∆π∗
2,g+1 = 0. Equations (B.5) and (B.6) represent that constraint.

We have the total electricity cost of sequence π∗:

T ECπ∗ = ∑
i∈M

∆
π∗
i,g ×di × f cg + ∑

i∈M
WLπ∗

i,g ×bi × f cg

+ ∑
i∈M

∆
π∗
i,g+1 ×di × f cg+1 + ∑

i∈M
WLπ∗

i,g+1 ×bi × f cg+1

Then we consider a sequence π of Jg that order of jobs follows Johnson’s rule.
Equations (B.1)-(B.8) are still valid for sequence π. As π follows Johnson’s rule, we also have:

C1π ≤C1π∗. (B.9)

C2π ≤C2π∗. (B.10)

From equation (B.10), by delaying some jobs on machine 2, we are able to obtain C2π =C2π∗ .
Then, from equation (B.6), we get: WLπ

2,g+1 = WLπ∗
2,g+1 = max(0,C2π∗ −EDg). With equations

(B.7) and (B.8), we obtain also: ∆π
2,g = ∆π∗

2,g and WLπ
2,g =WLπ∗

2,g

Equations (B.2), (B.3) and (B.9), imply WLπ∗
1,g =WLπ

1,g = ∑ j∈Jg p1 j and ∆π
1,g ≤ ∆π∗

1,g.
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So with any sequence π following Johnson’s rule, we can obtain:

T ECπ = ∑
i∈M

∆
π
i,g ×di × f cg + ∑

i∈M
WLπ

i,g ×bi × f cg

+ ∑
i∈M

∆
π
i,g+1 ×di × f cg+1 + ∑

i∈M
WLπ

i,g+1 ×bi × f cg+1.

≤ T ECπ∗.

We take an example illustrated in figure (A.9). We see that total idle time and total processing
time on each machine during each pricing interval are the same between π∗ and π, so T ECπ =
T ECπ∗

Machine 1 J1 J2 J3

Machine 2 J1 J2 J3

g g+1

C2π∗

C1π∗S1π∗

(a) The sequence π∗

Machine 1 J1 J3 J2

Machine 2 J1 J3 J2

g g+1

C2π

C1πS1π

(b) The sequence π following Johnson’s rule with jobs’ delay

Figure B.10: The comparison between π∗ and Johnson’s sequence π

Appendix B.1.2. The set Jg+1

Let π∗ be an optimal sequence for Jg+1. As all jobs of Jg+1 start on machine 2 during pricing
period g+1, we have:

∆
π∗
2,g = 0. (B.11)

WLπ∗
2,g = 0. (B.12)
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WLπ∗
2,g+1 = ∑

j∈Jg+1

p2 j. (B.13)

WLπ∗
1,g = max(0,EDg −S1π∗ −∆

π∗
1,g). (B.14)

WLπ∗
1,g +WLπ∗

1,g+1 = ∑
j∈Jg+1

p1 j. (B.15)

S1π∗ +∆
π∗
1,g +∆

π∗
1,g+1 +WLπ∗

1,g +WLπ∗
1,g+1 =C1π∗ . (B.16)

As all jobs of Jg+1 start on machine 2 during pricing interval g+ 1, the machine 2 does not
process any job of Jg+1 during interval g. Equations (B.11), (B.12) and (B.13) represent this
constraint.

As all jobs of Jg+1 start on machine 2 during pricing interval g+1,thus on machine 1, either all
jobs start during interval g+1 (WLπ∗

1,g = 0) either at least one job start during interval g (WLπ∗
1,g =

EDg −S1π∗ −∆π∗
1,g).

Equations (B.15) and (B.16) represent the workload on machine 1.
In equation (B.14), if ∆π∗

1,g ̸= 0, there are at least one job start and finish during pricing interval
g. Delay these jobs to obtain ∆π∗

1,g = 0 will have no impact neither on C1π∗ nor on C2π∗ . Let
S∗1π∗ = S1π∗ +∆π∗

1,g.
So we have:

∆
π∗
2,g = 0. (B.17)

WLπ∗
2,g = 0. (B.18)

WLπ∗
2,g+1 = ∑

j∈Eg+1

p2 j. (B.19)

WLπ∗
1,g = max(0,EDg −S∗1π∗). (B.20)

∆
π∗
1,g = A. (B.21)

With A is constant.
WLπ∗

1,g +WLπ∗
1,g+1 = ∑

j∈Jg+1

p1 j. (B.22)

S∗1π∗ +∆
π∗
1,g+1 +WLπ∗

1,g +WLπ∗
1,g+1 =C1π∗. (B.23)

Let π be a sequence following Johnson’s rule and S∗1π∗ be the starting time on machine 1 of this
sequence.

