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Abstract

Existing thermal comfort prediction approaches by machine learning models have been achieving great success based on large
datasets in sustainable Industry 4.0 environment. However, the industrial Internet of Things (IoT) environment generates small-scale
datasets where each dataset may contain lots of worker’s private data. The latter is challenging the current prediction approaches as
small datasets running a large number of iterations can result in overfitting. Moreover, worker’s privacy has been a public concern
throughout recent years. Therefore, there must be a trade-off between developing accurate thermal comfort prediction models
and worker’s privacy-preserving. To tackle this challenge, we present a privacy-preserving machine learning technique, federated
learning (FL), where an FL-based neural network algorithm (Fed-NN) is proposed for thermal comfort prediction. Fed-NN departs
from current centralized machine learning approaches where a universal learning model is updated through a secured parameter
aggregation process in place of sharing raw data among different industrial IoT environments. Besides, we designed a branch
selection protocol to solve the problem of communication overhead in federating learning. Experimental studies on a real dataset
reveal the robustness, accuracy, and stability of our algorithm in comparison to other machine learning algorithms while taking
privacy into consideration.

Keywords:
Industrial Internet of Things, Federated Learning, Neural Networks, Privacy-Preserving, Thermal Comfort Prediction.

Thermal Comfort
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1. Introduction

During the last decennary, the term Industry 4.0 has become
a mandatory requirement for the renaissance of every industry
to stay on the safe shore. The IoT, machine learning, big data,
control mechanisms, management and monitoring systems, ar-
tificial intelligence, human-machine interactions, real-time data
management, and automation processes all participate in the
process of increasing profits while decreasing costs in the mod-
ern industry [1].

Consequently, human beings are considered key players in
boosting the connectivity with the machines and for assuring
the right machine operations. However, the performance of
the worker is directly linked to his/her health, comfort, and
well-being which are affected by the indoor environment [2].
Worker’s thermal comfort is acknowledged as a core require-
ment in healthcare for industrial IoT environments [2]. Inade-
quate thermal conditions resulted by both two low or elevated
temperatures, by too cool or too warm environments have sig-
nificant negative impact on worker performance [3]. Studies [3]
indicate that comfortable cool environment is crucial for perfor-
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Figure 1: Collecting thermal comfort input data of a worker in an industrial
environment.

to operate, the human will release excess heat to the environ-
ment. This heat transfer is proportional to the temperature dif-
ference. The body loses more heat in cold environment while it
does not release enough heat in the cold environment. Both hot

mance at work, where avoiding elevated temperatures in sum-
mer and winter can result in measurable benefits.

Thermal comfort is defined as a condition of mind that ex-
presses subjective satisfaction to the surrounding thermal envi-
ronment [4]. A human body can be considered as a heat en-
gine with food as an input energy. In order to allow the body
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and cold scenarios result in discomfort. Maintaining this stan-
dard of thermal comfort for workers in buildings is one of the
important goals of Heating, Ventilation, and Air Conditioning
(HVAC) design engineers. It has been mentioned that thermal
comfort affects the work efficiency, creativity, and happiness of
an industrial worker [5]. The thermal discomfort of a worker
does not only impact the productivity, performance, and en-
gagement, but also affects the lifelong health of the worker [6].
Hence, thermal comfort prediction has been drawing attention
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in the industrial domain. Still, thermal comfort modeling is
a demanding task considering the complexity of the worker’s
body and the non-linear relationship between input attributes.

In thermal comfort prediction, centralized machine learning
models are commonly utilized to predict thermal comfort state
[7]. Data are collected from different environmental and per-
sonal sensors equipped within the industrial IoT environment,
as shown in Fig. 1. Collected data are fused to the cloud where
a machine learning model is trained. In recent publications,
many authors resort to applying machine learning algorithms to
predict the thermal comfort of a group of workers in the same
building. However, collecting a sufficient amount of data to
achieve a desired training accuracy is limited. Moreover, the
shared data may contain personal private information about the
workers prompting privacy exposure. These information might
include captured images from IoT-based camera devices, which
are extremely sensitive [8]. The captured images allow us to de-
rive the metabolic rate and clothing insulation, which are vital
elements in thermal comfort index calculation [9]. To address
the issue of privacy exposure and data leakage, we integrate
a privacy-preserving machine learning model, federated learn-
ing (FL) [10], for thermal comfort prediction. In FL, a global
shared model is trained on distributed branches locally with-
out raw data exchange. We also propose Fed-NN, an enhanced
FL algorithm with a neural network model to predict the ther-
mal comfort state in an accurate way. The Fed-NN algorithm
builds a global deep learning model after aggregating the model
gradient parameters from different branches located in different
geographical areas. The primary contributions of this paper are
outlined as follows:

1. To the best of our knowledge, we are the first to apply fed-
erated learning approach in thermal comfort state predic-
tion of a worker, which is a new privacy-preserving algo-
rithm that combines the emerging FL algorithm and neural
networks for thermal comfort prediction. Without data ex-
change, the model is trained locally providing a reliable
data privacy mechanism.

2. We propose an improved version of the FedAvg algorithm
by adding a branch selection protocol to avoid communi-
cation overhead which is suitable for large industrial IoT
environments.

3. We conduct a variety of simulations on real data to demon-
strate the accuracy of our proposal compared to other al-
gorithms.

The rest of the paper is organized as follows. Literature about
thermal comfort prediction and privacy issues in industrial IoT
is presented in Section 2. The centralized and federated learn-
ing problems are defined in Section 3. The Fed-NN algorithm
and the selection protocol are introduced in Section 4. Section
5 demonstrates the results of simulations. The conclusion is
described in Section 6.

