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A B S T R A C T

This study examines a stochastic disassembly assembly routing problem with returns (SDARP-R), in which
disassembly yields are considered uncertain due to the unknown status of the returned products. We introduce
a new formulation for the robust SDARP-R defined by discrete scenarios. We address five hypotheses, where
different levels of decision flexibility are given. Analyses indicate that allowing flexibility in the procurement
process improves the total cost but increases the difficulty of solving the problem, as well. However, allowing
flexibility only to purchasing decisions is the most practical to the industry. An efficient matheuristic method
based on integer programming and the Variable Neighborhood Search algorithm is also developed. The
performance of the matheuristic method is evaluated through numerical tests, under three most promising
hypothesis.
1. Introduction

Over the last years, reverse logistics has received increasing at-
tention of industry practitioners and academic researchers (Govindan
et al., 2015; Sheu et al., 2005). This is for environmental as well
as economic reasons. One of the main environmental concerns is the
increasing rate of waste production, which is leading to the satura-
tion of landfills. For example, in the European Union, 3 billion tons
of waste are thrown away each year, including 90 million tons of
hazardous products. Large quantities of waste can cause significant
public health and environmental problems such as the accelerate of
pollution, global warming and the depletion of natural resources. To
address these problems, governments are imposing new and stricter
environmental regulations that require manufacturers to recover their
end-of-life products through a reverse logistics network. Companies can
not only comply with legal regulations but also utilize the remaining
economic value contained in end-of-life products through various prod-
uct recovery options, including reuse, recycling, repackaging, disposal,
etc. Many companies are interested in recycling any unwanted items.
The management of product recovery involves the management of all
products, components and materials that are under the responsibility
of a manufacturing company. The objectives are to recover as much
economic and ecological value as is reasonably possible, thus reducing
the amount of ultimate waste. The disassembly of returned products is
the first step in product recovery. It allows the recovery of products at
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the end of their life. Gupta and Taleb (1994) define this process as a sys-
tematic method for separating the product into modules, components,
sub-assemblies or other groupings. In this process, a set of components
of different qualities are obtained that can be reused or discarded.
The reuse of used components helps to reduce pollution emissions,
consumption of natural resources and to make production processes
more environmentally. For this reason, several kinds of research studied
the problems of reusable disassembled parts in different contexts, such
as the automotive industry (Mathiyazhagan et al., 2018), cell phones
(Sawanishi et al., 2015), food industry (Accorsi et al., 2020), etc.
Despite the motivations and advantages of this reverse logistic, its
implementation is still complicated. Indeed, there are still certain levels
of uncertainty, particularly regarding the availability and the quality
and quantity of returned products. Such uncertainty is influenced by
many factors such as the bad returned product quality or the damage
incurred during the disassembly operation. To reflect the variations in
the quality of used components, the yield of the disassembly process,
i.e. the quantities of components is assumed uncertain.

Since 1970, researchers prove that the supply chain made more
effective and profitable through coordinating its activities via infor-
mation sharing (Hein & Almeder, 2016), with particular emphasis on
production and transport as two main supply chain activities. The lot-
sizing problem (LSP) one of the famous production process problems,
combined with the vehicle routing problem (VRP), represents a compu-
tational challenge for many researchers (Camargo et al., 2014; Fachini
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et al., 2017). The LSP allows the determination of the periods and the
quantities to be produced to meet the demand for each period over a
finite planning horizon, minimizing the sum of all the costs involved.
The VRP involves designing optimal pick-up routes from geographically
dispersed suppliers, subject to multiple constraints.

This study examines a multi-period dynamic disassembly assembly
routing problem with returns (SDARP-R), in which the yields (𝑟𝑖)
are considered uncertain due to the unknown status of the returned
products. To the best of our knowledge, no existing research has
addressed this problem. From the real case, many factories produce
items with new and used components disassembled from returned
products (Guide, 2000). This kind of production system includes the
disassembly and assembly operations that present complex issues re-
garding the structure of production costs. Taking uncertainty into
account in the integrated decisions can make more sense but also
increases the difficulty of the operational problems to be solved. This
uncertainty may affect the production and procurement process. For
this reason, different levels of flexibility are given to the different
decisions related to these two supply chain activities that may or not
be impacted by the scenarios. However, the system might not be able
to satisfy the demand on time due to uncertainty on the quantities of
the components. In this situation, the corresponding demand is lost
incurring a high penalty cost.

The contributions of the current research are threefold:

1. We use the minimax robust optimization methodology intro-
duced by Ben-Tal and Nemirovski (1998) to formulate a new
problem, the robust SDARP-R. Each scenario corresponds to a
vector of components’ yield.

2. We propose a matheuristic algorithm to solve the robust SDARP-
R under flexibility hypothesis.

3. We analyze impacts of different flexibility levels on the total
cost.

The paper is organized as follows. Section 2 provides a literature
review of related research. The optimization problem is formulated in
Section 3. Section 4 presents the solution approach. The obtained re-
sults are provided and analyzed in Section 5. Section 6 gives concluding
remarks.

2. Literature review

In the first part of the literature review, we briefly discuss the
stochastic lot sizing problems. In the second part, we focus on the
vehicle routing problem with stochastic demands. Finally, we give an
overview of the integrated production management and vehicle routing
problems in which uncertainties are taken into account.

2.1. Stochastic lot-sizing problems

The lot-sizing problem (LSP) introduced by Wagner and Whitin
(1958) consists of making production and inventory decisions over a
given planning horizon. Most of the literature considers the determin-
istic case of LSP, which can result in some cases wrong and costly
decisions. Studying the stochastic case of the LSP (SLSP) is perhaps
the most correct way to be attuned to reality. The SLSP papers mostly
focus on demand as the source of uncertainty and few considered
stochasticity in other elements such as cost, yield, lead-time and ca-
pacity. For the problem with stochastic demands, the service level
constraint is one of the famous methods used by Bookbinder and Tan
(1988). The authors proposed a chance constraint to model a service
level constraint, and developed three strategies to handle the resulting
setting, which are the static uncertainty, dynamic uncertainty and
static–dynamic uncertainty. In like manner, Tempelmeier and Herpers
(2011) solved a dynamic multi-item capacitated LSP under random pe-
riod demands. Rossi et al. (2015) studied the SLSP in which the demand
is assumed uncertain and non-stationary. They proposed four models
2

based on the static–dynamic uncertainty strategy, i.e. stochastic lot-
sizing, 𝛼-service level constraints, penalty cost scheme, and 𝛽-service
level constraints. The scenarios approach is also used to deal with the
demand uncertainty in SLSP. Gutiérrez et al. (2004) addressed the sin-
gle item SLSP where the costs and demand distribution depend on the
scenario are considered. They solved the problem based on a branch-
and-bound approach. Helber et al. (2013) used demand scenarios to
approximate a nonlinear version of the SLSP. Machine breakdowns
are assumed stochastic by Nourelfath (2011) for the multi-period and
multi-item SLSP. The proposed model includes a set of constraints to en-
sure some minimum probability of meeting the customer service level,
and it is solved by a two-phase solution approach. Hnaien and Afsar
(2017) provided the min–max robust LSP with uncertain lead times.
They explored the incapacitated and capacitated cases with and with-
out lost sales, with discrete scenarios. Taş et al. (2019) formulated the
LSP with stochastic setup times and overtime as a two-stage stochastic
programming problem. They applied a sample average approximation
procedure to obtain upper bounds and a statistical lower bound to
evaluate the solutions of two proposed heuristics.

Recently, various research areas are studied the reverse LSP, which
groups different activities such as disassembly, repair or recycling of
end-life products. Among them, we focus on the disassembly process
and especially the disassembly scheduling problem (DSP). Most of
the related research treating the deterministic disassembly schedul-
ing problem (Gupta & Taleb, 1994). For example, Kim et al. (2006)
developed a two-phase heuristic where Langella (2007) presented an
integer program and several heuristics to solve the problem. Compared
to its deterministic counterpart, the literature on stochastic disassembly
scheduling problem is still very scarce. As the SLSP, existing studies
show interest in demand and/or yield uncertainty. Typically, the ran-
dom yield does not necessarily the result of defective items, but it can
also arise due to shortages from the suppliers (Moon et al., 2012).

There exist two approaches to represent random yield in a produc-
tion context. The first group of research (e.g., Teunter and Flapper
(2003)) represents random yield with a Bernoulli process, where a
certain fraction of goods is defective, and the number of defective items
depends on the lot size.

The second group of research (e.g., Salameh and Jaber (2000))
considered that all produced items are defective and random yields
are modeled with a geometric distribution. Inderfurth and Langella
(2006) proposed a one-to-one and a one-to-many heuristics to solve
single-period DSP with yield uncertainty. Kongar and Gupta (2006)
used a fuzzy goal programming technique to solve the disassembly
to order system under uncertainty. They considered the uncertainty
regarding the disassembly process by introducing various rates of bro-
ken, defective and replaced items. Barba-Gutiérrez and Adenso-Díaz
(2009) extended the model proposed by Barba-Gutiérrez et al. (2008)
by integrating demand uncertainty. To solve this problem, they pro-
posed a fuzzy logic algorithm. Kim and Xirouchakis (2010) studied
the DSP with stochastic demand and multiple product types with
a two-level product structure. They proposed a stochastic inventory
model and developed a Lagrangian relaxation method to solve it. After
that, Wang and Huang (2013) considered demand uncertainty and they
proposed a two-stage linear programming model using a scenario-based
approach. Inderfurth et al. (2015) presented a two-root, three-leaf
mathematical model that illustrates the effect of yield uncertainty in
stochastically proportional and binomial models. Liu and Zhang (2018)
dealt with a single-reference and multi-period disassembly scheduling
problem with capacity constraint and with random yields and demands.
This problem is formulated as a nonlinear mixed integer program-
ming model also an algorithm based on an external approximation is
proposed to solve it. A chance constraint approach is introduced to
ensure that the probability of meeting the demand is greater than a
predetermined service level and then approximated by a second order

cone constraint.
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2.2. Vehicle routing problem with stochastic demands

In this work, the quantities of disassembled components are as-
sumed uncertain. This uncertainty is compensated by the purchase
of new components or the disassembly of the purchased returned
products. Therefore, this uncertainty impacts the collected quantity of
returned products and components. Thus, this problem corresponds to
the vehicle routing problem (VRP) with stochastic demand (Tillman,
1969).

The VRP is one of the famous optimization problems in logistics. In
the VRP, a set of vehicles is available for serving a set of customers with
demands. Of the studies that focus on the VRP with stochastic demands
(VRPSD), several different mathematical models and algorithms are
proposed and explored (Gendreau et al., 2016). Sungur et al. (2008)
introduced a robust optimization approach to solve the VRPSD. The
goal is to minimize transportation costs while satisfying all demands
in a given bounded uncertainty set. Lei et al. (2011) formulated a
two-stage stochastic recourse model and proposed an adaptive large
neighborhood search heuristic. Lee et al. (2012) investigated the VRP
with two types of uncertainty sets with adjustable parameters for the
possible realizations of travel time and demand. They proposed a
Dantzig–Wolfe decomposition and a dynamic programming algorithm
to solve the problem with data uncertainty. Marinaki and Marinakis
(2016) developed a swarm optimization based algorithm hybridized
with variable neighborhood search to solve the VRPSD. Different vari-
ants of VRPSD are studied such as VRPSD with time windows and
VRPSD with pick-up and delivery. Li et al. (2010) considered the
VRPTW with both stochastic travel times, service times, and intro-
duced a chance-constrained and a stochastic recourse model. Zhang
et al. (2016) studied the VRPTW involving stochastic demands and
they proposed three probabilistic models to address on-time deliveries
probability while minimizing the expected total cost. Hu et al. (2018)
studied the VRPTW under demand and travel time uncertainty. They
proposed a robust optimization model to tackle small-sized instances
and a two-stage algorithm based on a modified adaptive variable neigh-
borhood search heuristic to tackle large instances. Corso and Wallace
(2015) handled demand uncertainty in pick-up and delivery problem
using the genetic algorithm. Goodson et al. (2017) solved the multiple-
vehicles case under the re-optimization approach with approximate
dynamic programming methods. Florio et al. (2020) studied the single
VRPSD with optimal restocking as a Markov decision process. A wait-
and-see model is proposed and it is used within a parallel heuristic
to solve larger literature instances with up to 150 nodes and with a
Poisson distributed demands.