Equations (B.17)-(B.23) are still valid for sequence π. As π follows Johnson’s rule, we have
also:
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C1π ≤C1π∗. (B.24)

C2π ≤C2π∗. (B.25)

From equation (B.25), by delaying some jobs on machine 1, we can obtain C1π = C1π∗ and
S∗1π

= S1π∗ .
Thus, we have:

∆
π
2,g = ∆

π∗
2,g = 0. (B.26)

WLπ
2,g =WLπ∗

2,g = 0. (B.27)

WLπ
2,g+1 =WLπ∗

2,g+1 = ∑
j∈Jg+1

p2 j. (B.28)

∆
π
2,g+1 ≤ ∆

π∗
2,g+1. (B.29)

WLπ
1,g =WLπ∗

1,g = max(0,EDg −S∗1π∗). (B.30)

∆
π
1,g = ∆

π∗
1,g = A. (B.31)

Where A is constant.
WLπ

1,g +WLπ
1,g+1 = ∑

j∈Jg+1

p1 j. (B.32)

S∗1π∗ +∆
π
1,g+1 +WLπ

1,g +WLπ
1,g+1 =C1π∗. (B.33)

So with any sequence π following Johnson’s rule, we can obtain:

T ECπ = ∑
i∈M

∆
π
i,g ×di × f cg + ∑

i∈M
WLπ

i,g ×bi × f cg

+ ∑
i∈M

∆
π
i,g+1 ×di × f cp+1 + ∑

i∈M
WLπ

i,g+1 ×bi × f cg+1.

≤ T ECπ∗.

We take an example illustrated in figure (B.10). We see that the total idle time and the total
processing time on each machine during each pricing interval are the same between π∗ and π, so
T ECπ = T ECπ∗ .
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Machine 1 J2 J4 J5 J6

Machine 2 J2 J4 J5 J6

g g+1

C2π∗

C1π∗S1π∗

S2π∗

(a) The sequence π∗

Machine 1 J2 J4 J5 J6

Machine 2 J2 J4 J5 J6

g g+1

C2π∗

C1π∗S∗
1π∗

S2π∗

(b) The sequence π∗ with jobs’ delay

Machine 1 J4 J5 J2 J6

Machine 2 J4 J5 J2 J6

g g+1

C2π

C1πS∗
1π

S2π

(c) The sequence π following Johnson’s rule with jobs’ delay

Figure B.11: The comparison between the sequence π∗ and Johnson’s sequence π
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Appendix B.2. Three pricing intervals (g−1),g and (g+1)
We consider in this section a sequence π∗ of the ensemble Jg ⊂ J. Jobs in Jg start on machine

2 during pricing interval g. The first job of π∗ starts on machine 1 during interval (g−1) and the
last job of π∗ finishes during interval (g+1).

We prove that for any sequence π∗, reorder jobs according to Johnson’s rule will not increase
the total electricity cost.

Base on previous sections (Appendix B.1.1) and (Appendix B.1.2), we have total workload
and total idle time allocated to each pricing interval as follows:

∆
π∗
2,g−1 = 0. (B.34)

∆
π∗
2,g+1 = 0. (B.35)

WLπ∗
2,g−1 = 0. (B.36)

WLπ∗
2,g+1 = max(0,C2π∗ −EDg). (B.37)

WLπ∗
2,g +WLπ∗

2,g+1 = ∑
j∈Jg

p2 j. (B.38)

STg +∆
π∗
2,g +WLπ∗

2,g +WLπ∗
2,g+1 =C2π∗. (B.39)

∆
π∗
1,g+1 = 0. (B.40)

∆
π∗
1,g−1 = A. (B.41)

Where A is constant.

