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A decomposition and coordination method for optimising (Q, S) policies in a
two-echelon distribution system with joint replenishment

Lei Wang and Haoxun Chen

Logistics and Optimization of Industrial Systems, Laboratory of Computer Science and Digital Society, University of Technology of Troyes,

Troyes, France

A continuous-review, two-echelon distribution system with one central distribution centre (CDC) and multiple regional
distribution centres (RDCs) is studied. The CDC jointly replenishes its inventories of multiple items from an external
supplier, while each RDC replenishes its inventories of the items from the CDC. Each RDC faces a Poisson demand for each
item, and the inventories of each stock in the system are controlled by a (Q, S) policy. Under this policy, an order is placed by
a stock whenever its aggregate demand since the last order reaches a given quantity, and the inventory position of each
item is raised up to its order-up-to level after the order placement. The objective is to optimise these (Q, S) policies so that
the expected total cost of this system is minimised. We propose a decom-position and coordination method for this
optimisation after deriving analytically the cost function of the system. Our extensive numerical experiments demonstrate
the effectiveness of the proposed method. Furthermore, a parameter sensitivity analysis is conducted to analyse the
impacts of some key system parameters on the performance of the method, and managerial insights are provided for
optimising distribution systems with joint replenishment and real applications of the method.

1. Introduction

Inventory management is crucial in supply chains, espe-
cially in distribution systems. This paper focuses on
optimising inventory policies for a two-echelon distribu-
tion system with joint replenishment, inspired by a real
inventory problem in Alibaba’s supply chain. This system
comprises a central distribution centre (CDC) and multi-
ple regional distribution centres (RDCs). Inventories are
continuously reviewed at the CDC and each RDC. The
CDC replenishes its inventories of multiple items from
an outside supplier and then supplies the RDCs. Each
RDC faces a Poisson demand for each item. The inven-
tories of multiple items are jointly replenished using a
continuous-review (Q, S) policy at each stock. Under this
policy, an order is placed whenever the aggregate demand
of a stock since the last order reaches a given quantity Q,
and the inventory position of each item is raised to its
order-up-to level specified by S after the order placement.
The lead time for inventory replenishment from the out-
side supplier to the CDC is assumed constant, whereas
the lead time from the CDC to each RDC is stochas-
tic because of possible stockout at the CDC. Each joint
replenishment incurs a major ordering cost and minor
ordering costs. The major ordering cost corresponds to

the major expenses of placing a bulk order of multiple
items. It may include setup costs, transportation costs,
and administrative costs. The minor ordering cost of each
item represents the minor expenses incurred when order-
ing this item in a bulk order. The minor ordering cost is
item-specific Holding costs are charged at the CDC and
RDCs, while excess demand at the RDCs results in back-
logged orders and associated shortage costs. The problem
is to optimise the (Q, S) policies to minimise the long-run
average cost per time unit of the system.

Joint inventory replenishment can realise substan-
tial cost savings by coordinating and combining replen-
ishments of multiple items (Wang and Chen 2022).
However, existing studies either focus on multi-echelon
distribution systems with a single item or single stocks
with multiple items. To the best of our knowledge, the
problem we consider was never studied in the literature.

In practice, the inventory policy for each stock in a
distribution system is often determined independently,
without considering other stocks. However, this may
result in suboptimal system-wide inventory policies.
Multi-echelon inventory optimisation aims to find coor-
dinated inventory policies that globally optimise the sys-
tem. Incorporating joint replenishments into this opti-



misation can enhance performance and reduce costs for
the system. This is also true for a multi-item lot-sizing
model with individual inventory costs and joint pro-
duction costs (Leopoulos and Proth 1985). However,
optimising multi-echelon inventory systems with joint
replenishments is very challenging. Even for a multi-
echelon inventory system with a single item, the structure
of its optimal echelon stock policy is unknown (Dolgui
and Proth 2010). To the best of our knowledge, neither
exact nor heuristic algorithm for solving this problem
was reported in the literature.

With respect to the literature, our contribution to the
study of stochastic inventory systems with joint replen-
ishments is fourfold:

1. We study for the first time the optimisation of (Q, S)
policies for a two-echelon joint replenishment distri-
bution system and propose an effici t and effective
decomposition and coordination approach.

2. We derive analytically the cost functions of all stocks
in the distribution system.

3. We conduct extensive numerical experiments to
evaluate the performance of the proposed approach.

4. We conduct a sensitivity analysis to evaluate the
impacts of some key parameters on the system’s
performance and provide managerial insights for
optimising distribution systems with joint replenish-
ments and real applications of the approach.

The rest of this paper is organised as follows. Section 2
provides a review of the literature related to our work. The
two-echelon distribution system studied is described in
Section 3 with analytical formulation of its cost functions.
Section 4 presents a decomposition and coordination
algorithm for optimising the (Q, S) policies of this system.
The quality of the (Q, S) policies found by the algorithm
is evaluated by an error bound in Section 5. Section 6
presents numerical experiments of the algorithm and a
sensitivity analysis with managerial insights provided.
Section 7 concludes this paper with perspectives for
future research.

2. Literature review

Our work contributes to the literature on stochas-
tic multi-echelon distribution and joint replenishment
inventory systems. Andersson, Axsiter, and Marklund
(1998) and Andersson and Marklund (2000) studied
a single-item continuous-review two-echelon distribu-
tion system controlled by (R, Q) policies, and proposed
a decomposition and coordination approach for their
optimisation. Berling and Marklund (2014) extended
their previous work by addressing lead-time variability.

However, these models overlook the joint replenishment
of multiple items, a common practice in real distribution
systems. Our study extends Andersson and Marklund’s
approach to consider joint replenishments controlled by
(Q, S) policies. For a comprehensive review of the lit-
erature on stochastic multi-echelon inventory systems,
please refer to De Kok et al. (2018).

Joint Replenishment Problems (JRPs) have been an
active research topic since multiple products are usually
replenished in real warehouses and retail stores. The joint
replenishment of multiple items can reduce total logistics
costs by sharing ordering and transportation costs. Exist-
ing literature on JRPs can be classifie into deterministic
JRPs and stochastic JRPs (SJRPs). Previous studies on
JRPs were reviewed by Khouja and Goyal (2008) and
Peng, Wang, and Wang (2022).

Various policies have been proposed for joint replen-
ishments. (s, ¢, S) policy and (Q, S) policy are two typical
continuous review joint replenishment policies. Under (s,
¢, §) policy, whenever any item’s inventory position is
lower than its must-order level s, a joint replenishment
order will be placed to raise its inventory position to its
order-up-to level S, and other items if their inventory
position is below its can-order level ¢ will also be included
in this order. In our study, we adopt (Q, S) policy, also
known as QS policy introduced by Renberg and Planche
(1967) and studied in Cachon (2001). Under (Q, S) pol-
icy, a joint replenishment order is placed to bring each
item’s inventory position to its order-up-to level S when
the total demand of all items since the last order reaches
a specified quantity Q. Golany and Lev-Er (1992) con-
ducted extensive simulations comparing (s, ¢, S) policy
and (Q, S) policy and identifie limitations of (s, ¢, S) pol-
icy. Liand Schmidt (2020) also compared the two policies
numerically and showed that no policy is better than the
other in all instances.

Most papers on multi-echelon joint replenishment
inventory systems assume deterministic demands be-
cause of much higher complexity of their stochastic
counterpart. Even for a deterministic multi-echelon joint
replenishment system, findi g its optimal inventory pol-
icy is quite difficult, so metaheuristics were widely
applied in its optimisation, such as genetic algorithm
(Cha, Moon, and Park 2008), Tabu search (Liu et al.
2018), and differential evolution (Wang et al. 2020). Padi-
yar et al. (2022) studied a multi-echelon supply chain with
deteriorating items, imperfect production, and uncer-
tain inflation. Das, Baran Hui, and Jain (2019) pre-
sented a probabilistic model for optimising inventory
policies in a multi-echelon distribution system with mul-
tiple products. Although the two papers also deal with
multi-echelon inventory systems with joint replenish-
ment, Padiyar et al. studied a distribution system with



Table 1. Comparison with related literature.

