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Sequential Detection of an Arbitrary Transient Change 
Profile by the FMA Test

Fatima Ezzahra Mana, Blaise Kevin Guepie, and Igor Nikiforov
Computer Science and Digital Society Laboratory Troyes, Université de Technologie de Troyes, 

Troyes, France

This article addresses the sequential detection of transient changes by using the finite moving 
average (FMA) test. It is assumed that a change occurs at an unknown (but nonrandom) change 
point and the duration of postchange period is finite and known. We relax the assumption that the 
profile of a transient change is chosen so that the log-likelihood ratios of the observations are 
associated random variables (r.v.s) in the prechange mode. Hence, the profile of the transient 
change is arbitrary and it is not necessarily of constant sign for a distribution with monotone 
likelihood ratio. A new upper bound for the worst-case probability of false alarm is proposed. It is 
shown that the optimization of the window-limited cumulative sum (CUSUM) test again leads to 
the FMA test. Three particular transient changes are considered: in the Gaussian mean, in the 
Gaussian vari-ance, and in the parameter of exponential distribution. In the first case, a 
comparison between the bounds for the FMA test operating characteristics and the exact operating 
characteristics calculated by numerical integration is used to estimate the sharpness of the 
bounds. In the second and third cases, special attention is paid to the calculation of the FMA 
distribution in the case of arbitrary pro-file. The method of convolution is used to solve the problem.

1. INTRODUCTION

The criterion of the traditional sequential change detection is to minimize the (worst-

case) mean detection delay for a given average run length (ARL) to false alarm. Such a

criterion is well adapted to the quality control of the mass production process. The

usage of the mean delay to detection or to false alarm is justified by the economic cri-

terion of mass production process: some runs are short, some other runs are long, but

after many repetitions, the optimum is reached. Unlike the traditional sequential change

detection, which assumes that the postchange period is infinitely long, sometimes it is

necessary to detect a change with an a priori upper-bounded detection delay. In such a

scenario, all of the detections that exceed the required time to alert L are assumed

missed.
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For example, some safety/security critical systems such as drinking water distribution

networks, air pollution monitoring systems, or satellite/inertial navigation systems

should be equipped with special algorithmic tools, the main purpose of which is to

detect an abrupt change of finite duration in the normal operation of the system (see

Figure 1). Generally, these changes are called “transient.” In most cases, these transient

changes result in a severe degradation of system safety/security when they are detected

with the delay greater than the required time to alert L, defined by norms or standards.

Let us consider the drinking water quality monitoring based on chlorine sensors; if we

neglect the phenomenon of surface diffusion, the contaminated portion of water repre-

sents a cylinder inside the pipe. Hence, an efficient detection is possible before the

cylinder passes the pipe section in which the chlorine sensor is installed.

Therefore, the criterion of the traditional sequential change detection—that is, the

(worst-case) mean detection delay against the ARL to false alarm—cannot be used now

and we have to switch to the probabilistic criterion of reliable detection; that is, the

worst-case probability of missed detection against the worst-case probability of false

alarm during a reference period (see Figure 1).

The sequential transient change detection (TCD) problem and its application have

been considered in the literature (Zhigljavsky and Kraskovsky 1988; Broder and

Schwartz 1990; Bakhache and Nikiforov 2000; Wang and Willett 2005b; Premkumar,

Kumar, and Veeravalli 2010; Gu�epi�e, Fillatre, and Nikiforov 2012b, 2017; Pollak and

Krieger 2013; Moustakides 2014; Do et al. 2017; Egea-Roca et al. 2018, 2022; Noonan

and Zhigljavsky 2020, 2021; Tartakovsky et al. 2021; among others). The existing meth-

ods of sequential TCD can be divided into two groups with respect to the nature of the

change point and/or the duration of transient change: Bayesian and non-Bayesian meth-

ods. In particular, it was shown in Bayesian and non-Bayesian setups that the Shewhart

test minimizes the probability of missed detection among all tests with a given ARL to

false alarm for the special case L¼ 1 (Pollak and Krieger 2013; Moustakides 2014). The

Shewhart test coincides with the finite moving average (FMA) test when L¼ 1. The case

of geometrically distributed L � GeomðwÞ with a known parameter w and an optimal

solution to the TCD problem in this case are considered in Tartakovsky et al. (2021). A

non-Bayesian solution minimizing the worst-case probability of missed detection in a

restricted class of truncated sequential probability ratio tests (SPRTs) provided that the

Figure 1. Constant sign and arbitrary profiles of transient change.
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worst-case probability of false alarm during a reference period is upper bounded has

been established in Gu�epi�e, Fillatre, and Nikiforov (2012b, 2017). It was shown that the

window-limited (WL) cumulative sum (CUSUM) test with an optimal variable threshold

is reduced to the FMA test. The idea to use several observations in a moving window

of an inspection scheme as an alternative to the Shewhart test was initially proposed in

Dudding and Jennett (1944). The FMA scheme with positive weights was introduced

and intensively studied in Lai (1973, 1974) and Bohm and Hackl (1990) in the frame-

work of the traditional quickest change detection for the ARL calculation by using the

theory of associated r.v.s. The approximations of the probabilities of missed detection

and false alarm of the FMA test in the Gaussian mean case (mainly with constant

weighting coefficients) were studied in Noonan and Zhigljavsky (2020, 2021). A com-

parison of the FMA and fixed sample size tests as solutions to the TCD problem was

given in Egea-Roca et al. (2022). Nevertheless, in the case of predefined duration L> 1,

the (asymptotically) optimal solution is still open.

Let us consider the non-Bayesian framework, where the change point � is unknown

but nonrandom. Let ynf gn�1
be a sequence of independent r.v.s and � be the index of

the first postchange observation. The generative model of the transient change is given

as follows:

yn � Fh0 if 1 � n < �
Fhn��þ1

if � � n � � þ L� 1
,

�

(1.1)

where Fh0 is the prechange cumulative distribution function (c.d.f.), h0 is the prechange

parameter, Fh1 , :::, FhL are the known postchange c.d.f.s of the observations y� , :::, y�þL�1,

and the parametric set ðh1, :::, hLÞ is the profile of the transient change. It is worth not-

ing that the generative model (1.1) is defined only for L observations after the change

point because all that occurs after time � þ L� 1 is considered as a missed detection

and is not of interest for this study. This generative model is illustrated by Figure 1.

