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Abstract—With the fast expansion of the internet of vehicles
(IoV) and the emergence of new types of threats, the tradi-
tional machine learning-based intrusion detection systems must
be updated to meet the security requirements of the current
environment. Recently, deep learning has shown exceptional
performance in IoV intrusion detection. However, deep learning-
based intrusion detection system (DL-IDS) models are more
fixated and dependent on the training dataset. In addition, the
behavior changes with the occurrence of attacks. They pose a
real problem for the DL-IDS and make their detection more
complicate. In this paper, we present a deep transfer learning
based intrusion detection in-vehicle (TRLID) model for IoV using
the CAN bus protocol. In our proposed model, a data preparation
approach is proposed to clean up bus data and convert it
to an image for usage as input to the deep learning model.
Indeed, we used transfer learning characteristics because they
enable us to transfer the source task’s knowledge to the target
task. Therefore, we trained our model using different dataset
including different attacks. The experimental results show that
our proposed TRLID achieved good results where the intelligence
integration of transfer learning was efficient for attacks detection.

IoV security, Transfer Learning, CAN Bus attacks, Intrusion

Detection

I. INTRODUCTION

Recently, the intelligent transportation systems (ITS) in

many countries are being gradually expanded to their maxi-

mum potential as the number of users continue to increase.

The primary goal of these transportation systems are to

increase traffic monitoring, road safety and passenger com-

fort in order to reduce accidents [1]. VANET, or vehicular

ad hoc networks [2], have been designed as the first ITS

to keep the driver informed about real time traffic through

exchanging information messages. In VANET two types of

communication are possible: vehicle-to-vehicle (V2V) and

vehicle-to-infrastructure (V2I). The main purpose of VANET

is to improve traffic efficiency by decreasing communication

time, cost and pollution emissions. However, there are still a

number of VANET related emerging issues that need to be

solved in existing vehicle networks. Some of these problems

are inconsistent internet access, compatibility issues with

personal devices, processing power limitations and the lack

of cloud computing services, among others. To address these

issues, Internet of Vehicles (IoV) [3] which is an emerging

system in the ITS were proposed via combining VANET

with Internet of things (IoT). The adoption of IoV can ef-

fectively enhance smart cities and sustainable energy growth.

For instance, the traffic management system in the IoV and

autonomous driving vehicle environment could reduce traffic

congestion, traffic accidents, and industrial contamination.

Intelligent transportation system-networked vehicles can also

provide users with a more comprehensive and personalized

mobile transportation service. These services include route

planning, service recommendation, and intelligent parking,

thereby enhancing the transportation efficiency. Mainly, they
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Fig. 1: Structure of CAN frame

are figured out as a heterogeneous vehicular environment with

different communication types such as V2V, V2I, vehicle-to-

pedestrian (V2P), vehicle-to-sensors (V2S), and vehicle-to-

network (V2N). Moreover, there are various wireless tech-

nologies [4] used by IoVs in order to establish an effective

communication, including vehicular communications such as

DSRC/CALM, cellular mobile communication such as 4G,

LTE, WiMax, and Satellite, and short-range static commu-

nication such as Bluetooth and Wi-Fi. The based systems

of IoVs mainly compromise the external networks and the
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Fig. 2: Four attack scenarios on a CAN bus

intra-vehicle networks (IVNs). Indeed, the external networks

enable the connection between smart cars and the other en-

tities, such as the infrastructure. Meanwhile, the intra-vehicle

networks permit the communications in-between the electronic

control units (ECUs) based on the controller area network

(CAN). However, IoV system still needs to overcome different

challenges before it can perform a substantial contribution.

Alongside the challenges, IoV systems requires high secu-

rity, which made it exposed to different attacks and threats.

The attackers launch malicious attacks through the CAN bus

risking the security of vehicles. The limited length of CAN

packet without authentication or encryption techniques can

conduct to many attacks such as DoS, Fuzzy and spoofing

attacks. Therefore, to meet the security requirements, the basic

process is to employ intrusion detection systems (IDS). These

systems aim to identify external vehicle network activity in

IoV in order to resolve the aforementioned cybersecurity risks.