Authors Review type Demand type Inventory Policy Method
Cha, Moon, and Park (2008) P Deterministic Periodic JR Genetic algorithms
Liu et al. (2018) P Deterministic Periodic JR Tabu search algorithm
Wang et al. (2020) P Deterministic Periodic JR Differential evolution algorithms
Zhou, Chen, and Ge (2013) P Poisson (T, S) Genetic algorithms
This paper C Poisson @Qs) A decomposition and coordination method
C: continuous review; P: periodic review. Periodic JR: periodic joint replenishment.
deterministic demands and Das et al. considered an inte- _ ltem 1: 5y,
. . . . . . Item 2: 5, 5
ger policy of ordering, whereas we consider a distribution RDC1 | O JL lem : §,
Em A
system with stochastic demands and (Q, S) policy for oo Su
. . . * LK
joint replenishment.  leml:S,
Our paper considers a stochastic two-echelon dis- . 5 liem 2: 5
tribution system with Poisson demands controlled by ? Hem k= 53
continuous review (Q, S) policies. To the best of our L | e : lem &S
. . .. . Item 1: S5,
knowledge, the only work considering a similar system ftem 2: 5.3
. . _ 0 1: 8, ;
is that of Zhou, Chen, and Ge (2013), who considered a o 2 Sun RDCi | O { ftem &: Siy
multi-item, multi-echelon distribution system with Pois- Q 1 tem &: Sy Item K: S
son demands and controlled by (T, ) policies. They pro- Item K: Sax Item 1:5,,
. . e e . . Item 2: 5,5
posed a genetic algorithm for optimising the (T, ) poli- RDCx | O { =
= tem k:
cies. Compared with time-based (T, S) policies, quantity- o :
m K: S,y

based (Q, S) policies are more difficult to optimise in
a multi-echelon inventory system with joint replenish-
ments. The challenges we have to tackle include analytical
evaluation of expected total cost of the system due to
the coupling among multiple items and the difficulty of
coordinating replenishments across the items. Instead
of proposing a metaheuristic algorithm, we develop an
iterative decomposition and coordination approach for
optimising the (Q, S) policies in a two-echelon distri-
bution system based on approximate formulation of its
cost functions. This approachcan evaluate the quality
of the inventory policies obtained. Table 1 summarises
the related works on multi-echelon joint replenishment
inventory systems.

3. Problem description and preliminaries

The two-echelon distribution system and its inventory
policy optimisation problem we study is described in this
section, with the assumptions made and the notations
used in this paper. In addition, the determination of order
quantities for each stock is discussed, followed by the pre-
sentation of cost functions used in both an exact and
approximate system model.

3.1. The two-echelon distribution system

We consider a two-echelon distribution system consist-
ing of a central distribution centre (CDC) and multi-
ple regional distribution centres (RDCs) as shown in
Figure 1. The CDC sources various items from external
suppliers, and each RDC replenishes these items from the

Figure 1. A two-echelon distribution system with one CDC and
multiple RDCs.

CDC. The system adopts a continuous-review (Q, ) pol-
icy for each stock, where an order is placed by each stock
to raise its inventory position to its order-up-to level S
when its aggregate demand since the last order reaches
quantity Q. The replenishment lead time of the CDC is
assumed constant, but the replenishment lead time of
each RDC is stochastic due to potential stockouts at the
CDC.

3.2. Assumptions and notations

The assumptions made and the notations used in this
paper are listed in the following.

Assumptions

(1) Multiple items are involved at the CDC and each
RDC.

(2) The inventory status of each item at the CDC and
each RDC is continuously reviewed.

(3) The demand of each item observed by each RDC
is subject to a Poisson distribution. This demand is
independent of any other item observed by the same
RDC and the demand of any item observed by any
other RDC.

(4) Allitems arejointly replenished at the CDC and each
RDC.

(5) There is a common transportation (delivery) time
for all items in each joint replenishment at each RDC



(6)

(7)

(8)

and a constant replenishment lead time for all items
in each joint replenishment at the CDC.

Any joint replenishment order is never partially ful-
fill d. If the CDC does not have enough on-hand
inventory for some items to fully fulfil a joint replen-
ishment order of an RDC, it will wait until it has
suffici tinventory to fully fulfi this order.

If multiple joint replenishment orders from the
RDCs are waiting for fulfilment at the CDC, these
orders are fulfil ed by applying the FCEFS rule.

The inventory of each item at the external supplier is
ample at any time.

Notations
Sets and indices

N: set of all RDCs in the distribution system,
N =1,2,..., N, where N is the number of
RDCs.

NUO: set of all stocks in the distribution system,
where 0 represents the CDC.

K: set of all items involved in the distribution sys-
tem, K = 1, 2,..., K, where K is the number
of items.

i: RDC index, i € N.

k: item index, k € K.

t: time index or length of time.

Parameters

Lo: constant replenishment lead-time of the CDC.

Ii: constant transportation time from the CDC to
RDC .

Li: lead-time for an order placed by RDC i to be
shipped by the CDC, a stochastic variable.

L;: expected lead time for each order placed by
RDC i to be shipped by the CDC, L; = E[L;].

Ap: major ordering cost for each joint replenish-
ment of the CDC.

ap k: minor ordering cost of item k for each joint
replenishment of the CDC.

A major ordering cost for each joint replenish-
ment of RDC i.

ai g minor ordering cost of item k for each joint
replenishment of RDC i.

Dzk: Poisson demand of item k observed by RDC i
during a time interval of length .

Di: total demand of all items observed by RDC i
during a time interval of length .

Aig: mean demand rate of item k at RDC i, At =
E [Dik].

A total demand rate of all items at RDC i,
Ai= Y0 hike

fik(x,1):

Fik(x, t):

ho’kl

hi,k:

Pik:

probability density function (p.d.f) of Poisson
random variable D} .

cumulative distribution function (c.d.f) of
Di,.

holding cost per unit of item k per time unit at
the CDC.

holding cost per unit of item k per time unit at
RDCi. It is assumed that h; ;. > hg for any k.
That is, h;,k = hjx — hox > 0 for any k, h;,k is
an increment of unit holding cost.

shortage cost per unit of item k per time unit
at RDCi.

Decision variables

Qi joint replenishment order quantity of RDC i.

Qo: joint replenishment order quantity of the
CDC.

Siok: order-up-to level of item k at RDC i.

Si: Si = (Sik> k € K), order-up-to level vector of
RDCi.

Sosk: order-up-to level of item k at the CDC.

So: So = (So,k> k € K), order-up-to level vector of
the CDC.

Other variables

Sit aggregate reorder point of RDC i, s; =
lele Sik
- Qi

so: aggregate reorder point of the CDC, sy =
Zle Sok — Qo

sbx. optimal aggregate reorder point of the CDCin
an exact model.

sax: optimal aggregate reorder point of the CDCin
an approximate model.

Co: expected cost of the CDC per time unit.

CE: expected cost of RDC i per time unit in an
exact model.

TCE: expected total cost of the distribution system
per time unit in the exact model.

Cf‘: expected cost of RDC i per time unit in the
approximate model.

TCA: expected total cost of the distribution system

per time unit in the approximate model.

Inventory status variables

Lok (0):
Io(1):

Lk (8):

on-hand inventory of item k at the CDC at
time £.

aggregate on-hand inventory of all items at the
CDC at time t, Io(t) = 3 1, Tox(®).

on-hand inventory of item k at RDC i at
time £.



Li(1): aggregate on-hand inventory of all items at
RDC iat time t, [;(t) = Y r, Lix(£).

By(1): aggregate backorders of all items at the CDC
at time ¢.

Bi(t): aggregate backorders of all items at RDC i at
time ¢.

3.3. Determination of order quantity for each (Q, S)
policy in the distribution system

Optimising the reorder point and order quantity for each
stock in a distribution system with multiple items is chal-
lenging. In the literature, the values of these parameters
are typically determined sequentially. The order quanti-
ties for all stocks are first determined, followed by opti-
mising the reorder points. Chen and Zheng (1997) indi-
cated that a suitable deterministic model for determin-
ing the order quantities in a stochastic inventory system
minimises its expected total cost, as long as the reorder
points are well optimised. Built on this insight, Anders-
son and Marklund (2000) optimised the reorder points in
a distribution system by predefini g the order quantities.
Following this sequential approach, we solve a determin-
istic model to determine the joint replenishment order
quantities for all stocks in the considered distribution sys-
tem. Subsequently, we optimise the order-up-to levels S
for all items at all stocks by employing a method to be
introduced in Section 4. The determination of the order
quantity Q for each (Q, S) policy in the system is given in
Appendix A.