2. Related Work

2.1. Thermal Comfort Prediction

Thermal comfort prediction has always been a triggering is-
sue in the IoT domain, which serves as a function of real-time
thermal control. New thermal comfort state prediction tech-
niques proposed by researchers can be divided into two types:
(1) parametric models and (2) non-parametric models.

Parametric Models: Parametric models predict future data
using a definite set of parameters of fixed size no matter how
much the number of training examples is. Thermal comfort
prediction, in most cases, implies the action of predicting the
Predicted Mean Vote (PMV) index developed by Fanger but
using different input parameters [7].The PMV index was de-
veloped based on principles of heat-balance equations and it
was adopted by the American Society of Heating, Refrigerat-
ing and Air-conditioning Engineers (ASHRAE) Standard 55.
PMYV is an index that aims to predict the mean value of votes of
a group of occupants on a seven-point thermal sensation scale
that ranges between (—3) for hot sensation and (+3) for cold
sensation. The comfort state is achieved between —0.5,+0.5,
see Fig. 1. The thermal comfort index is scaled with six differ-
ent attributes belonging to three different collections: weather
data, indoor HVAC data, and personal attributes including the
metabolic rate and clothing insulation. Different regressive
models have been adapted to learn the PMV index including the
auto-regression with exogenous variables [11], the logistic re-
gression [12] , the locally weighted regression [13], the support
vector machine [14], and the Gaussian process regression [15].
These models enhance the accuracy of thermal comfort pre-
diction through targeting the statistical correlation between the
PMYV index and input parameters. They also have several ad-
vantages: high transparency and interpretation, which are trivial
for a human to understand. Moreover, the computational time
is totally underneath that of non-parametric models. However,
these solutions are limited to simple problems and are highly
constrained to a specific functional form, which may affect the
training accuracy.

Non-parametric Models: Non-parametric models predict the
output parameter without making strong assumptions about the
form of the mapping function between input and output data.
These models have acquired huge success in the thermal com-
fort prediction resulting from the improvement of data storage
and computing. Zhang et al. [16] proposed a fine-grained deep
learning neural network (DNN) approach to predict thermal
comfort inside a smart building. The DNN model outperforms
other machine learning models including the support vector ma-
chine and linear regression. Considering the relation between
the variables, the feedforward neural network model was pro-
posed in [17] as an explicit function of the relation between the
PMYV index and accessible variables.

2.2. Privacy Issues for the Industrial IoT Systems

The smart meters equipped in the Industry have unintended
consequences for worker privacy. Video camera information
stored serves as an information-rich side channel, exposing



worker habits and clothing style. Certain habits, such as repeti-
tive clothing brands wear, have detectable style signatures. His-
tory has proved that if political or financial incentives coincide,
data mining mechanisms will rapidly progress to suit the crav-
ings of those who aim at exploiting that information. In indus-
trial IoT systems, different methods and models rely on train-
ing datasets from users, occupants, workers, factories, build-
ings, and offices. Unfortunately, direct data exchange among
different branches is prohibited by law with the increasing pri-
vacy awareness. To avoid these privacy issues, Lee et al. [18]
present a WiFi-based occupancy monitoring system, which rec-
ognizes occupant’s activities of daily living in a non-intrusive
way by exploiting commercial off-the-shelf WiFi devices. In
this approach, Channel State Information (CSI) has been ex-
tracted from several IoT devices and then transformed using the
Short-Time Fourier Transform into image data. This preserves
the temporal-spatial information of all the receiver data.

In [19], the authors designed a system that enables differ-
ent parties to jointly learn an accurate neural network model
without sharing data. That was performed through parallelizing
and executing asynchronously the stochastic gradient descent
(SGD) optimization problem on different training data. A fea-
sible solution to assure that data is only accessed by authenti-
cated parties in the industrial IoT control system is presented in
[20]. A directed graph was used to present relationships be-
tween devices based on a cryptographic accumulator and an
underlying standard digital signature scheme. However, these
solutions have some disadvantages. First, no trade-off exists be-
tween the accuracy of the model and privacy. That is, privacy
measures are considered but accuracy is not achieved. Second,
these models are not capable of handling a huge amount of data
in a small period of time [21]. In addition, the fact that different
branches can reveal private data in the sharing process violates
the legislation provided by different privacy-preserving regula-
tions including the general data protection regulation (GDPR)
issued by the EU. For example, the data transferred through the
training process might include captured images of the work-
ers. These images, as previously mentioned, help in recogniz-
ing workers metabolic rate and clothing insulation. The Art.
5 of the GDPR document presents key elements on the princi-
ples relating to processing of personal data. It is mentioned that
the data must be processed in a manner that ensures appropriate
security of the personal data, including protection against unau-
thorised or unlawful processing and against accidental loss, de-
struction or damage, using appropriate technical or organisa-
tional measures. In case of captured data leakage by a third
party, the industry will be under legal accountability. Accord-
ingly, we have to propose new methods to the growing sense of
privacy in the Industry 4.0 domain.

Since the first presentation of federated learning by McMa-
han et al. [22] in 2017, FL models have been used to analyze
private data for its privacy-preserving features. FL builds ma-
chine learning models depending on multiple datasets located
across multiple devices while hindering data leakage [23]. FL
was implemented for the first time to decentralized learning of
mobile phone devices without taking privacy into considera-
tion [24]. Nishio and Yonetani addressed the issue of mobile-

edge computing using FL where they proposed the FedCS pro-
tocol to diminish training process time [25]. In [26], the authors
proposed a federated transfer learning framework for wearable
healthcare. In [27], the authors propose a federated learn-
ing framework, the federated transfer learning-enabled smart
work packaging for protecting the personal image information
of construction workers in occupational health and safety man-
agement.