2.3. Integrated production management and vehicle routing

The inventory routing problem is a generalization of the VRP. It
combines inventory management at the customer and vehicle routing
without considering the production planning at the central plant (Bell
et al., 1983). The production routing problem combines lot-sizing
decisions, inventory management, and routing (Chandra, 1993). Both
the IRP and PRP are NP-hard combinatorial problems where different
variants are extensively studied by focusing on developing efficient
algorithms. We will focus on the matheuristic approach that is one of
the efficient methods used to solve integrated production and routing
problem. For the deterministic version, Absi et al. (2015) provided a
matheuristic approach to solve a production routing problem. In the
latter, the production routing problem is split into classic production
planning problem and vehicle routing problem. The lot sizing model
includes a visiting cost to account for distribution step. Consistent
with methods from literature, the iterative approach has the smallest
CPU time (less than 2 s) for instances with one vehicle. However, for
instances with large transportation costs, it has difficulties reaching
3

the optimal solution. The lack of intensification techniques and the
weak method of diversification used may be the weak point of this ap-
proach. Russell (2017) proposed two mathematical programming-based
heuristics to solve the PRP. The differences between the Absi et al.
(2015) approach and the approaches proposed by Russell (2017) the
manner in which vehicle routing costs are artificially incorporated, the
use of predetermined routes, initial seed routes, and the vehicle rout-
ing methodology employed. These proposed multi-phase approaches
achieve many new best-known solutions to test problems from the
literature. However, scalability issues limit its application to large-scale
problems having more than 100 retailers and a twenty-period planning
horizon. Solyalı and Süral (2017) proposed a multiphase heuristics to
solve the PRP. In their studied, they considered the case where a plant
produces and distributes a single item to multiple retailers over a multi-
period time horizon. Results show that the matheuristic managed to
find new best solutions for the 65% of benchmark instances at the
expense of higher computing times on large instances.

A few numbers of researchers extended the integrated problem to
other more complicated problem that considers the stochastic case.
For instance, Babagolzadeh et al. (2020) addressed the stochastic IRP
with energy and emission costs. They considered the quantity delivered
to each retailer, the route for distribution of products and the lost
sale cost depend on scenarios. They proposed a two-stage stochastic
programming and a matheuristic algorithm based on iterated local
search and a MILP to solve the problem under 65 scenarios from a real
case studied. Gruler et al. (2020) proposed an hybrid approach that
combines the Variable Neighborhood Search algorithm (VNS) with a
simulation to solve the stochastic IRP with a single period and stock-out
requirements. Adulyasak et al. (2015) studied the stochastic PRP under
demand uncertainty. They considered that the production quantity, the
quantity delivered to the customer, the amount of unmet demand at
customer depend on scenarios. They proposed a two-stage formulation,
multi-stage problems, a bender decomposition-based branch-and-cut
approach and a sample average approximation method to solve the
problem with 100, 500, and 1000 scenarios. Results on instances
with a large number of scenarios, show that their approaches provide
significant solution speed improvements compared to a classical branch
and cut algorithm. Other work studies the same problem such as the
work of Shuang et al. (2019). They considered that the number of worn-
out items available for pickup at customer and the number of worn-out
items shipped from the customer to remanufacturing facility depends
on scenarios. They proposed a two-stage stochastic MILP and generate
three scenarios.

Recently, Chitsaz et al. (2019) studied the assembly routing problem
(ARP) as an extension of the PRP. It presents the case of the collection
of all the needed components from various suppliers to accomplish
the assembly process, which is interrupted if a component is missing.
ARP aims to minimize the sum of costs such as production, inven-
tory, and procurement; subject to several types of capacity constraints
over a finite and discrete-time horizon. They formulated the ARP as
a mixed-integer linear programming model solved by a three-phase
decomposition matheuristic. Afsar and Hnaien (2020) proposed a new
formulation for the same problem but with dynamic aspect of demand.

In Table 1 we present a summary of the works closest to the
problems studied in this article. Based on this table, we observe that
the assembly routing problem, one of the most important problems
in the supply chain, is received less attention. To the best of our
knowledge, Frifita et al. (2021) are the first authors that considered the
disassembly assembly routing problem, where the yields are uncertain
due to the unknown situation of returned products. They introduced
the formulation of the robust dynamic disassembly assembly routing
problem with returns defined by discrete scenarios. However, they
addressed only instances with 14 nodes under 20 scenarios. Motivated
by the above observations, this paper is devoted to the studied of
this new planning problem that combines assembly and disassembly

operations with vehicle routing in the stochastic case.
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Table 1
Articles on assembly and disassembly problems.

References Assembly Disassembly Transport Resolution methods

Multi-item Capacity Multi-item Capacity Stochastic LTL

Kim and Xirouchakis (2010) * * * Lagrangian heuristic
Prakash et al. (2012) * Constraint-based simulated annealing algorithm
Ullerich and Buscher (2013) * Heuristics
Godichaud et al. (2015) * MILP, Genetic algorithm
Inderfurth et al. (2015) * Empirical analysis
Hein and Almeder (2016) * * MILP
Hrouga et al. (2016) * Genetic algorithm, Fix-and-optimize
Ji et al. (2016) * * Lagrangian heuristic
Díaz-Madroñero et al. (2017) * * MILP
Liu and Zhang (2018) * * Nonlinear programming, Outer approximation
Tian and Zhang (2019) * * Particle swarm optimization algorithm
Habibi et al. (2019) * * * * MILP, matheuristic
Chitsaz et al. (2019) * * MILP, matheuristic
Chitsaz et al. (2020) * branch-and-cut
Slama et al. (2020) * * MILP
Afsar and Hnaien (2020) * MILP, Benders decomposition
Pour-Massahian-Tafti et al. (2020) * 3 MILP, Heuristics
Frifita et al. (2021) * * * * MILP
3. Robust disassembly assembly routing problem with returns

3.1. Problem description

We consider a single disassembly and assembly site having a com-
mon storage capacity 𝐶0 for components, returned and new products.
The production operation is done to satisfy the external demand, 𝑑𝑡, at
ach period t by assembling a set of new and disassembled components
ith respecting the plant’s production capacity 𝐶. Lost sales are al-

owed in the model with a penalty cost (𝑝𝑟). Without loss of generality,
e assume that one unit of each component is needed to make one unit
f the new product. The location of suppliers and warehouses as well
s the production plant is modeled as nodes on a directed symmetric
raph 𝐺 = (𝑁,𝐴), with the node-set 𝑁+ = 𝑁 ∪ {0}, where 0 represents

the plant, and the arc set 𝐴 = {(𝑢, 𝑣) ∶ 𝑢, 𝑣 ∈ 𝑁+, 𝑢 ≠ 𝑣}. Each arc (𝑢, 𝑣)
has a transportation cost 𝑐𝑢𝑣 > 0. The set of nodes regroups the suppliers
who provide a unique component and warehouses in which there are
a stock of unique type product to be disassembled. These products are
either at the end of their useful lives or the end of their consumer use.
A bijective function 𝜓 defines the supplier of a component (𝑣 = 𝜓(𝑗)).

Fig. 1 presents an example of the deterministic case of the studied
problem. Depending on the demand 𝑑𝑡 for a single type of finished
products, the manufacturer will produce the necessary quantities at
the periods 𝑡 = 2 and 𝑡 = 3 using one unit of each type of raw
materials and used parts. These used parts are screened and recovered
by disassembling the returned products. Returned products are located
in limited quantity at warehouses. We, therefore, assume here that the
returned products are sufficient for the acquisition process. For the
demand of the first period, it is satisfied with the shortage of final
product at the factory depot. Even if there is no production in the first
period, the vehicles collect components to ensure the production in
the later periods. Each component whether it is new or disassembled
has a size 𝑏𝑖, the same for the new and returned products (𝑏). Size
is taken into account for vehicle and storage capacities during the
planning. The total cost includes disassembly, assembly, inventories,
lost sales, purchasing and routing costs. For each product produced or
disassembled in a period, the incurred cost includes a setup cost. In this
example, the 𝑟𝑖 are assumed to be known, but in the stochastic case, it
can take a binary value of 0 or 1.

In some cases, the quality of each type of disassembled parts cannot
be known in advance. Therefore, we generated a set of scenarios
with random yields. The scenarios are equiprobable and the yields
follow the Bernoulli distribution law. All returned products have a two-
level structure, which means that returned products and disassembled
components are considered as root and leaf items, respectively. Each
4

returned product has a unit size 𝑏 the same as the new product. This size
influences the capacity of vehicles on routed and storage capacity of the
plant. We consider a unit production cost 𝑓𝑡 and setup cost 𝑓 ′

𝑡 at the
plant level. We assume that an unlimited fleet of homogeneous vehicles
with a capacity of 𝑄 is stationed at the plant, to pickup components
and returned products from suppliers and warehouses represented by
the set 𝑁 = {1,… , 𝑛}. The planning horizon comprises 𝑇 periods
(𝑡 ∈ {1,… , |𝑇 |}) where the demand is known but dynamic in time, as
are all the costs except transport.

3.2. Mathematical formulation

The full list of notations used throughout this paper is given in what
follow:

• Sets:
T : Planning horizon 𝑡 ∈ {1,… , |𝑇 |}.
𝑁+: Set of nodes, 𝑁+ = {0,… , 𝑛}, where 0 represents the plant.
N : Set of suppliers and specific depots that provide component
and returned product, 𝑁 = 𝑁+ ∖{0}.
A: Set of arcs, 𝐴 = {(𝑢, 𝑣) ∶ 𝑢, 𝑣 ∈ 𝑁+, 𝑢 ≠ 𝑣}.
K : Set of components.
S: Set of scenarios.

• Decision variables:
𝑝𝑡: Production quantity for period t at the plant.
𝑦′𝑡: Equal to 1 if there is disassembly operation at the plant for
period t, 0 otherwise.
𝑦𝑡: Equal to 1 if there is production at the plant for period t, 0
otherwise.
𝐼𝑟𝑡: Inventory of returned product at the plant at the end of period
t.
𝐼𝑡: Inventory of items at the plant at the end of period t.
𝐼𝑐𝑠𝑖𝑡: Inventory of component 𝑖 at the plant at the end of period t
in scenario s.
𝑥𝑢𝑣𝑡: Number of times a vehicle traverses the arc (𝑢, 𝑣) ∈ 𝐴 for
period t.
𝐹𝑢𝑣𝑡: Forward vehicle load on the arc (𝑢, 𝑣) ∈ 𝐴 for period t.
𝐹𝑣𝑢𝑡: Backward remaining vehicle capacity on the arc (𝑣, 𝑢) ∈ 𝐴
for period t.
𝑧𝑢𝑡: Equal to 1 if node 𝑢 ∈ 𝑁 is visited in period t, 0 otherwise.
𝑞𝑢𝑡: Shipment quantity of returned product from node 𝑢 ∈ 𝑁 to
the plant for period t .
𝑞𝑐𝑢𝑡: Shipment quantity of components from node 𝑢 ∈ 𝑁 to the
plant for period t.
𝑑𝑖𝑠𝑡: Disassembly quantity of returned product at the plant for
period t.

𝑙𝑡: Quantity of lost sales at period t.
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Fig. 1. Example of a SDARP-R instance.
• Parameters:
𝑓𝑡:Unit production cost for new items for period t.
𝑓 ′
𝑡 : Setup cost for new items for period t.
𝑎𝑖𝑡, 𝑎𝑟𝑡: Unit purchase cost for component i and returned product
for period t, respectively.
ℎ𝑡: Unit holding cost of new items and at the plant for period t.
ℎ𝑟𝑡: Unit holding cost of returned product at the plant for period
t.
ℎ𝑐𝑖𝑡: Unit holding cost of component i at the plant for period t.
𝑐𝑢𝑣: Transportation cost between nodes u and v, (𝑢, 𝑣) ∈ 𝐴.
𝐶: Production capacity.
𝐶0: Global inventory capacity at the plant.
𝑄: Vehicle capacity.
𝑆𝑢𝑡: Supply of returned product at node 𝑢 ∈ 𝑁 in period t.
𝑆𝑐𝑢𝑡: Supply of component at node 𝑢 ∈ 𝑁 for period t.
𝑟𝑠𝑖 : Yield ratio of leaf item 𝑖 to root item in scenario s.
𝑏𝑖: Unit size of component 𝑖.
𝑏 : Unit size of product.
𝑑𝑡: Demand for the final products at the plant for period t.
𝑝𝑟: Unit cost of lost sales.
𝜎𝑠𝑢𝑡 : Approximated visiting cost at node 𝑢 ∈ 𝑁 for period t in
scenario s.

