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ABSTRACT 

In this paper, we study a two-echelon distribution system in which multiple products are jointly 

replenished at each stocking location and the inventory of each product at each location is 

controlled by an (s, S) policy. The transportation capacity in volume of products for each joint 

replenishment is limited, and linear rationing policies are used for both on-hand inventory and 

transportation capacity allocation in the system in case of lack. We propose a novel 

scenario-based model for the optimization of the (s, S) policies in the system that considers the 

rationing policies. Because of its high complexity when the number of scenarios is large, an 

Alternating Direction Method of Multipliers is proposed to solve the model. Based on real data, 

forty instances were generated and tested to evaluate the model and the solution method. Our 

numerical experiments show that for these instances this method could find a better solution in 

a much shorter computation time compared with CPLEX 12.9, whereas the latter often runs out 

of memory for large-size instances on a personal computer. Moreover, the inventory policies 

found by this scenario-based optimization approach can reduce costs by 5.1% and improve fill 

rates by 9.7% on average compared with those currently used in Alibaba. 

Keywords: Inventory management; distribution system; joint replenishment; (s, S) policy; 

scenario optimization; e-commerce 

1 INTRODUCTION 

In the era of e-commerce today, the competition between e-retailers becomes more and 

more fierce. To increase market shares and gain competitive advantages over their adversaries, 

e-commerce companies have been making efforts to improve the inventory management in their 

supply chains. Effective inventory management can help these companies reduce their logistics 

costs while assuring high service levels to their customers. 

In recent years, e-commerce has been developing very fast in China, with the emergence of 

some e-commerce giants such as Alibaba and JD.com. Under a project of Alibaba Innovative 

Research (AIR), we investigate the optimization of inventory policies in a distribution system 

dedicated to on-line Tmall supermarket. This system consists of a central distribution center 
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(CDC) and multiple regional distribution centers called front distribution centers (FDCs) in 

Alibaba. The CDC is the supplier of all FDCs, which serve final customers directly, while the 

CDC’s suppliers are manufacturers. This system stocks and sells multiple products, which are 

jointly replenished at each stocking location. The customer demand of each product observed 

by each FDC in each period (day) is stochastic. An (s, S) policy is adopted for the inventory 

control of each product at each stocking location in the system. Because of limited 

transportation capacity in each distribution channel, the volume of all products in each joint 

replenishment cannot exceed a given maximum volume. Previously, we studied safety stock 

policies and inventory replenishment planning for a single period in such a system (Dai et al., 

2019 and Dai et al., 2021). In this paper, we focus on the optimization of (s, S) policies in the 

system. The objective is to minimize the total cost of the distribution system composed of 

ordering costs, holding costs and lost sales costs, with the maximum joint replenishment 

volume constraints. 

To our best knowledge, the problem considered in this paper was never studied in the 

literature except for a conference paper (Dai et al., 2018). However, the optimization model 

proposed in that paper does not consider stock allocation/rationing at the CDC and no algorithm 

was proposed for solving the model except for commercial solver CPLEX. 

Because of its high complexity, this problem is unlikely to be solved analytically or by a 

commercial solver like CPLEX in an acceptable computation time. Because of this, we propose 

a novel scenario and decomposition-based approach to solve it. In contrast to the work of 

Noordhoek et al. (2018), we consider a distribution system with joint inventory replenishment 

subject to transportation volume constraints rather than with inventory replenishment of a single 

product. Moreover, our optimization approach is mathematical programming model-based 

rather than simulation-based. Although scenarios in our model correspond to realizations of 

stochastic demands in simulation, our approach has an advantage over theirs by allowing the 

evaluation of the quality of its solution based on the relative gap between an upper bound and a 

lower bound obtained by the corresponding mathematical programming model. 

For this scenario optimization, the main challenge for establishing a deterministic 

equivalence model for our stochastic inventory policy optimization problem is to formulate the 

(s, S) policy used in each stocking location and the stock allocation policy/rationing rule used at 

the CDC. We first build a novel scenario optimization model for this system, which takes 

account of the rationing rule and all side constraints. Because solving the model optimally by a 

commercial solver like CPLEX is quite time consuming for instances with a large number of 

scenarios, we propose an Alternating Direction Method of Multipliers (ADMM), which is a 

decomposition approach, to solve the model near-optimally and quickly. Our numerical 

experiments on four sets of instances generated based on real data show that for these instances 

this method could find better solutions in a much shorter computation time compared with 

CPLEX 12.9 and could avoid the out-of-memory problem of CPLEX. Moreover, the inventory 

policies found by our method can reduce costs and improve fill rates compared with those 

currently used in Alibaba. 

The rest of this paper is arranged as follows. The literature related to our study is reviewed 

in Section 2. Section 3 introduces the distribution system considered and the inventory 

optimization problem we study. A scenario-based optimization model is formulated for the 

problem in Section 4. Section 5 describes a decomposition-based ADMM approach for solving 

this model. The performance of this approach is evaluated by numerical experiments and its 

inventory policies found are compared with those currently used in Alibaba in Section 6. 

Section 7 summarizes the results of this paper and suggests directions for further study. 
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2 LITERATURE REVIEW 

In this section, we review the literature related to our work. Inventory management gained 

many attentions in the past decades, but most of them dealt with a single stocking location 

(Veinott, 1966; Lin et al., 2020; Teunter and Kuipers, 2022; Qiu et al., 2022). 

Previous studies of inventory management of distribution systems were focused on so 

called ‘one warehouse multi-retailer system’ with a single product (Federgruen and Zipkin, 

1984; Axsater, 1990; Axsater, 2003a; Axsater, 2003b; Wang et al., 2022; Berling et al., 2023). 

Under the balance assumption, Diks and De Kok (1998) proved it is optimal for a distribution 

system to control each stocking location by a base-stock policy when ordering costs at each 

stocking location are negligible. However, the balance assumption may not hold and ordering 

costs may exist in the system. In either of the two cases, the distribution system’s optimal 

inventory policy is not known. Because of this, most studies assume a given type of inventory 

policy for each stocking location in a distribution system and try to optimize the parameters of 

these policies. One challenge for this optimization is that, except for determining the optimal 

inventory policy parameters, a stock allocation (rationing) decision must be made for each 

stocking location when its on-hand inventory cannot completely meet all replenishment orders 

of its immediate downstream locations. Various stock allocation policies/rationing rules were 

proposed for distribution systems (Eppen and Schrage, 1981; Van der Heijden et al., 1997; 

Bollapragada et al., 1998). All these rules belong to the class of linear rationing rules 

(Lagodimos and Koukoumialos, 2008). Each linear rationing rule allocates the shortage of an 

upstream stocking location to its immediate downstream stocking locations proportionally 

according to their rationing fractions. One application of rationing rules in a distribution system 

can be found in Jula and Leachman (2011). Chen et al. (2022) reviewed several stock allocation 

polices/rationing rules studied in the literature and proposed two nonlinear rationing rules for 

distribution systems controlled by (s, S) policies. They showed that the nonlinear rationing rules 

could reduce the total cost of a distribution system by 1.5% on average. Although a nonlinear 

rationing rule may outperform a linear one, the former is usually much more complicated than 

the latter. As a result, linear rationing rules are usually used in practice because of their 

simplicity and near-optimality. 

Joint inventory replenishment is an industrial practice. It has been proved that joint 

replenishment can reduce ordering costs when multiple products are involved in an inventory 

system (Goyal and Satir, 1989; Abouee-Mehrizi, 2015). Readers can refer to a recent review 

paper for the studies on joint replenishment (Bastos et al., 2017). In most joint replenishment 

models, ordering costs of multiple products consist of product-independent major ordering costs 

and product-dependent minor ordering costs (Khouja and Goyal, 2008). Various joint 

replenishment policies were proposed in the literature, such as can-order policy, periodic (s, S) 

policy, (Q, S), and (T, S) policy. The inventory policies considered in this paper can be 

considered periodic (s, S) policies (Viswanathan, 1997) where the review period (or review 

interval) of each stocking location is given. Most studies on joint replenishment only consider a 

single stocking location with only few exceptions. Axsäter and Zhang (1999) studied a 

continuous-review two-echelon distribution system composed of a central warehouse and 

multiple identical retailers, where the retailer who has the lowest inventory position orders a 

batch when the aggregate inventory position of all retailers in the system reaches a joint reorder 

point. Zhou et al. (2012) considered a multi-product multi-echelon inventory system composed 

of a supply network and a distribution network linked through a producer, where the inventory 

of each stocking location is controlled by a (T, S) policy. A mathematical programming model 

is established for optimizing the order cycles and the order up to levels of all products at all 

stocking locations. However, this model is only an approximate model, because the holding 
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cost and the shortage cost of each stocking location are only approximately formulated. 

Moreover, the model is only approximately solved by using a genetic algorithm, so our 

modeling and solution method are both different from theirs. Çapar (2013) studied joint 

shipment consolidation in a two echelon distribution system, where the distribution center uses 

a time-based shipment consolidation policy to dispatch to retailers their accumulated orders at 

the end of each consolidation cycle. An exact method was developed to determine the optimal 

replenishment quantity for the distribution center and the base-stock level for each retailer. 

However, only one product is involved in the system and the joint shipment consolidation of a 

single product is different from the joint replenishment of multiple products we study. Carvajal 

et al. (2020) studied joint inventory replenishment in a two-echelon distribution system under 

constant final demands, budgetary and storage capacity constraints. They proposed a hybrid 

meta-heuristic algorithm and a memetic algorithm for optimizing the system. However, they 

considered a distribution system with constant demands, whereas we consider a distribution 

system with stochastic demands. 

Only few papers studied the optimization of an inventory system with multiple stocking 

locations and controlled by (s, S) policies (De Kok et al., 2018). Kukreja and Schmidt (2005) 

considered a single echelon continuous review inventory system with multiple stocking 

locations controlled by (s, S) policies, where lateral transshipments among stocking locations 

are allowed. Fattahi et al. (2015) investigated a serial system with a manufacturer and a retailer 

controlled by (s, S) policies. They considered maximum production capacity in the 

manufacturer and maximum ordering capacity in the retailer. The systems studied in these 

papers are simpler than distribution systems and neither of them considers joint inventory 

replenishment. For distribution systems, the optimization of (R, Q) policies or (R, nQ) policies 

was also studied in the literature (Axsäter, 2003a, Al-Rifai and Rossetti, 2007, Berling and 

Marklund, 2014). All these papers only consider one product without joint replenishment and 

assume identical review period (the time between two consecutive reviews) for all stocking 

locations. Moreover, they did not explicitly consider the stock allocation policy/rationing rule 

used in each upstream stocking location of a distribution system. 

Three kinds of methods have been used to optimize inventory polices of a stochastic 

inventory system in the literature, i.e., analytical, simulation-based, and scenario-based methods. 

Among them, most analytical approaches were used for the optimization of base-stock policies 

(Clark and Scarf, 1960), or (R, Q) policies in one warehouse multi-retailer systems (Forsberg, 

1996, Axsater, 2000). However, using analytical methods to optimize (s, S) policies for a 

multi-echelon system was rare because of its high complexity. Simulation-based optimization 

approaches use a metaheuristic as optimization engine and simulation for cost evaluation of an 

inventory system. Jalali and Nieuwenhuyse (2015) provided an overview of simulation-based 

approaches for inventory optimization. Tsai and Chen (2017) considered multiple objectives 

and used a simulation-based approach to optimize the reorder points and the order quantities in 

a two-echelon serial system. The three objectives considered are the expected inventory cost, 

inventory level, and frequency of shortage. Noordhoek et al. (2018) developed an approach that 

combines scatter search and simulation for the optimization of (s, S) policies in a multi-echelon 

distribution system of Dutch food retail industry. Numerical results show this approach 

outperforms a nested bisection search method. Avci and Selim (2018) proposed a 

simulation-based approach for the optimization of an inventory system in an automotive supply 

chain. They considered multiple objectives and designed a heuristic algorithm to optimize the 

objectives simultaneously. Scenario-based methods were also used in inventory optimization. 