Although researchers have developed some privacy-
preserving methods in the industrial IoT systems, they do not
fully preserve the workers’ privacy. In this article, we propose
a privacy-preserving FL. method with NN for thermal comfort
state prediction of workers. To the best of our knowledge, this
is the only work that applies federated deep learning in the
thermal comfort state prediction in the industrial domain.

3. Problem Definition

The term “branch” is used all over the article to character-
ize entities in the industrial IoT environment. Entities might be
an office or a factory, etc. Let K = K, K3, ..., K,, denotes the
branch set. In the context of thermal comfort state prediction,
we consider branches as the clients in the definition of FL. Each
branch has a local database D;. We aim at predicting whether
the workers are thermally comfortable having historical sensor
data information from different branches without sharing raw
data and without lack of privacy. We, therefore, design a secure
weight parameter aggregation mechanism as follows. The ther-
mal comfort data collected by each branch creates a database
D;. The deep learning neural network model formulated in K;
uses local training data from D; to adjust updated model param-
eters p;. Each branch finishes the same exercise then uploads
its respective p; to the cloud, where a new global model is ag-
gregated based on the values of p;.

model.
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Figure 2: A secure mechanism to aggregate parameters into the cloud.

As indicated in Fig. 2, there is no data transfer among differ-
ent entities due to a secure parameter aggregation mechanism.
With no data exchange, the cloud creates a new global model
aggregated from the multiple parameters sent by each branch.

In this paper, f(.) represents the thermal comfort prediction
function, ¢ indicates the #-th timestamp in the time series, and
a, presents the state of thermal comfort at time z. A value




a; = 1 or 0O reflects the state of being thermally comfortable
or uncomfortable at time 7, respectively. Three global problems
are presented in the article:

1. Information Privacy: Information privacy attempts to em-
ploy data while conserving an individual’s privacy. That
is, it prevents direct access to private data including per-
sonally identifiable information. For example, informa-
tion about a person’s financial transactions can reveal a
lot about a person’s antiquity, including places he visited,
whom he has met, products bought, etc., violating the in-
formation privacy definition [28]. In the following article,
each branch uses local datasets to train its model locally.
Then, each branch uploads the updated parameters instead
of sharing data with the cloud.

2. Centralized Thermal Comfort Prediction: The central-
ized thermal comfort prediction problem is to measure
axs = f(t+s5, D), given a set of branches K;, an aggregated
database D = D; U D, U ... U Dy and s is the prediction
window after ¢.

3. Federated Thermal Comfort Prediction: The federated
thermal comfort prediction problem is to measure ;s =
fi(t + s,D;), given a set of branches K;, their respective
databases D; and s the prediction window after r. The
function f;(.,.) is a local version of the function f(.,.).
Consequently, the formed results (parameters) are aggre-
gated.

4. Methodology

In a centralized learning process, three steps are followed:
data processing, data fusion, and model creation. Traditional
centralized data processing techniques consist of extracting data
features and labels from original data before fusing. These tech-
niques include outliers removal, data sampling, normalization,
and combinations. Through data fusion, data is shared directly
by the learning model and all parties to achieve a global aggre-
gated database for training. This approach is a subject of de-
bate due to information privacy issues as it violates the recom-
mendations provided by the privacy regulations including the
EU GDPR. In order to address this challenge, FL is introduced.
Nevertheless, most of the existing FL techniques employ sim-
ple machine learning models such as XGBoost and Decision
Tree rather than neural network models[29]. These traditional
models necessitate the upload of a huge number of parameters
to the cloud in the federated learning process, which may cause
a training failure for a local or global model due to expensive
communication overhead [30] and limited network bandwidth.
The communication overhead is measured by the number of
bytes in each communication message sent. Accordingly, the
FL framework needs to propose new aggregation mechanisms
to deal with the problem of communication overhead. In this
section, we propose the Fed-NN approach to predict the ther-
mal comfort state, which is an improved version of the FedAvg
algorithm as a way to reduce the communication overhead.

Algorithm 1: Federated Averaging Algorithm (Fe-
dAvg)

Input: Branches K, s is the fraction of branches on
each round, B is the local mini-batch size. 7 is the
learning rate and E is the number of local epochs. Dy
is the local training dataset. V.£(.;.) is the gradient
optimization function and m the number of rounds.

Output: w

Server Executes:

Initialize w°;

for roundt=1,2,....,mdo

n « max(s- K, 1);

{K,} <« random set of n branches to participate in
the training;

Send w? to all branches in {K,};

for each branch k € {K,} in parallel do

Initialize wf ="
wk, | « BranchUpdate(k, w});
end

Wry < m Zkel(,, ‘UfH;
end
Branch Executes:
BranchUpdate (k, w):
B « (split Dy into batches of size B);
while local epoch i in E do
while batch b € 8 do
| w w-nVL(w;b);
end
end
return w to server;

4.1. Federated Learning and Deep Learning

FL is a privacy-preserving machine learning paradigm where
different branches in the industrial IoT environment can con-
tribute to the overall model training while keeping their data
locally.

In particular, the FL technique requires learning both single
and global prediction models from multiple databases stored
locally in separate dozens or hundreds of branches [31]. In FL,
a set of local datasets Dy of size Dy represents data from a set
K of K set of branches. Therefore, the size of the local training
datasets is D = Zle Dy. In deep learning, the typical settings
are given by a set of input-output pairs {x;, y,-}g ‘» where x; € R®
represents the input sample vector with g features and y; € {0, 1}
indicates the labeled output vector. Through training, we need
to identify the model parameter vector (weight) w € RS that
defines the output y; with the loss function fil"”(w). The goal is
to learn this model locally with secure aggregation of weights
among branches. The loss function on the dataset of branch &,
therefore, is presented as follows:

1 ‘
Tw) = o= ) F@) + r(w) (1)

€Dy,
where w € RS is the local model weight VA € [0, 1] and (.) is
the regularizer function, as we do not want the overall model to



be too drifted. At the cloud, the global predicted model problem
is defined as:

K
argmin J(w), J(w) = Z %Jk(w) )

weRs =1

where Ry is the regularizer for each branch. The above problem
can be reformulated as follows:

K . loss
argmin J(w) = Z ZzeDk fl () + Ar(w)

weRS =1 D

3

For the thermal comfort prediction problem, the deep neural
network is used as a local model.