3.4. Cost functions in exact and approximate
models

We consider two models, an exact model and an approx-
imate model, for evaluating the expected total cost of the
distribution system. This cost is the sum of the expected
costs of the CDC and the RDCs. In the exact model,
the replenishment lead-time of each RDC is a stochas-
tic variable, whereas this stochastic lead time is replaced
by its mean value in the approximate model. In the
approximate model, the expected cost of the CDC is also
exactly calculated, only the expected cost of each RDC
is approximately calculated. Since all items are jointly
replenished at the CDC and each RDC, as soon as the
joint replenishment order quantity Q is determined for
each (Q, S) policy in the distribution system, its order-
up-levels of all items at each stock will not affect major
and minor ordering costs. Therefore, we only need to
consider holding costs at the CDC and both holding and
shortage costs at each RDC. Note that shortage costs
are not charged at the CDC as in most models in the
literature.

Schematically, the expected total cost of the distribu-
tion system in the exact model can be expressed as:

N
TCE=Co+ ) CF
i=1

N
= Co(So) + Y _ CF(SilLi(S0)) (1)

i=1

where TCE is the exact expected total system cost per
time unit, Cy is the exact expected holding cost per time
unit of the CDC, ClE is the exact expected holding and
shortage cost per time unit of RDC i, and L;(Sp) is the
stochastic lead time of RDC i, which depends on the
order-up-to level of each item k at the CDC, k € K.

On the other hand, the expected total cost of the
system in the approximate model can be expressed as:

N
TC' =G+ ) _C}
i=1

N

= Co(S0) + > CA(SilLi(So)) (2)
i=1

where TC? is the approximate expected total system cost
per time unit, and CZ is the approximate expected hold-
ing and shortage cost per time unit of RDC i, L;(Sp) is the
mean value of L;(Sp).

An important characteristic of the system is the
stochastic Poisson demand faced by each RDC for each
item and the independence between any two Poisson
demands in this system. The two properties allow us
to analytically calculate all costs in equations (1) and
(2). See Appendix B for the derivation of the cost
functions.

4. Decomposition and coordination

Due to the coupling among items, the coordination of
inventory replenishments across K items (K > 1) in a
distribution system is more difficult than solving its
K single-item inventory replenishment subproblems. In
addition, because of the stochastic nature of the lead
time L;(Sp), finding an exact method to calculate the
exact expected total cost of the distribution system given
by (1) is very difficult. Because of the two reasons, we
propose an iterative decomposition and coordination
approach to minimise the approximate expected total
cost TC* given by (2). This is motivated by a pro-
cedure proposed by Andersson and Marklund (2000)
for optimising inventory policies of a distribution sys-
tem with a single product. We extend their procedure
to a distribution system with joint replenishment. In



each iteration of our approach, the approximate model
with cost function (2), a complicated stochastic multi-
echelon joint replenishment problem, is decomposed
into multiple single-item single-stock inventory sub-
problems. The solutions of these subproblems are coor-
dinated through iteratively adjusting a set of induced
shortage costs per unit of item per unit of time intro-
duced for backorders at the CDC, so that they gradu-
ally approach an optimal or a near-optimal solution of
the model.

4.1. Decomposition of the approximate model

Although shortage costs are only charged at the RDCs,
the inventory decisions (the order-up-to levels) of the
CDC have great impacts on the shortage costs and hold-
ing costs of each RDC, because the upstream CDC and
the downstream RDCs are coupled through stochastic
lead times L;(Sp), i € N between them. To decouple the
CDC’s inventory decisions from those of the RDCs, we
will introduce artificial shortage costs for backorders at
the CDC as mentioned above. On the other hand, for the
approximate model (2), as soon as the mean lead times
Li(So), i € N are known, the inventory decisions of the
RDCs can be decoupled from that of the CDC. That is,
we can defin the RDC decision problems, one for each
RDC, as follows:

min CASill), ieN 3)
Given the value of L;, we can analytically formulate
the cost function C;‘1 (Si|L;) and demonstrate that it is
item-separable, i.e. C?(Silii) = 25:1 ka(S,',kllzi). See
Appendix B for this formulation. After solving the deci-
sion problem of each RDC i, we can obtain its optimal
solution denoted by S; = (S}, k € K), where S} is a
function of L; and L; is in turn a function of Sy = (So,x»
k € K). For simplicity, we use L; instead of L;(Sp) in the
following formulations in case of no confusion.

To analytically formulate the CDC’s expected hold-
ing cost Cy(Sp), we need the notion of ‘reserved units’
introduced in Lee and Moinzadeh (1987) and Anders-
son and Marklund (2000). Because we assume the CDC
adopts the full order fulfilme t policy for RDC orders,
the CDC may have reserved units for some items, where
a unit available at the CDC is called a reserved unit if
it is allocated to an order placed by an RDC but not yet
shipped. Let Bg,k denote the backorder level of item k at
the CDC obtained in case of allowing partial fulfil ent of
RDC orders, B(r),k and Bo,k denote respectively the num-
ber of reserved units and the backorder level of item k at
the CDC in case of only shipping complete RDC orders,
we have B, = Bg,k + By ;- By applying Little’s Law, we

have:
N
E[By ) =Y Mix@i—1L) , VkeK (4)
i=1
or equivalently

N
E[By ] =Y nixLi— 1) —E[By,] , VkeK (5)
i=1

where L; — I; is the mean waiting time of each order
placed by RDC i at the CDC.

The analytical formulation of Cy(Sp) requires to cal-
culate E[B(’))k], which can be derived from E[Bg)k] and
Li according to (5). We can also demonstrate that
Co(Sp) is item-separable, i.e. Co(Sp) = 25:1 Cox(Sok)-
See Appendix B for this formulation.

Next, we discuss how to calculate L;. Let Bf),k denote
the number of reserved units allocated to orders of RDC
i plus backorders at the CDC placed by RDC i for item k,
we have B, = SR Bf))k. According to Little’s Law, we
can obtain:

E[Bé,k] = Aix(Li — 1)) (6)

Denote E [Bf) ] by BZ) - From Eq. (6) we can obtain:

1
i3 0,k
Li=1li+ ™ (7)
Turning to inventory decisions of the CDC, its order-
up-to levels Sox, k € K will affect the shortage costs
of each RDC i through the expected lead-time L; or
expected backorder levels Bé’k, k € K, and thus affect the
total cost of the distribution system. To capture this influ-
ence, we introduce shortage costs induced by the change
of expected lead-time L; in the CDC’s cost function when
it makes its inventory decisions. Instead of minimising
Co(8o), the CDC minimises an augmented cost function
Co(So) with additional induced shortage costs (see Eq. (9)
in the following).
For this purpose, define:

ka(S;.‘ij:i): minimum holding and shortage cost of
item k at RDC i in the approximate model given L;.
ka(S;.‘jkBé)k): minimum holding and shortage cost
of item k at RDC i in the approximate model given
By ;-

Ajk: mean demand rate of item k observed by RDC i.
Bik: induced shortage cost per unit of item k per
time unit for backorders at the CDC ordered by RDC
i. Bix = dC (Sik*|By ) /dBy , where B; = (Bix, k
€ K).



To facilitate the calculation of the first derivative j;,
we replace C (S*kIL) byf(L) replace C (S*le’ k) by
g(B ) and replace B! ok = = Aix(Li — 1) by h(L;). Then,
we have f(L;) = g(h(L;)), and B;x can be rewritten as:

o dcfk(szk |B k) _ dg(Bf),k)
T B, dBy
_dg(h(Ly)) AL df(Ly) 9L

di; 9B, dL; 0B,

_dCLSiktIL) 1 ®
N dL; Aik
With this equation, the inventory decision problem of
the CDC can be formulated as:

min Cy(Sp)
So

N K
=Co(So) + Y Yy —F >

i=1 k=1

& I\ - ACH Sk 1By

=Y CoxSop + Y ) — = a5 By,

k=1 i=1 k=1

= 0.k(So.k) + Bik Bo k )
Z ZZ

k= i=1 k=1

dCh (S 1By

1

i 0,k
(JIB0 P

~

Since each RDC applies a (Q, S) policy for its joint replen-
ishment and the value of Q is given, its joint replenish-
ment order process (in terms of order placing instants
and orders) observed by the CDC does not depend on
the order-up-to levels of the RDCs, but only depends
on the demands observed by the CDC and its order-up-
levels. For this reason, Bf),k in Eq. (9) can be obtained
by discrete event simulation as soon as the CDC’s joint
replenishment inventory policy is given.