Fattahi et al. (2015) formulated the problem of optimizing inventory policies in a single product 

serial inventory system with a retailer and a manufacturer as a mixed-integer linear program 
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using scenario approximation. The model was solved by applying either an evolutionary or 

imperialist competitive algorithm. Nguyen and Chen (2018) formulated a stochastic 

programming model for supplier selection in a biomass supply chain with uncertain supply. The 

deterministic equivalence model of the stochastic program was solved by applying a regularized 

L-shaped algorithm. 

Because only a meta-heuristic is used as its optimization engine, the quality of the solution 

found by a simulation-based approach for the optimization of a stochastic inventory system 

cannot be well evaluated. This is one major weakness of such approach. Although each scenario 

corresponds to a realization of random variables in a stochastic inventory system as in 

simulation, the quality of the solution found by a scenario-based approach can be well 

evaluated, because for a given number of scenarios, the stochastic optimization problem can be 

equivalently transformed into a deterministic mathematical program. This is one advantage of 

scenario-based approach versus simulation-based approach. 

In the literature, both inventory systems with backorders and lost-sales were widely studied. 

A recent literature review on inventory systems with lost-sales was given by Bijvank and Vis 

(2011). They concluded that the optimization of an inventory system with lost-sales is usually 

much more difficult than the optimization of its counterpart with backorders. For this reason, 

most studies on inventory systems with lost-sales only considered one stocking location with 

one product. Only few papers studied distribution systems with lost sales (Andersson and 

Melchiors, 2001; Seifbarghy and Jokar, 2006; Hill et al., 2007). Because lost sales occur in our 

considered distribution system, we adopt an inventory model with lost sales for this system. In 

addition, in this system, the inventory review period of the CDC is different from that of each 

FDC. 

With respect to the previous works reviewed above, our work makes the following 

contributions to the literature. 

1. A two-echelon joint replenishment distribution system with lost sales and managed by (s, 

S) policies with transportation volume constraints and different review periods at the CDC and 

the FDCs is considered. Most of previous works on distribution systems consider backorders 

and no previous work studied a distribution system with all the features we consider. 

2. By applying scenario approximation, a novel mixed-integer linear programming model is 

formulated for the optimization of the inventory policies. This model well considers stock 

allocation/rationing in the system and all side constraints. 

3. An alternating direction method of multipliers is proposed to solve the model. This 

method can find a near-optimal solution for the instances generated based on real data in a 

reasonable computation time. 

 

3 PROBLEM DESCRIPTION 

A two-echelon distribution system dedicated to on-line Tmall supermarket of Alibaba is 

studied, which is illustrated in Figure 1. This distribution system consists of a Central 

Distribution Center (CDC) and multiple regional distribution centers called Front Distribution 

Centers (FDCs), where the CDC is the supplier of each FDC which serves final customers. 

Each stocking location in the system stores multiple fast moving products. It is assumed that 

each product’s demand observed by each FDC in each period (day) is normally distributed, and 

the demands of different products at different stocking locations in different periods are 

independent. Note that our scenario-based optimization model and solution method are also 
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applicable in case when the demand of each product at each stocking location in each period is 

subject to any other distribution such as Poisson or compound Poisson distribution. 

Figure 1:  A two-echelon distribution system for Tmall supermarket 

The inventory of each product at each stocking location is periodically reviewed, where 

each period corresponds to one day. All FDCs have the same review period (the time between 

two consecutive reviews), whereas the CDC’s review period is a multiple of each FDC’s. 

Suppose that the review period of the CDC and each FDC are R and 1, respectively. To 

distinguish between the two review periods, the CDC’s review period is also called review 

cycle hereafter. Each stocking location’s replenishment lead time is given, and the CDC may 

have a lead time different from that of the FDCs. Each stocking location jointly replenishes 

multiple products involved. Because of limited transportation capacity for each distribution 

channel, the volume of each joint replenishment of a stocking location cannot exceed a given 

maximum volume. The inventory of each product at each stocking location in this distribution 

system is controlled by an (s, S) policy, where s and S are reorder point and order-up-to level, 

respectively. In addition, when the on-hand inventory of the CDC cannot satisfy all 

replenishment orders of the FDCs, a stock allocation/rationing rule is used to allocate the 

on-hand inventory among the orders. 

We want to optimize the (s, S) policies of the distribution system in a planning horizon 

starting from period r and ending with period T, where 1 ≤ ≤r R  and T = 1+ × −r N R  for

some positive integer N. The number of periods considered in the planning horizon is ×N R . In

this planning horizon, each FDC reviews its inventory in each period, and the periods in which 

the CDC reviews its inventory can be written as 1× +n R , for integer n with 0 1≤ ≤ −n N and

1× +n R ≥ r. Note that considering a finite horizon in the optimization of a dynamic system is

also adopted by lot-sizing models for production planning (Balkhi, 2001; Zhou et al., 2004).  

Holding costs, lost sales costs, and two types of ordering costs are considered in the 

system. Minor ordering cost of each stocking location is determined by transportation costs of 

its inventory replenishments. Major ordering cost of the CDC is charged every time when it 

places a joint replenishment order to external suppliers, whereas that cost is negligible for each 

FDC. The negligibility of major ordering cost for each FDC is because this cost is much smaller 

than transportation costs for its order delivery. Our objective of optimizing the (s, S) policies 

of the distribution system is to minimize its expected total cost in the planning horizon. 

The problem studied is a very complex stochastic optimization problem since it deals with 

a distribution system controlled by (s, S) policies with stochastic demands of multiple products 

jointly replenished at each stocking location with maximum joint replenishment volume 

constraints. Because of the complexity, it is unlikely to find an analytical approach for this 
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optimization. For this reason, we propose a scenario-based approach for this optimization, 

where the random demands are approximated by a finite number of their possible realizations 

(scenarios) with respective occurrence probabilities. For a given number of scenarios, this 

stochastic optimization problem can be transformed into its deterministic equivalence model. In 

this equivalence model, the expected total cost of the system is replaced by its total cost 

averaged over all demand scenarios. 

4 MATHEMATICAL MODELLING OF THE PROBLEM 

In this section, a mixed integer linear program model is established for optimizing (s, S) 

policies in the distribution system considered. Since the demands of the distribution system are 

relatively stationary, we assume s and S for each product at each stocking does not change over 

time, but the optimization model and the solution method proposed in this paper can be easily 

extended to ones with time-dependent s and S. 

Since most stock allocation/rationing rules proposed in the literature and that used in the 

distribution system of Alibaba are linear ones, we restrict rationing rules used in this system to 

linear ones. That is, a linear rationing rule is applied to both the allocation of on-hand inventory 

of the CDC among orders of the FDCs for each product and the allocation of transportation 

capacity of each distribution channel among multiple products for each stocking location in the 

system. This restriction will not have a significant impact on the cost of the system (Chen et al. 

2022) while making its stock allocation decisions simpler. Like the on-hand inventory 

allocation, when a linear rationing rule is applied to the transportation capacity allocation, the 

shortage of transportation capacity is allocated proportionally among the products involved in 

each joint replenishment according to their rationing fractions pre-specified. We assume all 

rationing fractions (coefficient) in each linear rationing rule used are given. 

Before presenting the model, we first introduce the following notations used in it. 

Indices 

i: index of a product, i ∈ Ι = {1, 2, …, I}, where I is the number of products considered.

j: index of a stocking location, j ∈ ϑ = {0, 1, 2, …, J}, where j = 0 represents the CDC and j > 0

represents a FDC, and J is the number of FDCs in the distribution system considered. 

t, τ: index of a period, t,τ ∈ Τ = {r, r+1, …, 1+ × −r N R }, where r with 1 ≤ r ≤R is the starting

period of the planning horizon, R is the inventory review period of the CDC, N is a positive 

integer, and ×N R  is the number of periods considered in the planning horizon.

k: index of a scenario index, k ∈ Κ = {1, 2, …, K}, where K is the number of demand scenarios

considered. 

Parameters 

,

ij

t k
d : product i's demand observed by stocking location j in period t under scenario k 

ij
L : product i’s replenishment lead time at stocking location j 

j
R : inventory review period of stocking location j with 1=

j
R if j ≥ 1 and

0 =R R . That is, each

FDC is reviewed once every period, and the CDC is reviewed once every R periods, R is a 

positive integer 
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iv : volume of product i 

max

j
C : maximum joint replenishment volume of stocking location j 

ij
h : unit holding cost of product i in each period at stocking location j 

ij
l : unit lost sales cost of product i at stocking location j 

ij
t : unit transportation cost of product i in any joint replenishment of stocking location j 

0O : major ordering cost for each joint replenishment of the CDC 

ij
f : rationing fraction of FDC j for on-hand inventory allocation of the CDC among orders of 

the FDCs for each product i, 
1

1
J

ij

j

f
=

=∑ , 0
ij

f ≥

'
ij

f : rationing fraction of product i for transportation capacity allocation of each joint 

replenishment of stocking location j among all products, 
1

' 1
=

=∑
I

ij

i

f , ' 0
ij

f ≥

kp : occurrence probability of scenario k 

Decision Variables 

,t k

ij
IP : product i’s inventory position at stocking location j in period t prior to receiving 

shipments from its supplier in this period under scenario k 

,t k

ij
I : product i’s on-hand inventory at stocking location j in period t prior to receiving shipments 

from its supplier in this period under scenario k 

,t k

ij
LS : lost sales of product i at stocking location j in period t under scenario k 

ij
s : the reorder point of product i at stocking location j 

ij
S : the order-up-to level of product i at stocking location j 

,t k

ij
x : product i’s real replenishment quantity for stocking location j in period t under scenario k 

after both on-hand inventory allocation/rationing of the CDC for this product and the 

transportation capacity allocation/rationing among all products involved in the corresponding 

joint replenishment 

,t k

ij
q : product i’s replenishment quantity for FDC j in period t under scenario k, determined by its 

(s, S) policy 

,'t k

ij
q : product i’s replenishment quantity for FDC j in period t under scenario k after on-hand 

inventory allocation/rationing of the CDC for this product but before the transportation capacity 

allocation/rationing among all products involved in the corresponding joint replenishment 

,t k

ij
y : 

, 1=t k

ij
y if stocking location j replenishes its inventory of product i in period t under 

scenario k, and 
, 0=t k

ij
y  otherwise
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,

0'
t ky :

,

0' 1t ky =  if the CDC makes a joint replenishment in period t under scenario k, and
,

0' 0t ky =  

otherwise

With these notations, we can establish the following mixed-integer linear programming 

model for scenario-based optimization of the inventory policies of the distribution system with 

lost sales considered. 