Recently, researchers brings machine learning (ML) methods

as an applied solution for intrusion detection in vehicular

system [5]. ML based IDS have a stronger capability for

processing large amounts of data and detecting unexpected

threats. The main concept is to label the network data into

normal data or abnormal data by extracting the data features

from the network traffic to train a detection model. The initial

ML model is applied when a vehicle is created and leaves

the factory [6]. However, when new attacks with new feature

distributions have been launched, the model’s performance

would decrease significantly. To overcome these limitations,

transfer learning has been proposed to use data or a model

from the source domain to train a machine learning model

corresponding to a new task in the target domain. Hence,

to fulfill the demands of optimized IoVs intrusion detection

systems, in this paper we propose a TRansfer Learning based

Intrusion Detection in-vehicle (TRLID) model for IoV using

the CAN bus protocol. In addition, We proposed a data

preparation method that can effectively clean first the CAN

bus data and then transform the data to images to more easily

distinguish various cyber-attack patterns. In order to validate

and evaluate our method, experiments have been conducted

using two in-vehicles datasets, Car-hacking dataset and OTIDS

dataset generated from heterogeneous sources that include

different types of malicious messages. The experiment results

show that the proposed TRLID is efficient for attack detection.

The rest of this paper is organized as follows: Section II

introduces the related work that uses ML and DL algorithms

for vehicle network intrusion detection Section III presents

the proposed framework, including data transformation, CNN,

transfer learning. Section IV presents and discusses the exper-

imental results. Finally, Section V summarizes the paper.

II. RELATED WORKS

In this section, we present some related studies that work

on developing an IDS-based ML for IoV. Many researchers

worked on different issues from various perspectives in IoV

using multiple technologies for security optimization and

attacks detection mechanisms. There are also papers proposing

new applied solutions on IoVs, or studying the deployment

using ML models. Authors in [7] proposed an IDS-based

solutions using tree-strucutre ML models for both CAN bus

and external attacks detection in IoV. They used the Synthetic

Minority Oversampling Technique (SMOTE) for data pre-

processing to generate additional data for minority classes

with few number of data. The authors used the stacking as

ensemble learning approach to improve the accuracy. They

trained four machine learning models and integrated their

outputs into a meta-learner to create a robust classifier. For

DL-based solutions, authors in [9] combined long short term

memory (LSTM) and the gated recurrent unit (GRU) models to

detect cyberattacks in IoV. The approach is based on different

pre-processing methods such as cleaning, shuffling, feature

filtering and normalization. These methods are applied to

the datasets to improve the performance of the LSTM-GRU

model. Meanwhile, authors in [10] designed a specific IDS

to identify malicious network activity in In-Vehicle Networks

(IVNs), V2V communications and V2I networks using LSTM.

The proposed solution consists of three main phases. First, the

statistical features are called from both the CAN bus and ex-

ternal network. In the second step, the reduced feature space is

given to the recurrent architecture with hidden LSTM layers as

sliding temporal windows. After completion of training cycles,

minimization of training and validation losses to zero, as well

as convergence of weights. It is presumed that the compressed

representation of typical traffic has been adequately learned.

Finally, the proposed system is evaluated using the car-hacking

dataset and the UNSW dataset [11]. In addition, authors in

[12] proposed a deep transfer learning based LeCun network

(LeNeT) for intrusion detection in the in-vehicle network using

the CAN bus protocol. The proposed P-LeNet architecture

is made up of seven layers with a total of 12,052 trainable
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parameters (weights). The layer is the composition of two

convolutional layers, two subsampling layers, one flatten layer,

one fully connected layer, and one output layer. The proposed

approach is divided into two sections: model training and

intrusion detection. First, the selected data was pre-processed,

and then used to train the model. Then, the most important

parameters have been selected for the model. The suggested

model was trained with a dataset that was randomly chosen.

III. BACKGROUND

A. Attacks On The CAN Bus For The IoV

1) CAN Frame: All nodes connected to the CAN can

receive all packet broadcasts. Additionally, a frame in a CAN

packet is specified as a structure; it transports a serie of CAN

data (bytes) in the network. The arbitration identifier (ID) field

in each CAN frame specifies the priority of the transmitted

packets. Indeed, when the ID bit value gets lower, the packet’s

priority become higher. This protocol is designed to prevent

collisions on the CAN bus. The CAN data frame consists of

four types of standard CAN frame can be identified : The

data frame used for data transfer; The remote frame used to

allocate a request to the data frame to be transmitted to the

target node; Error frame to notify when an error occurs within

a delivered frame, and Overload frame to delay the beginning

of the next message when the r has not completed processing

the message. The CAN frame structure consists of seven fields,

as shown in Figure 1.