To calculate the coeffici t 8;x in the decision prob-
dCl (Six*|Li)
dL;
ka(Si,kllzi) given by Eq. (A.20) in Appendix B, we can
derive an analytical expression for this first derivative as

follows:
dCA (SuIL)
dL;
Qi—1 'y

)\'k mjk
=_Z Z (mzk'(“z—mk)'< )

=0 m; =0

)\'k Ui—mijk
A;

x| Six — mig)(hix + pik)

lem (9), we need to know . According to

— Lik(hik + pik)
lk mzk 2
._ —)»,kL,()L kL )J

- ikL'(hik + pik)

Sik— mzk 2 T
._XQ + PikMik

Sik—mik—1 1
x | — Z j—!xe
j=0
ikMik

(10)
where 6 = —)»i’kei)”’v'kf"' ()»,‘,kii)j + e~ hikLi X j- ()»,‘,kii)jil
Ak

4.2. The coordination procedure

As mentioned in Section 4.1, it is an iterative procedure
which solves alternatively the RDC decision problems
and the CDC decision problem in each iteration. Firstly,
each expected lead-time L; is initialised with a value in
the interval [I;, [; + Lo], i € N. Given the expected lead-
times L = {L;,i € N}, the RDC problems (3) are solved
individually and independently to obtain their tentative
order-up-to levels S;i, i€N, k€K, based on which the
shortage cost coeffici ts B = {Bi,i € N} can be calcu-
lated, where B; = (B, k € K). Knowing these shortage
cost coeffici  ts, the CDC problem (9) is solved to obtain
its tentative order-up-to levels So , k € K. The new values
of So k, k €K will then be used to determine the new values
of expected lead-times L with which the RDC problems
are solved again. The updating of L, the RDC problem:s,
B, and the CDC problem is repeated until a stationary
solution is found for the CDC problem and the RDC
problems, if such a solution exists. A stationary solu-
tion {S,S;,i € N} for these problems is a solution that
does not change during two successive iterations. From
a managerial point of view, the coordination procedure
can be interpreted as a negotiation process, in which the
CDC reimburses each retailer the cost induced by its late
deliveries. The negotiations and successive updates of L
and B continue until a stationary solution (or equiva-
lently a Nash equilibrium) is found. The only informa-
tion exchanged between each RDC i and the CDC is
Bi, the shortage cost coeffici ts for late deliveries of the
CDC. Our decomposition and coordination procedure is
illustrated in Figure 2.

Next, we discuss how to solve the RDC problems and
CDC problem. For the decision problem of each RDC i,
since its objective function is item-additive (see Eq. (3)),
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Figure 2. The procedure of the decomposition and coordination approach.

and ka(Si,klii) is convex with respect to S;x for a given
L;, it can be solved by applying a simple one-dimensional
search procedure, such as bisection method, in the inter-
val [S k,SI”k] to obtain its optimal solution S;,x, where Sl
and S”k are a lower bound and an upper bounds of S, k’
respectively.

For the decision problem of the CDC, its objective
function may not be convex. Since Qo is given, to fin the
optimal solution Sy of the problem, we first enumerate
sp = 25:1 So,k — Qo as an integer value in the interval
[sé, sg] defining the range of so. For each given sy, the
objective function of the CDC becomes item-additive,
ie. Cy(Sp) = Zk 1 Co.k(So k). Suppose that the decision
variable Sy x takes an integer value in the interval (St 0k
So x> where So,k and S, are a lower bound and an upper
bound of Sy, respectively.

Because of the item-additivity of the CDC problem, it
can be formulated as a 0-1 integer program. In order to
do so, we defin 0-1 integer variables:

1, ifSox=jje€lS ok’Sok]
P = » 11
g {O, otherwise (1)
The 0-1 program can be formulated as:
IPO1:
K Sox
min TC(s0) = » _ Y Cox(j)xy (12)
k=1 j=s(,,
s.t.

Vke K (13)

St
Z X =1,

ol
J=Sok

K So,k
YN imi=s0+Q (14)

k=1 j=S1

In the objective function (12), TC(sp) is the total cost
of the CDC when sg is given Cy(j) is the value of
Cok(Sox) when Sox = j. Cox(), j €[S) o Si] can be
obtained by discrete event simulation. Constraint (13)
implies that So x can only take a single value in interval
[So © g,k] for any item k € K. Constraint (14) ensures
S0 = Zle So.k — Qo.

By enumerating integer so in the interval [sf), sg] and
solving the 0-1 program for each possible sy, we can
obtain the optimal solution of the CDC problem by com-
paring the optimal objective values of these 0-1 pro-
grams. This solution is denoted by Sj.

To obtain lower bound Si,k and upper bound S}
for all RDCs and the CDC, i.e. for any i € NUO, we
fi st run the decomposition and coordination procedure
from step (3) with the expected lead-times, L;, i€N ini-
tialised to their smallest possible values, i.e. L; = [; for
i € N. Due to the concavity of ka(S?jk(ii)|ii) with
respect to L; and the fact that Sy is a non-decreasing
function of B;, this procedure will end with a station-
ary solution, (Sj k,Sl,in € N,k € K), where Sg,k is an
upper bound of Sy and Sf‘,k is a lower bound of S;,
i€eN. We then rerun the procedure starting from step (3)
with the expected lead-times, L;, ieN, initialised to their
largest possible values, i.e. L; = I; + Lo for i€N. At this
time, this procedure will end with a stationary solution
(S0 k,S”kIl € N,k € K), where & 0k is @ lower bound of

So,k and Si,k is an upper bound of S;i, ieN. If Sf),k =
S”)k for all k € K, then the optimal solution of the
approximate model has been found. Otherwise, we must
consider a finte number of solutions in the interval
[Sé © Sg,k] for each k € K. Remember that each value of
So,k> through the expected lead-time Li, uniquely deter-
mines the optimal order-up-to level S7, of RDCi.

Steps (1)-(2)-(3)-(4) in Figure 2 form a closed-loop
for each iteration of the decomposition and coordination
procedure. After calculating lower bound Si’,k and Sf;, i



€ N for all stocks as mentioned above, this procedure is
run again but it now starts from step (1) with all induced
shortage cost coeffici ts initialised to zero, i.e. Bix = 0,
i € N, k €K. The iterative process of this procedure will
repeat until a stationary solution is found.

Our decomposition and coordination approach is pre-
sented in pseudo-code as follows:

5. Error bound

In this section, we discuss the performance evaluation of
the solution found by our decomposition and coordina-
tion approach. Firstly, define:

Sf,’(“ (Sp): true optimal order-up-to level of item k at
RDC i given order-up-to levels Sy of the CDC in the
exact model, where Sy = (Sox, k €K).

Sf,:‘ (So): optimal order-up-to level of item k at RDC
i given order-up-to levels Sy of the CDC in the
approximate model.

(SE*, SE*,i € N) is the optimal solution of the exact
model, where Sg* = (Sg)’;, keK), SFZ = (SEZ, ke K),
ieN.

(S3*,84*,i € N) is the approximate solution found
by Algorithm 1 based on the approximate model,
where S3* = (S5, k € K), S = (87, k€ K),i € N.
ka(Sf;ck (80)): minimum cost for item k at RDC i in
the exact model given order-up-to levels Sy of the
CDC.

ka(Sflf (S0)): minimum cost for item k at RDC i
given order-up-to levels So of the CDC in the approx-
imate model. C4 (S%(S0)) = CL (S5 ILi(S0)).

Algorithm 1: Decomposition—Coordination Approach

Input: A predefined accuracy e for the bisection search of S;x and a
sufficiently long simulation time horizon T for evaluating L; and Cok(Sik)
Sik € [So Sl

Result: Output (Sa‘yk,S;fkli e N,k e K)

1 Determine Qp and Q;, i € N based on a deterministic multi-echelon joint
replenishment model (see Appendix A).
2SetL; = J; fori € N, and iterate the procedure in Figure 2 from step
(3) until it converges to a stationary solution to obtain
(S Sl € N, k € K).
3SetL; = I; + Lo for i € N, and iterate the procedure in Figure 2
from step (3) until it converges to a stationary solution to obtain
(Sp o Siili € N,k € K).
4 Initialize the induced shortage cost coefficients By = 0,i € N, k eK.
5 While the stop criterion is not achieved, i.e. a stationary solution is not
found, do
6 Calculate Cox(Sik), Six € [S{J,k' Sg’k] by discrete event simulation.
7 Solve the decision problem of the CDC to find its tentative optimal
order-up-to levels S;yk, k €K by solving the 0-1 programming IP01.
8 Calculate [,(Sz)‘lk, k € K), i eN by discrete event simulation.

9 Solve the decision problem of each RDC to obtain its tentative
optimal order-up-to levels S,?f , k €K by the bisection search.