Model SBO: 

( ), , , ,

0 0

\{0}

'
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

=
  

⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅   
  

∑ ∑∑∑ ∑ ∑∑ ∑SBO t k t k t k t k

k ij ij ij i ij ij ij

k t i j t t i j

Z Min p h I t v x O y l LS
K T I J T T I J

(1) 

subject to: 

( ),( 1), , , , , , \{0}, ,
−+ = + − + ∈ ∈ ∈ ∈ijt L kt k t k t k t k

ij ij ij ij ij
iI I x d LS j t kI J T K (2) 

0

J
( ),( 1), , ,

0 0 0

1

, , ,
−+

=

= + − ∈ ∈ ∈∑it L kt k t k t k

i i i ij

j

iI I x x t kI T K (3) 

1
, , , , , \{0}, ,τ

τ

−

= −

= + ∈ ∈ ∈ ∈∑
ij

t
t k t k k

ij ij ij

t L

iIP I x j t kI J T K (4) 

0

1
, , ,

0 0 0 , , ,τ

τ

−

= −
= + ∈ ∈ ∈∑

i

t
t k t k k

i i i

t L

iIP I x t kI T K (5) 

If 
, ≤t k

ij ij
IP s , , = 1, , \{0}, ,∈ ∈ ∈ ∈t k

ij
iy j t kI J T K (6)

If 
, >t k

ij ij
IP s , , = 0, , \{0}, ,∈ ∈ ∈ ∈t k

ij
iy j t kI J T K (7)

, , , , \{0}, ,≤ − ∈ ∈ ∈ ∈t k t k

ij ij ij
iq S IP j t kI J T K (8) 

If 
,

0 0≤t k

i i
IP s , ,

0 = 1, , 1 , ,0 1,∈ = + × ≥ ≤ ≤ − ∈t k

i iy t n R t r n N kI K (9)

If 
,

0 0>t k

i i
IP s , ,

0 = 0, , 1 , ,0 1,∈ = + × ≥ ≤ ≤ − ∈t k

i iy t n R t r n N kI K (10)

, ,

0 0 0 , , 1 , , 0 1,≤ − ∈ = + × ≥ ≤ ≤ − ∈t k t k

i i i iq S IP t n R t r n N kI K (11) 

, ,

0 0' , , ,≤ ∈ ∈ ∈t k t k

i
iy y t kI T K (12) 

, , max , , , ,⋅ ≤ ⋅ ∈ ∈ ∈ ∈t k t k

i ij ij j
iv x y C j t kI J T K (13) 

If ,

1

,

0

=

>∑
J

t k

ij

j

t k

iq I , 
,

1

, , ,

0' , , \{0}, ,
=

 
= − − ∈ ∈ ∈ ∈ 

 
∑

J
t k

ij

j

t k t k t k

ij ij ij i iq q f q I j t kI J T K (14)

If ,

1

,

0

=

≤∑
J

t k

ij

j

t k

iq I , 
, ,' , , \{0}, ,= ∈ ∈ ∈ ∈t k t k

ij ij
iq q j t kI J T K (15) 
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If
,

1

max'
=

⋅ >∑
I

t k

i ij

i

jv q C , , ,

1

, max' ' ' ,
=

⋅ ⋅ ⋅ = − − 
 
∑

I
t k t k

i ij i i ij

i

t k

ij ij j
v x v vq f q C         

           , \{0}, ,∈ ∈ ∈ ∈i j t kI J T K    (16) 

If ,

1

max'
=

⋅ ≤∑
I

t k

i ij

i

j
v q C , 

, ,' , , \{0}, ,= ∈ ∈ ∈ ∈t k

ij

t k

ij
x iq j t kI J T K        (17) 

If ,

0

1

max

0
=

⋅ >∑
I

t k

i i

i

v q C , , ,

0 0

1

, max

0 0 0
' ,

=

⋅ ⋅ ⋅ = − − 
 
∑

I
t k t k

i i i i i

i

t k

i i
v x v vq f q C  

, 1 , ,0 1,∈ = + × ≥ ≤ ≤ − ∈i t n R t r n N kI K   (18) 

If ,

0

1

max

0
=

⋅ ≤∑
I

t k

i i

i

v q C , ,

0

,

0 , , 1 , , 0 1,= ∈ = + × ≥ ≤ ≤ − ∈t k

i

t k

ix iq t n R t r n N kI K     (19) 

, ,≥ ∈ ∈
ij ij

iS s jI J                  (20) 

0, ,≥ ∈ ∈
ij

is jI J                  (21) 

,

0 0, , , 1 ,0 1,= ∈ ∈ ≠ + × ≤ ≤ − ∈t k

i ix t t n R n N kI T K
         

(22) 

{ }, , , , , , , ,
, , , , , ' 0; , ' 0,1 , , , ,

t k t k t k t k t k t k t k t k

ij ij ij ij ij ij ij ij iIP I LS x q q y y j t k≥ ∈ ∈ ∈ ∈ ∈I J T K
   

(23) 

The objective function (1) represents the total cost composed of inventory holding costs at 

all stocking locations, transportation costs (minor ordering costs) for inventory replenishments 

of all stocking locations, major ordering costs of the CDC, and lost sales costs at all FDCs for 

the distribution system considered. Equations (2) and (3) are inventory balance equations of the 

FDCs and the CDC, respectively. Equations (4) and (5) establish the relationship among 

inventory position, inventory level, and outstanding orders at each stocking location. 

 Constraints (6) to (11) ensure that an (s, S) inventory policy is used at each stocking 

location. Among them, logical constraints (6) and (7) imply that inventory replenishment of 

each product at each FDC only occurs when its inventory position drops below its reorder point, 

constraints (8) imply that each product’s replenishment quantity at each FDC does not exceed 

its order-up-to level minus its inventory position. Similarly, logical constraints (9) and (10) 

imply that the inventory replenishment of each product at the CDC only occurs when its 

inventory position drops below its order-up-to level, constraints (11) ensure that the inventory 

replenishment quantity of each product at the CDC is no more than its order-up-to level minus 

its inventory position, where constraints (9) to (11) are imposed only for periods t = 

1 ,+ × ≥n R t r  with 0 1≤ ≤ −n N , this is because the CDC replenishes its inventory only in its 

review periods. 

Note that, in this model, the real replenishment quantity of a product at some stocking 

location in some period may be smaller than the order quantity determined by its (s, S) policy 

because of on-hand inventory rationing at the CDC and transportation capacity rationing among 

products jointly replenished.  

Constraints (12) imply that any product is replenished at the CDC only if it is one of the 

products jointly replenished. Constraints (13) link real variable t

ij
x

 
and binary variable t

ij
y .  

Logical constraints (14)-(19) describe the inventory rationing at the CDC in each period 

and the transportation capacity rationing at each distribution channel for each joint 
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replenishment. For each product i, the inventory rationing constraints (14) and (15) indicate the 

replenishment quantity 
,'t k

ij
q allocated to each FDC j determined by a linear rationing rule and

according to on-hand inventory of the CDC without considering the maximum joint 

replenishment volume constraints. This quantity 
,'t k

ij
q is a function of the replenishment 

quantity ,t k

ij
q  determined by an (s, S) policy, the shortage 

,

1

,

0

J
t k

ij

j

t k

i
q I

=

−∑ of the CDC, and the 

rationing fraction ij
f for each FDC j, where ,

0

t k

iI is product i’s on-hand inventory at the CDC at 

the moment of rationing. 

Note that only the linear inventory rationing equations (14) themselves may generate 

negative allocation
,'t k

ij
q , when the balance assumption does not hold for the distribution system

considered (Diks and De Kok, 1998). This problem is overcome by imposing the non-negativity 

of 
,'t k

ij
q  in (23) and allowing 

, ,≤ −t k t k

ij ij ij
q S IP even if 

, ≤t k

ij ij
IP s . Only imposing the

non-negativity of 
,'t k

ij
q may lead to the infeasibility of the model, but this infeasibility can be 

avoided by relaxing 
, ,= −t k t k

ij ij ij
q S IP  to 

, ,≤ −t k t k

ij ij ij
q S IP in case of 

, ≤t k

ij ij
IP s . This relaxation is 

reasonable since the real replenishment quantity of a product at some FDC in some period may 

be smaller than the order quantity determined by its (s, S) policy as explained above. 

The transportation capacity rationing constraints (16) and (17) indicate the real 

replenishment quantity 
,t k

ij
x of product i for each FDC j determined by a linear rationing rule 

of transportation capacity that considers the maximum joint replenishment volume 
max

j
C for 

each replenishment of the FDC. This quantity is a function of 
,'t k

ij
q , the shortage of

transportation capacity ,

1

max'
I

t k

i ij

i

j
v q C

=

⋅ −∑ , and the rationing fraction '
ij

f for each product i.

Similarly, the rationing constraints (18) and (19) indicate the real replenishment quantity ,

0

t k

i
x

of product i for the CDC determined by a linear rationing rule of transportation capacity that 

considers the maximum joint replenishment volume max

0C for each replenishment of the CDC, 

where ,

0

t k

i
q is the quantity of product i replenished by the CDC determined by an (s, S) policy. 

Similarly, only the linear transportation capacity rationing equations (16) or (18) 

themselves may generate negative allocation 
,t k

ij
x  or ,

0

t k

i
x . This problem is overcome in the 

same way as 
,'t k

ij
q by imposing the non-negativity of

,t k

ij
x  and ,

0

t k

i
x in (23) and allowing 

, ,≤ −t k t k

ij ij ij
q S IP  generally. 

Constraints (20) imply that the order-up-to level of product i at stocking location j is always 

larger or equal than its corresponding reorder point. Since in this inventory model with lost 

sales, the inventory position 
,t k

ij
IP  is never negative, constraints (21) are added for all products 

i and all stocking locations j without loss of generality. 

Finally, (22) and (23) indicate the ranges of all decision variables. As a replenishment from 

its supplier to the CDC in each scenario happens only once every N periods, and the distribution 

system starts in the r-th period in the review cycle of N periods of the CDC, the replenishment 
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quantity
,

0
0≥t k

i
x in the periods 1,= × + ≥t n R t r  with 0 1≤ ≤ −n N  and ,

0
0=t k

i
x in the 

other periods. 

All logical constraints in the above model SBO can be equivalently transformed into linear 

constraints by introducing auxiliary variables and big numbers. After the transformation, this 

model becomes a MILP model. In the remainder of this section, we only linearize logical 

constraints (6), (7), (9), and (10) which will be cited and reformulated in the next section when 

describing a solution approach for the model. For the linearization of other logical constraints 

and the setting of big numbers introduced in the linearization of all logical constraints in model 

SBO, please see the appendix at the end of this paper.  

By introducing big numbers 
11

ijM  and 
12

ijM for each i and j, logical constraints (6) and 

(7) can be transformed into the following linear constraints (24) and (25). 

( )11 , ,1 , , \ {0}, ,⋅ − ≤ − ∈ ∈ ∈ ∈t k t k

ij ij ij ij
iM y s IP j t kI J T K (24) 

, 12 , , , \{0}, ,− ≤ ⋅ ∈ ∈ ∈ ∈t k t k

ij ij ij ij
is IP M y j t kI J T K (25) 

Similarly, logical constraints (9) and (10) can be transformed into the following linear 

constraints (26) and (27) by introducing big numbers 
21

i
M and

22

i
M for each i. 

( )21 , ,

0 0 0
1 , , 1 , ,0 1,⋅ − ≤ − ∈ = + × ≥ ≤ ≤ − ∈t k t k

i i i i
iM y s IP t n R t r n N kI K (26) 

, 22 ,

0 0 0 , , 1 , , 0 1,− ≤ ⋅ ∈ = + × ≥ ≤ ≤ − ∈t k t k

i i i i is IP M y t n R t r n N kI K (27) 

5 SOLUTION APPROACH 

After the linearization of all logical constraints, model SBO becomes a mixed integer linear 

program (MILP). This MILP can be solved by using a commercial MILP solver such as 

CPLEX. However, the time required by CPLEX to solve the model increases exponentially as 

the number of its integer variables increases, so when the number of scenarios is large, a more 

efficient method is required to solve this model. Because when sij and Sij are given for all 

products and all stocking locations, this model can be decomposed into K independent 

sub-models, where K is the number of scenarios, we try to design a scenario-based 

decomposition approach to solve it. In order to do so, we first reformulate SBO by introducing 

scenario-dependant variables k

ij
s  and k

ij
S  to replace sij and Sij and adding constraints

'

'∈

= ∑k k

ij ij

k

s s K
K

and '

'∈

= ∑k k

ij ij

k

S S K
K

, for any k ∈ Κ, where K is the number of scenarios in Κ. 