• Start of frame (SOF): It is consisting of a single dominant

bit and alerts all nodes that transmission has started.

• Arbitration Field: It has 11 bits for identifier and one

bit for RTR (Remote Transmission Request). During the

arbitration procedure, the identifier is treated as a priority,

and the RTR is chosen according to the type of CAN

frame.

• Control Field: It provides information for the receiver to

determine if all packets were successfully received.

• Data field: It is the data used to transmit information from

one node to another. It varies from 0 to 8 bytes.

• CRC Field: It ensures the validity of a message as a cyclic

redundancy code (CRC).

• Acknowledge Field: It guarantees that the message was

received successfully by the receiver node. If the message

is valid, the receiver will notify the sender, and change

the recessive ACK bit (logic 1) with a dominant bit (logic

0).

• End of Frame: It denotes that the CAN frame has been

terminated by a flag with seven recessive bits.

2) CAN Bus Attacks: The in-vehicle network attackers are

divided into two types: attackers with physical control of nodes

and attackers without physical control of nodes. Attackers that

have the physical control to the node can physically alter

message transmission, to allow a malicious node to broadcast

messages in place of a legitimate node. Nodes without physical

access to the node inject malicious messages to influence the

operation of the vehicle. In this paper, we consider four attacks

as follows (Figure 2):

• DoS attack: an attacker may insert messages with a high

priority in a cycle of the bus. DoS attack messages use

the highest priority identifier, 0x000, to dominate the bus.

• Fuzzy attack: During Fuzzy attack, an attacker can inject

random messages with faked identifiers and data. It

can analyze the in-vehicle messages and choose target

identifiers to create malicious behaviors.

• Spoofing attack : the attacker attempts to inject a message

with a certain CAN ID into the CAN bus in order to

cause vehicle abnormalities. Unlike Fuzzy attack, Spoof-

ing attack selects the CAN ID normally broadcast on the

CAN bus to attack the network, whereas Fuzzy attack

can generate any simulated fake ID to initiate an attack.

• Impersonation Attack: An impersonation attacker can

stop the message transmission by controlling the target

node and manipulating an impersonating node that can

transmit data frames and replies to remote frame like

targeted node.

B. Fundamentals of Transfer Learning

As previously indicated, in TL, knowledge acquired in the

source domain will be transferred to the target domain to

enhance learning for the target task. Therefore, we should

provide the definitions of a domain and a task in TL.

First, the two component that make up a domain D are the

feature space χ and a marginal probability distribution P(X),

where X = {x1, ..., xn} ∈ χ and n represents the number of

feature vectors in X . We note D = {χ, P(X)}.

A task is defined by two parts, a label space L and a decision

function f(.). The function f(.) is learned from the feature vector

and label space pairs {xi, li}, where the xi ∈ X and li ∈ L.

Generally, the decision function returns the prediction of label

f(xi) given instance xi. Therefore, the decision function can

be written as f(xi) = P (lk|xi)|lk ∈ L, where k = {1, ..., |L|}.

For example, in a binary attack detection, L presents the set

of all labels of normal data (”0”), and attack (”1”). Based on

instance x in the feature space, f(.) predicts the probability

of normal data or attack.

IV. PROPOSED SYSTEM

This section presents the overarching workflow of our pro-

posed solutions. We first present the data preparation process,

which is the first fundamental step of our system. Then we

introduce the established phases of transfer learning.

A. Data Preparation

To reach the best performance and enhance the learning

process, the data must be prepared before choosing the TL

model. Data preparation involves deleting irrelevant features,

converting non-numeric features and removing outliers. To

prepare the CAN bus data, we apply two main phases; data

cleaning and data transformation.

1) Data Cleaning: The CAN bus dataset is particularly

susceptible to inaccuracy and inconsistency. First, Outliers are

checking to find out a data point that differs substantially from

the rest of the data. In addition, missing data is identified and
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Fig. 3: Data to image transformation

Fig. 4: Representative illustration of the TRLID Architecture

removed. For instance, the qualitative values ”Normal” and

”Attack” have been altered to ”0” and ”1” for the dataset’s

label feature. The hex2dec function was used to convert the

hexadecimal values of CAN ID feature into decimal values.

the Data Field feature of the dataset comprises eight bytes of

hexadecimal numbers separated by spaces. The gsub function

was used to remove spaces between bytes, while the Rmpfr

function was used to convert hexadecimal values to decimal

integers.