10 Update Bjx, i € N, k K according to Eq. (10).

11 End while

12 Output (Sg‘lk,S;fkli e N,k eK)

For the approximate model and the exact model, fol-
lowing Andersson, Axsiter, and Marklund (1998) and
Andersson and Marklund (2000), we have ka(SfIf(So))
< ka(sf,j (So)) for any i, k and Sp, and TCA(S3H*, S, i €
N) < TCE(S§*, SF*,i e N).

The performance of the solution found by our
approach can thus be evaluated by the ratio ¢ defin d as:

_ TCE(S§*,8{*,ie N)

&= 15
TCE(SE*, SF*,i € N) (13

If ¢ = 1, the solution is optimal, otherwise ¢ > 1. The
larger &, the worst the approximate solution. Unfor-
tunately, ¢ cannot be obtained since the denomi-
nator in (15) involves the optimal solution, which
is unknown. However, since TCA(S‘S‘*,Sf‘*,i eN) <
TCE (Sg*, Sf*, i € N), by replacing the denominator TCE
(SE*,8F*,i € N) in (15) by TCA(S§*, $4*,i € N), we can
obtain an upper bound £ of ¢, where

ket Cox(Spp)
N K
i Dk By (GRS ILi(S5™)]
TCA(Sy™, S{*,i € N)

&= (16)

In order to evaluate the upper bound of the perfor-
mance ratio, we must know the probability distribution
of L,-(S‘(;\*), which can be obtained by discrete event sim-
ulation of the distribution system with given inventory
policies and applying a discrete distribution fitting tech-
nique.

6. Numerical study

In this section, we report our numerical study for evaluat-
ing the performance of our proposed approach for opti-
mising (Q, S) policies in a distribution system and pro-
vide some managerial insights for managing distribution
systems with joint replenishment and real applications of
the approach.

6.1. Instance generation

According to the characteristics of the two-echelon dis-
tribution system studied, we randomly generate many
instances that represent the system in different instances.
Since the impact of each parameter (e.g. lead time of the
CDC) on the performance of the system mainly depends
on its relative size concerning the size of the correspond-
ing other parameter(s) (e.g. lead time of each RDC), we
fi the parameters of the CDC (or RDCs) while varying
the parameters of RDCs (or the CDC) to generate multi-
ple instances. The possible values for each parameter are
summarised in Table 2 and explained below.

According to Table 2, the distribution system may
have 2, 4, or 6 RDCs and 3, 4, or 5 items. The



Table 2. Possible values for each parameter.

Table 3. Random generation of parameter X;.

Parameters Values
N 2,4,6
K 3,4,5
Lo 1,2,4
i 2
Aik Randomly generated, see Table 3 for details.
K K N
Ao Ao + Zaoyk = 0.5Ct§ Zholk . (Z )\.j’k>, cty €
k=1 k=1 i=1
{UI1,3], U2, 6]}.
dok
dok — € U[0.1,0.3]
Ao
K K
Ai A+ ayk =05ct? Y highik, cti € {UI1,3], UL2, 6]}
a, K= k=1
Gk A#'k € U[0.1,03]
i
hO,k hO,k € U[1,10]
hi 2 e u,2)
hg,k
Pik ’;ﬂ € U110, 40]

ik

constant transportation time /; between the CDC and
each RDC i is set to 2 for all RDCs, the constant
replenishment lead-time Ly of the CDC is set to three
possible values 1, 2, 4. The remaining parameters
are randomly generated. Major ordering cost Ap and
minor ordering costs agx for the CDC, are set accord-

ingto Ag + Y p, a0 = 0.5¢t2 Y1, hox - (Zil )»i,k))
where A;x is the mean demand rate for item k at
RDC i and cty can be interpreted as the expected
order cycle time under the economic order quantity
model, here cty € {U[1,3],U[2,6]} (Corresponding to
Ag € {A(S),Aé}). The relationship between ag; and Ay
follows %" € U[0.1,0.3], according to the guidelines of
Pantumsinchai (1992). Similarly, major ordering cost A;
and minor ordering costs a; for each RDC i, are set
according to A; + Z,Ile aijp = 0.561,‘1-2 25:1 hi ki g with
its expected order cycle time set as ct; € {U[1, 3], U[2, 6]}
(Corresponding to A; € {Af,AiL}). There is a propor-
tional relationship between a;; and A; for RDC i
expressed as % € U[0.1,0.3]. Parameter hg  is set in the
same way as in most literature, the holding cost per unit
of item per unit of time for each item k at the CDC is
randomly generated by hg x € U[1, 10]. The shortage cost
per unit of item per unit of time for item k at RDC i is set
as % € U[10, 40], which correspond to expected service
level @ € U[90%, 97.5%].

The parameters A; ; are randomly generated in the fol-
lowing way: we fi st randomly generate the demand rates
for all items in RDC1, and then use them as references to
generate the demand rates of all items in RDC i other than
RDC1by Ak = rld - A1,k» where the coefficient rf is ran-
domly generated from the uniform distribution U[1, i]
(Table 3).
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Demand Rate A;x

Demand
RDCi  Multiplier r;j Item 1 Item 2 Item 3 Item 4 Item 5
RDC1 =1 U[1,5] UNM,101 UM1,15]  U[1,20]  UM,25]
RDC2 1§ e U[1,2] Mg =17 g
RDC3  r{ e UI1,3]
RDC4  rd e UI1,4]
RDC5  rd e UI1,5]
RDC6  r¢ € U[1,6]
Table 4. Parameters of nine sets of instances.
Instance set N K Lo Ao, A
IS1 (set of referential instances) 4 4 2 A A
IS2 2 4 2 ASA
IS3 6 4 2 AL A
IS4 4 3 2 AL A
IS5 4 5 2 A A
156 4 4 1 AL A
157 4 4 4 A
IS8 4 4 2 A A
1S9 4 4 2 AL A

6.2. Parameter setting

We generated 9 sets of instances or scenarios, each
containing 20, and 180 instances were generated. As
mentioned in the previous subsection, [; = 2 for all
instances/scenarios. Among these sets, the fi st one,
referred to as IS1 for short, is a set of instances for eval-
uating the performance of the proposed approach and
referential for the sensitivity analysis of some key param-
eters of the distribution system. For this set of instances,
the parameters are set as: n =4, K =4, Ly =2, Ag =
AS,AZ- = Af. The parameters Ajx, Ao, dok> Ai> dik> Hoks
hik, and p; x were randomly generated according to sub-
section 6.1. For IS1, we randomly generated 20 instances.
The other 8 sets of instances were generated by varying
the value of one parameter concerning the parameter val-
ues of IS1. For example, the instance set IS2 was generated
from IS1 by changing N from 4 to 2, and the instance set
IS7 was generated from IS1 by changing Ly from 2 to 4.
The values of the three parameters for each instance set
are given in Table 4, where the number in bold type in
each line indicates the parameter whose value is changed
from that in the referential instance set IS1 to that in the
corresponding set.

6.3. Performance evaluation

Our proposed algorithm was implemented in C/C+-+
with Microsoft Visual Studio (Version 2022). All numer-
ical experiments were carried out on a PC operating
in Windows 10 with CPU i7-8650U and 16 GB RAM.
Firstly, we tested the algorithm on the instance set IS1 to



evaluate its solution quality and computation time per-
formance. For each distribution system instance in this
set, we fi st set the value of Q for each (Q, S) policy
according to Appendix A, we then applied the algorithm
to optimise the values of S. The predefin daccuracy e for
the bisection method used in the algorithm is set to 0.5
and the simulation horizon T is set to 10,000. After test-
ing several instances, we found this simulation horizon
was suffici tly long to obtain highly accurate estima-
tion of expected lead times L; and cost functions Cy x(.).
To demonstrate the advantage of coordination between
the inventory decision of CDC and those of the RDCs
realised by our algorithm, we also report the total cost of
the inventory policies found by the algorithm at its first
iteration with all induced shortage cost coeflicients 8 set
to zero. Note that solving the CDC problem and the RDC
problems with § set to zero is similar to what done in the
METRIC approach proposed by Sherbrooke (1968). The
results of the 20 instances of IS1 are presented in Table 5.