The minimax robust problem modifies the objective function of deter-
ministic problem as minimax objective function after introducing a set
of uncertain yields scenarios. We propose a mathematical model based
on the two-commodity flow formulation (Afsar & Hnaien, 2020). The
binary variable 𝑥𝑢𝑣𝑡 takes the value 1, if the arc (uv) is traversed (in any
direction) in period t . The nodes 0 and n+1 correspond to the depot
node. This model presents a Minimax objective function as follows:

min
(
∑

𝑡∈𝑇 (𝑓
′
𝑡 (𝑦𝑡 + 𝑦

′
𝑡) + 𝑓𝑡𝑝𝑡 + 𝑝𝑟𝑙𝑡 + ℎ𝑟𝑡𝐼𝑟𝑡 + ℎ𝑡𝐼𝑡 +

∑

𝑢∈𝑁 𝑎𝑟𝑡𝑞𝑢𝑡+
∑

𝑖∈𝐾 𝑎𝑖𝑡𝑞𝑐𝜓(𝑖)𝑡 +
∑

(𝑢,𝑣)∈𝐴 𝑐𝑢𝑣𝑥𝑢𝑣𝑡 + 𝑚𝑎𝑥𝑠∈𝑆 (
∑

𝑖∈𝐾 ℎ𝑐𝑖𝑡𝐼𝑐
𝑠
𝑖𝑡))

) (1)

s.t

𝐼𝑡−1 + 𝑝𝑡 + 𝑙𝑡 = 𝑑𝑡 + 𝐼𝑡 ∀𝑡 ∈ 𝑇 (2)

𝑙𝑡 ≤ 𝑑𝑡 ∀𝑡 ∈ 𝑇 (3)

𝐼𝑐𝑠𝑖,𝑡−1 + 𝑞𝑐𝜓(𝑖)𝑡 + 𝑟
𝑠
𝑖𝑑𝑖𝑠𝑡 = 𝑝𝑡 + 𝐼𝑐𝑠𝑖𝑡

∀𝑡 ∈ 𝑇 ,∀𝑖 ∈ 𝐾,∀𝑠 ∈ 𝑆
(4)

𝐼𝑟𝑡−1 +
∑

𝑢∈𝑁
𝑞𝑢𝑡 = 𝑑𝑖𝑠𝑡 + 𝐼𝑟𝑡 ∀𝑡 ∈ 𝑇 (5)

𝑝 ≤ 𝐶𝑦 ∀𝑡 ∈ 𝑇 (6)
5

𝑡 𝑡
𝑑𝑖𝑠𝑡 ≤ 𝐶𝑦′𝑡 ∀𝑡 ∈ 𝑇 (7)

𝑞𝑢𝑡 ≤ 𝑆𝑢𝑡 ∀𝑡 ∈ 𝑇 ,∀𝑢 ∈ 𝑁 (8)

𝑞𝑐𝑢𝑡 ≤ 𝑆𝑐𝑢𝑡 ∀𝑡 ∈ 𝑇 ,∀𝑢 ∈ 𝑁 (9)

∑

𝑖∈𝐾
𝑏𝑖𝐼𝑐

𝑠
𝑖𝑡 + 𝑏(𝐼𝑡 + 𝐼𝑟𝑡) ≤ 𝐶0 ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (10)

𝑏𝜓−1(𝑢)𝑞𝑐𝑢𝑡 + 𝑏𝑞𝑢𝑡 ≤ 𝑄𝑧𝑢𝑡 ∀𝑡 ∈ 𝑇 ,∀𝑢 ∈ 𝑁 (11)

∑

𝑢∈𝑁+ ∣𝑢≠𝑣
𝑥𝑢𝑣𝑡 =

∑

𝑢∈𝑁+ ∣𝑢≠𝑣
𝑥𝑣𝑢𝑡 ∀𝑡 ∈ 𝑇 ,∀𝑣 ∈ 𝑁+ (12)

∑

𝑢∈𝑁+
𝑥𝑢𝑣𝑡 = 𝑧𝑣𝑡 ∀𝑡 ∈ 𝑇 ,∀𝑣 ∈ 𝑁 (13)

𝐹𝑢𝑣𝑡 + 𝐹𝑣𝑢𝑡 = 𝑄𝑥𝑢𝑣𝑡 ∀𝑡 ∈ 𝑇 ,∀𝑢 ∈ 𝑁+,∀𝑣 ∈ 𝑁+ ∣ 𝑢 ≠ 𝑣 (14)

∑

𝑣∈𝑁+
𝐹𝑢𝑣𝑡−

∑

𝑣∈𝑁+
𝐹𝑣𝑢𝑡 = 2(𝑏𝑞𝑢𝑡+𝑏𝜓−1(𝑢)𝑞𝑘𝑢𝑡) ∀𝑡 ∈ 𝑇 ,∀𝑢 ∈ 𝑁 (15)

∑

𝑢∈𝑁
𝐹0𝑢𝑡 =

∑

𝑢∈𝑁
𝑏𝜓−1(𝑢)𝑞𝑐𝑢𝑡 +

∑

𝑢∈𝑁
𝑏𝑞𝑢𝑡 ∀𝑡 ∈ 𝑇 (16)

∑

𝑢∈𝑁 𝑄𝑥0𝑢𝑡 − (
∑

𝑢∈𝑁 𝑏𝜓−1(𝑢)𝑞𝑐𝑢𝑡 +
∑

𝑢∈𝑁 𝑏𝑞𝑢𝑡) =
∑

𝑢∈𝑁 𝐹𝑢0𝑡
∀𝑡 ∈ 𝑇

(17)

∑

𝑣∈𝑁+
𝐹𝑛+1𝑣𝑡 = 𝑄

∑

𝑣∈𝑁+
𝑥0𝑣𝑡 ∀𝑡 ∈ 𝑇 (18)

𝑝𝑡, 𝑑𝑖𝑠𝑡, 𝑙𝑡 ≥ 0, 𝑦′𝑡 , 𝑦𝑡 ∈ {0, 1} ∀𝑡 ∈ 𝑇 ,∀𝑢 ∈ 𝑁 (19)

𝐼𝑐𝑠𝑖𝑡, 𝐼𝑟𝑡, 𝐼𝑡 ≥ 0 ∀𝑡 ∈ 𝑇 ,∀𝑖 ∈ 𝐾,∀𝑠 ∈ 𝑆 (20)

𝑞𝑐𝑢𝑡, 𝑞𝑢𝑡 ≥ 0 ∀𝑡 ∈ 𝑇 ,∀𝑢 ∈ 𝑁 (21)

𝐹𝑢𝑣𝑡 ≥ 0 ∀𝑡 ∈ 𝑇 ,∀𝑢 ∈ 𝑁+,∀𝑣 ∈ 𝑁+ (22)

𝑧𝑢𝑡, 𝑥𝑢𝑣𝑡 ∈ {0, 1} ∀𝑡 ∈ 𝑇 ,∀𝑢 ∈ 𝑁+,∀𝑣 ∈ 𝑁+ (23)

The objective function (1) minimizes the total setup (both disassem-
bly and assembly operations), production, lost sales, inventory holding
costs for new and returned products, purchase, and transportation costs
as well as the maximum inventory holding costs of components over all
scenarios. Only inventory costs of the plant are taken into account. The

constraints from (2) to (11) are relevant to LSP with returns while the
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constraints from (12) to (18) define the transportation problem. The
constraints (2) ensure the manufactured final product inventory flow.
The amount of the lost sales is less than the demand (constraint (3)).
Constraints (4) and (5) ensure the components (new or disassembled)
and returned product flow balance, respectively. Constraints (6) and
(7) fix the setup decisions variables for the assembly and disassem-
bly operations, respectively. Constraints (8) and (9) ensure that each
visited node can provide the requested quantity of components or
returned products. Constraints (10) limit the storage capacity of the
final product, the components, and returned products at the plant.
Constraints (11) impose the limit of total components and returned
product shipment quantity from each node in each period by the vehicle
capacity.

Constraints (12) state that the inflow is equal to the outflow at each
node. Constraints (13) imply that if a node u is visited, there is only
one arc (uv) is traversed by a vehicle. Constraints (14) state that the
sum of forward vehicle load and the backward remaining capacity is
equal to the total vehicle capacity at the traversed arc. The total change
in forward vehicle load and the backward remaining capacity is twice
the volume of the purchased amount from a visited node (constraints
(15)). The forward vehicle load leaving the depot is equal to the total
purchasing quantities (Constraints (16)). Constraints (17) state that the
total backward remaining vehicle capacity re-entering depot node is the
total capacity of all used vehicles minus the total volume of purchased
components. Constraints (18) state that the total backward remaining
capacity and the total capacity of used vehicles are equal. Constraints
(19)–(23) are domain constraints.

The proposed model is nonlinear due to the nested min–max op-
erator. We use 𝜙 to denote the maximum value of the components
inventory cost at the plant. The mathematical model equivalent to the
minimax model becomes the following linear programming model:

min
∑

𝑡∈𝑇

(

𝑓 ′
𝑡 (𝑦𝑡 + 𝑦

′
𝑡) + 𝑓𝑡𝑝𝑡 + 𝑝𝑟𝑙𝑡 + ℎ𝑟𝑡𝐼𝑟𝑡 + ℎ𝑡𝐼𝑡 +

∑

𝑢∈𝑁
𝑎𝑟𝑡𝑞𝑢𝑡

+
∑

𝑖∈𝐾
𝑎𝑖𝑡𝑞𝑐𝜓(𝑖)𝑡 +

∑

(𝑢,𝑣)∈𝐴
𝑐𝑢𝑣𝑥𝑢𝑣𝑡

)

+ 𝜙 (24)

s.t (2)–(23)
∑

𝑡∈𝑇

∑

𝑖∈𝐾
ℎ𝑐𝑖𝑡𝐼𝑐

𝑠
𝑖𝑡 ≤ 𝜙 ∀𝑠 ∈ 𝑆 (25)

3.3. Flexibility levels

We analyze the following five assumptions 𝐻𝑗 to identify which new
model’s decisions variables are the most beneficial to have flexibility
and be dependent on scenarios:

• 𝐻0 (zero flexibility): no decision variable is dependent on scenar-
ios (𝑝𝑡, 𝑙𝑡, 𝑑𝑖𝑠𝑡, 𝑞𝑢𝑡, 𝑞𝑐𝑢𝑡, 𝑥𝑢𝑣𝑡). The preceding mixed integer linear
model presents this flexibility level.

• 𝐻1: the production and lost sales related decisions are flexible and
depend on scenarios (𝑝𝑠𝑡 , 𝑙

𝑠
𝑡 , 𝑑𝑖𝑠

𝑠
𝑡 ). This hypothesis allows adding

flexibility to production, which means that the quantities to be
assembled and disassembled depend on scenarios.

• 𝐻2: the decisions of purchased quantities of returned products
and components depend on scenarios (𝑞𝑠𝑢𝑡, 𝑞𝑐

𝑠
𝑢𝑡).

• 𝐻3: procurement decisions that include the purchased quantities
and the routing decisions depend on scenarios (𝑞𝑠𝑢𝑡, 𝑞𝑐

𝑠
𝑢𝑡, 𝑥

𝑠
𝑢𝑣𝑡).

This hypothesis enlarges the flexibility of 𝐻2 by including routing
decisions.

• 𝐻4: all decisions variables depend on scenarios (𝑝𝑠𝑡 , 𝑙
𝑠
𝑡 , 𝑑𝑖𝑠

𝑠
𝑡 , 𝑞

𝑠
𝑢𝑡,

𝑞𝑐𝑠𝑢𝑡, 𝑥
𝑠
𝑢𝑣𝑡). In this hypothesis, production and procurement depend
6

on scenarios.
4. Two-phase matheuristic approach

In this section, we present a matheuristic algorithm based on a MIP
model and a VNS method for the proposed problem. Matheuristics are
heuristic methods that make use of an exact methods inside heuristics
framework. This method is successfully implemented in different opti-
mization problems such as the PRP (Absi et al., 2015), the collection
disassembly problem in the work of Habibi et al. (2017), and ARP in
the work of Chitsaz et al. (2019).

The VNS method is an extension of the classical local search that
includes shaking procedure as a diversification mechanism (Mladenović
& Hansen, 1997). VNS is a single solution based method that searches in
the neighborhood of the local optimum found by local search to gener-
ate a new best solution. According to Funke et al. (2005), local search
and local search-based metaheuristics are currently among the best
ways to solve large vehicle routing and scheduling problems. Although
simple, VNS approach combines several local search neighborhoods and
it is relatively easy-to-implement, do not contain a large number of
parameters requiring time-consuming setting processes, and offer an
excellent trade-off in terms of solutions quality as well as in terms of
computing times (Frifita & Masmoudi, 2020). We can see it is employed
in the most recent works on vehicle routing problems (e.g. Kuo et al.
(2022) to solve VRP with drones and time windows, Guo et al. (2022)
for VRP with ride-sharing, Xu and Cai (2018) to provide excellent
solutions for consistent VRP). That is why we are motivated to use the
VNS algorithm and we intended to combine it with a mixed integer
programming to present matheuristic.