The reformulated model is given as follows: 

Model SBO2: 

( )2 , , , ,

0 0

\{0}

'
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

=
  

⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅   
  

∑ ∑∑∑ ∑ ∑∑ ∑SBO t k t k t k t k

k ij ij j i ij ij ij

k t i j t t i j

Z Min p h I t v x O y l LS
K T I J T T I J

(28) 

subject to constraints (2)-(5), (12)-(13), (22)-(23), 



13 

( )11 , ,1 , , \ {0}, ,⋅ − ≤ − ∈ ∈ ∈ ∈t k k t k

ij ij ij ij
iM y s IP j t kI J T K (29) 

, 12 , , , \{0}, ,− ≤ ⋅ ∈ ∈ ∈ ∈k t k t k

ij ij ij ij
is IP M y j t kI J T K (30) 

, , , , \{0}, ,≤ − ∈ ∈ ∈ ∈t k k t k

ij ij ij
iq S IP j t kI J T K (31) 

( )21 , ,

0 0 0
1 , , 1 , ,0 1,⋅ − ≤ − ∈ = + × ≥ ≤ ≤ − ∈t k k t k

i i i i
iM y s IP t n R t r n N kI K (32) 

, 22 ,

0 0 0 , , 1 , , 0 1,− ≤ ⋅ ∈ = + × ≥ ≤ ≤ − ∈k t k t k

i i i i is IP M y t n R t r n N kI K (33) 

, ,

0 0 0 , , 1 , , 0 1,≤ − ∈ = + × ≥ ≤ ≤ − ∈t k k t k

i i i iq S IP t n R t r n N kI K (34) 

, , ,≥ ∈ ∈ ∈k k

ij ij
iS s j kI J K (35) 

'

'

, , ,
∈

= ∈ ∈ ∈∑k k

ij ij

k

is s K j k
K

I J K (36) 

'

'

, , ,
∈

= ∈ ∈ ∈∑k k

ij ij

k

iS S K j k
K

I J K (37) 

0, , ,≥ ∈ ∈ ∈k

ij
is j kI J K (38) 

and constraints (46)-(69) in the Appendix. 

In model SBO2, the objective function (28) is the same as that of model SBO; constraints (29) 

to (34) are the reformulation of constraints (6) to (11), or equivalently the reformulation of 

constraints (24), (25), (8), (26), (27), and (11); constraints (35) to (37) are the reformulation of 

constraints (20); constraints (38) are the reformulation of constraints (21). Since constraints 

(36) and (37) imply k

ij
s  = sij and k

ij
S  = Sij for any k for some sij and Sij, model SBO2 is 

equivalent to model SBO. 

We first attempted to solve model SBO2 by Lagrangian relaxation that relaxes constraints 

(36) and (37) by introducing Lagrange multipliers. However, although such approach can 

obtain a good lower bound, we cannot construct a high quality feasible solution of the model 

from the solution of its Lagrangian relaxed problem/model, because for the relaxed model, its 

optimal values of some variables k

ij
s  and k

ij
S  may be infinite during the Lagrangian dual 

optimization process as the coefficients associated with those variables in its objective function 

may become negative. Of course, we can use the augmented Lagrangian relaxation method 

(Boyd et al., 2011) to solve the infinite problem, but it requires solving all subproblems 

optimally in each iteration, which are quite time consuming, especially for large-size instances. 

Because of this, we finally chose Alternating Direction Method of Multipliers (ADMM, Boyd 

et al., 2011) to solve the reformulated model. This method, which can avoid the above 

mentioned infinite problem, is computationally more efficient and can generate more stable and 

better solutions than the other two methods mentioned. ADMM has been successfully used in 

distributed convex optimization and machine learning (Boyd et al., 2011). 
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5.1 ADMM Procedure 

By introducing Lagrange multipliers λk

ij and µ k

ij and relaxing constraints (36) and (37) 

respectively, the ADMM relaxed model of SBO2 can be formulated as RSBO2 in the following, 

where the objective function (28) in model SBO2 is replaced by an augmented Lagrangian 

function (39) with penalty terms. Here, 
ρ  is a small positive real number.

Model RSBO2: 

( ), , , ,

0 0

\{0}

2

' '

' '

'

'

'

2

ρµ

λ

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈

∈

=

 
⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅ 
 

    + ⋅ − + ⋅ −         

+ ⋅ −


∑ ∑∑∑ ∑ ∑∑ ∑

∑∑∑ ∑ ∑

∑

t k t k t k t k

k ij ij j i ij ij ij

k t i j t t i j

RSBO2 k k k k k

ij ij ij ij ij

k i j k k

k k k

ij ij ij

k

Z Min

p h I t v x O y l LS

s s K s s K

S S K

K T I J T T I J

K I J K K

K

2

'

'2

ρ
∈ ∈ ∈ ∈

 
 
 
 
 
 
 
 

    + ⋅ −          
∑∑∑ ∑k k

ij ij

k i j k

S S K
K I J K

 

(39) 

subject to constraints (2)-(5), (12)-(13), (22)-(23), (29)-(35), (38), and constraints (46)-(69) in 

the Appendix. 

ADMM is an iterative method. In each iteration, the relaxed model is approximately solved 

by applying a Gauss-Seidel like approach. That is, when ADMM optimizes the decision 

variables related to each scenario k in model RSBO2, all other decision variables’ values are 

fixed, and all decision variables of the relaxed model are optimized scenario by scenario and 

sequentially. In this way, the relaxed model RSBO2 can be decomposed into K sub-models, 

denoted by RSBO2k, k ∈ Κ, where 'k

ij
s and 'k

ij
S are the values of ( 'k

ij
s , 'k

ij
S ) for all other 

scenarios obtained in the last iteration of ADMM. 

Model RSBO2k: 

( )

2

, , , ,

0 0

\{0}

2

' '

' , ' ' , '

'

2

ρµ

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ≠ ∈ ≠

=

 
⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅ 
 

       
 + ⋅ − + + ⋅ − +                 

∑ ∑∑∑ ∑ ∑∑ ∑

∑ ∑
RSBO

t k t k t k t k

k ij ij j i ij ij ij

k t i j t t i j

k k k k k k k

k ij ij ij ij ij ij ij

k k k k k k

Z Min

p h I t v x O y l LS

s s s K s s s K

K T I J T T I J

K K

2

' '

' , ' ' , '2

ρλ

∈ ∈ ∈

∈ ∈ ∈ ∈ ≠ ∈ ≠

 
 
 
 
 
 
 
 
          + ⋅ − + + ⋅ − +                    

∑∑∑

∑∑∑ ∑ ∑

k i j

k k k k k k k

ij ij ij ij ij ij ij

k i j k k k k k k

S S S K S S S K

K I J

K I J K K

 (40) 

subject to constraints (2)-(5), (12)-(13), (22)-(23), (29)-(35), (38), and constraints (46)-(69) in 

the Appendix. 

Let us denote the values of the Lagrange multipliers in iteration m by ,k m

ij
µ and ,k m

ij
λ . 

Given initial values ,0µ k

ij  
and ,0λ k

ij
, the values of the Lagrange multipliers in each iteration of 

ADMM are updated according to the following equations (41) and (42). 
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, 1 , , ',

'

, , ,µ µ ρ+

∈

 = + ⋅ − ∈ ∈ ∈ 
 

∑k m k m k m k m

ij ij ij ij

k

is s K j k
K

I J K (41)

, 1 , , ',

'

, , ,λ λ ρ+

∈

 = + ⋅ − ∈ ∈ ∈ 
 

∑k m k m k m k m

ij ij ij ij

k

iS S K j k
K

I J K (42) 

where ,k m

ij
s  and ,k m

ij
S denote the values of ( k

i j
s , k

ij
S ) obtained by solving sub-model RSBO2k 

in m-th iteration. 

In summary, the iterative procedure of ADMM can be described as the following. 

ADMM: 

Step 0. Set ,0µ k

ij
= 0 and ,0λ k

ij
= 0 for all i, j and k. Solve all sub-models RSBO2k with the

objective function (35) ignoring the penalty terms (i.e., the two terms with coefficient 2ρ ) to

obtain the values of ,0k

ij
s  and ,0k

ij
S for all scenarios. Set m = 0. 

Step 1. Update the values of Lagrangian multipliers k

ij
µ and k

ij
λ  for all i, j and k

according to equations (41) and (42), and set m + 1 → m.

Step 2. Solve all sub-models one by one with Lagrange multipliers ,k m

ij
µ  and ,k m

ij
λ . When

solving sub-model RSBO2k, the values of ( 'k

ij
s , 'k

ij
S ) for any 

'
k k≠  are taken as the latest

values of 'k

ij
s  and 'k

ij
S  obtained in the last or current iteration of ADMM. 

Step 3. If a given stop stopping criterion is achieved, output *

i j
s =

,

∈
∑ k m

ij

k

s K
K

and *

ij
S =

,

∈
∑ k m

ij

k

S K
K

for all i, j, calculate an upper bound of the optimal objective value of model SBO 

by solving it with sij and Sij replaced by 
*

ij
s  and 

*

ij
S  respectively for all i, j, and stop. 

Otherwise, go to Step 1. 

The stopping criterion of ADMM can be defined in different ways, such as a given 

computation time is achieved, a predefined gap between an upper bound and a lower bound is 

achieved, or a given number of iterations is reached. Note that in each iteration of ADMM, an 

upper bound of the model SBO can be obtained by solving it with sij and Sij replaced by *

i j
s =

,

∈
∑ k m

ij

k

s K
K

and *

ij
S =

,

∈
∑ k m

ij

k

S K
K

respectively for all i, j, and a lower bound of the model can 

be obtained by solving the ADMM relaxed model RSBO2 with the quadratic penalty terms in 

its objective function (39) ignored. 

5.2 Solving ADMM Submodels by Linear Approximation 

Each sub-model RSBO2k to be solved in each iteration of ADMM is a mixed-integer 

quadratic program. Although all the sub-models can be solved by a solver of quadratic 

programs, it is quite time consuming if the number of stocking locations, the number of 

products, and/or the number of periods considered are large. For this reason, we propose a 

linear approximation approach to solve the sub-models more quickly. 
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Let 

2

'

' , '

( )
∈ ≠

  
= = − +   

  
∑k k k k k

ij s ij ij ij ij

k k k

u G s s s s K
K

and 

2

'

' , '

( )
∈ ≠

  
= = − +   

  
∑

k
k k k k

ijij S ij ij ij

k k k

w G S S S S K
K

. 

The quadratic terms in the objective function of RSBO2k can be written as 

( ) ( )
2 2

ρ ρ
∈ ∈ ∈ ∈ ∈ ∈

+∑∑∑ ∑∑∑k k

s ij S ij

k i j k i j

G s G S
K I J K I J

. Since all ( )k

s ij
G s and ( )k

S ij
G S are convex functions 

with a single variable and RSBO2k is a minimization problem, these functions can be well 

approximated from below by a set of linear inequalities. 

Let ' ( )k

s ij
G s and ' ( )k

S ij
G S be the first derivative of function ( )k

s ij
G s and ( )k

S ij
G S , 

respectively, we have
' ( )k

s ij
G s = 

2

'

2
' , '

1 1
2 2

∈ ≠

− −  ⋅ − ⋅ 
 

∑k k

ij ij

k k k

K K
s s

K K K

, and 
' ( )k

S ij
G S = 

2
'

2
' , '

1 1
2 2

∈ ≠

− −  ⋅ − ⋅ 
 

∑
k

k
ijij

k k k

K K
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. Function ( )k

s ij
G s and ( )k

S ij
G S can be approximated from 

below by the following two sets of linear inequalities (43) and (44), respectively. 