Algorithm 2: Federated Neural Network Algorithm
(Fed-NN)

Input: {K,} € K, [: the local mini-batch size, 5: the
learning rate, m the number of rounds, Dy: the local
training dataset and SGP: the optimization function.

Output: w

Server Executes:

Initialize w?;

for roundi=1,2,..,mdo

while 7;; > 0 do
{K,} < random set of n branches to participate
in the training;
tag < tar — 1;
end
Send «? to all branches in {K,};
while 7, > 0 do
while &, has not convergence do
for each branch k € {K,} in parallel do
Initialize w* = w’;
Conduct a mini-batch input time step
X
Conduct a mini-batch thermal comfort
index series {Y}};
hy = Va1 Sim (X)) = Y);

“)I;+1 « BranchUpdate(k, W, h,,);

end

end
tor — typ — 1;

end

Wyl < m ZkEK,, w];+1;
end
Branch Executes:
BranchUpdate (k, w, h,,):
B « (split Dy into batches of size B);
while local epoch i in [ do
while batch b € 8 do
| W~ w-n(SGD(w;b));
end
end
return w to server;

4.2. Privacy-Preserving Thermal Comfort Prediction Algo-
rithm

Centralized learning methods merge data from different
branches in the cloud. This may result in communication over-
head and privacy leakage. We propose a privacy-preserving
thermal comfort prediction algorithm, the Fed-NN, to address
this issue. We start by introducing the FedAvg algorithm, which
presents the crust of a secure gradient aggregation structure.
Then, we propose an improved design of FedAvg, the Fed-NN
algorithm, which is a communication-efficient scheme with a
random selection of branches to address the problem of com-
munication overhead of the FedAvg algorithm.

1. Federated Averaging Algorithm (FedAvg): In the follow-
ing algorithm, each branch performs gradient descent op-
timization on the server model based on the local dataset
without sending informational data to the cloud. This will
hinder the problem of network bandwidth limitations in
cloud aggregation. On the server, the received weights are
aggregated based on the updates from all branches. Al-
gorithm 1 shows the detailed pseudo code of the FedAvg
algorithm that can be summarized in the following steps:

e A number of branches are selected to participate in
the training round for which a global model w° is
sent.

e In each k selected branch, the model is trained based
on local data. The w* is updated for E local epochs of
SGD to obtain the next wfﬂ based on the BranchUp-
date function.

e Using an aggregation method (wy —
k

|[1§ I Dkek, Wy, in Algorithm 1), the server ag-
k
gregates each branch parameter wy, ;.

FedAvg algorithm is an iterative mechanism, it helps limit
the communication overhead when transmitting parame-
ters. At each #-th round in the training process, the model
updated by each branch will be updated to the server
global model.

2. Branch Selection Protocol: In an industrial IoT environ-
ment, the number of branches is small, including office
places, factories, and other sites. In such cases, the FL
problem is considered a small-scale problem. However,
the number of branches might increase at any time. The
increase is due to the presence of different factories all
over the world. The industries wish to control the ther-
mal comfort in all their factories. This will lead to the
divergence of FedAvg algorithm due to the cost of com-
munication overhead, and hence, decrease the accuracy
of prediction in the FL framework. The communication
overhead is the proportion of time the server spends com-
municating with the branches instead of aggregating the
ML parameters. Moreover, in an FL framework, we are
considering the presence of heterogeneous datasets, differ-
ent computational capacities, and different channel condi-
tions representing each branch, respectively. For instance,
a branch with a large dataset compared to other branches
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Figure 3: Branch Selection Protocol.

requires more time updating the model unless the branch
possesses a better computational power. This will result
in a delay of the new model update on the cloud. Further-
more, if a branch is under a poor channel condition, the
upload time will become longer. The cloud can perform
the Aggregation if and only if it receives all branches up-
dates. Therefore, we designed a mechanism to select a set
of branches that will participate in the i-th round training
through a straight-forward approach. We set a deadline for
random branches to accomplish the Training and Upload-
ing steps. Submitted updates after the indicated deadlines
are ignored.

The participants in the branch selection protocol are
branches and the server, which is defined as a cloud-based
distribution [23]. In the #-th training round, the selection
protocol combines three steps: (1) selection phase, (2)
training phase, and (3) aggregation phase, see Fig. 3.

o Selection Phase: The server selects a subset of
branches to participate in the training phase depend-
ing on the eligibility of these branches, their will-
ingness to participate, or other indicated criterion
(Fig. 3-(1)). This periodic selection is done through
a specific time #;;, where each branch checks into
the server by opening a bi-directional stream. If a
branch opens the stream after the indicated deadline
tg1 or if the number of selected branches in the train-
ing process has been reached, the branch will not be
selected. In case a branch is not selected in the ¢-th
round time, the server responds to the branch with
instructions for an attempt in the next round time.
The late response of a branch might be linked to a
severely poor network channel.

e Training Phase: At first, the server loads the model

3.

already trained on server data (Fig. 3-(2)). Then,
the server sends the gradient weights to the selected
branches in phase 1 (Fig. 3—@). Locally, each
branch will train the global model and send back
the updated parameters as in Fig. 3-@. The server
sets a time 7, for branches to locally train their data
and send the parameter updates. Some branches
might fail in accomplishing training within this dead-
line due to large datasets. Moreover, some branches
packets might be lost in the network and therefore,
they will not be selected for the aggregation process.

o Aggregation Phase: In the cloud, the uploaded pa-
rameters are aggregated to create the new global
model through a secure framework (Fig. 3-@). In
this framework, the server implements the Fed-NN
algorithm to hinder the communication costs. The
global model is then updated by storing the model
checkpoints (Fig. 3—@). Finally, we proceed to
phase 1 in the (i + 1) round time.