In this article, we use the following criterion introduced in Gu�epi�e, Fillatre, and

Nikiforov (2012b, 2017). Let us consider the stopping time T. It is assumed that P�

(respectively P0) is the joint distribution of the observations y1, :::, y� , y�þ1, ::: when � <
1 (respectively � ¼ 1). Let P� (respectively P0) be the probability with respect to the

distribution P� (respectively P0). The worst-case probability of missed detection is

�PmdðTÞ ¼ sup
��L

P� T � � þ 1 > L j T � �ð Þ (1.2)

and the worst-case probability of false alarm during the reference period ma is given as

follows:

�PfaðT;maÞ ¼ sup
l�L

P0ðl � T < lþmaÞ: (1.3)

This criterion is illustrated by Figure 1. In Gu�epi�e, Fillatre, and Nikiforov (2012b,

2017), the WL CUSUM test with a variable threshold was proposed as a solution to the

TCD problem:

TWL ¼ inf n � L : max
1�k�L

Zn
n�kþ1 � hk

� � � 0
n o

, (1.4)
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Zn
n�kþ1 ¼

X

n

i¼n�kþ1

ln
fhk�nþi

ðyiÞ
fh0ðyiÞ

, (1.5)

where hk is a variable threshold, Zn
n�kþ1 denotes the log-likelihood ratio (LLR) calculated

for the time window n� kþ 1, n½ �, fh0 (respectively fhk�nþi
) denotes the prechange prob-

ability density function (p.d.f.; respectively the postchange p.d.f.). It was shown in

Gu�epi�e, Fillatre, and Nikiforov (2012b, 2017) that optimization of the variable threshold

hk with respect to the criteria (1.2) to (1.3) reduces the WL CUSUM test TWL (1.4) to

(1.5) to the FMA test under the assumption that the LLRs are associated r.v.s in the

prechange mode. The FMA test stopping time is given as follows:

TFMAðhÞ ¼ inf n � L : Zn
n�Lþ1 � hL

� �

, (1.6)

where hL is a threshold. The article is organized as follows. In this section, we present a

brief state of the art of the TCD problem and we state the problem that is treated in

the article; that is, we define the criterion of optimality and the FMA test. In Section 2

we define the motivation and the contributions of the article. Section 3 is devoted to

the new upper bound for �PfaðTFMA;maÞ calculated without the assumption that the

LLRs are associated r.v.s in the prechange mode. It is also shown that the optimization

of the WL CUSUM test with a variable threshold is valid for the new bound. In Section

4, the obtained theoretical results are applied to the Gaussian mean TCD problem.

Here, the previous and new FMA test operating characteristics are compared against

the exact operating characteristics calculated by numerical integration. Sections 5 and 6

are devoted to the TCD problem in the cases of Gaussian variance and exponential dis-

tribution. Here, the new FMA test operating characteristics are compared against the

results of Monte Carlo simulations. The discussion of the obtained results is given in

Section 7 and Section 8 concludes the article.

2. MOTIVATION AND CONTRIBUTION

The current article continues the study of the FMA test initiated in Gu�epi�e, Fillatre, and

Nikiforov (2012b, 2012c, 2017). This work addresses new challenges relating to the gen-

eral case of the profile ðh1, :::, hLÞ and to the application of findings to three different

distributions. It follows from Gu�epi�e, Fillatre, and Nikiforov (2017, theorems 2 and 3)

that the calculation of the worst-case probability of false alarm �PfaðTFMA;maÞ and the

optimization of the WL CUSUM test with a variable threshold (which leads to the FMA

test) are heavily based on the concept of associated r.v.s (Lehmann 1966; Esary,

Proschan, and Walkup 1967). Specifically, it is assumed that the profile is chosen so

that the LLRs are associated r.v.s in the prechange mode (i.e., under the measure P0).

For the distributions with monotone likelihood ratio, this means that the profile

ðh1, :::, hLÞ should be constant sign; that is, h1 > h0, :::, hL > h0: Now we relax this

assumption. Constant sign and arbitrary profiles of transient change are illustrated by

Figure 1. The current article brings an upper bound for the worst-case FMA missed

detection probability �PmdðTÞ provided that the worst-case false alarm rate �PfaðT;maÞ is

upper bounded without limiting requirement that the LLRs are associated r.v.s in the

prechange mode. However, the FMA test is an optimal solution only in a restricted class

of truncated SPRT tests. When a lower bound of �PmdðTÞ for all sequential tests will be
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established, it will be possible to conclude whether the FMA operating characteristics

are optimal and, if not, how far from optimality the FMA test is.

Therefore, the original contributions of the article are the following:

1. A new upper bound for the worst-case probability of false alarm �PfaðTWL;maÞ of

the WL CUSUM test with a variable threshold is calculated without assumption

that the LLRs are associated r.v.s in the prechange mode. Hence, the verification

that the LLRs are associated r.v.s, which is not trivial for an arbitrary distribution,

can be skipped. This new bound is applicable to an arbitrary profile ðh1, :::, hLÞ: It
is shown that the previous and new bounds asymptotically converge when the

threshold hL ! 1:
2. It is shown that the optimization of the WL CUSUM test with a variable threshold

established in Gu�epi�e, Fillatre, and Nikiforov (2017, theorem 3) is also valid with

this new bound. Therefore, the WL CUSUM test with a variable threshold is again

reduced to the FMA test.

3. In the Gaussian mean case, the bounds for the FMA test operating characteristics

are compared against the exact operating characteristics calculated by numerical

integration of the multivariate Gaussian c.d.f. to show the sharpness of these

bounds.

4. In the Gaussian variance case, the bounds for the FMA test operating characteristics

are calculated by using the convolution of distributions corresponding to the posi-

tive and negative parts of the transient change profile. The operating characteristics

are compared with the results of the Monte Carlo simulation.

5. Finally, in the case of exponential distribution, the bounds for the FMA test operat-

ing characteristics are reduced to those in the Gaussian variance case.

3. OPERATING CHARACTERISTICS FOR AN ARBITRARY DYNAMIC PROFILE

It follows from Gu�epi�e, Fillatre, and Nikiforov (2017, theorem 1) that the upper bound

for the probability of missed detection �Pmd TFMAð Þ of the WL CUSUM with a variable

threshold and FMA tests is calculated without assumptions about the nature of LLRs

and is given as

�Pmd TFMAð Þ � GðhLÞ ¼def P� ZLþ��1
� < hL

� �

, � � L: (3.1)

Because the assumption that the LLRs ZL
L , :::,Z

L
1 ,Z

Lþ1
Lþ1 , :::Z

Lþ1
2 , :::,ZLþma�1

Lþma�1 , :::,Z
Lþma�1
ma

are associated r.v.s in the prechange mode is relaxed now, we have to reestablish theo-

rems 2 and 3 from Gu�epi�e, Fillatre, and Nikiforov (2017). The first assertion of this the-

orem is valid without the abovementioned assumption; that is, the worst-case

probability of false alarm �PfaðTWL;maÞ for a given prechange period ma is given by

�PfaðTWL;maÞ ¼def sup
l�L

P0ðl � TWL < lþmaÞ ¼ P0ðL � TWL < LþmaÞ: (3.2)

The analogue of the second assertion is given by the following.

