An Iterative Bayesian Algorithm for 3D Image Reconstruction Using Multi-View Compton Data
Résumé
Conventional maximum likelihood-based algorithms for 3D Compton image reconstruction are often stuck with slow convergence and large data volume, which could be unsuitable for some practical applications, such as nuclear engineering. Taking advantage of the Bayesian framework, we propose a fast-converging iterative maximum a posteriori reconstruction algorithm under the assumption of the Poisson data model and Markov random field-based convex prior in this paper. The main originality resides in developing a new iterative maximization scheme with simultaneous updates following the line search strategy to bypass the spatial dependencies among neighboring voxels. Numerical experiments on real datasets conducted with hand-held Temporal Compton cameras developed by Damavan Imaging company and punctual 0.2 MBq 22Na sources with zero-mean Gaussian Markov random field confirm the outperformance of the proposed maximum a posteriori algorithm over various existing expectation–maximization type solutions.