Federated Neural Network Algorithm (Fed-NN) with
branch selection: The Fed-NN addresses a real-time ac-
curate prediction while maintaining privacy using FedAvg
strategy, neural networks and the branch selection proto-
col. The pseudo-code of Fed-NN is presented in Algo-
rithm 2 and it incorporates the following steps:

e The server initializes the global learning model and
sets a deadline 7, for a limited n number of branches
to open a bi-directional stream.

e The server broadcasts the training model to the se-
lected branches where each branch trains the neural
network model based on local data and an SGD op-
timization problem.



e Each branch trains the model on a mini-batch in-
put/output series to respect the given deadline.

e The loss function 4, is then calculated in each branch
until convergence is reached.

e Weights are sent to the server from each branch in
t;n selected deadline and the server aggregates the
weights and creates a new global model.

5. Experimentation

5.1. Simulation Setup

Simulations in this section are all conducted using Tensor-
Flow in Python 3.6. We select the first 80% of the data to train
our model and 20% for testing it. Input attributes are normal-
ized. The work is conducted on a PC running 64-bit Windows
10 ProEducation on an Intel Core i7-8700T CPU and using 16
GB of memory.

In order to precise the accuracy of our predictions, we adopt
the following evaluation metrics: mean absolute error (MAE),
mean squared error (MSE), accuracy, where y; resembles the
true thermal comfort state and §, is the predicted state.

N
1 )
MAE = ;m ~ 3l (4)

N
1 A \2
MSE = + Z i = 9p) (5)

Number of correct predictions

(6)

accuracy = —
4 Total number of prediction made

Data are collected from a one-year longitudinal case study
of workers’ thermal comfort in an air-conditioned office build-
ing in Center City Philadelphia, USA [32]. Thermal comfort
data were collected every 15 minutes between the period of July
2012 and August 2013. There are 678 621 data samples in total
related to four categories:

1. Indoor attributes include ambient temperature, relative hu-
midity, mean radiant temperature, carbon dioxide concen-
tration, and air velocity.

2. Outdoor attributes include ambient temperature, relative
humidity, and air velocity.

3. Buildings heating and ventilation attributes include ther-
mostat set-point and cooling set-point.

4. Worker’s attributes include clothing insulation and activity
level (metabolic rate).

Fig. 4 shows the variation in the value of the previously in-
dicated input attributes. The comfort output state is divided
equally between the two states. The outdoor temperature varies
between —10 and 30 degrees. The outdoor humidity ranges be-
tween 20 and 100. The outdoor air velocity has values between
0 and 10. The metabolic rate has a small range related to the
fact that workers in the office usually have three positions: sit-
ting, standing, or walking. Figure 5 reveals the correlation be-
tween each attribute and the other. Our focus is concentrated

on the correlation between the comfort state and any other in-
put parameter. It can be obvious that the thermal comfort state
has a high correlation with the outdoor temperature as well as
the clothing insulation. Besides, the cooling set-point and the
metabolic rate have a positive little correlation with the comfort
state.

The mini-batch SGD is used in both the server and the
branches for model optimization. Data was split equally to
serve 100 branches. Throughout simulations, the local mini-
batch size is / = 100, the learning rate = 0.002 and |K|= 50.

5.2. Fed-NN Model Design

In order to ensure the performance of our model, the right
hyperparameters of the neural network model must be selected.
These hyperparameters include the input layer size, the hidden
layers number, and the hidden units in each hidden layer. From
a neural network model perspective, the number of hidden lay-
ers should not be too large or too little. Therefore, we have to
perform a grid search approach to figure out the best design for
our Fed-NN model. So, we examined the performance of our
model based on different hyperparameter selections as shown
in Table 1. The MAE, MSE, and accuracy metrics are evalu-
ated after configuring the Fed-NN model with (1,2, 3) hidden
layers and (50, 100, 200) hidden units. Results show that the
best architecture with optimal values of hyperparameters for the
Fed-NN model is two hidden layers with 50 units each.

Table 1: Architecture of Fed-NN for Thermal Comfort Prediction (HL: Hidden
Layers)

HL. Hidden Units MAE MSE  Accuracy
50 0.2192 0.14012  0.6379
1 100 0.2187 0.1397 0.6368
200 0.2015  0.1408 0.7379
50, 50 0.1164 0.1065 0.8039
2 100, 100 0.1577  0.1404 0.7321
200, 200 0.1889  0.1399 0.7704
50, 50, 50 0.2183  0.1411 0.7735
3 100, 100, 100  0.2197  0.1386 0.6972
200,200,200 0.2138  0.1431 0.6917

5.3. Thermal Comfort Prediction Accuracy

In this section, we compare the performance of the Fed-
NN algorithm with different centralized machine learning al-
gorithms: the neural network (NN), the support vector machine
(SVM), and multiple linear regression (MLR) of which are con-
sidered with good performance for prediction. The prediction
evaluation metrics are presented in Table 2 where the same
dataset is trained on all machine learning models. The results
illustrate that the MAE of Fed-NN is higher than that of NN
and lower than those of SVM and MLR. Precisely, the MAE of
Fed-NN is 63.8% lower than SVM and 38.1% lower than MLR.
This is because Fed-NN inherits the prediction performance of
NN. That is, the crux structure of Fed-NN is NN. Hence, the
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MAE value proves the stability of Fed-NN and the ability of
Fed-NN to accurately predict thermal comfort state same as the
NN model while preserving privacy.