Theorem 3.1. Let us consider the TCD problem (1.1) and the WL CUSUM test with a

variable threshold (1.4) to (1.5). Then �PfaðTWL;maÞ is upper bounded by
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�PfaðTWL;maÞ � min 1,map� ðma � LÞþp2
� �

, p ¼ P0 max1�k�L ZL
L�kþ1 � hk

h i

� 0
	 


,

(3.3)

where xþ ¼ maxf0, xg:

Proof. The proof of Theorem 3.1 is given in Appendix A. w

The analog of theorem 3 from Gu�epi�e, Fillatre, and Nikiforov (2017) is given by the

following.

Theorem 3.2. Let us consider the TCD problem (1.1) and the WL CUSUM test with a

variable threshold (1.4) to (1.5). Suppose that the c.d.f. x 7! FZ, LðxÞ ¼ P0ðZn
n�Lþ1 < xÞ of

the LLR Zn
n�Lþ1 under the measure P0 and the c.d.f. x 7! GðxÞ ¼ P�ðZ�þL�1

� < xÞ of the

LLR Z�þL�1
� under measure P� are continuous functions on � �1;1½. The optimal

choice of the thresholds h1, :::, hL is reduced to the following optimization problem:

inf
h1, :::, hL

GðhLÞ ¼ �a1

subjectto Hðh1, :::, hLÞ ¼ �a0
,

(

(3.4)

where

Hðh1, :::, hLÞ ¼
ma~p if 1 � ma � L

ma~p � ðma � LÞ~p2 if ma > L � 1 and ~p � ma

2ðma � LÞ
,

8

<

:

(3.5)

and ~p ¼PL�1
k¼1 P0ðZL

L�kþ1 � hkÞ þ 1� FZ, LðhLÞ:
Then

1. The optimal solution h�i , i ¼ 1, :::, L
� �

of the minimization problem (3.4) to (3.5) is

reached when h�1 ! 1, :::, h�L�1 ! 1 and

hw:a:L ¼ h�L ¼

F�1
Z, L 1� �a0

ma

� �

if 1 � ma � L

F�1
Z, L 1�ma �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
a � 4ðma � LÞ�a0

p

2ðma � LÞ

!

if ma > L � 1 and

~p � ma

2ðma � LÞ

,

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(3.6)

where hw:a:L stands for the threshold calculated without assumption that the LLRs are

associated r.v.s.

2. The smallest value �a1 provided that the upper bound for the worst-case probability of

false alarm is equal to a preassigned value �a0 is given by

�a1 ¼ G hw:a:L ð�a0Þ
� �

: (3.7)

3. The stopping time TWL of the optimal WL CUSUM test with a variable threshold is

reduced to the stopping time TFMA of the FMA test,
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TFMA ¼ inf n � L : Zn
n�Lþ1 � hw:a:L

� �

: (3.8)

4. The upper bound for the probability of false alarm of the FMA test is given by

�PfaðTFMA;maÞ � �a w:a:
0 ¼ min 1,ma~po � ðma � LÞþ~p2o

n o

, ~po ¼ 1� FZ, Lðhw:a:L Þ: (3.9)

Proof. The proof of Theorem 3.2 is given in Appendix B. w

Remark 3.1. The operating characteristic that completely characterizes the FMA test is

the probability of missed detection �PmdðTFMAÞ as a function of the probability of false

alarm �PfaðTFMAÞ: Let us compare the asymptotic behavior of the upper bound �a1 for
�PmdðTFMAÞ as a function of �a0 established in Theorem 3.2 without assumption that the

LLRs are associated r.v.s in the prechange mode and the previous upper bound �a1 for
�PmdðTFMAÞ established in Gu�epi�e, Fillatre, and Nikiforov (2017, theorems 2 and 3)

under such an assumption:

�a1 ¼ Gðha:L Þ ¼ G F�1
Z, L ð1� �a0Þ

1
ma

	 
h i

, (3.10)

where ha:L stands for the threshold calculated with assumption that the LLRs are associ-

ated r.v.s. It follows immediately from the Taylor expansion that

G F�1
Z, L ð1� �a0Þ

1
ma

	 
h i

� G F�1
Z, L 1� �a0

ma

� �� �

� G F�1
Z, L 1�ma �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
a � 4ðma � LÞ�a0

p

2ðma � LÞ

!" # (3.11)

as �a0 ! 0: Therefore, the operating characteristics of the FMA test with and without

the assumption that the LLRs are associated r.v.s in the prechange mode are asymptotic-

ally equal.

The nonasymptotic numerical comparison will be discussed in the next section.

4. TRANSIENT CHANGE IN THE GAUSSIAN MEAN

Let us first rewrite the generative TCD model (1.1) for the Gaussian mean case

yn � Nðh0, r2Þ if 1 � n < �
Nðhn��þ1, r

2Þ if � � n � � þ L� 1
,

�

(4.1)

where Nðl, r2Þ stands for the Gaussian law with mean l and variance r2 and the mean

vector ðh1, :::, hLÞ stands for the transient change profile. It follows from (3.8) that the

FMA stopping time is defined as

TFMA ¼ inf n � L : Sn ¼
X

n

i¼n�Lþ1

hL�nþiyi � h

( )

: (4.2)

The upper bound �aa:0 for �PfaðTFMAÞ calculated in Gu�epi�e, Fillatre, and Nikiforov

(2017) under the assumption that the LLRs are associated r.v.s in the prechange mode

is given by
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�aa:0 ¼ 1� U
h

rkha:k2

� �� �ma

, (4.3)

where kha:k2 is the Euclidean norm of the vector ha: with constant sign coefficients:

h1 > h0, :::, hL > h0: It follows immediately from Theorem 3.1 that the upper bound

�a w:a:
0 (3.9) without the assumption that the LLRs are associated r.v.s is given by

�a w:a:
0 ¼ min 1,ma~po � ðma � LÞþ~p2o

n o

, ~po ¼ 1� U
h

rkhw:a:k2

� �

, (4.4)

where hw:a: is a vector with arbitrary coefficients.