'( ) ( )( )k k

ij s ij s ij ij ij
u G s G s s s≥ + − ,

ijs ∈ s

ij
Π , ,∈ ∈i jI J (43) 

'( ) ( )( )≥ + −k k

ij S ij S ij ij ij
w G S G S S S , 

ij
S ∈ S

ij
Π  , ,∈ ∈i jI J (44) 

where s

ij
Π  and S

ij
Π  are a set of integer values of k

ij
s  and k

ij
S , respectively. 

With this linear approximation, sub-model RSBO2k can be reformulated as a mixed integer 

linear program by transforming its quadratic objective function into the following linear 

objective function (45) and adding two sets of linear constraints (43) and (44) to the set of 

original (existing) constraints of RSBO2k.
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(45) 

Let min

ij
s and max

ij
s be the minimum and maximum possible value of k

ij
s , respectively, min

ij
S

and max

ij
S be the minimum and maximum possible value of k

ij
S , respectively. There are two 

ways to generate sets s

ij
Π  and S

ij
Π  and their corresponding linear inequalities (43) and (44).

One is to generate the two sets dynamically. That is, we first take an integer value between 
min

ij
s and max

ij
s for 

ijs  and an integer value between min

ij
S  and max

ij
S  for 

ij
S , add the 

corresponding constraints (43) and (44) to model RSBO2k, and replace its original quadratic 
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objective function by linear objective function (45). The obtained MILP model is then solved 

by a MILP solver. If the optimal solution of the MILP model, denoted by * *({ },{ })
ij ij

s S , coincides 

with a solution already considered, i.e., * s

ij ij
s ∈ Π  and * S

ij ij
S ∈ Π  for all i ∈ Ι and j ∈ ϑ, then 

s

ij
Π  and S

ij
Π  have been found, and this solution is the optimal solution of RSBO2k. Otherwise, 

*

ij
s  and *

ij
S  are added to s

ij
Π  and S

ij
Π , respectively, and the above procedure is repeated until 

an optimal solution of RSBO2k is found. 

The other way is to generate s

ij
Π  and S

ij
Π  once. That is, we set s

ij
Π = { min

ij
s , min

ij
s +1, …, 

max

ij
s }, S

ij
Π = { min

ij
S , min

ij
S +1, …, max

ij
S }, replace the quadratic objective function of model 

RSBO2k by linear objective function (45), and add all linear constraints (43) and (44) to this 

model at the beginning. This MILP model is solved once to obtain the optimal solution of 

RSBO2k. In our numerical experiments in the next section, the second way is adopted. 

 

6 NUMERICAL RESULTS 

In this section, the performances of model SBO and its ADMM algorithm are evaluated on 

four sets of instances generated according to real data from Alibaba, and the (s, S) policies 

found by the algorithm are compared with those used in Alibaba for these instances. 

The parameters used to generate the instances are set in the following ways: the number of 

products I is set to 5 or 10, the number of FDCs J is set to 9, and the number of periods in the 

planning horizon is set to 30 periods (days). In addition, the review period of each FDC and that 

of the CDC are 1 period and 3 periods respectively. The replenishment lead time of each 

stocking location is taken as an integer in [0, 2]. This lead time may be 0 because the locations 

of some suppliers and FDCs are close to the CDC, so that goods can be delivered from those 

suppliers to the CDC or from the CDC to those FDCs on the same day. The parameter r, i.e., 

the starting period of the planning horizon, is an integer randomly taken from [0, 3], and the 

ending period of the planning horizon is taken as r+30-1. 

Since only fast moving goods are involved in the distribution system, we assume that each 

product’s demand observed by each FDC in each period (day) is stationary and normally 

distributed, with mean and standard deviation generated from historical demand data of Alibaba. 

For the demand of each product, its mean is in the interval [18, 239], and its coefficient of 

variation is in the interval [0.1, 0.4]. Each product’s volume is ranged from 0.001 to 0.01 m3. 

For the case with I = 5, the joint replenishment volume of each FDC and that of the CDC are 

limited to 5 m3 and 50 m3, respectively, whereas for the case with I = 10, this volume is limited 

to 10 m3 and 100 m3 for each FDC and the CDC respectively. In addition, the unit holding cost 

of each product in each day at each stocking location is set based on the price of the product, 

and the unit lost sales cost of each product at each stocking location is set as the unit holding 

cost × 0.95 / (1-0.95) = 19 × the unit holding cost, where 0.95 = 95% is the expected service 

level. For each stocking location, its transportation cost for each replenishment is set based on 

its volume in m3 and its transportation distance in km. For this distribution system, all FDCs 

and the CDC are located in a region with the distance between any two stocking locations 

ranged from 80 to 150 km, and the transportation cost per m3 per km is estimated as 1 RMB 

Yuan. Accordingly, the transportation cost for the replenishment of each m3 by each stocking 

location is in the interval [80, 150]. The major ordering cost for each joint replenishment of the 

CDC is set between 100 and 2000 RMB Yuan. For the reason of confidentiality, price data of 

the products are not provided in detail here. 
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Let 
ijµ  denote the mean and

ijσ  the standard deviation of product i’s demand observed

by stocking location j (j = 0 for the CDC and j = 1, 2, …, J for the FDCs), where 0

1

J

i ij

j

µ µ
=

=∑

and 2

0

1

J

i ij

j

σ σ
=

= ∑ . The fair share rationing rule introduced in Eppen and Schrage (1981) is

applied for both the allocation of on-hand inventory of the CDC among the FDCs and the 

allocation of transportation capacity among multiple products for each joint replenishment, with 

the rationing fractions
ij

f and '
ij

f given as
1

J

ij ij ij j ij ij j

j

f L R L Rσ σ
=

= + +∑ for each product i 

and 
1

' σ σ
=

= + +∑
I

ij i ij ij j i ij ij j

i

f v L R v L R  at each stocking location j. 

The minimum possible value of 
ijs  and 

ijS  are both set to zero, i.e., min

ij
s = min

ij
S = 0. 

The maximum possible value of 
ijs  and 

ijS are set to max

ij
s = ( ) ( )µ σ+ + +

ij j ij ij ij ij j
L R z L R

and max

ij
S = 

max( ) ( )µ σ+ + + +
ij j ij ij ij ij j j i

L R z L R C v , respectively, where 
ijz  is the safety 

stock factor (z-value) determined by the expected service level 95%, i.e., 
ijz  = 1.65. Note that 

max

ij
s is set according to an upper bound of s for the optimal (s, S) policy of a single stocking 

location found by Veinott (1966), max

ij
S is set to max

ij
s + max

j i
C v since the quantity of product i 

replenished by stocking location j never exceeds max

j i
C v due to the corresponding maximum 

joint replenishment volume constraint. These max

ij
s and max

ij
S are also used in the setting of 

some big numbers in model SBO as explained in subsection 3.3 and in the linear approximation 

approach used to solve all sub-models RSBO2k in ADMM. 

In the planning horizon, each product’s initial inventory position and final inventory 

position at each stocking location is set to its order-up-to level. For each scenario, each product 

i’s demand observed by each FDC j in each period t was randomly generated according to its 

normal distribution by using the Monte Carlo Sampling method. That is, for each scenario k, to 

generate ,t k

ij
d , a real number ,t k

ij
u was first generated from the uniform distribution on [0, 1], 

,t k

ij
d is then generated as 1 ,( ) ( )t t k

ij ij
F u

− , where (.)t

ij
F is the probability distribution function of 

t

ij
d  and 1( )t

ij
F

−  is the inverse function of t

ij
F . With this scenario generation method, all 

scenarios generated are assumed to have the same probability of occurrence, i.e., the probability 

of each scenario is 1/K, that is 1=kp K for any k = 1, 2, …, K, where K is the number of 

scenarios generated. 

The number of scenarios K is set by applying the statistical analysis method introduced in 

Shapiro (2000) and Nguyen and Chen (2018). This method calculates the number of scenarios 

K required according to a given level of confidence α and a given length of confidence interval 

H, i.e., ( )2

/2 0 0max( ( ) , )K z K H Kα σ= ⋅ , where 0( )σ K  = ( )0
2

01
( ) ( 1)

=
− −∑

K SBO SBO

k
Z Z k K , which 

can be estimated based on K0 scenarios, ( )SBOZ k  is the distribution system’s total cost under 

scenario k, and 
SBOZ is the average of all ( )SBOZ k , /2αz is a z-value defined by P( /2x zα≤ )

=1−α/2, where x∼N(0, 1). We set K0 = 100 and tested 10 randomly generated instances with 5 
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and 10 products, respectively. After conducting the statistical analysis of their results, we 

observed that our scenario-based MILP model requires 55 and 339 scenarios on average for the 

instances with 5 products and 35 and 211 scenarios on average for the instances with 10 

products to ensure their solution within the deviation 5% and 2% respectively from their true 

optimal solution in terms of cost at a probability no less than 99.9%. Based on this observation, 

we set the number of scenarios to 100 and 500 respectively for each instance in our numerical 

experiments. 

Four sets of 10 instances were generated. Each set is indicated by the number of products 

and the number of scenarios. For example, the set 5x100 contains 10 instances with 5 products 

and 100 scenarios, and the set 10x500 contains 10 instances with 10 products and 500 

scenarios. 

In the numerical experiments, all MILP models were solved by calling the solver of 

CPLEX 12.9 on a personal PC with a CPU of i7-8565U CPU and a RAM of 16GB. The 

parameter 
ρ  in ADMM is set to 10-6 for all instances tested. Moreover, ADMM is terminated

when a predefined relative gap 10% between an upper bound and a lower bound is achieved. 

The two bounds are obtained by ADMM and the Lagrangian relaxation method described at the 

end of section 5, respectively. Table 1 to Table 8 show the computational results of the tested 

instances. 

To evaluate the efficiency and effectiveness of our ADMM, we compare it with CPLEX 

MIP solver for the instances sets 5x100, 10x100 and 5x500. For the instances set 10x500, this 

comparison is impossible because CPLEX MIP solver run out of memory when it solved these 

instances. The reason is that for each instance in set 10x500 with 10 products, 10 stocking 

locations, 30 periods and 500 scenarios, its model SBO contains 1500000 integer variables ,t k

ij
y . 

However, our ADMM could be used to solve these instances because it requires much less 

memory due to its decomposition nature. Therefore, ADMM is more adapted to solve large-size 

instances. For each large-size instance tested, the quality of its solution found by ADMM is 

evaluated by the relative gap between its lower bound and upper bound obtained by ADMM 

(see section 5). These results are presented in Table 1 to Table 4. 

In these tables, row ‘Costcplex’ gives the best total cost of model SBO, i.e., the smallest 

objective value (1), found by CPLEX MIP solver with the computation time limited to 2 hours 

(7200s) for each instance in set 5x100 and 4 hours (14400s) for each instance in set 10x100 and 

5x500. Row ‘CostADMM’ provides the best total cost of model SBO found by ADMM for each 

instance, CostADMM represents an upper bound of the optimal total cost of model SBO. ‘CostLB’ 

gives the lower bound of the total cost found by the Lagrangian relaxation method mentioned at 

the end of section 5. Row ‘ReduceCost’ gives the percentage cost reduction of the solution found 

by ADMM with respect to the solution found by CPLEX, i.e., (Costcplex - CostADMM) / Costcplex. 