Table 2: Performance comparison between Fed-NN and other machine learning
algorithms

MAE MSE Accuracy
Fed-NN (default-settings) 0.1164  0.1065 0.8039
NN 0.1032 0.1004  0.8522
SVM 0.3216 0.2145 0.6411
MLR 0.1881 0.1879  0.7954

5.4. Performance of Fed-NN depending on Branch Number

When comparing the accuracy of Fed-NN to other machine
learning models, the number of branches is set to K = 5.
Nonetheless, in a real industrial IoT environment, the number
of branches increases depending on the size of the industry. In

this section, we investigate the performance of the Fed-NN al-
gorithm with branch selection protocol compared to the FedAvg
algorithm.

Figure 6 shows the results of the MAE metric comparison
between the FedAvg algorithm and the Fed-NN algorithm as
the number of branches increase. We can notice that the num-
ber of clients affects the performance of both algorithms. This
is due to the fact that more participating branches increase the
communication overhead, which decrements the ability of the
cloud to perform gradient aggregation.

+ aeFedAvg

~m=Fed-NN

K=5 K=10 K=15 K=20 K=25

Number of participating branches

Figure 6: MAE prediction error evolution in FedAvg and Fed-NN as number of
branches increases.

In this paper, we have taken advantage of the notion of Fe-
dAvg algorithm as it is able to overcome the expensive over-
head communication. The FedAvg alleviates the communica-
tion overhead by measuring the gradient locally on each branch
and then aggregating the gradient from all branches. However,
Fig. 6 shows that FedAvg results in a good performance when
the number of branches is less than K = 10. As the number
exceeds this threshold, the performance of the FedAvg algo-
rithm starts to deteriorate. The reason behind this decline is that
when the number of branches is above K = 10, the probability
of branch’s failure increases leading to false gradient calcula-
tions, which affects the performance of the new global model
[31]. Therefore, we designed the Fed-NN algorithm for large
industrial IoT algorithms.

Through the branch selection protocol, we will randomly se-
lect a subset of branches to participate in the i-th round train-
ing. Therefore, in Fig. 6 and 7 the values K = 5, 10, 15, 20,25



for FedAvg algorithm reflects the participation ratio r =
10%,20%,30%,40%,50% for K = 50 in Fed-NN algorithm.
Fig. 6 shows that when K = 25 (r = 50%) the MAE difference
between Fed-Avg and Fed-NN is the highest. However, when
the K = 10 (r = 20%) the MAE of FedAvg was lower than
that of Fed-NN as FedAvg results in high performance when
K < 10. The graph shows that the performance of Fed-NN
is not affected by the increase in the number of participated
branches. Hence, the protocol is robust to the number of partic-
ipants.

We also compare the communication overhead in both Fed-
NN and FedAvg algorithms (see Fig. 7). It can be significantly
demonstrated that Fed-NN with branch selection has better per-
formance than the FedAvg algorithm. Precisely, the Fed-NN
reduces the communication overhead by more than 50% when
the branch number is K = 25 (r = 50%). The figure shows that
the performance of Fed-NN is not affected by the number of
participated branches. This is due to the branch selection pro-
tocol that undergoes sub-sampling on the participated branches
before training the model locally.

FedAvg

W Fed-NN

Communication overhead (MB)

K=25 K=20 K=15 K=10 K=5

Number of Participating Branches

Figure 7: Communication Overhead comparison between FedAvg and Fed-NN
depending on number of participating branches.

In Fig. 8, we present the loss of the Fed-NN model with
different participation ratios r. It can be inferred that r has no
impact on the convergence of the model. But, it has an effect
on the loss of the model at the beginning of the training period
(higher r results in a higher loss at the beginning). Accordingly,
Fed-NN can result in an efficient, robust, and stable thermal
comfort prediction model.

5.5. Discussion

In this section, we will investigate the merits of our proposal,
Fed-NN algorithm, based on the above-derived results.

1. The core importance of our algorithm lies in the commu-
nication overhead reduction in large-scale industrial IoT
environments where the FedAvg shows some limitations.
The Fed-NN algorithm uses a branch selection protocol at
each round of training, which decreases the communica-
tion overhead.

2. Some branches might fail in communicating with the
server at a round time. This will result in the synchro-
nization failure of the global model and may lead to a de-
viation of the local branch model from the global one af-
fecting the next global model. To solve this problem, we

randomly sub-sample the selected branches to participate
in the round training that was not taken into consideration
in the development of FedAvg. This will help alleviate the
out-of-sync problem.

5.6. Information Privacy Interpretation

In this section, we will present the privacy-preserving con-
cerns taken in the Fed-NN algorithm according to the analog of
information privacy.

e Access to worker’s data: Fed-NN is proposed based
on an FL structure, which is designed as a distributed
privacy-preserving platform. Precisely, the Fed-NN algo-
rithm aggregates encrypted gradients to predict accurately
worker’s thermal comfort state without sharing raw data
guaranteeing data protection.

o Experiments reveal the performance of the Fed-NN model
when compared to other machine learning models that use
a high amount of raw data to predict the thermal comfort
state. Besides, the Fed-NN model derives a trade-off be-
tween privacy and accuracy, unlike all centralized machine
learning models demonstrating its preeminence.