The proposed matheuristic (Fig. 2) performs two main steps. The
first step consists in solving the assembly and disassembly problem
(Step A). It is addressing the decisions of 𝑑𝑖𝑠𝑠𝑡 , 𝑝𝑡, 𝐼𝑐

𝑠
𝑡 , 𝑞

𝑠
𝑢𝑡, 𝑞𝑐

𝑠
𝑢𝑡, 𝑙𝑡, and

𝑧𝑠𝑢𝑡. Using the value of 𝑧𝑠𝑢𝑡, the set of nodes visited in each period and
each scenario is obtained. Also, 𝑞𝑠𝑢𝑡 and 𝑞𝑐𝑠𝑢𝑡 values reveal the shipped
quantity that forms each node. The second step (Step B), is to solve the
routing problem by VNS.

We first generate a lower bound of the total costs (the sum of
production cost and transportation cost). Then we initialize the value
of 𝜎𝑠𝑢𝑡 according to the lower bound. The parameter 𝜎𝑠𝑢𝑡 is used as
an approximate visiting cost (updated throughout the algorithm) of
collection from node u at period t under scenario s. Consecutively,
he routing problem is solved and the routing cost is obtained. Once
he route of all period is built, we implement a memorization process
nspired from tabu search (Step C). At each iteration, we keep in
emory the best transport solution found in step B. After that, the value

f 𝜎𝑠𝑢𝑡 is updated based on this solution and the objective function is
recalculated (see Section 4.3). This step is followed by a procedure of
update for the worst case (see Section 4.4). Before resolving the LSP
we check if this solution already exists in the memory. If it does, we
proceed to step E of the diversification mechanism. If not, we go to
step A. This technique allows us to escape local optimums to speed up
the resolution. The iterative procedure stops when a stopping criteria is
reached (after 10 iterations without improvement). The whole scheme
is repeated until a maximal number of iterations (𝑖𝑡𝑒𝑟2𝑚𝑎𝑥) is achieved.

In some cases, the time limit for MILP in step A gives solutions with
a high gap value. This leads us to define a variable time limit that
increases as soon as there are no cost improvements. Then, returns to
its initial value.

In the following subsections, we describe the different steps of the
proposed matheuristic.

4.1. MILP with approximated transportation cost

The (step A) is solved by a MILP which minimizes a set of costs as

presented in Eq. (26). Those costs are the assembly, disassembly, lost
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Fig. 2. The general steps of our algorithm.
sales, and inventories costs as well as an approximated transportation
costs instead of the transportation costs over all scenarios.

min
(
∑

𝑡∈𝑇 (𝑓
′
𝑡 (𝑦𝑡 + 𝑦

′
𝑡) + 𝑓𝑡𝑝𝑡 + 𝑝𝑟𝑙𝑡 + ℎ𝑟𝑡𝐼𝑟𝑡 + ℎ𝑡𝐼𝑡

+𝑚𝑎𝑥𝑠∈𝑆 (
∑

𝑖∈𝐾 ℎ𝑐𝑖𝑡𝐼𝑐
𝑠
𝑖𝑡 +

∑

𝑢∈𝑁 𝑎𝑟𝑡𝑞
𝑠
𝑢𝑡 +

∑

𝑖∈𝐾 𝑎𝑖𝑡𝑞𝑐
𝑠
𝜓(𝑖)𝑡 + 𝜏

𝑠
𝑡 ))

)

s.t (2)–(11)

(26)

We note that 𝜏𝑠𝑡 =
∑

𝑢∈𝐴 𝜎
𝑠
𝑢𝑡𝑧

𝑠
𝑢𝑡 is an approximated of the total

transportation cost using the node visit variables 𝑧𝑠𝑢𝑡 and the approxi-
mated visiting cost 𝜎𝑠𝑢𝑡. This is the crucial link between production and
transport problems.

4.2. Variable neighborhood search algorithm

Solving the problem with an approximate transport cost by the MILP
allows us to have the set of visited nodes 𝑧𝑠𝑢𝑡 in each scenario as well
as the purchased quantities of returned product 𝑞𝑢𝑡 and components
𝑞𝑐𝑢𝑡. Therefore, the routing and purchasing decision variables related
to each period and each scenario are fixed as parameters for the VNS
(Algorithm 1) to solve one VRP for each period and each scenario. The
VNS was first proposed by Mladenović and Hansen (1997) and it takes
into account a set of 𝑘𝑚𝑎𝑥 neighborhoods and executes alternately a
local search procedure and a shaking procedure to escape from the local
optima. Our VNS starts with an initial solution obtained by applying
a random construction heuristic. At each iteration, a random solution
is generated from a current neighborhood and then a local search
procedure is applied to improve the solution. If the new solution is
better than the incumbent solution 𝑋𝑏𝑒𝑠𝑡, then the procedure is repeated
by reinitializing the neighborhood, otherwise by passing to the next
neighborhood . Four neighborhood structures are used both in local
search and shaking procedures (see Frifita et al. (2020)):

• ShiftIntra; a node is removed from its current position to another
position in the same route.

• Swapintra; two nodes from the same route are swapped.
• ShiftInter; a node is removed from one route to another one.
• Swapinter; two nodes from two different routes are swapped.
7

The local search strategy following a best improvement strategy.
The above-mentioned movements are performed in constant time.

Algorithm 1 Variable Neighborhood Search algorithm
1: 𝑋 =initial solution from the construction heuristic
2: 𝑋𝑏𝑒𝑠𝑡 =𝑋
3: repeat
4: 𝑘 = 1
5: while 𝑘 < 𝑘𝑚𝑎𝑥 do
6: 𝑋1 =Shake(𝑋, 𝑘)
7: 𝑋2 = Local search (𝑋1)
8: if 𝑓 (𝑋2) < 𝑓 (𝑋) then
9: 𝑋𝑏𝑒𝑠𝑡 = 𝑋2

10: 𝑘 = 1
11: else
12: 𝑘 + +
13: end if
14: end while
15: until 𝑖𝑡𝑒𝑟 > 𝑖𝑡𝑒𝑟𝑚𝑎𝑥

4.3. Approximated visiting cost

To update 𝜎𝑠𝑢𝑡 we used two techniques: In the first technique, we
suppose that u is a node visited in a route r of period t at scenario s
obtained by solving Routing Problem. Let pre denote the predecessor
of u with the cost 𝑐𝑢𝑝𝑟𝑒 and suc is its successor with the cost 𝑐𝑢𝑠𝑢𝑐 .
𝑀𝑠

𝑡 is the set of nodes 𝑢 ∈ 𝑁 for which 𝑧𝑠𝑢𝑡 = 1. If 𝑢 ∈ 𝑀𝑠
𝑡 then

𝜎𝑠𝑢𝑡 = 𝑐𝑢𝑝𝑟𝑒+𝑐𝑢𝑠𝑢𝑐−𝑐𝑝𝑠𝑢𝑐 , which means that if a node u is eliminated from
its current route, an acceptable route can be obtained by connecting
the predecessor and successor nodes. Otherwise inserting u into the
available vehicle routes in period t at scenario s, so 𝜎𝑠𝑢𝑡 = 𝛥𝑠𝑢𝑡 where
𝛥𝑠𝑢𝑡 would be the cheapest insertion cost among all the routes in that
period at the correspondent scenario s. Preliminary planning has shown
that purchase and pickup of goods was not done in certain periods. So
by inserting the node u in an unserved period t, an acceptable route
can be obtained. With this technique, we impose visits to the nodes in
different periods which can influence productions periods. The second
technique divides the total transportation cost of the served period
among the visited nodes. Let 𝑐𝑜𝑠𝑡𝑠𝑡 be the total transportation cost in
period t at scenario s, we define 𝜎𝑠 = 𝑐𝑜𝑠𝑡𝑠(𝑐 ∕

∑

𝑐 ) if 𝑢 ∈ 𝑀𝑠

𝑢𝑡 𝑡 0𝑢 𝑣∈𝑀𝑠

𝑡 0𝑣 𝑡
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Table 2
Results for a small instance with 4 scenarios.

s = 1 s = 2 s = 3 s = 4

i = 1 17188 15 902 17 053 16 327
i = 2 16570 15 851 16 465 15 885
i = 3 16 639 15 933 15 775 15 921
i = 4 16639 15 851 15 738 15 977
i = 5 16534 15 851 16 501 15 921
i = 6 15 839 15 968 16093 15 885
i = 7 17 188 15 887 17 053 16 363
i = 8 15 839 15 881 15 738 15885

𝑏𝑒𝑠𝑡𝐹 15 885

else 𝜎𝑠𝑢𝑡 = (𝑐𝑜𝑠𝑡𝑠𝑡 + 𝛥𝑢𝑡)(𝑐0𝑢∕
∑

𝑣∈𝑀𝑠
𝑡 ∪{𝑢}

𝑐0𝑣). One technique is used for a
defined number of iterations (𝑖𝑡𝑒𝑟1 = 𝑖𝑡𝑒𝑟1𝑚𝑎𝑥), and then we switch to
the second one and vice versa. As results, most of the time we get better
results compared to using any one of these two techniques alone.

4.4. Update the best worst cost procedure

The transportation solution provided by VNS presents the best set
of routes for each scenario with the best costs. In step E, a procedure
was defined to recalculate the true worst cost for each iteration i of
the algorithm. In this procedure, we recalculate for each scenario s the
total cost obtained by the MILP (𝑓 𝑠𝑖 (MILP)) plus the transport cost
obtained by the VNS (𝑓 𝑠𝑖 (VNS)). Thus, 𝑓 𝑠𝑖 = 𝑓 𝑠𝑖 (𝑀𝐼𝐿𝑃 ) + 𝑓 𝑠𝑖 (𝑉 𝑁𝑆).
This procedure allows to change the value of the best worst cost from
one iteration to another. For each scenario 𝑠 ∈ {1,… , |𝑆|}, we compare
two consecutive iterations i and i+1 keeping the minimum value 𝐹𝑠 =
min(𝑓 𝑠𝑖 , 𝑓

𝑠
𝑖+1). We recover the maximum value max𝑠=1..𝑆 𝐹𝑠 on all scenar-

ios S. For each iteration i, we update the worst cost corresponding to the
minimum value given by 𝑏𝑒𝑠𝑡𝐹 = min(max𝑠=1..𝑆 𝐹𝑠). If there is a change,
we update the corresponding best solution. In the following example
(Table 2), we present the value of the objective function recalculated
by our algorithm for a number of scenarios equal to 4 and a number of
iterations equal to 8. As a result, best F= 15885 is the worst cost among
all the scenarios. The bold numbers in the table show the changes in
the max𝑠=1..𝑆 𝐹𝑠 value between iterations.

4.5. Diversification mechanisms

To prevent a quick convergence to the best solution, two diversifi-
cation mechanisms are used (Absi et al., 2015): a multi-start procedure
and an update diversification mechanism. These two diversification
mechanisms reinitialize visiting costs 𝜎𝑢𝑡 and restarts the iterative
procedure. At each iteration restart we randomly chose one of two
mechanisms.

The multi-start procedure: reinitializes approximate visiting costs
𝜎𝑠𝑢𝑡 through multiplication with a random value 𝜖 in [0.5, 1.5] (𝜎𝑠𝑢𝑡 =
(𝑐0𝑢 + 𝑐0𝑢)*𝜖).

The update diversification mechanism modifies 𝜎𝑠𝑢𝑡 according to the
best known solution. It consists of multiplying 𝜎𝑠𝑢𝑡 by the number of
nodes served 𝑀𝑠

𝑡 plus one (to avoid zero multiplication) 𝜎𝑠𝑢𝑡 = |𝑀𝑠
𝑡 |

𝜎𝑠𝑢𝑡 + 1.

5. Computational results

The matheuristic is coded in Java with Eclipse Version: 4.9.0. The
Cplex library 12.9 is used within a java code to solve the mathematical
models. All tests are run on HP desktop computer Intel (R) Core
(TM) i7 2.9 GHz with 16 GO of RAM on Windows 10 (64-bit). We
note that the statistical tests are performed with IBM SPSS Statistics
software. The main parameters of the algorithm 𝑖𝑡𝑒𝑟1𝑚𝑎𝑥 and 𝑖𝑡𝑒𝑟2𝑚𝑎𝑥
are carefully tuned as they impact on the quality of the solution and
computational time. They are fixed with the Friedman test by using
Minitab.18 software. The results value are equal to 5 for 𝑖𝑡𝑒𝑟1 and
8

𝑚𝑎𝑥
20 for 𝑖𝑡𝑒𝑟2𝑚𝑎𝑥. The time limit for solving each instance by CPLEX is
set to one hour (3600 s). For the limit of the execution time for CPLEX
in the matheuristic, we impose between 60 and 120 s. The value of the
maximum VNS iteration 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is 100.