It follows from (4.3) and (4.4) that both upper bounds depend only on the Euclidean

norm of the vector h of transient change profile. Let us compare the upper bounds �aa:0
and �a w:a:

0 for the probability of false alarm �PfaðTFMAÞ calculated with and without the

assumption that the LLRs are associated with the true probability given as follows:

�PfaðTFMAÞ ¼ P0ðL � TFMA < LþmaÞ ¼ 1� P0 \
Lþma�1

n¼L
Sn < hf g

� �

¼ 1� Fðh, :::, hÞ,
(4.5)

where ðx1, :::, xma
Þ ! Fðx1, :::, xma

Þ is the joint c.d.f. of the random vector

ðSL, :::, SLþma�1Þ of size ma, which obeys the Gaussian distribution Nð0,VÞ, calculated

by using a numerical procedure from Matlab (MATLAB 2019). To define the Toeplitz

covariance matrix V of size ðma �maÞ, it is necessary to compute the autocovariance

function RðlÞ of the random sequence Snf gn�L :

RðlÞ ¼ r2
X

L�l

j¼1

hjhjþl, l ¼ 0, 1, :::, L� 1, (4.6)

and, next, to fill the missing left-to-right descending diagonals with zeros, if ma > L:
To illustrate the sharpness of the upper bounds �a w:a:

0 and �a1, let us consider the fol-

lowing example of the TCD problem (4.1): L¼ 2, ha: ¼ ð2, 2Þ, hw:a: ¼ ð2, � 2Þ, r2 ¼
1, ma ¼ 10: The results of comparison are presented in Figure 2 (a). Here, the upper

bounds �aa:0 and �a w:a:
0 are compared against the numerically calculated probability of false

alarm �PfaðTFMAÞ given by (4.5). First, it is confirmed that the upper bound �aa:0 calcu-

lated for the vector ha: ¼ ð2, 2Þ is not applicable to the vector hw:a: ¼ ð2, � 2Þ, though

kha:k2 ¼ khw:a:k2 ¼ 2
ffiffiffi

2
p

: Second, both bounds converge to the true probability of false

alarm �PfaðTFMAÞ rather quickly.
Let us continue this example and compare the upper bounds for the operating char-

acteristics �a1 ¼ Gðhw:a:ð�a0ÞÞ and �a1 ¼ Gðha:ð�a0ÞÞ with the numerically calculated prob-

ability of missed detection �PmdðTFMAÞ as a function of �PfaðTFMAÞ: The probability of

missed detection is defined as follows:

�PmdðTFMAÞ ¼ sup
��L

P�ðTFMA � � þ 1 > LjTFMA � �Þ ¼ sup
��L

P� \
Lþ��1

n¼L
Sn < hf g

� �

P� \
��1

n¼L
Sn < hf g

� � , (4.7)

where P�ð\��1
n¼L Sn < hf gÞ ¼ P0ð\��1

n¼L Sn < hf gÞ, the random vector ðSL, :::, S��1Þ obeys the

multivariate zero-mean Gaussian distribution Nð0,V1Þ, and the random vector
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ðSL, :::, SLþ��1Þ obeys the multivariate Gaussian distribution Nðg,V2Þ: The Toeplitz covari-

ance matrices V1 and V2 of sizes ðð� � LÞ � ð� � LÞÞ and ð� � �Þ are calculated following

(4.6). The mean vector g is composed of two parts. The first � � L coefficients are equal to

zero, g1 ¼ g2 ¼ 	 	 	 ¼ g��L ¼ 0, and the last L coefficients are calculated as follows:

gkþ��L ¼
X

k

m¼1

hk�mþ1hL�mþ1, k ¼ 1, :::, L: (4.8)

Finally, the maximum maxL����0 is used instead of sup��L in (4.7), where �0 is

defined empirically when convergence is reached. The results of this comparison are

presented in Figure 2 (b). It follows from Figure 2 (b) that, beginning from �a0 ¼ 10�1,

both bounds are practically equal.

5. TRANSIENT CHANGE IN THE GAUSSIAN VARIANCE

Let us rewrite the generative TCD model (1.1) for the Gaussian variance case

yn � Nð0, r20Þ if 1 � n < �
Nð0, r2n��þ1Þ if � � n � � þ L� 1

,

�

(5.1)

where ðr21, :::, r2LÞ stands for the transient change profile. It follows immediately from

(3.8) that the FMA stopping time is defined as

TFMA ¼ inf n � L : Sn ¼
X

n

i¼n�Lþ1

1

r20
� 1

r2L�nþi

� �

y2i � h

( )

: (5.2)

It follows from (3.1) that

�PmdðTFMAÞ � �a1 ¼ GðhÞ ¼ P�ðSLþ��1 < hÞ ¼ P�

X

Lþ��1

i¼�

1

r20
� 1

r2i��þ1

� �

y2i < h

" #

: (5.3)

Figure 2. (a) The upper bounds �aa:0 and �a w:a:
0 (with and without the assumption that the LLRs are

associated) and the true value of �PfaðTFMAÞ as functions of the threshold h. (b) The upper bounds
�a1 ¼ Gðha:ð�a0ÞÞ and �a1 ¼ Gðhw:a:ð�a0ÞÞ (with and without the assumption that the LLRs are associ-
ated) and the true value of �PmdðTFMAÞ as functions of �P faðTFMAÞ:
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Because the r.v.s y� , :::, yLþ��1 obey the Gaussian distributions Nð0, r21Þ, :::,Nð0, r2LÞ,
equation (5.3) can be rewritten as follows:

�a1 ¼ GðhÞ ¼ P

X

L

i¼1

d1i n
2
i < h

!

, (5.4)

where d1i ¼
r2i
r20
� 1, n1, :::, nL are independent standard Gaussian r.v.s, ni � Nð0, 1Þ, and

n2i � v21 obeys the chi-square distribution with 1 degree of freedom.

It follows from (3.9) that the upper bound for �PfaðTFMA;maÞ is given by

�a w:a:
0 ¼ min 1,ma~po � ðma � LÞþ~p2o

n o

, ~po ¼ 1� P0

X

L

i¼1

1

r20
� 1

r2i

� �

y2i < h

" #

: (5.5)

Because the r.v.s y1, :::, yL obey the Gaussian distribution Nð0, r20Þ, the term ~po from

(5.5) can be rewritten as follows:

~po ¼ 1� FZ, LðhÞ ¼ 1� P

X

L

i¼1

d0i n
2
i < h

!

, (5.6)

where d0i ¼ 1� r20
r2i
, n1, :::, nL are independent standard Gaussian r.v.s, ni � Nð0, 1Þ, and

n2i � v21 obeys the chi-square distribution with 1 degree of freedom.

To compute the upper bounds �a w:a:
0 and �a1 for �PfaðTFMA,maÞ and �PmdðTFMAÞ, it is

necessary to find the c.d.f.s x 7! GðxÞ and x 7! FZ, LðxÞ: The exact c.d.f. of the quadratic

form in Gaussian variables
PL

i¼1 din
2
i with arbitrary weighting coefficients is available only

for some special cases, and its calculation in the general case is very difficult (see chapter

4.6 in Mathai and Provost 1992). For this reason, the following procedure is proposed.