In this table, the first column indicates the serial num-
ber of each instance; the 2nd to 6th columns give the
parameter values of the (Q, S) policies obtained by our
algorithm for the distribution system of each instance;
the 7th column TC? is the approximate expected total
cost per time unit of the system with the (Q, S) poli-
cies, obtained based on the approximate model (2) which
replaces the stochastic lead time of each RDC by its mean;
the 8th column presents the error bound & given by
Equation (16); the 9th column TC™ is the total cost per
time unit of the system obtained by simulation; the 10th
column is the CPU time of the algorithm; the 11th col-
umn TC? is the total cost per time unit of the system
obtained by simulation with the (Q, S) policies found at
the first iteration of our algorithm, the (Q, S) policies
can be considered being those obtained by the METRIC
approach; the last column gives the value of TC®/TC4;
the last row of this table presents the mean values of TC4,
&, TC™ CPU time, TC® and TC/TCA for 20 instances
in IS1. Note that for both (Q, S) policies obtained by our
algorithm and the METRIC approach, the total cost of
the distribution system is obtained by simulation, this
is because it is very difficult to analytically calculate the
expected total cost per time unit of the distribution sys-
tem given its inventory policies. By simulating the system
for a suffici tly long time, its average total cost per time
unit, i.e. TC*"™, is an effective upper bound of its expected
total cost, whereas TC is a lower bound of the expected
total cost.

From Table 5, we can see our algorithm’s CPU time
for each instance ranges from 1452 to 2144 s. This com-
putation time is reasonable since the inventory optimi-
sation problem considered is a tactical decision prob-
lem. The range of error bound ¢ is from 1.03-1.17
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Table 5. Results of referential instances (Instance Set 1).

CPU Time(s) 7o TCO/TCA

% TCsim

Q. Q, Qs, Qa,
S$1 ) S3 Sa

Q.
So

Instance no.

.36
3

14
25

1.38
13
1.

1

13
1.44
14
13
1
1.22
1

1.25
1
1.21
1
1
1.39
1.31

1079.13
1704
3870.44
849.78
2220.94
1853.88
2489.72
315891
3646.36
3105.96
4271.67
3222.6
3317.75
1616.1
1248.16
1783.59
2417.57
3694.95
4328.93
1986.79
2593.36

1452
1921
1798
1836
1566
1698
1872
2107
2134
2098
1520
2002
1569
2144
1648
2131
1637
1855
1825

2011

915.1
1321.21
2930.48

758.48
1918.89
1417.68
1920.64
2711.19
3016.77
2628.12
3166.41
2632.2
2963.18
1200.85

911.78
1497.67
1952.65
3162.88
3761.2
1759.29

1.0
1.07
1.06
1.08
1.0
1.04
1.0
1.0
1
1.1
1.06
1.0
117
1.07
1.03
1
1.0
1.07
1.06
1.16

863.3
1234.78
2764.6

7023
1776.75
1363.15
1778.37
2487.33
2623.28
2389.2
2987.18
2460
2532.63
1122.29

885.22
1361.52
1859.67
2955.96
35483
1516.63
1960.62

32,111,156,146)

20,29,85,24)
74,62,69,94)
34,46,27,236)
45,43,40,277)
51,30,225,24)
57,37,262,125)
73,74,188,192)
44,83,27,139)
26,176,118,376)
42,99,69,232)
39,179,134,281)
32,220,163,214)
15,31,47,63)
48,35,40,90)
27,122,127,241)
20,28,112,83)
93,53,211,311)
72,83,179,219)
59,48,26,241)

53,
103,
159,
153,
147,
120,
220,
239,
128,
255,
159,
294,
290,

65,

91,
186,
105,
309,
201,
172,

25,91,126,122)
42,56,32,279)
35,32,29,220)
43,26,182,18)
69,67,179,185)
30,57,19,93)
53,132,86,295)
23,98,75,153)
18,126,96,124)
22,44,64,85)

28,39,118,36)
44,40,44,57)
28,19,128,56)
9,53,35,109)
34,24,26,61)
17,73,82,149)
39,49,209,149)
33,21,79,114)
60,73,153,190)
36,31,16,147)

74,
61,
159,
185,
140,
95,
100,
182,
84,
71,
205,
123,
129,
91,
47,

21,30,93,26)
45,40,42,59)
24,82,114,110)
24,32,18,153)
25,23,23,153)
38,22,170,18)
27,18,123,57)
50,51,123,128)
29,53,18,88)
17,100,68,221)
28,70,52,162)
18,78,57,120)
17,105,78,106)
20,38,55,75)
27,22,22,50)

72,
78,
150,
99,
79,
179,
108,
121,
107,
61,
39,
129,
120,
119,
87,

13,19,53,16)
31,28,30,40)
14,47,67,63)
16,21,13,106)
19,48,32,106)
11,50,36,74)
9,57,45,58)
13,26,38,50)
18,14,15,32)
13,61,66,116)
26,15,59,86)
23,25,56,71)
19,17,9,75)

32,
40,
80,
52,
49,
62,
71,
96,
35,
101,
70,
57,
55,
30,
112,
61,
64,
58,
39,

42,60,190,49)
76,68,67,110)
34,134,201,166)
39,57,33,276)
49,46,42,322)
63,32,270,22)
66,43,297,144)
97,80,246,226)
56,112,37,206)
21,158,102,381)
79,231,156,505)
31,172,126,269)
24,218,168,187)
23,52,68,93)
51,31,36,91)
43,190,214,426)
33,47,207,157)
65,42,182,237)
102,116,315,378)
59,41,21,225)

310,
255,
419,
343,
367,
328,
487,
529,
347,
513,
813,
459,
483,
199,
166,
756,
364,
434,
760,
293,

133

1841.2

2127.334

1.08




Table 6. Variation of error bound and CPU time as each parameter changes in the referential instances.

Error Bound & CPU Time(s)
Instance set Mean Std Dev Min Max Mean Std Dev Min Max
IS1 (set of referential instances) 1.08 0.0346 1.03 117 1841.2 225.5234 1452 2144
N 1.073 0.0298 1.03 1.16 919.85 112.195 740 1077
N1 1.068 0.0442 1.02 117 2821.6 268.9875 2223 3174
Kl 1.068 0.0323 1.02 1.15 1294.75 118.68 1108 1531
K1 1.076 0.0365 1.01 1.16 2255.85 271.4587 1887 2662
Lo | 1.063 0.0261 1.03 1.14 1820.55 186.2456 1449 2158
Lo 1.069 0.037 1.02 1.16 1762.7 216.0843 1462 2155
Ag,Af 1.083 0.0315 1.03 1.16 1787.4 212.3362 1467 2125
AL A 1.062 0.0352 1.02 1.15 1868.35 252.7629 1452 2356
Error Bounds CPU Time(s)
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Figure 3. The percentage variation of error bound and CUP time with respect to N.

with average 1.08. This implies our approach can obtain
high-quality near-optimal inventory policies. Moreover,
TC®/TC is signifi antly larger than & for all instances,
this implies the coordination between the CDC and the
RDCs realised by our approach can significantly improve
the inventory policies found. In addition to this instance
set, we tested all other instance sets in Table 4 with totally
180 instances tested. In summary, our coordination pro-
cedure performs well with an average error bound of
about 7%. Refer to Appendix C for detailed computation
results of all instance sets.

6.4. Sensitivity analysis

We perform a sensitivity analysis on parameters N, K,
Ly, and A of the distribution system. The performance
indexes considered for this analysis are error bound & and
CPU time. We provide the mean value, standard devia-
tion, minimum and maximum value of the error bound
and CPU time of 20 instances in each instance set. The
results are summarised in Table 6.

In Table 6, the firs column indicates the variation of
each parameter with respect to its value in the referential
set IS1, with decrease symbol | and increase symbol 7.
The 2nd to 9th columns give the mean value, standard
deviation, minimum and maximum value of the error
bound and the CPU time respectively for the 20 instances
in each set.

The detailed results of the sensitivity analysis are illus-
trated in the following figures.
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From Table 6 and Figures 3-6, we can observe: (1)
The coordination procedure is quite robust regarding
solution quality, there is no signific nt impact of the
change of parameters N, K, Ly, and A on its error bound.
(2) Parameters N and K signific ntly impact the CPU
time of the procedure. The CPU time increases as the
increase of the number of RDCs and/or the number of
items. According to our numerical experiments, the com-
putation time of the approach increases linearly rather
than exponentially as the number of items increases, so
our proposed approach has good scalability in its real
implementation.

6.5. Managerial insights and real implementation
of the proposed approach

Optimising inventory policies in distribution systems
poses more challenges than serial or assembly systems.
The complexity of this optimisation further increases
when multiple items are jointly replenished in a dis-
tribution system. As a result, many enterprises opt to
optimise an inventory policy individually for each stock-
ing location or each item without considering coor-
dination among related stocks/items, or they adopt
a sequential optimisation method like the METRIC
approach.