5.1. Data sets

To test the efficiency of the proposed model and matheuristic al-
gorithm, we generate a set of instances based on the Chitsaz et al.
(2019) benchmark which is adapted from PRP instances of Archetti
et al. (2011). The new instances include 6 periods and a number
of nodes equal to 14 and 50. These nodes present the suppliers or
warehouses. These instances keep the original horizon of production
capacity, and the distances between the nodes. For the inventory
limits at the plant, we chose to share it between return products, new
products, and components. A dynamic demand per period is randomly
generated by uniform distribution between 0.5 ∗ 𝐷 and 1.5 ∗ 𝐷 where
𝐷 is the demand per period in instances of Chitsaz et al. (2019). A
dynamic setup, purchase, inventory and production costs are randomly
generated by uniform distribution ±30% of the values obtained from
instances of Chitsaz et al. (2019). For each instance, we generate a
number of scenarios equal to 5, 50 and 100 that represent the random
yields. In each instance, we check the non-redundancy of the scenarios.

5.2. Managerial insights

In order to identify the impact of the different hypotheses ex-
plained in Section 3.3 a set of tests is performed. Tables 3 and 4
present the results and the deviations Dev0(%) between the optimal
solutions obtained under the hypothesis 𝐻0 and the other hypotheses
𝐻𝑥 (𝐷𝑒𝑣0(%) = 𝑠𝑜𝑙.𝐻0−𝑠𝑜𝑙.𝐻𝑥

𝑠𝑜𝑙.𝐻𝑥
) and the average (Avg) also the median

(Med) of those Deviations.
We start our experimentation by comparing the results under five

scenarios for 10 instances with 14 nodes. According to the results
shown in Table 3, it can be observed that solving the problem with 𝐻0
is faster than with the remaining hypotheses because there are fewer
decisions that are impacted by the scenarios. Consequently, with 𝐻0
also for 𝐻1 and 𝐻2, the problem is solved to the optimal.

Comparing the results of 𝐻0 with that of 𝐻1 show that adding
flexibility to production improves slightly the total cost (𝐴𝑣𝑔_𝐷𝑒𝑣0 =
0.10%), where the produced quantity with 𝐻1 remains unchanged even
if it depends on the scenarios. However, the quantity to be disassembled
changed. Solving the problem with 𝐻1 allows us to find the majority
of the same optimal solutions founded by 𝐻0 (9 instances among the
10) but with a higher CPU time.

Moreover, adding flexibility to the purchased quantities with 𝐻2
improves the results of 𝐻0 with 𝐴𝑣𝑔_𝐷𝑒𝑣0 = 5.70%. Comparing the
results of 𝐻0 and 𝐻3 shows a significant improvement in the total
cost. This improvement can reach 22.80%. With the two hypotheses 𝐻4
and 𝐻3, we find the majority of the same solutions but with different
CPU times. Indeed, the resolution with 𝐻4 is faster in most cases in
comparison with 𝐻3.

Based on the deviation results presented in Table 4, 𝐻1 slightly
improves 𝐻0. Conversely, 𝐻2, 𝐻3 and 𝐻4 significantly improve 𝐻0.
These improvements are practically equivalent (𝐴𝑣𝑔_𝐷𝑒𝑣0 = 6.30%
and 𝐴𝑣𝑔_𝐷𝑒𝑣0 = 6.40%). In contrast, having more flexibilities in the
decisions improves the total cost in each hypothesis, but the difficulty
of solving the problem increases and need more CPU time. Therefore,
when solving the problem with𝐻3 and𝐻4, the majority of the instances
are not solved to the optimal.

Following this observation, we can neglect 𝐻0 and 𝐻1 and solve
more instances of different sizes with the last 3 hypotheses.
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Table 3
Results for instances with 14 nodes under 5 scenarios.

Instance 𝐻0 𝐻1 𝐻2 𝐻3 𝐻4

CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) Gap (%)

1 4 0.0 5 0.0 77 0.0 3600 0.2 3600 0.2
2 18 0.0 28 0.0 36 0.0 3600 0.2 2830 0.0
3 69 0.0 69 0.0 7 0.0 75 0.0 52 0.0
4 12 0.0 24 0.0 76 0.0 1088 0.0 546 0.0
5 90 0.0 85 0.0 136 0.0 1217 0.0 426 0.0
6 12 0.0 23 0.0 13 0.0 2017 0.0 1676 0.0
7 22 0.0 48 0.0 115 0.0 3600 0.5 3600 0.3
8 32 0.0 55 0.0 35 0.0 3600 0.1 864 0.0
9 27 0.0 32 0.0 204 0.0 3600 0.8 3600 0.8
10 55 0.0 127 0.0 191 0.0 1455 0.0 1594 0.0

Med 25 0.0 40 0.0 77 0.0 2809 0.1 1635 0.0

Avg 34 0.0 49 0.0 89 0.0 2385 0.2 1879 0.1
Table 4
Deviations of solutions for instances with 14 nodes under 5 scenarios.

Instance Dev0(𝐻0/𝐻1) Dev0(𝐻0/𝐻2) Dev0(𝐻0/𝐻3) Dev0(𝐻0/𝐻4)

1 0.0 2.4 2.5 2.5
2 0.0 2.0 2.9 3.1
3 0.0 21.7 22.8 22.8
4 0.0 5.4 6.8 6.9
5 0.0 7.5 7.6 7.6
6 0.0 6.6 7.0 7.0
7 0.0 4.1 4.1 4.3
8 0.0 5.7 7.7 7.8
9 0.8 0.0 0.4 0.8
10 0.0 1.4 1.5 1.5

Med 0.00 4.75 5.45 5.60

Avg 0.10 5.70 6.30 6.40

5.3. Experimental results

In this section, the numerical results obtained from the MILP, the
matheuristic algorithm as well as from the MILP&WS are explained.
Note that a total of 200 instances with 14 and 50 components under
5, 50 and 100 scenarios are considered to compare the results between
𝐻2, 𝐻3 and 𝐻4.

We summarize in Tables 5, 6, 7 and 8, the results for the 𝐻2, 𝐻3 and
𝐻4 for each group of instances (instances with 14 and 50 nodes). Tables
from A.13 to A.22 in Appendix give the detailed numerical results.

In our preliminary experiments, we find that the solver cannot find
optimal solutions for instances with 50 nodes under 50 scenarios after
3600 s. Thus, we warm start the MILP with the best solution given
by the matheuristic approach. This technique is chosen to evaluate the
quality of the matheuristic solution and improve it when possible. Using
warm start helps also to reduce the solution CPU time.

In those tables, column MILP gives the best solution obtained using
Cplex. Column Mat presents the best solutions of the matheuristic
algorithm. ColumnMILP&WS presents the solutions of the MILP with an
initial solution from the matheuristic algorithm. Columns CPU(s) show
the computing time in seconds.

Column Gap(%) shows the gap given by CLPEX in 3600 s of com-
putation time. Column Dev(%) presents the deviation between the best
know solution from 𝐻2 (𝐵𝑘𝑠𝐻2

) and the best know solution from
𝐻3 (𝐵𝑘𝑠𝐻3

) (𝐷𝑒𝑣(%) =
𝐵𝑘𝑠𝐻2−𝐵𝑘𝑠𝐻3

𝐵𝑘𝑠𝐻3
). Column Dev1(%) presents the

deviation between the best know solution from 𝐻2 (𝐵𝑘𝑠𝐻2
) and the

best know solution from 𝐻4 (𝐵𝑘𝑠𝐻4
) (𝐷𝑒𝑣1(%) =

𝐵𝑘𝑠𝐻2−𝐵𝑘𝑠𝐻4
𝐵𝑘𝑠𝐻4

).
The CPU times for MILP&WS are calculated as the sum of the CPU

ime for finding the initial solution plus the CPU time of the resolution
ithMILP&WS. For all tables the minimum (Min), the maximum (Max),

the average (Avg), and the median (Med) values are presented. In all
tables, negative deviations values indicate an improvement provided by
𝐻 .
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Table 5 shows the summary of the CPU time and the Gap of 20
instances with 14 nodes and 10 instances with 50 nodes under 5
scenarios.

For the instances with 14 nodes, MILP can prove optimality on all
instances with 𝐻2. However, it can prove optimality only for 11 of the
20 instances within the time limit with a 𝑀𝑎𝑥_𝑔𝑎𝑝 = 2.5% and 𝐴𝑣𝑔_𝐺𝑎𝑝
= 0.4% for 𝐻3. For 𝐻4, it can prove optimality only for 13 of the 20
instances within the time limit with a 𝑀𝑎𝑥_𝑔𝑎𝑝 = 1.7% and 𝐴𝑣𝑔_𝐺𝑎𝑝
= 0.3%.

As can be seen from Tables A.13, A.14 and A.15, the MILP&WS is
capable to find 20 optimal solutions for all hypotheses. The matheuris-
tic converge to the same results for almost of instances for the three
hypotheses.

For all hypotheses, the matheuristic algorithm and theMILP&WS are
more efficient than MILP. The matheuristic algorithm can find a good
solution very fast with an 𝐴𝑣𝑔_𝐶𝑃𝑈 = 20 s for 𝐻2, 𝐴𝑣𝑔_𝐶𝑃𝑈 = 64 s for
𝐻3 and 𝐴𝑣𝑔_𝐶𝑃𝑈 = 59 s for 𝐻4.

The results for the instances with 50 nodes state that the difficulty of
resolution increases with the nodes size, for 𝐻2 the 𝐴𝑣𝑔_𝐺𝑎𝑝 = 40.7%,
for 𝐻3 the 𝐴𝑣𝑔_𝐺𝑎𝑝 = 70.1% and for 𝐻4 the 𝐴𝑣𝑔_𝐺𝑎𝑝 = 56.4%. From
these instances, the 𝐴𝑣𝑔_𝐺𝑎𝑝 is tighter for 𝐻2 than for 𝐻3 and 𝐻4.

The solution obtained for 𝐻2 by MILP&WS leads to an improvement
in the gap (compared to the MILP) of 0.7% on average, and 1.5% as
the maximal value of gap. For all instances, MILP&WS finds the best
solutions in comparison with the other methods but with larger CPU
times, which is equal to the sum of the CPU time of the matheuristic
algorithm and the MILP.

To further assess the performance of the proposed methods, we
executed the second round of tests on larger sized instances under 50
scenarios. For 𝐻2, the average gaps for the MILP and the MILP&WS
obtained for 20 instances with 14 nodes under 50 scenarios are 7.4%
and 0.0%, respectively. As can be seen from Table A.16, the MILP is
not able to find any feasible solution for the 10 instances with 50 nodes
under 50 scenarios. However, the MILP&WS can solve the 20 instances
with 𝐴𝑣𝑔_𝐺𝑎𝑝 = 3.6%. The results show that the matheuristic algorithm
can find good solutions, which are improved by the MILP&WS. For
𝐻3, the MILP&WS improves the solutions found by the MILP with an
𝐴𝑣𝑔_𝐺𝑎𝑝 = 0.1% for instances with 14 nodes. The results show that
the MILP has the worst performance; it is far from the optimal solution
with an 𝐴𝑣𝑔_𝐺𝑎𝑝 = 77.1% for the instances with 14 nodes. In addition,
it cannot find any feasible solution for instances with 50 nodes (see
Table A.17), where the MILP&WS proves its efficiency with an 𝐴𝑣𝑔_𝐺𝑎𝑝
= 3.9% .

For 𝐻4, the MILP&WS improves the solutions found by the MILP
with an 𝐴𝑣𝑔_𝐺𝑎𝑝 = 0.5% for instances with 14 nodes and with an
𝐴𝑣𝑔_𝐺𝑎𝑝 = 4% for instances with 50 nodes. The results show that the
MILP has the worst performance; it is far from the optimal solution
with an 𝐴𝑣𝑔_𝐺𝑎𝑝 = 73.4% for the instances with 14 nodes. In addition,
it cannot find any feasible solution for instances with 50 nodes (see
Table A.18).
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Table 5
Computational performance for instances with 14 and 50 nodes under 5 scenarios.