‘Fillratecplex’ indicates the average fill rate of all products at all FDCs of the solution found by 

CPLEX, and ‘FillrateADMM’ gives the average fill rate of all products at all FDCs of the solution 

found by ADMM. Row ‘IncreaseFR1’ represents the percentage increase of the average fill rate 

of the solution found by ADMM compared with the solution found by CPLEX, i.e., 

(FillrateADMM - Fillratecplex) / Fillratecplex. ‘TimeADMM’ provides the computation time (in 

seconds) of ADMM. Row ‘ReduceTime’ indicates the percentage computation time reduction of 

ADMM with respect to CPLEX, i.e., (Timecplex - TimeADMM) / Timecplex. Row ‘GapADMM’ 

represents the relative gap between the upper bound CostADMM and the lower bound CostLB.  

Note that Table 4 only provides the results of ADMM since CPLEX run out of memory for 

all instances in set 10x500. In addition, in our numerical experiments, the fill rate of product i at 
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FDC j indicated by
ijfillrate is calculated as the average of ,t k

ij
fillrate ’s for all periods t under all 

scenarios k considered, where ,t k

ij
fillrate is defined as the percentage of product i’s demand (in 

units) fulfilled (satisfied) by FDC j in period t under scenario k. Because of the space limitation, 

we only report the average fill rate of all products at all FDCs for each instance, this average fill 

rate is obtained by averaging
ijfillrate over all products i and all FDC j; individual fill rate for 

each of the products at each FDC is not reported in the following tables. 

Table 1: Comparison of ADMM and CPLEX on instances 5x100 

Instance 1 2 3 4 5 6 7 8 9 10 

Costcplex 54148.5 45927.3 72308.4 71311.6 45073.5 61723.4 78200.9 64957.3 49526.9 77990.7 

CostADMM 53123.4 44698.2 69741.9 70140.6 43832.6 59505.2 73924.8 63218.9 48125 75927.4 

ReduceCost 1.9% 2.7% 3.5% 1.6% 2.8% 3.6% 5.5% 2.7% 2.8% 2.6% 

Fillratecplex 88.7% 88.6% 87.4% 85.4% 92.1% 87.6% 80.7% 91.8% 89.9% 86.2% 

FillrateADMM 90.9% 90.3% 89.0% 87.9% 93.3% 88.8% 85.2% 92.6% 90.9% 87.4% 

IncreaseFR1 2.4% 1.9% 1.9% 2.9% 1.3% 1.4% 5.6% 0.9% 1.1% 1.5% 

TimeADMM 415 343 306 1361 350 435 427 365 396 342 

ReduceTime 94.2% 95.2% 95.8% 81.1% 95.1% 94.0% 94.1% 94.9% 94.5% 95.3% 

CostLB 50818.1 43690.6 67825.7 67988.1 41760.4 57779.3 72893.6 61693.2 46525.3 74875 

GapADMM 4.5% 2.3% 2.8% 3.2% 5% 3% 1.4% 2.5% 3.4% 1.4% 

Table 2: Comparison of ADMM and CPLEX on instances 10x100 

Instance 1 2 3 4 5 6 7 8 9 10 

Costcplex 216714 235497 265637 253580 261575 99569.7 94146.3 96343.9 239737 91116.7 

CostADMM 110263 101235 130895 105792 142650 98101.7 92929.9 94704.2 109825 90126 

ReduceCost 49.1% 57.0% 50.7% 58.3% 45.5% 1.5% 1.3% 1.7% 54.2% 1.1% 

Fillratecplex 47.9% 50.6% 45.5% 50.5% 44.2% 94.9% 95.0% 94.4% 48.4% 92.2% 

FillrateADMM 90.9% 94.2% 91.6% 95.1% 86.8% 96.2% 96.2% 95.8% 93.5% 93.1% 

IncreaseFR1 89.9% 86.2% 101.2% 88.1% 96.6% 1.3% 1.3% 1.5% 93.3% 0.9% 

TimeADMM 1472 1121 1041 1240 1218 955 1043 1386 1463 1391 
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ReduceTime 89.8% 92.2% 92.8% 91.4% 91.5% 93.4% 92.8% 90.4% 89.8% 90.3% 

CostLB 107165 97622.6 128878 103825 139959 95433.3 89246 90444.1 106652 85832.6 

GapADMM 2.9% 3.7% 1.6% 1.9% 1.9% 2.8% 4.1% 4.7% 3% 5% 

Table 3: Comparison of ADMM and CPLEX on instances 5x500 

Instance 1 2 3 4 5 6 7 8 9 10 

Costcplex 142471 128374 108164 113174 135716 120875 138493 137840 126383 138000 

CostADMM 68712.9 49656.2 39304.3 45540.8 72423 48179.9 46437.8 67227.4 59191 63151.8 

ReduceCost 51.8% 61.3% 63.7% 59.8% 46.6% 60.1% 66.5% 51.2% 53.2% 54.2% 

Fillratecplex 29.5% 40.2% 39.0% 36.7% 28.2% 39.9% 43.1% 30.6% 31.6% 30.3% 

FillrateADMM 96.2% 92.8% 96.4% 95.3% 89.5% 95.9% 94.8% 90.3% 90.0% 94.4% 

IncreaseFR1 226.3% 130.9% 147% 159.7% 217.3% 140% 120.1% 195% 185.1% 211.6% 

TimeADMM 2257 3767 1545 3851 4746 5719 2380 3451 4682 2353 

ReduceTime 84.3% 73.8% 89.3% 73.3% 67% 60.3% 83.5% 76% 67.5% 83.7% 

CostLB 65256.1 46492.2 36514.9 41974.6 67488.4 44649.1 43292.5 64465.4 56298.8 57611.4 

GapADMM 5.3% 6.8% 7.6% 8.5% 7.3% 7.9% 7.3% 4.3% 5.1% 9.6% 

Table 4: Computational results of ADMM on instances 10x500 

Instance 31 32 33 34 35 36 37 38 39 40 

CostLB 90567.5 100740 125097 100226 112858 97113.2 134968 118209 112987 117087 

CostADMM 95520.9 106416 133027 105902 122107 104413 141952 124308 117320 124081 

GapADMM 5.5% 5.6% 6.3% 5.7% 8.2% 7.5% 5.2% 5.2% 3.8% 6% 

TimeADMM 11173 15097 18893 23851 13580 23922 16413 17749 16458 14856 

From the results of instance sets 5x100, 10x100 and 5x500 in Table 1 to 3, we can observe 

that ADMM could find a better solution in a much shorter time compared with the computation 

time of CPLEX MIP solver with relative cost reduction between 1.6% and 5.5% for set 5x100, 

between 1.1% and 58.3% for set 10x100, and between 46.6% to 66.5% for set 5x500. At the same 

time, ADMM could find a solution with a higher average customer fill rate than that of the 

solution found by CPLEX for all instances, with relative fill rate increase more than 1% for 38 of 

the 40 instances and maximum relative fill rate increase 226.3%. Note that 226.3% is not an 

absolute fill rate increase for an instance but the relative increase in percentage of the average fill 
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rate of this instance obtained by ADMM compared with that obtained by CPLEX, because for 

this instance, the solution found by CPLEX is very poor. In addition, the computation time of 

ADMM is significantly less than that of CPLEX with relative time reduction between 60.3% and 

95.8% for all instances. Moreover, CPLEX could not solve any instance in set 5x500 because of 

out of memory, but for all instances in this set ADMM could find a solution with the relative gap 

ranged from 3.8% to 8.2% as shown in Table 4. 

To prove the superiority of the (s, S) policies found by our scenario-based optimization 

(SBO) approach for the distribution system considered, we compare them with those currently 

used in Alibaba. For ease of exposition, our approach and the approach used by Alibaba to define 

(s, S) policies in its distribution system are referred to as SBO and IPA respectively hereafter.  

In IPA, for each product at each stocking location, its inventory policy parameters s and S 

are determined based on the mean μ and standard deviation σ of its demand, its replenishment 

lead time L, and its review period R. More precisely, the two parameters are defined as

( )µ σ= ⋅ + + ⋅ ⋅ +s L R z L R , and S = s + Q, respectively, where z is the z-value (safety stock

factor) determined by the expected service level of the product at this stocking location and Q is 

determined by the mean μ and the maximum between the replenishment lead time L and the 

review period R, i.e., max(L, R). For the confidentiality reason, the formula for calculating Q is 

not detailed here.  

We compare the two approaches by two criterions: the expected total cost and the average 

fill rate of the distribution system considered, where the expected total cost is defined as the 

objective value of model SBO and the average fill rate of the system is defined as the average of 

the fill rates of all products at all FDCs. Since it is very hard to derive analytical formulas for 

calculating the two criterions for the considered distribution system, we evaluate/estimate the 

two criterions by simulation of the system with its (s, S) policies set by either SBO or IPA. To 

keep consistence, we use the same demand scenarios (realizations of random demands) in the 

simulation of the system in both cases of SBO and IPA. These demand scenarios are the same 

as those used in the optimization model SBO. 

In the following Table 5 to 8, row ‘FillrateSBO’ and ‘CostSBO’ provide respectively the 

average fill rate of all products at all FDCs of the distribution system and its expected total cost if 

it is controlled by the (s, S) policies found by SBO. Row ‘FillrateIPA’ and ‘CostIPA’ provide 

respectively the average fill rate of all products at all FDCs of the distribution system and its 

expected total cost if it is controlled by the (s, S) policies found by IPA. Row ‘IncreaseFR2’ 

indicates the percentage increase of the average fill rate obtained by SBO compared with that 

obtained by IPA, i.e., (FillrateSBO - FillrateIPA) / FillrateIPA. Row ‘ReduceCost’ indicates the 

percentage reduction of the expected total cost obtained by SBO with respect to that obtained by 

IPA, i.e., (CostIPA - CostSBO) / CostIPA. 

Table 5: Comparison of SBO and IPA on instances 5x100 

Instance 1 2 3 4 5 6 7 8 9 10 

FillrateIPA 84.2% 85.8% 79.3% 80.0% 89.3% 82.7% 66.7% 79.7% 86.5% 73.8% 

FillrateSBO 90.9% 90.3% 89.0% 87.9% 93.3% 88.8% 85.2% 92.6% 90.9% 87.4% 

IncreaseFR2 7.9% 5.3% 12.3% 9.8% 4.5% 7.4% 27.7% 16.1% 5.1% 18.4% 
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CostIPA 55887.3 46354.1 76335.9 72839.8 47328.2 64893 81523.7 69909.4 51790.8 81960.1 

CostSBO 53123.4 44698.2 69741.9 70140.6 43832.6 59505.2 73924.8 63218.9 48125 75927.4 

ReduceCost 4.9% 3.6% 8.6% 3.7% 7.4% 8.3% 9.3% 9.6% 7.1% 7.4% 

Table 6: Comparison of SBO and IPA on instances 10x100 

Instance 11 12 13 14 15 16 17 18 19 20 

FillrateIPA 86.6% 90.9% 81.3% 91.3% 73.9% 93.1% 93.3% 92.8% 88.6% 89.4% 

FillrateSBO 90.9% 94.2% 91.6% 95.1% 86.8% 96.2% 96.2% 95.8% 93.5% 93.1% 

IncreaseFR2 5% 3.6% 12.7% 4.1% 17.6% 3.3% 3% 3.3% 5.5% 4.1% 

CostIPA 117286 107270 138506 114752 154252 101247 98783.8 100029 118629 95810.3 

CostSBO 110263 101235 130895 105792 142650 98101.7 92929.9 94704.2 109825 90126 

ReduceCost 6% 5.6% 5.5% 7.8% 7.5% 3.1% 5.9% 5.3% 7.4% 5.9% 

Table 7: Comparison of SBO and IPA on instances 5x500 

Instance 21 22 23 24 25 26 27 28 29 30 

FillrateIPA 79.6% 86.5% 92.0% 89.0% 80.0% 92.0% 91.4% 81.6% 75.1% 80.3% 

FillrateSBO 96.2% 92.8% 96.4% 95.3% 89.5% 95.9% 94.8% 90.3% 90.0% 94.4% 

IncreaseFR2 20.9% 7.3% 4.8% 7.1% 11.8% 4.2% 3.8% 10.6% 19.9% 17.5% 

CostIPA 73510.6 51754.9 40153 47250.5 75942.9 49512.2 48662.8 68932.9 62010.6 64316.6 