Our study demonstrates that the coordination among
the inventory decisions of multiple stocking locations
and the coordination among replenishments of multi-
ple items can significantly improve the performance of
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a distribution system. Considering the interdependen-
cies among multiple stocking locations and the aggregate
demand of multiple items in each stocking location, we
can obtain inventory policies much better than those
obtained by the METRIC approach with a significant cost
reduction.

Our proposed decomposition and coordination
approach is effective, effici t, very general and robust,
making it promising for real implementation. With
some adjustments to accommodate specifi demand pat-
terns, this approach can be extended to distribution sys-
tems with various demands such as compound Poisson
demands or normally distributed demands.
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7. Conclusion

In this paper, we have studied the optimisation of (Q, S)
policies for a two-echelon distribution system with joint
inventory replenishment of multiple items. After deriving
analytically the cost functions of the CDC and all RDCs
in the system in an approximate model, we have proposed
an iterative decomposition and coordination approach
for solving the model. The results of our numerical study
show that this approach is effective and computation-
ally efficient, it can find high-quality near-optimal (Q, S)
policies of the system in a reasonable computation time,
and the coordination between inventory decisions of the
CDC and those of the RDCs realised by this approach can



signific ntly improve the performance of the distribution
system.

Our proposed approach in its current version is lim-
ited to two-echelon distribution systems with Poisson
demands, (Q, S) policy for joint replenishment of each
stock, and the FCFS rule for inventory allocation of
each upstream stock. Our future work will extend this
approach to more general distribution systems with
compound Poisson demands or normally distributed
demands, other policies for joint replenishment of each
stock and inventory allocation of each upstream stock.
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Appendices

Appendix A. Determination of Q for each (Q, S)
policy in the distribution system

In this appendix, we propose a heuristic approach to determine
Qfor each (Q, S) policy in the distribution system studied based
on a deterministic multi-echelon joint replenishment model. In
this model, the stochastic demand of each item at each RDC
is replaced by its mean value. This model assumes a common
replenishment cycle time for all items at each stock and in each
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replenishment cycle of the CDC, one or multiple replenish-
ments is (are) performed by each RDC, i.e. the cycle time of
the CDC is a multiple of the cycle time of each RDC.

Let us define:

To: the replenishment cycle time of the CDC.
T;: the replenishment cycle time of RDC i.

We impose the following constraints in the model:

To =T Ti (A 1)

ri > 0 and integer ,i = 1,...,N (A.2)

Constraint (A.2) is added since in real distribution systems
especially in E-commerce distribution systems, each down-
stream RDC usually replenishes its inventory more frequently
than the upstream CDC.

If the replenishment quantity of each item k in each joint
replenishment of RDC i is Q;, and the replenishment quantity
of each item k in each joint replenishment of the CDC is Qg ,
then they have the following relationship:

N

Quk = Z riQik

i=1

Let Qo = Y r; Qo for the CDC and Q;
RDCi.

According to Eq. (A.1) and (A.3), Qix = AixTi, and Qoi =
SN | AixTo, we can get:

(A3)

Zle Qi x for each

1 ik
ri Yo ik
The total ordering and holding cost per time unit of RDC i for

each item k and all items in the long-term operation can be
written as:

Qik = Qok (A4)

Aik Qik
Cix(Qip) = —Ql'kai,k + 721 hik (A.5)
1,
K K
ik Qik
Ci(Q) = A+ Y ai |+ Y =Fhi (A6)
Qik k=1 Pl

The total ordering and holding cost per time unit of the CDC
for each item k and all items in the long-term operation can be
written as:

1 = (i — D
Cox(Qoi) = 7 | dou + > QuTihok | (A7)
i=1
1
CoQ) = 7

AN (ri = Dr;
+Y > llei,kTihO,k:| (A.8)

i=1 k=1

The total ordering and holding cost per time unit of the system
to minimise is the sum of those of the CDC and all RDCs, which
can be written as:

C(QO’ Ql’ e QN)

N
= Co(Qo) + Y CilQ)

i=1



AL (ri — Dr;
K+ Z > 121Qi,kTih0,k:|

lk:| (A-9)

Since each Q; (i €N) is a function of r; and Qp, according to Eq.
(A.1), Eq. (A.3) and Eq. (A.4), Eq. (A.9) can be written as:

C(r1,725 ..., Qo)
;XN K
= o > ik |:Ao + ) aok+ri(Ai + ai,k)]
0k 52 k=1
N K
Qox 1 Aik
P L R )
oo 2T Ximihik
) K K
R [Ao £ angh i+ >}
0 i=1 k=1 k=1
K N K
QO [ / 1 A'Ik /
S IPoTES 2o
2 S i1 ko1 \ 71 iz hik

(A.10)

In Eq. (A.10), K, ix is an increment of unit holding cost. In
the two-echelon distribution inventory system considered,

W, = hix — hog hy = ho. If we denote Y1 3k A in
Eq. (A.10) by A, Ag+ YN laok—l—ri(A,--i-aik) by A, and

Zk ok + Z, IZk 1 (n ZN }\ h’,k> by h, the right side

of Eq. (A.9) can be rewritten as &A + %h, which is com-
pletely consistent in form with the Economic Order Quantity
(EOQ) Model if we regard A, A, h as the (mean) demand
rate, fixed ordering cost, and unit holding cost, respectively.
For this EOQ model, the optimal order quantity is Q* =

\/ﬂ, and the corresponding minimum total cost per time
unit is:
C(Q*) = V21Ah (A.11)
Therefore, the order quantity Qo that minimises the total
cost in Eq. (A.10) can be formulated as:

Q?;(rl,rZ)- . )rN)

N —K
2 (Zi:l 2 ket ki,k)
(Ao a0k + YN TR A+ ai,k))
K N —K A,
(Zk:l Wok+2iz1 2k=n (71, szlk,\i)k Wi,k))
(A.12)

and the corresponding minimum total cost per time unit can
be formulated as:

C(fl,rz,. . .,YN) =

i=1 k=1 i=1 k=

Eq. (A.13) is a function of 1y, 15, ... , rN. If we want to min-
imise it, we only need to minimise the part within the root sign.
Therefore, minimising Eq. (A.13) is equivalent to minimising
the following function:

s TN)

(Ao+za0k+zzr,m +a,k>)

i=1 k=1

(e (i

K
Wik (A.14)
i=1 iy 1 }‘l k

k=1

F(ri,12,. ..

Calculating the partial derivatives of function F with respect to
71, 12, ..., N respectively and making them equal to 0, we can

obtain:

d
—F(ry,...

5 1 :O: .:1,2,...
arj N) J

,N (A.15)

,7’]',...

Each equation in (A.15) can be written as:

S, TN)

(o) ()

—8 F(
r1,72,...
37’]' b2
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z(ZZM) (Aﬁzamzzlm +a,k>) (z sz

- S\ o ikl ik Xik
1, 1 1,
(e ) | 3o 3R ()
k=1 i=1_ k=1 ! Doicy ik
i)
1 N K
-5 Ap + Z ri <Ai+zai,k)
Ty h
J i=1 k=1
(i)

Theoretically, the values of ry, r3,..., ry can be obtained by
solving the system of equations (A.15), but it is difficult to
obtain analytical expressions of 1y, r2,..., rN. However, the
values of rq, r2,..., rNy can be obtained by numerical calcu-
lation. Since 7y, r2,..., rN must be integers, if the solution
(r1, r2,..., rn) of the system of equations (A.15) is integer, it
is feasible. Otherwise, the solution is fractional. In the latter
case, the following procedure is used to find a feasible integer
solution.

Step 1. For each fractional solution (ry, 73, ... , rN) obtained
by solving the system of equations (A.15), round each 7; down
and up to obtain two integers denoted by |r;] and [7], with
Lril <1 <Trjl.



Step 2. For each possible integer solutionr € r € R{| 1], 711}
x {lr2], [r21} x - -+ x {[r~], [*n]}, use Eq. (A.12) to calculate
Qj(r) and the corresponding total cost C(r, Qj(r)). Note that
at most 2N possible integer solutions need to be considered in
this step.

Step 3. The required feasible integer solution r* =7, 73,. . .,
ry is taken as r* = arg rrneil? C(r, Q5 (n)

After calculating r{,75,...,7%, we can obtain the opti-
mal replenishment quantities of the CDC and all RDCs:
Q5 Q1 Q5 . . ., Qf, with the corresponding total cost per time
unit of the deterministic distribution system C(r{,1,. ..