First, let us rearrange the elements of the vector ðr21, :::, r2LÞ and divide it into two

subvectors ðr2þð1Þ, :::, r2þðL1ÞÞ and ðr2�ð1Þ, :::, r2�ðL2ÞÞ, where L1 þ L2 ¼ L: The first subvector

represents the “positive” part of the profile—that is, r2þð1Þ > r20, :::, r
2þ
ðL1Þ > r20—and the

second subvector represents the “negative” part of the profile; that is, r2�ð1Þ <

r20, :::, r
2�
ðL2Þ < r20: Let us define four r.v.s N

1,þ ¼PL1
i¼1 d

1,þ
ðiÞ n2i (respectively

N
0,þ ¼PL1

i¼1 d
0,þ
ðiÞ n2i ) and N

1,� ¼PL2
i¼1�d1,�ðiÞ 12i (respectively N

0,� ¼PL2
i¼1 �d0,�ðiÞ 12i ) to

calculate x 7! GðxÞ (respectively x 7! FZ, LðxÞ). The coefficients d0,þðiÞ and d1,þðiÞ are calculated

for the subvector ðr2þð1Þ, :::, r2þðL1ÞÞ: The coefficients d0,�ðiÞ and d1,�ðiÞ are calculated for the sub-

vector ðr2�ð1Þ, :::, r2�ðL2ÞÞ, and ni, 1i � Nð0, 1Þ are independent standard Gaussian r.v.s.

Hence, the abovementioned c.d.f.s can be rewritten as follows:

GðhÞ ¼ P

X

L

i¼1

d1i n
2
i < h

!

¼ P

X

L1

i¼1

d1,þðiÞ n2i �
X

L2

i¼1

� d1,�ðiÞ 12i � h

!

¼ P N
1,þ � N

1,� � hð Þ
(5.7)

FZ, LðhÞ ¼ P

X

L

i¼1

d0i n
2
i < h

 !

¼ P

X

L1

i¼1

d0,þðiÞ n2i �
X

L2

i¼1

� d0,�ðiÞ 12i � h

!

¼ P N
0,þ � N

0,� � hð Þ:
(5.8)
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Next, the use of a rather precise approximation for the c.d.f.s of the r.v.s N
0,þ, N1,þ

N
0,�, and N

1,� is proposed assuming that all of the weighting coefficients are positive;

that is, d0,þðiÞ > 0, d1,þðiÞ > 0, � d0,�ðiÞ > 0 and �d1,�ðiÞ > 0 (Gabler and Wolff 1987; Mathai

and Provost 1992):

FNðxÞ ¼ P

X

n

i¼1

~dðiÞn
2
i < x

!

¼ min H1ðxÞ,H2ðxÞ
� �

, (5.9)

where n ¼ L1 or n ¼ L2, ni � Nð0, 1Þ, ~d i ¼ di=d > 0 stands for the normalized coeffi-

cients calculated for di ¼ 6d0,6ðiÞ or for di ¼ 6d1,6ðiÞ ,
Pn

i¼1
~d i ¼ 1, and d ¼Pn

i¼1 di,

H1ðxÞ ¼
X

n

i¼1

~d i

c 1=ð2~d iÞ, x=ð2~d iÞ
	 


Cð1=ð2~d iÞÞ
, (5.10)

CðxÞ stands for the gamma function, cðp, xÞ ¼
Ð x

0 u
p�1e�udu stands for the incomplete

gamma function, and

H2ðxÞ ¼ Fv2ðx=dd; nÞ, dd ¼
Y

n

i¼1

~d i

 !1=n

, (5.11)

where Fv2ðx; nÞ stands for the c.d.f. of the chi-square distribution with n degrees of

freedom.

Finally, the convolution product is used to calculate the c.d.f.s x 7! GðxÞ and

x 7! FZ, LðxÞ: Therefore, we get

GðxÞ ¼ PðN1,þ � N
1,� � xÞ ¼

ð1

0

F
N
1,þðt þ xÞf

N
1,�ðtÞdt, (5.12)

and

FZ, LðxÞ ¼ PðN0,þ � N
0,� � xÞ ¼

ð1

0

F
N
0,þðt þ xÞf

N
0,�ðtÞdt, (5.13)

where x 7! F
N
1,þðxÞ (respectively x 7! F

N
0,þðxÞ) denotes the c.d.f. of N

1,þ (respectively

N
0,þ) and x 7! f

N
1,�ðtÞ (respectively x 7! f

N
0,�ðtÞ) denotes the p.d.f. of N1,� (respectively

N
0,�). The p.d.f.s t 7! f

N
1,�ðtÞ ¼ dF

N1,� ðtÞ
dt

and t 7! f
N
0,�ðtÞ ¼ dF

N0,� ðtÞ
dt

for equations (5.12)

and (5.13) are calculated by the numerical differentiation of the c.d.f.s (5.9).

The bottleneck point of the proposed numerical scheme is the application of the con-

volution products (5.12) to (5.13) to the calculation of the c.d.f.s x 7! GðxÞ and

x 7! FZ, LðxÞ: The potential computational burden of these c.d.f.s’ approximations are

due to the numerical integration and differentiation algorithms. It is necessary to find

an appropriate upper limit c of the integrals in (5.12) and (5.13) instead of 1: On the

one hand, the remainder terms
Ð1
c F

N
1,þðt þ xÞf

N
1,�ðtÞdt,

Ð1
c F

N
0,þðt þ xÞf

N
0,�ðtÞdt must

be negligible but, on the other hand, a large upper limit c produces a considerable vol-

ume of calculation. Let us consider the following test example: if n1, n2 � v22, then

n1 � n2 � Laplaceð0, 2Þ:The comparison between the c.d.f. obtained by the numerical

scheme with c¼ 100 and the Laplace c.d.f. shows that the upper bounds for
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�PfaðTFMA;maÞ and �PmdðTFMAÞ can be reliably calculated in the interval ½10�12, 1� with a

relative error induced by the numerical scheme of order 10�9:
Let us consider the following example of the TCD problem (5.1): L¼ 10, r20 ¼

1, ðr21, :::, r2LÞ ¼ ð10, 8, 6, 2, 8, 0:1, 0:2, 0:4, 0:6, 0:1Þ, ma ¼ 20: For this TCD problem, the

numerical calculation of the probabilities of false alarm �PfaðTFMAÞ and missed detec-

tion �PmdðTFMAÞ is difficult due to the absence of practicable methods. For this reason,

the probabilities �PfaðTFMAÞ and �PmdðTFMAÞ are estimated by using a 106-repetition