6. Conclusion

This paper proposes a Fed-NN algorithm for decentralized
federated thermal comfort prediction for workers in Industry
4.0 under information privacy concerns. The algorithm trains a
global thermal comfort prediction model by performing secure
gradient information aggregation rather than directly accessing
each branch’s information data. We demonstrate the accuracy
of the Fed-NN model by using real data where it was compared
to other centralized machine learning models: SVM and MLR.
Results show the capability of Fed-NN to predict the thermal
comfort state in a private manner comparably to the central-
ized machine learning models used. We also testified the abil-
ity of our proposal to learn an accurate global model when the
number of participating branches increases using the branch se-
lection protocol. The communication overhead in the Fed-NN
decreased by 50% when compared to the FedAvg algorithm.
For future work, we are planning to apply our model to a real
implemented industrial IoT environment.

CRediT authorship contribution statement

Maysaa Khalil: Conceptualization, Methodology, Software,
Writing - original draft, Writing - review & editing. Moez
Esseghir: Conceptualization, Review, Supervision. Leila
Merghem-Boulahia: Conceptualization, Review, Supervision.

Declaration of competing interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.



r=10% 0.075 4 r=20%
0.02
0.050 o
0.01 0.025 -
T T T T T T 0-000 T T T T T T T
o 50 100 150 200 250 300 o 50 100 150 200 250 300
0-3 4 r=50%
0.2
@
a2
=]
=]
0.1
0.0
T T T T T T T
o 50 100 150 200 250 200
Epoch

Figure 8: Loss of Fed-NN with respect to different ratio of branch participation, where the loss indicates the MAE value.

Acknowledgment

This work is partly supported by grants from Troyes Cham-
pagne métropole and the Conseil Départemental de I’ Aube.

References

(1]

[2]

[3]

[4]

(3]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

R. Sahba, R. Radfar, A. R. Ghatari, A. P. Ebrahimi, Development of
industry 4.0 predictive maintenance architecture for broadcasting chain,
Advanced Engineering Informatics 49 (2021) 101324.

J. Ploennigs, A. Ahmed, B. Hensel, P. Stack, K. Menzel, Virtual sensors
for estimation of energy consumption and thermal comfort in buildings
with underfloor heating, Advanced Engineering Informatics 25 (4) (2011)
688-698.

L. Lan, P. Wargocki, Z. Lian, Optimal thermal environment improves per-
formance of office work, Rehva Journal 49 (1) (2012) 12-17.

M. Valinejadshoubi, O. Moselhi, A. Bagchi, A. Salem, Development of an
iot and bim-based automated alert system for thermal comfort monitoring
in buildings, Sustainable Cities and Society 66 (2021) 102602.

X. Luo, L. O. Oyedele, A. O. Ajayi, C. G. Monyei, O. O. Akinade, L. A.
Akanbi, Development of an iot-based big data platform for day-ahead pre-
diction of building heating and cooling demands, Advanced Engineering
Informatics 41 (2019) 100926.

Z. Fang, T. Tang, Z. Zheng, X. Zhou, W. Liu, Y. Zhang, Thermal re-
sponses of workers during summer: An outdoor investigation of con-
struction sites in south china, Sustainable Cities and Society 66 (2021)
102705.

M. Khalil, M. Esseghir, L. Merghem-Boulahia, Applying iot and data
analytics to thermal comfort: A review, Machine Intelligence and Data
Analytics for Sustainable Future Smart Cities (2021) 171-198.

F. Jazizadeh, W. Jung, Personalized thermal comfort inference using rgb
video images for distributed hvac control, Applied Energy 220 (2018)
829-841.

G. Ozcelik, B. Becerik-Gerber, Benchmarking thermoception in vir-
tual environments to physical environments for understanding human-
building interactions, Advanced Engineering Informatics 36 (2018) 254—
263.

P. K. Sharma, J. H. Park, K. Cho, Blockchain and federated learning-
based distributed computing defence framework for sustainable society,
Sustainable Cities and Society 59 (2020) 102220.

M. Khalil, M. Esseghir, L. Merghem-Boulahia, An IoT environment for
estimating occupants’ thermal comfort, in: 2020 IEEE 31st Annual Inter-
national Symposium on Personal, Indoor and Mobile Radio Communica-
tions, 2020, pp. 1-6.

E. Laftchiev, D. Nikovski, An IoT system to estimate personal thermal
comfort, in: 2016 IEEE 3rd World Forum on Internet of Things (WF-
IoT), IEEE, 2016, pp. 672-677.

C. Manna., N. Wilson., K. N. Brown., Personalized thermal comfort fore-
casting for smart buildings via locally weighted regression with adaptive
bandwidth, in: Proceedings of the 2nd International Conference on Smart

10

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Grids and Green IT Systems - Volume 1: SMARTGREENS,, INSTICC,
SciTePress, 2013, pp. 32—40. doi:10.5220/0004375100320040.

K. Liu, T. Nie, W. Liu, Y. Liu, D. Lai, A machine learning approach to
predict outdoor thermal comfort using local skin temperatures, Sustain-
able Cities and Society 59 (2020) 102216.

S. Bin, Y. Wenlai, Application of gaussian process regression to predic-
tion of thermal comfort index, in: 2013 IEEE 11th International Confer-
ence on Electronic Measurement Instruments, Vol. 2, 2013, pp. 958-961.
W. Zhang, W. Hu, Y. Wen, Thermal comfort modeling for smart build-
ings: A fine-grained deep learning approach, IEEE Internet of Things
Journal 6 (2) (2019) 2540-2549.

S. Atthajariyakul, T. Leephakpreeda, Neural computing thermal comfort
index for hvac systems, Energy conversion and management 46 (15-16)
(2005) 2553-2565.