2) Data Conversion: The IoV network traffic dataset was

recorded in a format other than image, it may be a .csv file,

txt, or other type of files. In this section, we discuss the

transformation of non-image samples to an image form in

order to get effective results for network attack detection. It is

essential to transform the CAN signals into images, since the

pretrained convolution neural network (CNN) models used for

transfer learning are designed to accept 3D image samples as

input. we normalize the data collected using:

Xnew =
X −Min(X)

Max(X)−Min(x)
∗ 255 (1)

The network data must be normalized into the range of pixel

values of images from the range of 0 to 255. After the

normalization phase, a chunk of 27 successive samples is

selected to convert the data into image with 9*9*3. where 9 is

the number of feature in the two datasets. Each 9 chunks are

converted in an image matrix channel. Then the three matrix

are mapped into RGB channels of an image. The image label

depends on the attack patterns on this image. An image is

marked as ”Normal” if every sample in the image is a normal

sample. In fact, if an image includes attack samples, it will

be labeled based on the most common attack in this image.

Therefore, we discuss the Figure 3 which displays a broad

overview of the process.

B. Transfer Learning

Mainly, transfer learning runs first the ID model generation

in the source domain. In the next step, the generated ID model

update in the target domain after the knowledge transfer. These

two domains are described as follows:

• Source domain: The initial step of the transfer learning

based architecture consists of the creation of the source

domain intrusion model. A source dataset is used to

train and validate the IDS model. We use the CNN as

the basic model. The CNN’s architecture consists of six

convolutional layers, three pooling layers to select the

most important features and a dense layer. The output

layer involves 5 outputs. Each layer takes the previous

layer outputs as inputs for the current layer and performs

some non-linearities to transform it into a multivariate

series whose dimensions are defined by the number of

filters in each layer. The structure of the proposed CNN-

based model source is illustrated in figure 4. The first

layer is the input layer, which is not considered as a

network layer because it does not learn anything. The

input layer is designed to take the dataset and pass it

to the following layer. The convolutional layers are in

charge of executing convolution operations. The rectified
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linear unit (ReLU) is used with all the convolution layers.

The max-poling layers aid in reducing the amount of

computing power required to process the data. They are

used to select the most important features. The flatten

layer converts the pooled feature map to a single column

that is passed to the next layer. The fully-connected

dense layer reduces drastically the number of trainable

parameters in a deep model while enabling the use of a

class activation map which allows an interpretation of the

learned features. Finally, the output layer carries a number

of neurons that corresponds to the number of classes in

the dataset. The softmax function is used as the activation

function in this layer to predict a probability distribution

between normal and attack scenarios.

• Target domain: The second step of the transfer learning

process is to apply the source domain knowledge to the

target domain. The CNN convolutional base used for the

source domain is frozen to avoid the modification of the

weights when the model is retrained, and the classifier is

trained with its outputs. The CNN used to train the target

domain compromises of the frozen layers of the CNN

used in the source domain and fully connected layers as

an output layer. The ReLU activation function is used in

the hidden layers of FC layers. The output layer consists

of a FC network with softmax activation.

V. EXPERIMENTAL RESULTS

A. Experiment Setup

The car-hacking dataset comprises CAN packets collected

from the OBD-II port. Each CAN packet is defined by three

key features: CAN ID which represents the identifier of CAN

packet, DATA[0] to DATA[7] which represents the 8 data bytes

of the packet, and finally the flag which accepts two values,

T and R (T: inject packet and R: normal packet). The dataset

includes normal traffic as well as three types of attack: (1) DoS

attack: DoS packet with CAN ID =”0X000” is injected every

0.3 milliseconds. (2) Fuzzy attack: Random ID and DATA

values are injected every 0.5 milliseconds. (3) Spoofing Attack

(RPM/gear): It injects certain CAN ID packets relevant to

RPM and gear every 1 millisecond. We use the OTIDS [13]

dataset as a target dataset. The OTIDS dataset is also generated

by gathering CAN packets via the OBD-II. It includes normal

packets as well as DoS attacks with CAN ID of ”0X000”. The

CSV files of fuzzy attacks and impersonation attacks do not

indicate if a packet is normal or not. The Fuzzy attack injects

faked CAN ID and DATA packets with random values. We

extract 9 features from CAN packets : CAN ID and the 8 bytes

of the packet DATA[0] to DATA[7] from the two datasets.

B. System Metrics

We use several metrics including the accuracy, recall, pre-

cision, and FSscore, which are respectively determined by

equations. We note also:

• TP : represents the number of correctly assigned positive

samples.