Monte Carlo simulation. To illustrate the sharpness of the upper bounds �a w:a:
0 and

�a1, their comparison with the probabilities �PfaðTFMAÞ and �PmdðTFMAÞ estimated by

simulation is shown in Figure 3. It follows that the bounds �a w:a:
0 and �a1 converge

rather quickly to the probabilities of false alarm �PfaðTFMAÞ and missed detec-

tion �PmdðTFMAÞ:

Figure 3. (a) The upper bound �a w:a:
0 (without the assumption that the LLRs are associated) and the

probability �PfaðTFMAÞ obtained by Monte Carlo simulation as functions of the threshold h. (b) The
upper bound �a1 and the probability �PmdðTFMAÞ obtained by Monte Carlo simulation as functions of
the threshold h. (c) The upper bound �a1 and the probability �PmdðTFMAÞ obtained by Monte Carlo
simulation as functions of �a0 and �PfaðTFMAÞ:
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6. TRANSIENT CHANGE IN THE PARAMETER OF EXPONENTIAL DISTRIBUTION

Let us rewrite the generative TCD model (1.1) for the exponential distribution Exp ðkÞ :

yn � Exp ðk0Þ if 1 � n < �
Exp ðkn��þ1Þ if � � n � � þ L� 1

,

�

(6.1)

where ðk1, :::, kLÞ stands for the transient change profile. The p.d.f. of Exp ðkÞ is given

by

f ðx; kÞ ¼ ke�kx if x � 0
0 if x < 0

:

�

(6.2)

It follows immediately from (3.8) that the FMA stopping time is defined as

TFMA ¼ inf n � L : Sn ¼
X

n

i¼n�Lþ1

k0 � kL�nþið Þyi � h

( )

: (6.3)

As in Section 5, to compute the upper bounds �a w:a:
0 and �a1 for �PfaðTFMA;maÞ and

�PmdðTFMAÞ, it is necessary to find the c.d.f.s x 7! GðxÞ and x 7! FZ, LðxÞ: The distribu-

tion of the sum of independent exponential r.v.s
Pn

i¼1 yi, where yi � Exp ðkiÞ, obeys

the hypoexponential distribution (or the generalized Erlang distribution; Ross 2011).

The exact c.d.f. of the hypoexponential distribution is available only for some special

cases of k1, :::, kn, and its calculation in the general case is very difficult. It follows from

the definition of the chi-square distribution with 2 degrees of freedom that n �
Exp ð1=2Þ � v22 and, hence, n � Exp ðkÞ � ð1=2kÞv22: Therefore, we again use the

approximation proposed in Gabler and Wolff (1987) and Mathai and Provost (1992).

It follows from (3.1) that

�PmdðTFMAÞ � �a1 ¼ GðhÞ ¼ P�ðSLþ��1 < hÞ ¼ P�

X

Lþ��1

i¼�

k0 � ki��þ1ð Þyi < h

" #

: (6.4)

Taking into account the previous paragraph, (6.4) can be rewritten as follows:

�a1 ¼ GðhÞ ¼ P

X

L

i¼1

d1i n2i þ 12i
� �

< h

!

, (6.5)

where d1i ¼ 1
2

k0
ki
� 1

	 


, n1, :::, nL, 11, :::, 1L are independent standard Gaussian r.v.s,

ni, 1i � Nð0, 1Þ, and n2i þ 12i � v22 obeys the chi-square distribution with 2 degrees of

freedom.

It follows from (3.9) that the upper bound for �PfaðTFMA;maÞ is given by

�a w:a:
0 ¼ min 1,ma~po � ðma � LÞþ~p2o

n o

, ~po ¼ 1� P0

X

L

i¼1

k0 � kið Þyi < h

" #

: (6.6)

By the same reason as given previously, the term ~po from (6.6) can be rewritten as

follows:

~po ¼ 1� FZ, LðhÞ ¼ 1� P

X

L

i¼1

d0i n2i þ 12i
� �

< h

!

, (6.7)
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where d0i ¼ 1
2

1� ki
k0

	 


, n1, :::, nL, 11, :::, 1L are independent standard Gaussian r.v.s,

ni, 1i � Nð0, 1Þ, and n2i þ 12i � v22 obeys the chi-square distribution with 2 degrees of

freedom.

As in Section 5, let us rearrange the elements of the vector ðk1, :::, kLÞ and divide it

into two subvectors ðkþð1Þ, :::, kþðL1ÞÞ and ðk�ð1Þ, :::, k�ðL2ÞÞ, where L1 þ L2 ¼ L: The first sub-

vector represents the “positive” part of the profile; that is, the part of positive weighting

coefficients ðk0 � kiÞ > 0 in the sums (6.4) and (6.6) or kþð1Þ < k0, :::, k
þ
ðL1Þ < k0: The

second subvector represents the “negative” part of the profile; that is, k�ð1Þ >

k0, :::, k
�
ðL2Þ > k0: Next, equations (5.7) to (5.13) are used again with a suitable adapta-

tion of the coefficients d0,þðiÞ and d1,þðiÞ for the subvector ðkþð1Þ, :::, kþðL1ÞÞ and the coeffi-

cients d0,�ðiÞ and d1,�ðiÞ for the subvector ðk�ð1Þ, :::, k�ðL2ÞÞ and by replacing L1 (respectively

L2) with 2L1 (respectively 2L2).

Figure 4. (a) The upper bound �a w:a:
0 (without the assumption that the LLRs are associated) and the

probability �PfaðTFMAÞ obtained by a 106-repetition Monte Carlo simulation as functions of the thresh-
old h. (b) The upper bound �a1 and the probability �PmdðTFMAÞ obtained by a 106-repetition Monte
Carlo simulation as functions of the threshold h. (c) The upper bound �a1 and the probability
�PmdðTFMAÞ obtained by Monte Carlo simulation as functions of �a0 and �PfaðTFMAÞ:
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Let us consider the following example of the TCD problem (6.1): L¼ 6, k0 ¼
1, ðk1, :::, kLÞ ¼ ð5, 2, 5, 6, 0:1, 0:1Þ, ma ¼ 20: As in the case of Gaussian variance, the

probabilities �PfaðTFMAÞ and �PmdðTFMAÞ are estimated by using a 106-repetition Monte

Carlo simulation. To illustrate the sharpness of the upper bounds �a w:a:
0 and �a1, their

comparison with the probabilities �PfaðTFMAÞ and �PmdðTFMAÞ estimated by simulation is

shown in Figure 4. It follows that the bounds �a w:a:
0 and �a1 converge rather quickly to

the probabilities of false alarm �PfaðTFMAÞ and missed detection �PmdðTFMAÞ:

7. DISCUSSION

Let us give the following interpretations for the key findings of the article.