H. Lee, C. R. Ahn, N. Choi, Fine-grained occupant activity monitoring
with wi-fi channel state information: Practical implementation of multiple
receiver settings, Advanced Engineering Informatics 46 (2020) 101147.
R. Shokri, V. Shmatikov, Privacy-preserving deep learning, in: Proceed-
ings of the 22nd ACM SIGSAC conference on computer and communi-
cations security, 2015, pp. 1310-1321.

F. Zhu, W. Wu, Y. Zhang, X. Chen, Privacy-preserving authentication
for general directed graphs in industrial IoT, Information Sciences 502
(2019) 218-228.

Y. Jiang, Z. Luo, Z. Wang, B. Lin, Review of thermal comfort infused with
the latest big data and modeling progresses in public health, Building and
Environment 164 (2019) 106336.

B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A. y Arcas,
Communication-efficient learning of deep networks from decentralized
data, in: Artificial Intelligence and Statistics, PMLR, 2017, pp. 1273—
1282.

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Koneény, S. Mazzocchi, H. B. McMahan,
et al., Towards federated learning at scale: System design, arXiv preprint
arXiv:1902.01046 (2019).

K. Bonawitz, F. Salehi, J. Kone¢ny, B. McMahan, M. Gruteser, Federated
learning with autotuned communication-efficient secure aggregation, in:
2019 53rd Asilomar Conference on Signals, Systems, and Computers,
IEEE, 2019, pp. 1222-1226.

T. Nishio, R. Yonetani, Client selection for federated learning with het-
erogeneous resources in mobile edge, in: ICC 2019 - 2019 IEEE Interna-
tional Conference on Communications (ICC), 2019, pp. 1-7.

Y. Chen, X. Qin, J. Wang, C. Yu, W. Gao, Fedhealth: A federated transfer
learning framework for wearable healthcare, IEEE Intelligent Systems
35 (4) (2020) 83-93.

X. Li, H.-l. Chi, W. Lu, F. Xue, J. Zeng, C. Z. Li, Federated transfer
learning enabled smart work packaging for preserving personal image in-
formation of construction worker, Automation in Construction 128 (2021)
103738.

X. Yuan, X. Wang, C. Wang, J. Weng, K. Ren, Enabling secure and fast
indexing for privacy-assured healthcare monitoring via compressive sens-
ing, IEEE Transactions on Multimedia 18 (10) (2016) 2002-2014.

T.Li, A. K. Sahu, A. Talwalkar, V. Smith, Federated learning: Challenges,



methods, and future directions, IEEE Signal Processing Magazine 37 (3)
(2020) 50-60.

T. Li, M. Sanjabi, A. Beirami, V. Smith, Fair resource allocation in feder-
ated learning, arXiv preprint arXiv:1905.10497 (2019).

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, V. Chandra, Federated learning
with non-iid data, arXiv preprint arXiv:1806.00582 (2018).

J. Langevin, P. L. Gurian, J. Wen, Tracking the human-building interac-
tion: A longitudinal field study of occupant behavior in air-conditioned
offices, Journal of Environmental Psychology 42 (2015) 94-115.

[30]

[31]

(32]

Maysaa Khalil received the B.S. degree
in computer science from the Lebanese
University (LU), Beirut, Lebanon in 2017
and the M.S. degree in electrical engineer-
ing for smart grids and buildings from the
Ecole Nationale Supérieure de I’Energie,
I’Eau et I’Environnement (Grenoble INP-
ENSE3), Grenoble, France in 2019. She
is currently working toward the Ph.D. degree in computer sci-
ence in the Environment and Autonomous Network Laboratory,
University of Technology of Troyes, France. Her research in-
terests include new privacy-preserving edge computing designs
for thermal/energy management in smart buildings, the Internet
of Things, and Federated Learning.

Moez Esseghir received the National
Engineer Diploma degree in computer
sciences from the Ecole Nationale des
Sciences Informatique (ENSI), Tunis,
Tunisia, in 2002, the Master of Science de-
gree in networks from the University of
Paris 6, Paris, France, in 2003, the M.S.
degree in computer sciences from ENSI in 2004, and the Ph.D.
degree in computer sciences from the University of Paris 6 in
2007. In 2008, he was with North Carolina State University,
Raleigh, USA, as a Visiting Scholar. Since 2008, he has been
an Associate Professor with the University of Technology of
Troyes, France, and the Leader of ERA Research Team since
2017. He has authored or coauthored over 40 publications, in-
cluding international journals and conferences. His research
interests include energy management, resource allocation, and
performance evaluation in different kind of networks, such as
HetNets, WSN, CRN, VANET, smart grids, cloud environment,
and Internet of Things. He actively participated in numerous
projects and has served as a technical program committee mem-
ber and a reviewer for well-known international conferences
and journals. He is a member of ACM and IEEE Computer
Society.

Leila Merghem-Boulahia received the
engineering degree in computer science
from the University of Sétif, Algeria, in
1998, the M.S. degree in artificial in-
telligence and the Ph.D. degree in com-
puter science from the University of Paris
6, France, in 2000 and 2003, respec-
tively, and the Habilitation adiriger des
recherches degree in computer science from the University of
Compiégne in 2010. She is a Full Professor with the University
of Technology of Troyes, France. She has authored or coau-

11

thored over 90 international journals and conference papers.Her
main research topics include multi-agent systems, quality of
service man-agement, autonomic networks, cognitive and sen-
sor networks, smart grids,and Internet of Things. She was a
recipient of the Best Paper Award of the IFIP WMNC2009 and
GIIS2013. She also acted as a TPC Member of many confer-
ences and workshops, such as IEEE Globecom, IEEE ICC, and
IEEE WCNC. She has served as a Reviewer for internationally
well-known journals,such as the [IEEE COMMUNICATIONS
LETTERS, Communication Networks, Computer and Commu-
nications Networks, and the International Journal of Network
Management.