CostSBO 68712.9 49656.2 39304.3 45540.8 72423 48179.9 46437.8 67227.4 59191 63151.8 

ReduceCost 6.5% 4.1% 2.1% 3.6% 4.6% 2.7% 4.6% 2.5% 4.5% 1.8% 

Table 8: Comparison of SBO and IPA on instances 10x500 

Instance 31 32 33 34 35 36 37 38 39 40 

FillrateIPA 93.0% 84.8% 83.9% 84.7% 88.5% 91.1% 75.6% 0.822 81.4% 84.8% 

FillrateSBO 95.4% 93.5% 94.6% 93.1% 95.5% 95.1% 94.0% 0.921 90.0% 95.4% 

IncreaseFR2 2.6% 10.2% 12.7% 9.9% 7.9% 4.4% 24.3% 12.1% 10.6% 12.4% 

CostIPA 100098 111053 137970 110116 125884 109469 148445 128599 121266 128619 
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CostSBO 95520.9 106416 133027 105902 122107 104413 141952 124308 117320 124081 

ReduceCost 4.6% 4.2% 3.6% 3.8% 3% 4.6% 4.4% 4.9% 3.3% 3.5% 

From Table 5 to 8, we can observe that SBO can find the (s, S) policies with a higher 

average customer fill rate than IPA for all instances, with relative fill rate increase ranged from 

2.6% to 27.7% and 9.7% on average. At the same time, the inventory polices found by SBO can 

result in a lower total cost with respect to IPA for all instances, with relative cost reduction 

ranged from 1.8% to 9.6% and 5.1% on average. That is, the (s, S) policies found by SBO can 

achieve a larger fill rate at a smaller total cost with respect to those currently used in Alibaba. 

Therefore, SBO is more effective than IPA. 

It should be noted that all numerical experiments were conducted on a personal PC, and the 

results in Table 1 to 8 are only used to verify the feasibility of SBO and the effectiveness of 

ADMM. Since ADMM is a decomposition algorithm, when it is applied to solve real instances 

in Alibaba, we can use parallel computing techniques and run it on multiple distributed 

high-performance cloud servers of Alibaba, since all sub-models RSBOk in each iteration of 

ADMM can be solved in parallel. This can dramatically reduce the running time of ADMM. By 

contrast, CPLEX MIP solver cannot realize this and has the out-of-memory problem for 

large-size instances. 

Furthermore, we analyse in more detail the fill rates of each product at FDCs obtained by 

ADMM and IPA respectively on instance set 5x100. Table 9 and 10 provide the maximum and 

minimum fill rate of each product at all FDCs obtained by the two methods respectively. For 

example, the rows ‘P1Max’ and ‘P1Min’ give the maximal and minimal fill rate of product 1 at all 

FDCs obtained by ADMM or IPA. The row ‘Fillrateave’ gives the average fill rate of each 

product at all FDCs. From the two tables, we can observe that the fill rates of some products at 

all FDCs are very close, such as product 2 for instance 1, 4, 5, 6 and 9, and product 3 for 

instance 1, 2, 3, 5 and 8 (see Table 9). However, there are products whose fill rates at different 

FDCs are different, which may be because of the joint replenishment constraints. Compared 

with the method IPA currently used in Alibaba, SBO solved by ADMM can achieve a maximal 

fill rate very close to the best one and a much better minimal fill rate (in 35 of all 50 fill rates) 

for each product at each FDC. The minimal fill rates of some products obtained by IPA are very 

small, such as 29.5% for one product in instance 6, 16.31%, 27.66% and 28.1% for three 

products in instance 7, 15.99% for one product in instance 8, and 16.55% and 29.22% for two 

products in instance 10. Thus, there is a much larger variation of the fill rates of each product at 

all FDCs obtained by IPA. In practice, e-commerce companies as Alibaba usually seek for 

similar service levels for each product at all FDCs to achieve the best customer satisfaction. 

Therefore, SBO is more effective than IPA in achieving this goal. 

Table 9: Fill rate of each product at FDCs obtained by ADMM on instances 5x100 

Instance 1 2 3 4 5 6 7 8 9 10 

P1Max 99.95% 99.94% 99.77% 99.88% 99.01% 96.27% 100% 99.91% 99.93% 97.04% 

P1Min 61.71% 70.42% 70.25% 67.15% 59.79% 65.58% 82.55% 77.43% 99.70% 61.89% 

P2Max 100% 99.93% 99.91% 100% 99.97% 100% 100% 100% 99.93% 99.57% 
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P2Min 99.77% 70% 66.03% 99.66% 98.76% 99.66% 66% 69.33% 99.46% 59.60% 

P3Max 100% 99.91% 99.95% 99.8% 100% 99.88% 99.99% 99.94% 100% 100% 

P3Min 99.75% 99.62% 99.79% 67.93% 99.67% 68.28% 62.55% 99.73% 59.89% 65.12% 

P4Max 98.51% 72.81% 100% 93.14% 99.96% 99.69% 98.79% 100% 100% 99.89% 

P4Min 62.13% 60.11% 64.86% 62.06% 63.71% 61.68% 68.20% 68.78% 99.62% 76.64% 

P5Max 99.93% 99.86% 100% 99.99% 99.96% 100% 99.74% 100% 99.83% 99.89% 

P5Min 78.16% 89.68% 99.6% 67.09% 98.28% 98.91% 64.25% 60.71% 64.53% 99.69% 

Fillrateave 90.89% 90.31% 89% 87.85% 93.29% 88.83% 85.2% 92.58% 90.89% 87.45% 

Table 10: Fill rates of each product at FDCs obtained by IPA on instances 5x100 

Instance 1 2 3 4 5 6 7 8 9 10 

P1Max 100% 100% 99.77% 100% 100% 92.07% 100% 100% 100% 83.99% 

P1Min 34.06% 57.32% 36.44% 47.8% 39.36% 34.25% 57.25% 55.90% 99.97% 29.22% 

P2Max 100% 100% 100% 100% 100% 100% 100% 100% 100% 87.21% 

P2Min 99.998% 58.134% 35.133% 99.993% 99.996% 99.99% 37.48% 46.47% 99.98% 16.55% 

P3Max 100% 100% 100% 100% 100% 100% 100% 100% 100% 99.99% 

P3Min 97.39% 99.64% 99.99% 53.97% 99.99% 56.84% 27.66% 99.996% 33.74% 33.39% 

P4Max 97.23% 60.34% 100% 80.30% 100% 100% 99.21% 100% 100% 100% 

P4Min 39.18% 30.94% 37.10% 34.41% 44.14% 29.5% 28.1% 46.13% 99.99% 56.69% 

P5Max 100% 100% 100% 100% 100% 100% 99.99% 57.69% 100% 100% 

P5Min 60.93% 87.85% 99.9995% 44.48% 99.998% 99.996% 16.31% 15.99% 42.73% 99.99% 

Fillrateave 84.24% 85.77% 79.28% 80.04% 89.27% 82.74% 66.70% 79.72% 86.50% 73.84% 

To further evaluate the performance of our ADMM, we compare the solution obtained by it 

with the optimal solution of model SBO for 10 instances of a distribution system with one 

warehouse (CDC), one retailer (FDC), and one product. The ten instances were randomly 

generated with the parameters set in the same ways as described above. The comparison results 

are given in Table 11, where the rows Costcplex, CostADMM, Timecplex, TimeADMM, Fillratecplex and 

FillrateADMM have the same meanings as the corresponding rows in Table 1-3 except that the 

optimal solution of model SBO for each instance is found by CPLEX. GapCost, GapTime and 

GapFR denote the cost gap, the computation time gap and the fillrate gap between the solution of 
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ADMM and the optimal solution. From Table 11, we can see that our ADMM can find a 

solution very close to the optimal solution for most instances. The computation time of ADMM 

is much shorter than that of CPLEX for most instances. 

Table 11: Comparison of the solution of ADMM and the optimal solution 

Instance 1 2 3 4 5 6 7 8 9 10 

Costcplex 741.732 1280.22 1751.77 1996.48 902.055 449.7 2308.28 3282.67 803.649 1059.98 

CostADMM 743.693 1286.67 1802.9 2093.92 924.718 495.551 2379.96 3339.95 810.718 1066.72 

GapCost 0.3% 0.5% 2.9% 4.9% 2.5% 10.2% 3.1% 1.7% 0.9% 0.6% 

Timecplex 309 7204 7210 38 136 101 204 43 815 207 

TimeADMM 43 54 43 33 42 43 52 44 47 45 

GapTime 86.1% 99.3% 99.4% 13.2% 69.1% 57.4% 74.5% -2.3% 94.2% 78.3% 

Fillratecplex 80.66% 76.48% 70.45% 63.06% 82.28% 98.71% 74.01% 59.89% 97.46% 71.32% 

FillrateADMM 82.86% 78.53% 75.7% 66.18% 86.93% 83.86% 79.58% 66.46% 87.8% 76.4% 

GapFR 2.7% 2.7% 7.5% 4.9% 5.6% -15.0% 7.5% 11.0% -9.9% 7.1% 

In the above numerical experiments, the planning horizon is set to 30 days based on the 

practice of Alibaba. To evaluate the effect of the planning horizon on the solution of model 

SBO, we compare the total cost of the distribution system obtained with the planning horizon of 

30 days (case PH1) and that obtained with the planning horizon of 60 days (case PH2) 

respectively. More precisely, we consider 60 days of operation of the distribution system. In 

case PH1, the inventory policy optimization of the system is done twice with the planning 

horizon of 30 days for each SBO model, and the first and the second 30-day SBO model are 

solved independently, under the condition that the final state of the first 30-day model is turned 

into the initial state of the second 30-day model. The sum of the total costs of the two models 

are regarded as the total cost of the system in the 60 days of operation in case PH1, which is 

compared with the total cost of model SBO (the system) with the planning horizon of 60 days in 

case PH2. Table 12 shows the comparison results, from which we can see that the relative gap 

between the two total costs is no larger than 3.28% for all instances. Thus, it is reasonable to set 

the planning horizon to 30 days by considering both the effect of the planning horizon and the 

increase of computational complexity of model SBO if we take a longer planning horizon. 

Table 12: Comparison of the results with different planning horizons 

Instance 1 2 3 4 5 6 7 8 9 10 

PH1 2423.42 4187.6 6458.03 7794.42 3032.5 1064.453 7985.84 12890.57 1759.431 3621.15 

PH2 2505.53 4278.3 6480.1 7889.53 3000.37 1043.67 8178.63 12949.3 1703.52 3702.76 

Gap 3.28% 2.12% 0.34% 1.21% 1.07% 1.99% 2.36% 0.45% 3.28% 2.20% 
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Finally, we evaluate the effect of the end-of-horizon conditions on the solution of model 

SBO. We tested 10 instances of the distribution system with 5 products and 100 demand 

scenarios and compared its total cost obtained by ADMM with the end-of-horizon conditions 

for model SBO mentioned above (EC1) and its total cost obtained by the same solution method 

but with no end-of-horizon conditions for the model (EC2: the inventory position of each 

product at each stocking location at the end of the last period is not fixed). Table 13 presents the 

comparison results. From this table, we can find that the relative gap between the two total costs 

is very small for all instances. Therefore, the effect of the end-of-horizon conditions is minor. 