𝐻2 𝐻3 𝐻4

MILP Mat MILP&WS MILP Mat MILP&WS MILP Mat MILP&WS

CPU (s) Gap (%) CPU (s) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) CPU (s) Gap (%)

14

Max 2084 0.00 52 212 0.00 3600 2.50 136 921 0.00 3600 1.70 141 962 0.00
Min 7 0.00 5 14 0.00 75 0.00 14 82 0.00 52 0.00 11 136 0.00
Med 70 0.00 13 81 0.00 2822 0.00 59 406 0.00 2035 0.00 44 374 0.00
Avg 185 0.00 20 96 0.00 2502 0.40 64 436 0.00 2143 0.30 59 463 0.00

50

Max 3600 85.30 951 4551 1.50 3600 99.80 421 4021 2.50 3600 99.20 1036 4636 5.70
Min 3600 6.00 40 3640 0.20 3600 17.50 65 3665 0.30 3600 29.00 62 3662 0.80
Med 3600 20.90 90 3691 0.80 3600 98.80 226 3826 1.30 3600 41.20 277 3878 2.30
Avg 3600 40.70 199 3799 0.70 3600 70.10 230 3830 1.30 3600 56.40 487 4087 2.90
Table 6
Computational performance for instances with 14 and 50 nodes under 50 scenarios.

𝐻2 𝐻3 𝐻4

MILP Mat MILP&WS MILP Mat MILP&WS MILP Mat MILP&WS

CPU (s) Gap (%) CPU (s) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) CPU (s) Gap (%)

14

Max 3600 18.1 948 4548 0.4 3600 99.5 985 4585 0.8 3600 99.1 549 4149 2.5
Min 3600 0.8 29 3629 0.0 3600 12.6 83 3683 0.0 3600 1.6 124 3724 0.0
Med 3600 6.7 161 3761 0.0 3600 93.6 315 3915 0.0 3600 95.1 217 3817 0.3
Avg 3600 7.4 298 3899 0.0 3600 77.1 459 4059 0.1 3600 73.4 253 3853 0.5

50

Max – – 975 4575 9.8 – – 2095 5695 6.2 – – 3509 7109 7.8
Min – – 342 3942 0.2 – – 821 4421 0.7 – – 421 4021 0.7
Med – – 502 4102 2.3 – – 1003 4603 3.6 – – 1455 5055 3.6
Avg – – 629 4229 3.6 – – 1181 4781 3.9 – – 1616 5216 4.0

(–): No feasible solution is available.
Table 7
Computational performance for instances with 14 nodes under 100 scenarios.

𝐻2 𝐻3 𝐻4

MILP Mat MILP&WS MILP Mat MILP&WS MILP Mat MILP&WS

CPU (s) Gap (%) CPU (s) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) CPU (s) Gap (%)

14

Max 3600 45.9 975 4575 3.3 3600 99.9 1369 4969 6.3 3600 99.7 2543 6143 6.5
Min 3600 0.2 125 3725 0.0 3600 37.0 145 3745 0.0 3600 66.7 169 3769 1.1
Med 3600 9.8 346 3946 0.9 3600 94.8 698 4298 3.1 3600 99.0 567 4167 3.7
Avg 3600 13.5 478 4078 1.0 3600 55.9 705 4305 3.1 3600 77.0 695 4300 3.1
Table 8
Deviations for instances with 14 and 50 nodes under all scenarios.

5 50 100

Dev (%) Dev1 (%) Dev (%) Dev1 (%) Dev (%) Dev1 (%)

14

Max 3.20 3.20 16.2 17.0 8.8 15.0
Min 0.00 0.00 0.0 0.6 −3.4 −0.9
Med 1.20 1.20 1.4 3.0 1.4 7.0
Avg 1.10 1.20 3.1 3.7 1.4 4.8

50

Max 10.90 12.00 11.6 14.2 – –
Min 0.00 1.10 0.2 2.3 – –
Med 2.60 3.00 1.8 4.6 – –
Avg 3.10 3.70 3.2 5.5 – –

(–): No feasible solution is available.

Table 7 summarize the results for 20 instances with 14 nodes under
100 scenarios. For these 20 cases, the performance of the proposed
MILP&WS is superior to that of the other methods (see Tables A.19,

.20 and A.21).
For 𝐻2, the average gap found by MILP (𝐴𝑣𝑔_𝐺𝑎𝑝 = 13.5%) is

igher than that of MILP&WS (𝐴𝑣𝑔_𝐺𝑎𝑝 = 1%). For 𝐻3, the average
gap found by MILP (𝐴𝑣𝑔_𝐺𝑎𝑝 = 55.9%) is higher than that of MILP&WS
(𝐴𝑣𝑔_𝐺𝑎𝑝 = 3.1%). For 𝐻4, the improvement of MILP&WS is significant,
it reduces the Gap cplex from (𝐴𝑣𝑔_𝐺𝑎𝑝 = 77%) to (𝐴𝑣𝑔_𝐺𝑎𝑝 = 3.1%).

The difficulty of solving the problem increases with 100 scenarios
for the MILP with 𝐻3 and 𝐻4. Therefore, in 7 and 4 out of 20 cases,
the MILP cannot find a feasible solution for 𝐻3 and 𝐻4, respectively.
10

In some instances, an initial solution is not sufficient to speed up the
Table 9
Correlation between the CPU times, the Nodes, the Gap for each hypothesis.

Correlations CPU Hypotheses Nodes Gap

CPU 1,000 0,081 0,986 0,718
Hypotheses 0,081 1,000 0,000 0,264
Nodes 0,986 0,000 1,000 0,686Pearson correlation

Gap 0,718 0,264 0,686 1,000

CPU – 0,223 0,000 0,000
Hypotheses 0,223 – 0,500 0,006
Nodes 0,000 0,500 – 0,000P-value (1-tailed)

Gap 0,000 0,006 0,000 –

Table 10
Regression model.

Model R R square Adjusted R square Std. Error of the estimate

1 0,990 0,979 0,979 251,658

Predictors: (Constant), Gap, Hypotheses, Nodes
Dependent variable: Cpu

optimization to the respective limits, and the solver spends unnecessary
time on estimation. An initial solution presents an upper limit with an
objective function value close to the optimum but in many cases, it
makes no difference. That is why the MILP&WS was not able to find a
feasible solution for 3 instances out of the 20 instances (Table A.21).

Table 8 presents a summary on the deviations between 𝐻2 and 𝐻3
also between 𝐻2 and 𝐻4 for the different scenarios. According to these

results, we notice that for 14 nodes with 5 scenarios, 𝐻3 improves 𝐻2
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Table 11
ANOVA tests.

Sum of squares df Mean square F P-value

Between Groups 28 942 957 190 581,300 2 14 471 478 595 290,600 6,561 0,002
Within Groups 586 682 532 907 323,000 266 2 205 573 431 982,420 – –
Total 615 625 490 097 905,000 268 – – –
Table 12
Dunn’s pairwise Post-Hoc tests.

Methods Mean difference Std. Error P-value

MILP MILPWS 697 188,63348* 222 009,22373 0,004
Mat MILPWS 109,05200 221 388,21769 1,000

*The mean difference is significant at the 0.05 level.

at most by 3.20% and on average 1.1%. The hypothesis 𝐻4 improves
𝐻2 at most by 3.20% and on average 1.2%. Concerning the results with
50 scenarios, we observe that 𝐻3 improves at most 𝐻2 by 16.20% and
n average 3.1%, and 𝐻4 improves at most 𝐻2 by 17% and on average
.7%. For the results with 100 scenarios, 𝐻3 and 𝐻4 improve 𝐻2 on

average by 1.4% and 4.8%, respectively. Similarly, with 50 nodes and
different scenarios, the results are in line with the previous findings
(Table A.22).

5.4. Results analysis and statistical tests

In the previous section, we reported the results of different resolu-
tion methods for each hypothesis. The analysis of these results allows us
to draw conclusions about the assumptions and the resolution methods
used. Before analyzing the impacts of different levels of flexibility, we
need to reassure the reliability of the resolution methods used.

For each hypothesis, we compared the results of PLNE with the
matheuristic and MILP&WS. The results show that matheuristics can
find good solutions. The performance of our method is reflected in the
correct selection of different steps. Even if the studied problem has
different costs and capacity constraints, our iterative method can easily
prove its effectiveness. It is simple to adjust to solve all the hypotheses
under different scenarios size, knowing that each hypothesis has its own
characteristic. The memorization process inspired by the tabu search
used in our method allows us to avoid finding solutions that have
already been exploited. This technique allows us to escape from local
optimums to speed up the resolution. That is why our matheuristic
algorithm was able to find a good solution faster than Cplex. We
also implement two transportation cost approximation mechanisms
schedule where we switch between them in order to diversify the
search.

The matheuristics presented in this work can be adapted and applied
to many variants of integrated transportation and production manage-
ment problems that consider distribution as part of the decision-making
process. Moreover, we can add the energy constraints in the production
process by integrating the problem of selection of energy sources.

One of the main contributions of this paper is the study of the
impact of different flexibility levels given to decisions related to produc-
tion, transportation and procurement activities. The analyses indicate
that the total cost improves with the addition of flexibility to the
different decisions but with a longer resolution time. On the other hand,
with some flexibility given only to decisions on quantities purchased,
we can guarantee that the production and routing schedules are not
impacted by the changes in scenarios. Based on this managerial study
we can conclude that giving flexibility only to purchasing decisions is
the fastest and easiest to implement in the industry.

The analysis of results indicate that the difficulty of solving in-
stances increases with node size and different flexibility levels. To
statistically determine if there is a relationship between CPU times,
11
deviation and node size for each hypothesis, a correlation analysis is
applied.

Table 9 shows the results of the correlation tests. The correlation co-
efficients indicate that the CPU times are perfectly related in a positive
linear sense with the nodes size (coefficient = 0,986) and the gap given
by CPLEX (coefficient = 0,718). This point is already highlighted in the
previous analyses which show that the size of the instances increases
the difficulty of solving the problem. This implies a higher CPU times
and a higher gap. To know how the increase of the size of the node
and the gap affects the CPU times a multiple linear regression model
is realized (Table 10). The coefficient of determination (R-squared =
0,979) indicates that the nodes size and the gap significantly contribute
to 98% of the variability of the CPU times.

Another observation made from the analysis of results is that the
matheuristic and MILP&WS have almost the same performance. To test
whether the difference in performance between the proposed methods
is significant, ANOVA Tests and Dunn’s pairwise Post-Hoc Tests are
applied. We consider instances with 5 scenarios where we get feasible
solutions almost the time.

We examine the hypothesis H0 versus H1 as follows:

• H0: The methods have identical performances.
• H1: At least one method is different.

The results from the ANOVA Tests (Table 11) reject H0 with a p-
value = 0.002 that is lower than the level of significance = 0.05. So at
least one method is more performed from the other. Thus, we applied
Dunn’s pairwise Post-Hoc Tests (Table 12). The results prove that a
significant difference exists between the MILP&WS and the MILP with a
p-value = 0.004. However, the MILP&WS and the matheuristic have the
same performances with a p-value higher than the level of significance.

6. Conclusion

In this paper, we study a dynamic disassembly assembly routing
problem with returns under uncertain yields. This problem integrates
simultaneous assembly and disassembly operations for the first time
with vehicle routing to minimize various aggregate costs. This work
allows the recovery of products at the end of their life by collecting and
reusing their components. Especially, it considers the stochastic nature
of yields to help managers in optimizing their supply chain network
based on available yields scenarios.

Initially, we formulate the SDARP-R as a minimax mixed-integer
linear programming model with a two-commodity flow formulation.
Secondly, an efficient matheuristic is developed based on a variable
neighborhood search algorithm and a MILP. In the first phase of the
solution algorithm, a lot-sizing problem is solved with approximate
routing costs. The second phase handles the dates approximate routing
costs. The third phase presents a procedure to recalculate the true worst
cost. The model and the matheuristic are tested on a set of instances
derived from the literature and modified accordingly.

We started our experimentation by adding flexibility to the decisions
considered in our problem. As a result, we found that adding flexibility
in procurement, which includes the quantities purchased and routing
decisions, improve the total cost. However, allowing flexibility only to
purchasing decisions is most practical to the industry.

We compare the performance of the MILP with the matheuristic
algorithm and the MILP&WS. According to the results, the matheuristic
approach is faster than the other methods and provides good quality
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Table A.13
Results for instances under 5 scenarios for 𝐻2.