Qp)-

*
e

Appendix B. Cost functions of RDC and CDC

In this appendix, we will derive the cost functions of the RDCs
and the CDC. Since the ordering cost of each stock is not
affected by its order-up-to level for each item as soon as its order
quantity is given. Therefore, we do not consider ordering costs
in the cost functions.

The RDC cost functions

We derive the cost function of each RDC in the approximate
model based on the results of Cachon (2001) on the cost eval-
uation of a retailer with multiple Poisson demanded products
jointly replenished and controlled by a (Q, S) policy. This cost
evaluation is done by relating the arrival time of each unit at the
retailer to the time the unit is demanded.

In the approximate model, the lead time of each RDC i
is deterministic given by its expected lead time Li(Sp), where

= (Sok> k € K) and Sy is the order-up-to level of item k at
RDC i. Let L; = L;i(Sp). For RDC i, Q; units are ordered each
time when it places an order to the CDC, and Q; units of cus-
tomer demand belonging to multiple (K) items occur between
two consecutive orders. If as a part of an order placed by RDC
i, an unit of customer demand of item k occurs at time 7; x and
its corresponding order is shipped by the CDC to RDC i at the
same time, then this unit will arrive at RDC i at time 74 + L;
and will be used to satisfy the S; x-th unit demand of item k to
occur at RDC i after time 7;. In this case, the expected holding
and backorder cost of RDC i incurred by this unit is given by
8ik(Sik> Li), where:

t
ikt = pik / Yik (0> 0) (t — x)dx
0

[e.¢]
+ hik / Yik(y> %) (x — t)dx (A.16)
t
where y; x(y, t) is the probability density function of the Erlang
(Aik»y) distribution.
According to Cachon (2001), (A.16) can be further written
as:

A 1
Sikt) = Tk[y(hi,k + i) Fik(y, t)
1,

— Aikt(hix + pi)Fix(y — Lt) + pik(Aikt — )]
(A.17)

where F; | is the cumulative distribution function of the Erlang
(Mik»>y) distribution.

For an unit of customer demand of item k occurred at RDC
i at time T;, if its corresponding order i is shipped by the CDC
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to RDC i later at time 7;; + ¢ (f > 0) and m;; units of cus-
tomer demand of item k occur at RDC i in the time interval
(Tik» Tig + t], then it will arrive at RDC i at time 7;; + t + L; and
will be used to satisfy the (S;x — m;x)-th unit demand of item
k to occur at RDC i after time 7;x + . In this case, the expected
holding and backorder cost of RDC i incurred by this unit is
given by i x(Six — mik Li).

Let u; denote the number of unit demands occurred at RDC
i in the interval (7jk, Tix +¢t], u; € [0, Q; — 1]. The u; units
belong to multiple items. According to Axséter (1993), u; is a
uniformly distributed random variable define on the interval
[0, Q; — 1]. For any given u; and any keK, let Z; ;(u;) denote
the number of units of item k occurred at RDC i in the interval,
Z; 1(u;) is a random variable. Since the demands of all items are
independent, Z; (u;) is subject to a binomial distribution with
u; as the number of draws and 8;x = A;x/A; as the probability
of success. That is,

Pr(Zi(ui) =y) = (;ﬂ’) (i) (1 = 8;)" ™

u;!

_ il )\.i)k y
B —y)!(E) <1_

Aik ) ny
Y (u; A;

Thus, the expected holding and backorder cost per unit of item
k at RDC i can be formulated as:

Q-1 wu
— Z > PrZi(w) = mig)gik(Sik — Mk Li)
i ui=0 m; ;=0
Then, by replacing L; with L;(Sp), the expected holding and
backorder cost per time unit of RDC i in the approximate
model, can be formulated as:

Cf‘(sz-|ii<so>>
Qr 1 uj

Z > Pr(Zi(ui) = myg)

=0 m; ;=0

X Mij8ik(Sik — Mik» Li(So)) (A.18)

According to Eq. (A.18), we can further obtain:
c;‘<si|ii(so>)

EGES (el
k=1 Ql u;=0 m; ;=0 m’k'(“l_mzk)'

)\i,k Ui—mi g
x |1 ™ X [(Six — mix) (hix + pik)
1

x Fij(Six — mij, Li) —

LixLi(hij + pij)

x Fix(Six — migx — 1, L) + pix(hixLi — (Six — mix))]
(A.19)

- Sik—mix=1 1 i firn =

where Fix(Six — mig, L) = 1= 357" e Hikli (L)
=2 1 oL

and  Fix(Six —mir — 1, L) =1- Z] ko k= Jl|e AikLi (Mik

Liy.



The cost CA(S;|Li(So)) in Equation (A.19) is item-separable
(item-additive), that is, it can be written as C2(S;|L;i(So)) =
S i1 CA(SiklLi(S0)), where

Cli(SikILi(Sox k € K))

Qi—1 uj

2. X

ui=0 m; ;=0

1

Qi

u;! (Ki,k)m"k ( ki,k)”i_mi"‘
X|—— — 1——=
mi g (u; — mip)! \ A Aj

x [(Six — mij) (hik + pij) Fix(Sik — mij Li)
— higeLiChix + pig)Fik(Sik — mig — 1,Li)
+ pik(higLi — (Six — mix))]

According to Axséter (1993), ka(Si,kll:,-(Sg)) is convex in
Si-k for any given Q;.

On the other hand, in the exact model where the replen-
ishment lead-time of RDC i, L;, is a random variable, we can
formulate the expected cost of RDC i by conditioning on its
lead-time. That is,

CE(SikILi(S0))
= Er,(s0) [T1:(Qi> Sik) ILi(So)]

(A.20)

K Qi—1 wu
1
= Ep,(S0) E Q E E Pr(Zi(u;) = mjx)
k=1 ui=0 m; ;=0

X Aik8ik(Sik — ik, li + Li(S0))|Li(So) (A.21)

where L;(So) is a random lead time depending on Sy. However,
it is difficult to evaluate the exact expected cost of RDC i by
Eq. (A.21) since the probability distribution of L;(Sp) is hard to
obtain.

The CDC cost function

As mentioned in Section 4.1, only shipping complete orders
from the CDC to each RDC in the distribution system con-
sidered leads to the occurrence of reserved units. A reserved
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unit is ordered by a RDC and available at the CDC but it is
not yet shipped. In case the on-hand inventory of the CDC is
not enough to fill an entire RDC order in question, the units
reserved by this order at the CDC must wait for the arrival of
replenishments from the external supplier before they can be
shipped.

The only cost component considered at the CDC s its inven-
tory holding cost. Let I‘g, « denote on-hand inventory of item k at
the CDC in case of partial order delivery, i.e. in case all reserved
units at the CDC are delivered to the RDCs immediately with-
out waiting for entire RDC order deliveries with other units
from the external supplier. Then, the actual on-hand inventory
of item k at the CDC in case of complete order delivery, denoted
by Io, is the sum of Ig,k and B(r),k, ie Iox = Ig,k + B(r),k’ where
Bj  is the number of reserved units of item k at the CDC. Since
the demand of the CDC is determined by the aggregate demand
of all RDCs, we first have:

n
E(I ) = Sok — Lo ) hik (A.22)
i=1
where Sk is the order-up-to level of item k at the CDC.
Then, we have:
K K
Co(S0) =Y Cox(Sop) = ) hoxEo )
k=1 k=1
K
=Y hoxlE(T5 ) + E(By )]
k=1
K n
= hok [so,k —Loy hig+ E(Bg,,g} (A23)
k=1 i=1

where h  is the holding cost per unit of item per unit of time
for item k at the CDC.

Appendix C. Computation results

Please refer to this Appendix for detailed computation results
of each instance set.



	1. Introduction
	2. Literature review
	3. Problem description and preliminaries
	3.1. The two-echelon distribution system
	3.2. Assumptions and notations
	3.3. Determination of order quantity for each (Q, S) policy in the distribution system
	3.4. Cost functions in exact and approximate models

	4. Decomposition and coordination
	4.1. Decomposition of the approximate model
	4.2. The coordination procedure

	5. Error bound
	6. Numerical study
	6.1. Instance generation
	6.2. Parameter setting
	6.3. Performance evaluation
	6.4. Sensitivity analysis
	6.5. Managerial insights and real implementation of the proposed approach

	7. Conclusion
	Disclosure statement
	Funding
	ORCID
	Data availability statement
	References