Table 13: Comparison of the results with different end-of-horizon conditions 

Instance 1 2 3 4 5 6 7 8 9 10 

EC1 53123.4 44698.2 69741.9 70140.6 43832.6 59505.2 73924.8 63218.9 48125 75927.4 

EC2 53129.7 44692.9 69741.6 70136.7 43825.8 59499.6 73932.3 63229.6 48125.5 75927.2 

Gap 0.01% -0.01% -0.0004% -0.01% -0.02% -0.01% 0.01% 0.02% 0.001% -0.0003% 

7 CONCLUSION 

In this paper, we consider a two-echelon distribution system in Alibaba with joint inventory 

replenishment constraints and have studied the optimization of its (s, S) policies. A novel 

scenario-based optimization model and an Alternating Direction Method of Multipliers 

(ADMM) method are proposed to solve this model. ADMM allows solving all subproblems in 

parallel in each iteration on multiple distributed personal computers or servers. We evaluated 

the model and the solution method on the instances generated according to real data of Alibaba. 

Our numerical results show the effectiveness of the model and the method. Compared with the 

MILP solver of CPLEX 12.9, our ADMM algorithm could find a better solution with a much 

shorter computation time and could avoid the out-of-memory for large-size instances. The 

inventory policies found by the algorithm can result in a better average fill rate with a lower 

expected total cost with respect to those used in Alibaba. 

One direction for further study is to extend our proposed model and solution method to 

more complex distribution systems such as two-echelon distribution systems with 

non-stationary demands and three-echelon distribution systems. Besides, inventory 

replenishment planning for Alibaba’s supply chain in some special seasons such as the season 

of double 11 promotion is worthy to be investigated. It is a great challenge for Alibaba to make 

cost-effective replenishment plans to achieve high customer fill rates in such seasons. 
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10 APPENDIX 

I Linearization of the Model 

In the following, we transform logical constraints (14) to (19) in model SBO into linear 

constraints so that it becomes a mixed integer linear program. 

Logical constraints (14) and (15) can be transformed into linear constraints in the following 

way. Firstly, we introduce binary variables 
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q I , so 

,ξ t k

i = ,

1

,

0max ,0
=

 
− 

 
∑

J
t k

ij

j

t k

iq I . 2) If 
,

0

t k

i
z = 0, from (46), we have

,

1

,

0 0
=

− ≤∑
J

t k

ij

j

t k

i
q I ; from (48) and (49), we have 

, ,' =t k t k

ij ij
q q  , so we have 

, 0ξ =t k

i from (50), 

therefore 
,ξ t k

i = ,

1

,

0max ,0
=

 
− 

 
∑

J
t k

ij

j

t k

iq I .  This implies 
,ξ t k

i = ,

1

,

0max ,0
=

 
− 

 
∑

J
t k

ij

j

t k

iq I holds in 

both cases. 

Similarly, logical constraints (16)-(19) can be transformed into linear constraints. Firstly, 

we introduce binary variables 
,'t k

j
z to indicate whether 

,

1

max'
=

⋅ >∑
I

t k

i ij

i

jv q C , j ∈ ϑ, such that

,'t k

j
z = 1 if 

,

1

max'
=

⋅ >∑
I

t k

i ij

i

jv q C , and 
,'t k

j
z = 0 if 

,

1

max'
=

⋅ ≤∑
I

t k

i ij

i

jv q C . This can be done by adding 

the following constraints, where 
41

j
M , 

42

j
M , 

41

0M , and
42

0M are big numbers. 

,

1

max 41 ,' ' , \{0}, ,
=

⋅ − ≤ ⋅ ∈ ∈ ∈∑
I

t k

i ij

i

t k

j j jv q C M z j t kJ T K (54) 

,

1

42 , max( ' 1) ' , \{0}, ,
=

⋅⋅ − ≤ − ∈ ∈ ∈∑
I

t k

i ij

i

t k

j j jvM z q C j t kJ T K (55) 

,

0

1

max 41 ,

0 0 0' , ,
=

⋅ − ≤ ⋅ ∈ ∈∑
I

t k

i i

i

t k
v q C M z t kT K (56) 

,

0

1

42 , max

0 0 0( ' 1) , ,
=

⋅⋅ − ≤ − ∈ ∈∑
I

t k

i i

i

t k
vM z q C t kT K (57) 

Two cases may happen for the logical constraints. Firstly, in case without transportation 

capacity rationing, i.e., 
,

1

max'
=

⋅ ≤∑
I

t k

i ij

i

jv q C , we have 
, ,' =t k t k

ij ij
q q . This can be ensured by adding 

the following constraints, where
43

j
M and

43

0M are big numbers. 

, ,' , , \{0}, ,≤ ∈ ∈ ∈ ∈t k t k

ij ij
ix q j t kI J T K (58) 

, , 43 ,' ' , , \{0}, ,≥ − ⋅ ∈ ∈ ∈ ∈t k t k t k

ij ij j j
ix q M z j t kI J T K (59) 

, ,

0 0 , , ,≤ ∈ ∈ ∈t k t k

i i
ix q t kI T K (60) 

, , 43 ,

0 0 0 0' , , ,≥ − ⋅ ∈ ∈ ∈t k t k t k

i i
ix q M z t kI T K (61) 
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Secondly, in case with transportation capacity rationing, i.e., if 
,

1

max'
=

⋅ >∑
I

t k

i ij

i

jv q C , we have 

, ,

1

, max' ' '
=

⋅ ⋅ ⋅ = − − 
 
∑

I
t k t k

i ij i i ij

i

t k

ij ij jv x v vq f q C . By introducing auxiliary variables 
,t k

j
η to represent 

,

1

maxmax ' ,0
=

⋅ − 
 
∑

I
t k

i ij

i

jv q C , we have the following constraints, where
44

j
M and

44

0M are big 

numbers. 

, , ,
'

' , , \ {0}, ,η= − ∈ ∈ ∈ ∈t k

ij

i

ijt k t k

ij jx i
v

f
q j t kI J T K          (62) 

,

1

, max' , \{0}, ,η
=

⋅≥ − ∈ ∈ ∈∑
I

t k

i ij

i

t k

j jv q C j t kJ T K          (63) 

,

1

, max 44 ,' (1 ' ), \{0}, ,η
=

⋅≤ − + ⋅ − ∈ ∈ ∈∑
I

t k

i ij

i

t k t k

j j j jv q C M z j t kJ T K

    
  (64) 

, 0, \{0}, ,η ≥ ∈ ∈ ∈t k

j
j t kJ T K              (65) 

,

0

, ,0
0 0

'
, , ,η= − ∈ ∈ ∈t k

i

i

t k t ki

i
x i

v

f
q t kI T K            (66) 

,

0

1

, max

0 0 , ,η
=

⋅≥ − ∈ ∈∑
I

t k

i i

i

t k
v q C t kT K              (67) 

,

0

1

, max 44 ,

0 0 0 0(1 ' ), ,η
=

⋅≤ − + ⋅ − ∈ ∈∑
I

t k

i i

i

t k t k
v q C M z t kT K          (68) 

,

0 0, ,η ≥ ∈ ∈t k
t kT K                 (69) 

Note that the validation of 
,t k

j
η = 

,

1

maxmax ' ,0
=

⋅ − 
 
∑

I
t k

i ij

i

jv q C  can be proved in a similar 

way as that of 
,ξ t k

i = ,

1

,

0max ,0
=

 
− 

 
∑

J
t k

ij

j

t k

iq I . 

 

II Parameter setting of the big numbers 

In the linear constraints (24) to (27) and (46) to (69) transformed from the logical 

constraints of model SBO, all big numbers must be defined. Let max

ij
s  and max

ij
S  be the 

maximum possible value of ij
s  and ij

S , respectively, where j = 0 corresponds to the CDC and 

j > 0 corresponds to FDC j. From constraints (24) and (25), 
11

ijM  and 
12

ijM  must be set to 

satisfy 
11 ,− ≤ − t k

ij ij ij
M s IP  and

, 12− ≤t k

ij ij ij
s IP M , i.e., 

11 ,≥ −t k

ij ij ij
M IP s  and

12 ,≥ − t k

ij ij ij
M s IP  for any 

possible values of ij
s

 
and 

,t k

ij
IP . Since 

,0 ≤ ≤t k

ij ij
IP S for inventory model SBO with lost sales, 
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we have
, − ≤ −t k

ij ij ij ij
IP s S s and

,− ≤t k

ij ij ij
s IP s . Moreover, since

max− ≤
ij ij ij

S s S , we can set 
11

ijM  = 

max

ij
S and 

12

ijM = 
max

ij
s . Similarly, from constraints (26) and (27), 

21

i
M and 

22

i
M must be 

set to satisfy 
21 ,

0 0− ≤ − t k

i i i
M s IP  and 

, 22

0 0− ≤t k

i i i
s IP M  for any possible values of 0is and

,

0

t k

i
IP . 

Then, by analogy with the setting of 
11

ijM  and 
12

ijM , we can set 
21

iM = 
max

0iS and 
22

iM  = 

max

0is . 

From constraints (46) to (49)，big number 
31

iM , 
32

iM , 
33

iM , and 
34

iM must be set to 

satisfy ,

1

31 ,

0

=

≥ −∑
J

t k

ij

j

t k

i iM q I , ,

1

32 ,

0

=

≥ −∑
J

t k

ij

j

t k

i iM I q , 33 , ,'≥ −t k t k

i ij ij
M q q , and ,

1

34 ,

0

=

≥ −∑
J

t k

ij

j

t k

i iM I q for 

any possible values of ,t k

ij
q ,

,

0

t k

iI , and ,'t k

ij
q , so

31

iM can be set to ,

1

max
=
∑

J
t k

ij

j

q , 
32

iM can be set 

to 
,

0max t k

iI , 
33

iM  can be set to ,max t k

ij
q , and 

34

iM  can be set to 
,

0max t k

iI . Since , max≤t k

ij ij
q S

and 
, max

0 0≤t k

i iI S , we can set 
31

iM = max

1=
∑

J

ij

j

S , 
32

iM = 
max

0iS , 
33

iM  = 
maxmax
ij

j
S , and 

34

iM = 

max

0iS . 

From constraints (54), (55), (59) and (64), 
41

jM ,
42

jM , 
43

jM , and 
44

jM must be set to 

satisfy
,

1

41 max'
=

⋅≥ −∑
I

t k

i ij

i

j jvM q C , 
,

1

42 max

=

⋅≥ −∑
I

t k

i ij

i

j j vM C q , 43 , ,'≥ −t k t k

j ij ij
M q x , and

,

1

44 max

=

⋅≥ −∑
I

t k

i ij

i

j j vM C q for any possible values of ,'t k

ij
q , ,t k

ij
q , and ,t k

ij
x . Since 

, max

1 1

'
= =

⋅ ⋅≤∑ ∑
I I

t k

i ij i ij

i i

v v Sq and , max' ≤t k

ij ij
q S , we can set 

41

jM = 
max

1=

⋅∑
I

i ij

i

v S , 
42

jM = max

j
C , 

43

j
M = 

maxmax
ij

i
S , and 44

j
M = max

j
C . Similarly, from constraints (56), (57), (61) and (68), 

41

0M , 
42

0M , 
43

0M , and 
44

0M must be set to satisfy 
,

0

1

41 max

0 0
=

⋅≥ −∑
I

t k

i i

i

vM q C , 

,

0

1

42 max

0 0 '
=

⋅≥ −∑
I

t k

i i

i

vM C q ,
43 , ,

0 0 0≥ −t k t k

i iM q x , and 
,

0

1

44 max

0 0 '
=

⋅≥ −∑
I

t k

i i

i

vM C q . Consequently, we can

set 
41

0M = 
max

0

1=

⋅∑
I

i i

i

v S , 
42

0M = 
max

0C , 
43

0M  = 
max

0
max

i
i

S , and 
44

0M  = 
max

0C . 