WLπ∗
1,g+1 = 0. (B.42)

WLπ∗
1,g−1 = max(0,EDg−1 −S∗1π∗). (B.43)

WLπ∗
1,g−1 +WLπ∗

1,g = ∑
j∈Jg

p1 j. (B.44)

S1π∗ +∆
π∗
1,g−1 +∆

π∗
1,g +WLπ∗

1,g−1 +WLπ∗
1,g =C1π∗. (B.45)

We can estimate total electricity cost of sequence π∗ as follows:
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T ECπ∗ = ∑
i∈M

∆
π∗
i,g−1 ×di × f c(g−1)+ ∑

i∈M
WLπ∗

i,g−1 ×bi × f c(g−1)

+ ∑
i∈M

∆
π∗
i,g ×di × f cg + ∑

i∈M
WLπ∗

i,g ×bi × f cg.

+ ∑
i∈M

∆
π∗
i,g+1 ×di × f c(g+1)+ ∑

i∈M
WLπ∗

i,g+1 ×bi × f c(g+1).

Let π be the sequence of Jg following Johnson’s rule and S∗1π∗ be the starting time on machine
1 of sequence π.

Equations (B.34)-(B.45) are still valid for sequence π. Additionally, as π follows Johnson’s
rule, we also have:

C1π ≤C1π∗. (B.46)

C2π ≤C2π∗. (B.47)

As representing in equations (B.46) and (B.47), with π, we can delay jobs in this sequence to
obtain C1π =C1π∗ and C2π =C2π∗ . Thus, we can get:

∆
π
2,g−1 = ∆

π∗
2,g−1 = 0. (B.48)

∆
π
2,g+1 = ∆

π∗
2,g+1 = 0. (B.49)

WLπ
2,g−1 =WLπ∗

2,g−1 = 0. (B.50)

WLπ
2,g+1 =WLπ∗

2,g+1 = max(0,C2π∗ −EDg). (B.51)

WLπ
2,g =WLπ∗

2,g = ∑
j∈Jg

p2 j −max(0,C2π∗ −EDg). (B.52)

∆
π
2,g = ∆

π∗
2,g =C2π∗ −WLπ∗

2,g+1 −WLπ∗
2,g −STg. (B.53)

∆
π
1,g+1 = ∆

π∗
1,g+1 = 0. (B.54)

∆
π
1,g−1 = ∆

π∗
1,g−1 = A. (B.55)

where A is constant.

WLπ
1,g+1 =WLπ∗

1,g+1 = 0. (B.56)
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WLπ
1,g−1 =WLπ∗

1,g−1 = max(0,EDg−1 −S∗1π∗). (B.57)

WLπ
1,g =WLπ∗

1,g = ∑
j∈Jg

p1 j −max(0,EDg−1 −S∗1π∗). (B.58)

∆
π
1,g = ∆

π∗
1,g =C1π∗ −S∗1π∗ −∆

π∗
1,g−1 −WLπ∗

1,g−1 −WLπ∗
1,g. (B.59)

With equations (B.48)-(B.59), we can obtain T ECπ = T ECπ∗ .
Thus, for any sequence π∗ whose jobs’ starting time on machine 2 begin during a same pricing

interval, we can get a sequence π following Johnson’s rule and possesses a same total electricity
cost.

We provide an example illustrated on figure (B.12). We see that the total idle time and the
total processing time on each machine during each pricing interval g−1, g and g+1 are the same
between π∗ and π, so T ECπ = T ECπ∗
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Machine 1 J3 J2 J6 J5 J4

Machine 2 J3 J2 J6 J5 J4

g−1 g g+1

(a) The sequence π∗

Machine 1 J3 J2 J6 J5 J4

Machine 2 J3 J2 J6 J5 J4

g−1 g g+1

C2π∗

C1π∗S∗
1π∗

S2π∗

(b) The sequence π∗ with jobs’ delay

Machine 1 J4 J5 J3 J2 J6

Machine 2 J4 J5 J3 J2 J6

g−1 g g+1

C2π∗

C1π∗S∗
1π∗

S2π∗

(c) The sequence π following Johnson’s rule with jobs’ delay

Figure B.12: The comparison between π∗ and Johnson’s sequence π
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