 If the LLRs are associated r.v.s in the prechange mode, both upper bounds for the

FMA operating characteristics (3.7) and (3.10) are valid and, moreover, they are

asymptotically equivalent (see equation (3.11)), but for nonasymptotic values of �a0
(close to one), the difference between two bounds can be significant and it is pref-

erable to use the previously developed upper bound (3.10).


 As it follows from Theorem 3.1, the inequality 1 � ma � L results in a more con-

servative upper bound for the worst-case probability of false alarm �PfaðTWL;maÞ:
However, this more conservative upper bound is obviously valid for any relation

between ma and L; for example, when ma > L � 1 but the inequality ~p < ma

2ðma�LÞ is

not satisfied.


 The numerical analysis of three particular sequential TCD problems, presented in

Sections 4, 5, and 6, shows that the second term ðma � LÞþp2 in (3.3) improves the

sharpness of the upper bound for relatively small values of threshold h.


 Sometimes it is necessary to consider a more sophisticated generative model (1.1)

that includes a known profile h0, n in the prechange mode (instead of the constant

parameter h0). For the three particular cases of transient change detection consid-

ered in the article—that is, in the case of the Gaussian mean, variance, and the par-

ameter of exponential distribution—the known profile of h0, n in the prechange

mode does not change the problem. This new generative model can be easily

reduced to (1.1) by the transformation of observations ~yn ¼ yn � h0, n, ~yn ¼
yn
r0, n

and

~yn ¼ k0, nyn: In the case of arbitrary pre- and postchange distributions with a

known prechange profile h0, n, the FMA test can be defined but the calculation of

the probabilities �PmdðTÞ and �PfaðT;maÞ is still open. Finally, the case of a slowly

varying prechange profile h0, n with an adaptive FMA test was studied in the frame-

work of monitoring a nuclear reactor in Nikiforov et al. (2020).


 Some practical examples of the transient change detection (with dynamic profiles)

can be found in the literature (Gu�epi�e, Fillatre, and Nikiforov 2012b, 2012c;

Noumir et al. 2012; Do, Fillatre, and Nikiforov 2015; Do et al. 2017; Nikiforov et al.

2020; Tartakovsky et al. 2021; Mana, Gu�epi�e, Deprost et al. 2022; Mana, Gu�epi�e,

and Nikiforov 2022). Drinking water quality monitoring was considered in Gu�epi�e,

Fillatre, and Nikiforov (2012a, 2012b, 2012c) and Noumir et al. (2012) and air pol-

lution monitoring was considered in Mana, Gu�epi�e, Deprost et al. (2022) and

Mana, Gu�epi�e, and Nikiforov (2022). The papers by Do, Fillatre, and Nikiforov
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(2015) and Do et al. (2017) are devoted to the detection of cyber/physical attacks

on SCADA systems, Gu�epi�e et al. (2020) and Nikiforov et al. (2020) are devoted to

monitoring of a sodium-cooled fast reactor and its heat exchanger, and Tartakovsky

et al. (2021) is devoted to extracting streaks of faint space objects with unknown

orbits from digital frames, captured with ground-based telescopes.

Finally, the following three themes can be considered for further research. First, as

mentioned in Sections 1 and 2, the current article considers the optimization of the

truncated SPRT tests (reduced to the FMA test) without limiting requirement that the

LLRs are associated random variables. The (asymptotic) optimality in the general class

of sequential tests is still open. The second theme is the case of an unknown duration

of transient changes, which is upper bounded by the required time to alert. The third

theme is the case of an unknown profile shape with some known (or at least bounded)

average statistical characteristics of the postchange distribution(s) (like the energy of the

postchange signal).

8. CONCLUSION

The problem of the sequential TCD of an arbitrary transient change profile was consid-

ered in this article. In contrast to the previous study, we relax the assumption that the

LLRs of the observations are associated r.v.s in the prechange mode. Hence, the verifica-

tion that the LLRs are associated r.v.s is skipped and the transient change profile can be

arbitrary. By using a new upper bound for the worst-case probability of false alarm
�PfaðTWL;maÞ, it was established that the optimization of the WL CUSUM test with a

variable threshold leads to the FMA test. Three particular sequential TCD problems—

the Gaussian mean case, the Gaussian variance case, and the exponential distribution

case—were examined to verify the sharpness of the upper bounds for the FMA test

operating characteristics. It follows that the obtained upper bounds converge rather

quickly to the exact worst-case probabilities of false alarm �PfaðTFMA;maÞ and missed

detection �PmdðTFMAÞ, computed by numerical integration or by using the Monte Carlo

simulation, when the FMA test threshold h increases.

APPENDIX A. PROOF OF THEOREM 3.1

To prove Theorem 3.1, we begin with the first assertion of theorem 2 of Gu�epi�e, Fillatre, and
Nikiforov (2017); see (3.2). Let us rewrite (3.2) as follows:

�PfaðTWL;maÞ ¼ P0ðL � TWL < LþmaÞ ¼ P0 [
Lþma�1

n¼L
max
1�k�L

Zn
n�kþ1 � hk

� � � 0
n o

� �

: (A.1)

The worst-case probability of false alarm �PfaðTWL;maÞ for a given prechange period ma is
upper bounded by using the improved Boole-Bonferroni inequality for events A1, :::,An (Worsley
1982; Lin and Bai 2010):

P [
n

i¼1
Ai

� �

�
X

n

i¼1

PðAiÞ �
X

n

i¼2

PðA1 \ AiÞ: (A.2)
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From (A.1) and (A.2), we get

�PfaðTWL;maÞ �
X

Lþma�1

n¼L

P0 max
1�k�L

Zn
n�kþ1 � hk

� � � 0
	 


�
X

Lþma�1

n¼Lþ1

P0 max
1�k�L

ZL
L�kþ1 � hk

h i

� 0

� �

\ max
1�k�L

Zn
n�kþ1 � hk

� � � 0
n o

� �

:

(A.3)

Let us consider two cases.
The first case is 1 � ma � L: Here, all events in the second term PðAi \ AjÞ on the right-hand

side improving the Boole-Bonferroni inequality (A.2) are dependent. Therefore, in this case, only

the first term in inequality (A.3) is used (pure Boole’s inequality). Because the r.v.s Zn
n�kþ1, n ¼

L, :::, Lþma � 1, are equidistributed under the prechange measure for the same given k ¼
1, :::, L, we get

�PfaðTWL;maÞ � map, p ¼ P0 max
1�k�L

ZL
L�kþ1 � hk

h i

� 0

� �

: (A.4)