• TN : represents the number of correctly assigned negative

samples.

• FP : represents the number of incorrectly assigned posi-

tive samples.

• FN : represents the number of incorrectly assigned neg-

ative samples.

The accuracy is the average proportion of traffic windows

accurately allocated to their corresponding class out of the

total number of traffic windows.

Accuracy =
TP ∗ TN

TP + FP + TN + FN
(2)

The precision is a reliable measurement when the cost of

false positives is high. It refers to the usage of advanced

technology and methods to pursue high accuracy under the

existing physical framework. It is expressed as follows:

Precision =
TP

TP + FP
(3)

The recall is the ratio of the number of class traffic windows

that are successfully allocated to the number of class traffic

windows.

Recall =
TP

TP + FN
(4)

The F1-score is the weighted average of Precision and Recall,

taking both FP and FN into account.

C. Hyperparameter Selection for TRLID Model

The selection of the appropriate hyperparameters is very

important to improve the model’s performance. In our case,

many hyper-parameters need to be tuned and optimized to

better fit the CNN model. We use the grid search optimization

technique to choose the CNN hyper-parameters. We start by

defining a search space which includes number of epochs,

batch size, learning rate, and dropout rate and optimizer. For

each parameter, the grid search was specified. The inputs for

the number of epochs and learning rate parameters are 5, 10,

20, 30 and 0.001, 0.01, 0.1, 0.002 respectively. Additionally,

we specified 32, 128, 512 and 1024 for the bath size parame-

ters and 0.2, 0.4, 0.5, and 0.6 for the grid search of drop rate.

Adam, SGD, Nadam, and Adamax are chosen as inputs of the

optimizer search grid. The optimal grid search optimization

hyperparameter values are 30 for epochs, 0.001 for the learning

rate, 128 for the batch size, 0.4 for the dropout layer, and

Adam for the optimizer.

D. Results and Validation

In this section, we will examine the results of the proposed

TRLID model. Our transfer learning model is first trained

with the car-hacking dataset. Our CNN-based model were

trained using OTIDS dataset. As shown, in figure 5, the

data transformation method gives attack images with different

feature patterns. The DoS attack samples with the highest

priority identifier 0x000 are represented by black patterns.

The Gear and RPM have a specific patterns resulted by

the injection of messages with certain IDs to masquerade
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(a) Normal (b) DoS Attack (c) fuzzy Attack (d) Gear Spoof-
ing Attack

(e) RPM Spoof-
ing Attack

(f)
Impersonation
Attack

Fig. 5: Image transformation for different types of attacks.

(a) Loss and Accuracy in the training
and the validation (Source Domain)

(b) Loss and Accuracy in the training
and the validation (Target Domain)

Fig. 6: Loss and Accuracy Plots for The Source Domain and The target Domain

legitimate users. Fuzzy attacks with random messages are

more random than normal images. The model accuracy and

loss show good results via the successful training of both

source domain and target domain. Figure 6a and Figure 6b

depict the plot curves of the loss and the accuracy, respectively.

Since the curves do not constantly rise past a certain point.

We can also observe that the model had not yet overfitted

the training for both datasets. The loss plot indicates that the

model performs similarly on both the train and test datasets,

and that the decreases as the number of epochs increases. In

the training of the source domain model, the accuracy achieved

99.91% and the loss reached 0.002%. While in validation, the

accuracy reached 99.97% and the loss reached 0.001%. In

the other hand, in the training of the target domain model,

the accuracy reached 99.83% and the loss value is 0.001%.

Meanwhile, in the validation, the accuracy value is equal to

99.87% and the loss value is 0.001%. These results reflect the

efficient performance of our proposed model.

VI. CONCLUSION

The massive quantity of data exchanged between intra-

vehicles posed different challenges to traditional IDS. Re-

cently, new proposed IDS are taking benefit of employing DL.

They provide an outstanding performance results and good

efficiency. Yet, DL still suffer from different limits such as

dependent data and lack of labels or annotations. To address

the posed limitations, we proposed a deep transfer learning

based intrusion detection in-vehicle (TRLID) model for IoV.

Our proposed model is built using CNN on car-hacking

dataset and been updated with OTIDS dataset. To validate our

proposed model, we established an intense experiment. Indeed,

by analyzing the obtained efficient results, we concluded that

transfer learning provide an ideal solution for CAN bus attacks

detection.
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