Nodes Instance MILP Mat MILP&WS

Obj CPU (s) Gap (%) Obj CPU (s) Obj CPU (s) Gap (%)

14

1 15 890.09 77.20 0.0 15 890.09 8 15 890.09 82 0.0
2 19 923.87 36.21 0.0 19 923.87 52 19 923.87 74 0.0
3 17 218.15 6.70 0.0 17 218.15 9 17 218.15 14 0.0
4 18 590.95 75.66 0.0 18 590.95 10 18 590.95 67 0.0
5 14 348.89 135.83 0.0 14 348.89 9 14 348.89 161 0.0
6 16 419.54 13.03 0.0 16 419.54 13 16 419.54 24 0.0
7 25 596.61 114.74 0.0 25 596.61 45 25 596.61 169 0.0
8 16 198.59 35.16 0.0 16 198.59 31 16 198.59 59 0.0
9 24 556.68 204.29 0.0 24 556.68 17 24 556.68 173 0.0
10 19 835.72 190.51 0.0 19 835.72 13 19 835.72 80 0.0
11 9940.03 63.35 0.0 9940.03 6 9940.03 92 0.0
12 14 530.81 178.39 0.0 14 530.81 28 14 530.81 212 0.0
13 13 574.99 2084.08 0.0 13 574.99 31 13 574.99 116 0.0
14 14 396.17 106.45 0.0 14 396.17 9 14 396.17 99 0.0
15 16 391.04 204.48 0.0 16 391.04 40 16 391.04 115 0.0
16 15 903.75 23.30 0.0 15 903.75 18 15 903.75 170 0.0
17 10 690.69 32.26 0.0 10 690.69 8 10 690.69 35 0.0
18 11 808.19 45.86 0.0 11 808.19 42 11 808.19 78 0.0
19 15 222.69 20.90 0.0 15 222.69 5 15 222.69 25 0.0
20 10 600.58 50.06 0.0 10 600.58 8 10 600.58 81 0.0

50

1 67 697.96 3600 53.7 31 984.11 304 31 681.17 3904 1.1
2 38 262.00 3600 20.3 31 137.17 178 30 960.20 3778 1.5
3 45 523.74 3600 16.9 38 098.20 71 38 070.75 3671 0.6
4 42 752.64 3600 21.4 33 714.79 98 33 661.21 3698 0.2
5 251 852.95 3600 82.6 43 990.34 951 43 852.06 4551 0.2
6 42 021.93 3600 6.0 40 047.79 40 39 859.68 3640 0.9
7 155 986.38 3600 82.9 27 029.76 57 26 904.26 3657 0.9
8 51 307.91 3600 20.0 41 446.58 137 41 217.81 3737 0.4
9 58 893.32 3600 18.2 49 094.89 83 48 682.31 3683 1.0
10 329 672.55 3600 85.3 48 682.54 72 48 537.80 3672 0.4
Table A.14
Results for instances under 5 scenarios for 𝐻3.

Nodes Instance MILP Mat MILP&WS

Obj CPU (s) Gap (%) Obj CPU (s) Obj CPU (s) Gap (%)

14

1 15 886.72 3600 0.2 15 885.04 21 15 851.07 832 0.0
2 19 740.79 3600 0.2 19 740.79 18 19 700.85 136 0.0
3 16 987.57 75 0.0 16 987.57 21 16 987.57 87 0.0
4 18 321.36 1088 0.0 18 321.36 17 18 321.36 82 0.0
5 14 330.78 1217 0.0 14 330.78 14 14 330.42 402 0.0
6 16 359.54 2017 0.0 16 359.54 136 16 357.93 204 0.0
7 25 601.59 3600 0.5 25 555.55 115 25 475.37 520 0.0
8 15 852.70 3600 0.1 15 837.55 58 15 837.55 246 0.0
9 24 457.25 3600 0.8 24 318.38 26 24 268.61 755 0.0
10 19 825.86 1455 0.0 19 827.72 38 19 825.86 118 0.0
11 9914.63 827 0.0 9914.63 78 9914.63 632 0.0
12 14 564.27 3600 1.6 14 356.38 135 14 334.7 547 0.0
13 13 599.92 3600 2.5 13 330.36 96 13 259.72 200 0.0
14 14 298.02 3600 0.4 14 295.95 61 14 240.95 410 0.0
15 16 387.27 3600 1.7 16 187.27 54 16 108.93 109 0.0
16 15 416.78 1256 0.0 15 416.78 55 15 416.78 800 0.0
17 10 690.69 2038 0.0 10 690.69 88 10 690.69 892 0.0
18 11 599.33 3491 0.0 11 600.28 113 11 599.33 921 0.0
19 15 221.18 2030 0.0 15 222.69 77 15 221.18 363 0.0
20 10 345.74 2154 0.0 10 345.74 67 10 345.74 467 0.0

50

1 9 473 842.14 3600 99.7 31 922.27 330 30 880.27 3930 0.6
2 42 969.51 3600 29.3 31 120.25 236 30 946.70 3836 1.8
3 45 535.31 3600 17.5 37 719.66 65 37 700.95 3665 0.3
4 42 919.54 3600 30.0 31 213.96 236 30 360.96 3836 1.1
5 19 658 169.33 3600 99.8 42 643.16 421 41 423.63 4021 1.9
6 4 747 777.25 3600 99.2 39 918.52 86 38 812.32 3686 0.6
7 3 960 572.04 3600 99.3 26 880.29 136 26 880.29 3736 1.4
8 54 826.89 3600 28.4 40 044.14 216 40 044.14 3816 1.9
9 7 595 305.48 3600 99.4 48 203.29 154 47 723.29 3754 2.5
10 2 802 442.90 3600 98.3 47 429.04 416 47 126.83 4016 0.9
solutions on the small and medium test instances. However, for all hy-
pothesis, the difficulty of solving the problem increases with 14 nodes
under 100 scenarios. For these instances, the matheuristic algorithm
presents acceptable results but with a CPU time how reach 2543 s
12
because of the additional difficulty induced by capacity constraints in
the assembly and disassembly model that is solved with MILP. One of
the main perspectives is to develop a fast and effective heuristic for
the assembly and disassembly phase. The MILP&WS is more efficient
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Table A.15
Results for instances under 5 scenarios for 𝐻4.

Nodes Instance MILP Mat MILP&WS

Obj CPU (s) Gap (%) Obj CPU (s) Obj CPU (s) Gap (%)

14

1 15 886.72 3600 0.2 15 851.07 50 15 851.07 353 0.0
2 19 700.85 2830 0.0 19 700.85 37 19 700.85 338 0.0
3 16 987.57 52 0.0 16 987.57 11 16 987.57 136 0.0
4 18 301.36 546 0.0 18 301.12 20 18 301.12 267 0.0
5 14 330.78 426 0.0 14 330.78 27 14 330.78 621 0.0
6 16 357.93 1676 0.0 16 357.93 16 16 357.93 441 0.0
7 25 555.55 3600 0.3 25 475.37 31 25 475.37 951 0.0
8 15 837.55 864 0.0 15 837.55 16 15 837.55 565 0.0
9 24 357.25 3600 0.8 24 157.25 35 24 157.25 380 0.0
10 19 825.86 1594 0.0 19 825.86 68 19 825.86 831 0.0
11 9914.63 1442 0.0 9914.63 54 9914.63 599 0.0
12 14 520.12 3600 1.3 14 334.7 141 14 334.7 357 0.0
13 13 372.58 3600 0.9 13 259.72 104 13 259.72 400 0.0
14 14 240.95 2393 0.0 14 240.95 16 14 240.95 305 0.0
15 16 387.27 3600 1.7 16 108.93 136 16 108.93 336 0.0
16 15 416.78 702 0.0 15 416.78 19 15 416.78 238 0.0
17 10 690.69 3099 0.0 10 690.69 118 10 690.69 619 0.0
18 11 599.33 1131 0.0 11 599.33 68 11 599.33 368 0.0
19 15 221.18 912 0.0 15 221.18 105 15 221.18 186 0.0
20 10 420.95 3600 0.7 10 345.74 104 10 345.74 962 0.0

50

1 1 160 964.09 3600 97.4 31 176.45 104 31 016.06 3704 1.2
2 – 3600 – 31 050.07 1014 30 623.07 4614 5.0
3 62 567.11 3600 41.2 37 126.56 102 37 072.01 3702 0.8
4 43 878.50 3600 32.7 30 192.58 242 30 041.98 3842 1.7
5 3 021 857.05 3600 98.7 42 184.22 943 41 936.50 4543 4.2
6 4 673 638.09 3600 99.2 39 146.62 313 38 440.62 3913 5.7
7 36 197.70 3600 29.0 26 419.41 62 26 067.38 3662 1.4
8 4 504 898.81 3600 99.1 40 011.24 1036 39 965.59 4636 2.0
9 68 861.18 3600 33.3 48 137.93 945 48 062.04 4545 4.4
10 68 927.42 3600 33.2 47 376.46 109 47 211.54 3709 2.5

(–): No feasible solution is available.
Table A.16
Results for instances under 50 scenarios for 𝐻2.

Nodes Instance MILP Mat MILP&WS

Obj CPU (s) Gap (%) Obj CPU (s) Obj CPU (s) Gap (%)

14

1 19 981.20 3600 16.0 16 810.11 87 16 789.55 3687 0.0
2 20 160.15 3600 1.1 19 958.04 117 19 947.95 3717 0.0
3 19 815.76 3600 2.0 19 422.62 100 19 419.75 3700 0.0
4 20 922.23 3600 5.7 19 732.99 278 19 732.39 3878 0.0
5 16 651.64 3600 2.9 16 206.04 101 16 162.89 3701 0.0
6 16 837.82 3600 1.1 17 016.33 176 16 648.23 3776 0.0
7 28 135.71 3600 7.8 25 988.82 274 25 944.12 3874 0.0
8 17 725.01 3600 7.9 16 486.59 41 16 331.32 3641 0.0
9 28 173.56 3600 12.2 24 883.25 475 24 724.45 4075 0.0
10 25 540.05 3600 18.1 20 925.04 29 20 919.64 3629 0.0
11 13 768.58 3600 13.7 11 892.68 452 11 883.57 4052 0.0
12 17 347.99 3600 13.5 15 043.23 667 15 038.14 4267 0.2
13 15 580.06 3600 4.9 14 849.77 758 14 823.62 4358 0.0
14 15 642.96 3600 7.8 14 503.18 205 14 427.61 3805 0.0
15 20 218.13 3600 12.7 17 738.99 84 17 669.94 3684 0.1
16 16 112.66 3600 0.8 15 976.35 948 15 976.63 4548 0.0
17 12 666.45 3600 5.1 12 019.96 96 12 014.62 3696 0.0
18 13 277.56 3600 3.7 12 786.89 842 12 786.98 4442 0.0
19 17 437.40 3600 7.6 16 216.15 94 16 176.73 3694 0.4
20 11 205.24 3600 3.6 10 907.54 146 10 800.43 3746 0.0

50

1 – – – 32 976.54 975 32 851.54 4575 4.4
2 – – – 32 816.51 912 32 757.05 4512 1.7
3 – – – 41 237.59 451 41 062.72 4051 1.3
4 – – – 34 856.67 543 34 712.58 4143 2.4
5 – – – 45 168.79 342 44 946.98 3942 1.5
6 – – – 40 836.47 943 40 775.47 4543 2.1
7 – – – 49 716.71 862 47 624.37 4462 6.0
8 – – – 51 156.71 461 50 325.16 4061 9.8
9 – – – 51 856.84 346 51 629.49 3946 6.3
10 – – – 50 852.76 456 50 803.25 4056 0.2

(–): No feasible solution is available.
13
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Table A.17
Results for instances under 50 scenarios for 𝐻3.

Nodes Instance MILP Mat MILP&WS

Obj CPU (s) Gap (%) Obj CPU (s) Obj CPU (s) Gap (%)

14

1 70 865.29 3600 77.4 16 048.64 245 16 048.64 3845 0.0
2 28 452.41 3600 29.9 19 977.91 342 19 937.21 3942 0.0
3 22 095.58 3600 12.6 19 320.40 83 19 320.40 3683 0.0
4 28 304.94 3600 31.3 19 444.64 145 19 444.64 3745 0.0
5 66 314.95 3600 77.0 15 254.37 256 15 254.37 3856 0.0
6 1 783 766.85 3600 99.1 16 646.44 256 16 646.44 3856 0.0
7 1 497 790.91 3600 98.3 26 002.91 259 25 942.87 3859 0.8
8 32 921.71 3600 51.1 16 114.29 259 16 114.29 3859 0.0
9 1 702 665.52 3600 98.6 24 572.13 123 24 495.43 3723 0.1
10 1 387 092.73 3600 98.5 20 803.57 562 20 716.75 4162 0.5
11 191 392.61 3600 94.7 10 224.36 287 10 224.36 3887 0.0
12 953 120.43 3600 98.5 14 667.05 216 14 667.05 3816 0.0
13 887 125.25 3600 98.4 14 367.02 356 14 367.02 3956 0.0
14 28 139.80 3600 49.2 14 304.21 945 14 304.21 4545 0.0
15 1 687 268.28 3600 99.0 16 285.45 961 16 285.45 4561 0.0
16 211 019.89 3600 92.5 15 884.45 923 15 884.45 4523 0.0
17 137 249.10 3600 91.3 11 995.51 945 11 995.51 4545 0.0
18 22 741.81 3600 47.6 11 921.23 985 11 921.23 4585 0.0
19 864 089.85 3600 98.2 15 622.96 425 15 491.76 4025 0.1
20 2 318 123.09 3600 99.5 10 518.24 612 10 518.24 4212 0.0

50

1 – – – 32 546.02 1845 32 201.53 5445 3.4
2 – – – 32 469.31 1256 32 469.31 4856 5.7
3 – – – 40 436.28 845 40 436.28 4445 2.1
4 – – – 31 107.30 975 31 107.30 4575 3.1
5 – – – 42 523.38 1024 42 523.38 4624 0.7
6 – – – 40 654.88 983 40 654.88 4583 3.7
7 – – – 46 001.11 2095 45 601.11 5695 6.2
8 – – – 50 019.67 945 48 319.67 4545 6.1
9 – – – 51 521.22 1023 51 521.22 4623 6.2
10 – – – 50 774.46 821 50 094.46 4421 1.5

(–): No feasible solution is available.
Table A.18
Results for instances under 50 scenarios for 𝐻4.