The second case is ma > L � 1: Due to the independence of the r.v.s ZL
1 , :::,Z

L
L of the r.v.s

Z2L
Lþ1, :::,Z

2L
2L , :::, it follows from (A.3) that

�PfaðTWL;maÞ �
X

Lþma�1

n¼L

P0 max
1�k�L

Zn
n�kþ1 � hk

� � � 0
	 


�
X

Lþma�1

n¼2L

P0 max
1�k�L

ZL
L�kþ1 � hk

h i

� 0

� �

	 P0 max
1�k�L

Zn
n�kþ1 � hk

� � � 0
	 


:

(A.5)

Because the r.v.s Zn
n�kþ1 and ZL

L�kþ1 are equidistributed under the prechange measure for the

same given k ¼ 1, :::, L, we get from (A.5) by using Boole’s inequality

�PfaðTWL;maÞ � map� ðma � LÞp2, p ¼ P0 max
1�k�L

ZL
L�kþ1 � hk

h i

� 0

� �

: (A.6)

Finally, putting together (A.6) and (A.4), we get

�PfaðTWL;maÞ � min 1,map� ðma � LÞþp2
� �

: (A.7)

APPENDIX B. PROOF OF THEOREM 3.2

Let us establish the upper bound for the probability of false alarm �PfaðTFMAÞ given in (3.5). As

before, two cases should be considered.
The first case is 1 � ma � L: It follows from Theorem 3.1 (by using Boole’s inequality) that

�PfaðTWL;maÞ � maP0 max
1�k�L

ZL
L�kþ1 � hk

h i

� 0

� �

� Hðh1, :::, hLÞ ¼ ma

X

L�1

k¼1

P0 ZL
L�kþ1 � hk

	 


þ 1� FZ, LðhLÞ
" #

,

(B.1)

which establishes the first part of (3.5). Let us consider the following equation �a0 ¼ Hðh1, :::, hLÞ:
It is easy to see that

FZ, LðhLÞ ¼ 1� �a0

ma

þ
X

L�1

k¼1

P0 ZL
L�kþ1 � hk

	 


(B.2)

provided that the thresholds h1, :::, hL�1 are so chosen that the right-hand side of the equation

belongs to the open interval �0, 1½: Because the function x 7! FZ, LðxÞ is continuous nondecreasing,
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the equation FZ, LðxÞ ¼ b has a solution for any prescribed constant b 2�0, 1½: Hence, the thresh-
old hL is a solution of the following equation:

hL ¼ F�1
Z, L 1� �a0

ma

�
X

L�1

k¼1

P0 ZL
L�kþ1 � hk

	 


 !

(B.3)

and

�a1ðh1, :::, hL�1Þ ¼ G F�1
Z, L 1� �a0

ma

�
X

L�1

k¼1

P0 ZL
L�kþ1 � hk

	 


 !" #

: (B.4)

The goal of the minimization problem (3.4) is to minimize the value of �a1 for any given �a0 2
�0, 1½: The function x 7! GðxÞ is nondecreasing and the function x 7! F�1

Z, LðxÞ is increasing.
Therefore, the optimal solution is reached when h1 ! 1, :::, hL�1 ! 1 and

hw:a:L ¼ h�L ¼ lim
h1!1, :::, hL�1!1

hLðh1, :::, hL�1Þ ¼ F�1
Z, L 1� �a0

ma

� �

(B.5)

and it is equal to

�a1 ¼ lim
h1!1, :::, hL�1!1

�a1ðh1, :::, hL�1Þ ¼ G F�1
Z, L ð1� �a0

ma

� �� �

(B.6)

for any given �a0 2�0, 1½: Hence, the first part of (3.6) and (3.7) is established.
The second case is ma > L � 1: Let us first consider the following quadratic function f ðxÞ ¼

max� ðma � LÞx2: The maximum of this function is reached at x0 ¼ ma

2ðma�LÞ : It is easy to see

that x0 ¼ ma

2ðma�LÞ � 1
2
for any ma > L � 1: Taking into account that the function x 7! f ðxÞ is

increasing for x � x0 and putting together (A.6) and Boole’s inequality, we get the following
majoration:

�PfaðTWL;maÞ � map� ðma � LÞp2 � Hðh1, :::, hLÞ ¼ ma~p � ðma � LÞþ~p2, (B.7)

where p ¼ P0ðmax1�k�L ZL
L�kþ1 � hk

� �

� 0Þ, ~p ¼PL�1
k¼1 P0ðZL

L�kþ1 � hkÞ þ 1� FZ, LðhLÞ and

assuming that ~p < ma

2ðma�LÞ : The second part of (3.5) is established. Putting together (B.1) and

(B.7), we obtain (3.9).
Let us consider the equation �a0 ¼ Hðh1, :::, hLÞ: A suitable solution of this equation

~p1 ¼
ma �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
a � 4ðma � LÞ�a0

p

2ðma � LÞ <
ma

2ðma � LÞ (B.8)

always exists because m2
a � 4ðma � LÞ�a0 � 0 for any ma > L � 1: By the same reason as in the

first part of this proof, we get

FZ, LðhLÞ ¼ 1�ma �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
a � 4ðma � LÞ�a0

p

2ðma � LÞ þ
X

L�1

k¼1

P0 ZL
L�kþ1 � hk

	 


: (B.9)

Hence, the threshold hL is a solution of the following equation:

hL ¼ F�1
Z, L 1�ma �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
a � 4ðma � LÞ�a0

p

2ðma � LÞ þ
X

L�1

k¼1

P0 ZL
L�kþ1 � hk

	 


!

(B.10)

and

�a1ðh1, :::, hL�1Þ ¼ G F�1
Z, L 1�ma �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
a � 4ðma � LÞ�a0

p

2ðma � LÞ þ
X

L�1

k¼1

P0 ZL
L�kþ1 � hk

	 


!" #

: (B.11)
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By the same reason as in the first part of this proof, the optimal solution of the minimization

problem (3.4) is reached when h1 ! 1, :::, hL�1 ! 1
hw:a:L ¼ h�L ¼ lim

h1!1, :::, hL�1!1
hLðh1, :::, hL�1Þ

¼ F�1
Z, L 1�ma �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
a � 4ðma � LÞ�a0

p

2ðma � LÞ

 !

(B.12)

and it is equal to

�a1 ¼ lim
h1!1, :::, hL�1!1

�a1ðh1, :::, hL�1Þ

¼ G F�1
Z, L 1�ma �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
a � 4ðma � LÞ�a0

p

2ðma � LÞ

 !" #

(B.13)

for any given �a0 2�0, 1½: Hence, the second part of (3.6) and also (3.7) and (3.8) is established.
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