Nodes Instance MILP Mat MILP&WS

Obj CPU (s) Gap (%) Obj CPU (s) Obj CPU (s) Gap (%)

14

1 1 523 511.73 3600 99.0 16 036.79 213 15 902.38 3813 0.1
2 25 825.30 3600 23.5 19 876.21 218 19 804.15 3818 0.2
3 19 630.64 3600 1.6 19 319.23 546 19 306.79 4146 0.0
4 28 217.27 3600 32.7 19 364.57 256 19 064.73 3856 0.4
5 23 991.19 3600 38.0 15 250.46 216 15 249.42 3816 2.5
6 1 484 584.59 3600 98.9 16 645.44 549 16 550.98 4149 0.1
7 2 214 403.04 3600 98.8 25 808.50 146 25 670.38 3746 0.4
8 151 479.71 3600 89.4 16 104.29 246 16 101.44 3846 0.1
9 669 054.46 3600 96.4 24 568.04 145 24 411.28 3745 0.1
10 1 453 002.07 3600 98.6 20 794.58 124 20 704.68 3724 1.2
11 180 677.73 3600 94.4 10 154.78 543 10 154.78 4143 0.4
12 604 089.37 3600 97.6 14 667.54 246 14 604.29 3846 0.4
13 1 592 994.91 3600 99.1 14 353.71 126 14 345.52 3726 1.5
14 19 963.72 3600 28.3 14 304.21 156 14 304.21 3756 0.0
15 377 252.44 3600 95.7 16 285.45 245 16 285.45 3845 0.0
16 194 161.11 3600 91.9 15 808.36 346 15 802.24 3946 0.4
17 784 427.03 3600 98.5 11 624.74 246 11 528.35 3846 0.9
18 17 710.48 3600 33.0 11 887.37 124 11 881.55 3724 0.2
19 659 633.94 3600 97.7 15 606.79 156 15 469.38 3756 0.7
20 23 244.64 3600 54.9 10 518.24 213 10 490.35 3813 0.1

50

1 – – – 32 109.70 2136 32 109.70 5736 3.7
2 – – – 31 270.85 1346 31 270.85 4946 2.2
3 – – – 39 203.20 421 38 203.84 4021 3.4
4 – – – 31 093.32 1563 30 403.15 5163 1.4
5 – – – 42 452.49 1096 42 449.02 4696 0.7
6 – – – 39 453.15 945 39 453.15 4545 3.1
7 – – – 45 960.13 2456 44 660.13 6056 4.4
8 – – – 49 168.5974 3509 48 168.5974 7109 7.10
9 – – – 50 179.28 2043 50 179.28 5643 7.80
10 – – – 49 463.05 645 49 463.05 4245 6.6

(–): No feasible solution is available.
14
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Table A.19
Results for instances under 100 scenarios for 𝐻2.

Nodes Instance MILP Mat MILP&WS

Obj CPU (s) Gap (%) Obj CPU (s) Obj CPU (s) Gap (%)

14

1 32 963.61 3600 45.9 17 923.44 346 17 913.44 3946 0.5
2 21 195.66 3600 1.7 20 908.39 245 20 908.39 3845 0.3
3 29 653.60 3600 34.4 19 475.97 265 19 475.97 3865 0.1
4 22 168.39 3600 10.3 19 977.04 258 19 977.04 3858 0.5
5 26 218.75 3600 23.9 19 961.08 125 19 961.08 3725 0.0
6 28 726.26 3600 35.1 18 812.61 345 18 812.61 3945 0.9
7 27 076.02 3600 0.2 27 935.16 148 27 935.16 3748 3.3
8 20 133.75 3600 11.5 18 099.85 945 18 099.85 4545 1.5
9 26 269.65 3600 1.4 25 962.97 965 25 962.97 4565 0.2
10 22 305.28 3600 1.1 22 368.54 245 22 368.54 3845 1.4
11 13 871.17 3600 13.8 12 051.59 695 12 051.59 4295 0.8
12 17 373.00 3600 3.6 16 939.00 412 16 839.00 4012 0.3
13 16 836.11 3600 8.6 15 599.21 695 15 599.21 4295 1.3
14 21 172.63 3600 22.4 16 648.25 258 16 619.25 3858 1.1
15 20 872.63 3600 12.7 18 396.97 145 18 396.97 3745 0.9
16 17 377.05 3600 4.3 17 033.36 945 17 033.36 4545 2.4
17 14 181.41 3600 9.2 13 096.15 236 13 096.15 3836 1.7
18 14 131.76 3600 4.4 13 607.31 645 13 607.31 4245 0.7
19 17 548.13 3600 6.4 16 569.94 664 16 569.94 4264 0.9
20 17 548.13 3600 19.2 14 356.90 975 14 256.90 4575 0.5
Table A.20
Results for instances under 100 scenarios for 𝐻3.

Nodes Instance MILP Mat MILP&WS

Obj CPU (s) Gap (%) Obj CPU (s) Obj CPU (s) Gap (%)

14

1 61 688.27 3600 72.5 17 007.13 156 17 007.13 3756 0.3
2 68 987.08 3600 69.9 21 065.52 365 21 065.52 3965 1.3
3 30 815.67 3600 37.0 19 426.09 456 19 426.09 4056 0.0
4 67 085.86 3600 71.0 19 509.90 145 19 509.90 3745 0.3
5 139 632.76 3600 85.9 20 333.18 698 20 333.18 4298 3.3
6 18 761 854.73 3600 99.9 18 556.09 385 18 556.09 3985 0.2
7 – 3600 – 27 645.21 269 27 645.21 3869 4.2
8 288 375.28 3600 94.1 17 405.98 1245 17 405.98 4845 2.8
9 – 3600 – 26 241.73 1096 26 241.73 4696 2.8
10 – 3600 – 22 157.82 698 22 057.82 4298 2.8
11 199 062.40 3600 94.8 11 079.00 546 11 079.00 4146 5.8
12 – 3600 – 16 541.64 875 16 541.64 4475 5.6
13 1 195 781.71 3600 98.8 15 886.47 985 15 186.47 4585 3.4
14 715 131.12 3600 97.7 16 120.98 746 16 120.98 4346 0.1
15 – 3600 – 18 064.08 698 18 064.08 4298 4.8
16 1 488 487.83 3600 98.9 17 414.25 783 17 414.25 4383 4.7
17 1 553 425.20 3600 99.2 13 551.01 1069 13 551.01 4669 6.3
18 1 169 954.50 3600 99.0 12 902.32 1369 12 902.32 4969 6.0
19 – 3600 – 16 383.89 542 16 383.89 4142 2.4
20 – 3600 – 14 733.95 975 14 733.95 4575 3.9

(–): No feasible solution is available.
in terms of solution quality but is time consuming because it calcu-
lated as the sum of the CPU time for finding the initial solution plus
the CPU time of the resolution with MILP. Probably, improving the
quality of the initial solution can reduce the CPU time taken by the
MILP&WS.

Finally, we propose further research directions from both problem
nd method perspectives. In one direction, multi-type of products can
e considered as a future research area. In another direction, consid-
ring other realistic parameters of the model to be stochastic such as
he random customers’ demands, would be another interesting area
or future research. Besides, this study considers only a robust model,
owever, stochastic programming can be proposed. Future studies can
ddress this issue by developing for example a two-stage stochastic
rogramming to solve the studied problem. Except the methods used in
ur paper, some of the most representative computational intelligence
lgorithms can be used like elephant herding optimization (Li et al.,
020), Harris hawks optimization (Zhong & Li, 2022), Runge Kutta
ptimizer (Ahmadianfar et al., 2021).
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Table A.21
Results for instances under 100 scenarios for 𝐻4.

Nodes Instance MILP Mat MILP&WS

Obj CPU (s) Gap (%) Obj CPU (s) Obj CPU (s) Gap (%)

14

1 1 473 808.51 3600 98.9 16 456.11 546 16 456.11 4146 3.3
2 1 107 279.01 3600 98.2 20 374.21 256 20 374.21 3856 2.8
3 – 3600 – 20 334.74 257 – 3857 –
4 3 721 999.09 3600 99.5 20 790.32 356 20 090.32 4056 5.1
5 2 228 707.39 3600 99.2 18 578.96 254 18 578.96 3854 4.1
6 6 392 087.54 3600 99.7 17 199.65 256 17 199.65 3856 1.4
7 4 204 361.40 3600 99.4 28 021.55 259 28 021.55 3859 5.9
8 1 268 604.69 3600 98.7 17 680.55 785 17 680.55 4385 4.5
9 6 329 571.80 3600 99.6 25 243.16 236 25 243.16 3836 1.4
10 5 155 764.18 3600 99.6 22 007.08 945 22 007.08 4545 4.5
11 194 259.04 3600 94.7 10 479.87 967 10 479.87 4567 1.1
12 4 149 682.17 3600 99.6 15 639.39 587 15 639.39 4187 1.4
13 – 3600 – 15 386.09 326 – 3926 –
14 657 702.72 3600 97.7 15 528.55 169 15 528.55 3769 3.7
15 1 657 291.26 3600 99.0 17 023.82 754 17 023.82 4354 2.4
16 – 3600 – 17 056.05 961 – 4561 –
17 36 658.87 3600 66.7 13 015.87 2543 13 015.87 6143 6.2
18 502 154.35 3600 97.6 12 360.13 1026 12 360.13 4626 3.9
19 – 3600 – 16 723.98 1087 16 723.98 4687 6.5
20 160 107.62 3600 92.5 12 495.52 1324 12 405.52 4924 3.1

(–): No feasible solution is available.
C

C

C

Table A.22
Different deviations for all scenarios.

Nodes Instance 5 50 100

Dev (%) Dev1 (%) Dev (%) Dev1 (%) Dev (%) Dev1 (%)

14

1 0.25 0.25 4.62 5.58 5.06 8.86
2 1.13 1.13 0.05 0.73 −0.75 2.62
3 1.36 1.36 0.51 0.59 0.26 –
4 1.47 1.58 1.48 3.50 2.39 −0.56
5 0.13 0.13 5.96 5.99 −1.83 7.44
6 0.38 0.38 0.01 0.59 1.38 9.38
7 0.48 0.48 0.00 1.07 1.05 −0.31
8 2.28 2.28 1.35 1.43 3.99 2.37
9 1.19 1.65 0.93 1.28 −1.06 2.85
10 0.05 0.05 0.98 1.04 1.41 1.64
11 0.26 0.26 16.23 17.02 8.78 15.00
12 1.37 1.37 2.53 2.97 1.80 7.67
13 2.38 2.38 3.18 3.33 2.72 –
14 1.09 1.09 0.86 0.86 3.09 7.02
15 1.75 1.75 8.50 8.50 1.84 8.07
16 3.16 3.16 0.58 1.10 −2.19 –
17 0.00 0.00 0.16 4.22 −3.36 0.62
18 1.80 1.80 7.26 7.62 5.46 10.09
19 0.01 0.01 4.42 4.57 1.14 −0.92
20 2.46 2.46 2.68 2.96 −3.24 14.92

50

1 2.59 2.14 2.02 2.31 – –
2 0.04 1.10 0.89 4.75 – –
3 0.98 2.69 1.55 7.48 – –
4 10.87 12.05 11.59 14.17 – –
5 5.86 4.57 5.70 5.88 – –
6 2.70 3.69 0.30 3.35 – –
7 0.09 3.21 4.44 6.64 – –
8 2.93 3.13 4.15 4.48 – –
9 2.01 1.29 0.21 2.89 – –
10 2.99 2.81 1.41 2.71 – –

(–): No feasible solution is available.

Appendix

See Tables A.13–A.22.
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