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Abstract: In this contribution we explore the possibilities and limitations of symbolic regression
as an alternative to the approaches currently used to characterize the dispersive behavior of a given
material. To this end, we make use of genetic programming to retrieve, from either ellipsometric
or spectral data, closed-form expressions that model the optical properties of the materials studied.
In a first stage we consider transparent dielectrics for our numerical experiments. Next we
increase the complexity of the problem and consider absorbing dielectrics, which not only require
the use of complex functions to model their dielectric function, but also imply a supplementary
constraint imposed by the verification of the causality principle.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Although the idea of using optimization techniques [1] or neural networks [2] for the solution
of inverse problems in optics is not new, the advent of high performance computing facilities
and the recent advances in the field of Artificial Intelligence (AI) have led to a significant
number of works concerning the application of these computational tools in Nano-Optics and
Nanotechnologies [3–5]. In particular, the characterization of the optical properties of metals
[6–8], absorbing dielectrics [9], biological structures [10–13] and more recently metamaterials
[14] has specially attracted the attention of different research groups. Those references share a
common thread, they make use of experimentally measured or numerically generated data to
search for the parameters of an established well known dispersion model, whose algebraic form
can be more or less complex depending on the materials to be characterized.

An alternative way to treat the particular inverse problem just described could be by means
of Symbolic Regression (SR), a special regression scheme that can identify and predict the
underlying mathematical relation between the elements of a data set. The main difference between
AI-based approaches and SR is that the latter can be considered as a "glass-box" that provides a
closed-form expression that represents the model of the problem studied. The former, on the
other hand, can be seen as a "black box" that finds the relationship between the different elements
of the data set but it does not provide any closed expression [14,15]. The potential of SR has been
illustrated within the fields of dynamical systems [16,17], nonlinear optics [18,19] or in material
sciences [20], to cite but few examples. Furthermore, in a recent work Udrescu and Tegmark
[21] made use of a modified SR scheme to recover 100 equations from the Feynman Lectures on
Physics [22] and they claimed an improvement of the state-of-the-art success rate from 15 to
90%. Notwithstanding the spectacular results reported in the references just cited, none of them
treats complex functions, which are unavoidable when characterizing, for example, the dispersive
behavior of absorbing dielectrics, metals or the materials that compose a multilayer biological
structure structure. It seems thus natural to explore the possibilities and limitations of SR within
this context.
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The structure of this contribution is as follows: In Sect. 2, we outline the operating principles
of SR. In Sect. 3, we first set the numerical parameters required for our simulations. Next, we
present some typical results obtained when we search for the dispersion models of transparent
and absorbing materials from either ellipsometric or spectral data. In the case of complex
dispersion models we include the additional constraint of causality in our SR scheme. We give
our concluding remarks in Sect. 4.

2. Symbolic regression

Although several numerical implementations of SR have been published over past decades, it is
possible to distinguish two main approaches of completely different natures. One makes use of
a population-based heuristic method known as Genetic Programming (GP) [23]. An example
of the other approach, based on deterministic arguments, is known as Fast Function Extraction
(FFX) [24].

Throughout this work we make use of a GP-based SR. Although the basic principles of GP
can be found elsewhere [23,25], for the sake of completeness we will briefly describe them in the
following paragraphs.

The first step in the SR process is, as illustrated in Fig. 1, the random generation of a set of
functions fSR that represent the physical model to be retrieved. The size µ of this initial population
remains constant throughout the optimization loop. Also, the algebraic form of its elements is
defined by the allowed operations that may be performed by each function fSR.

Fig. 1. Flux diagram with parameters of SR.

With reference to Fig. 1, the next step in the optimization loop is the variation of the elements in
the initial population. This is done by means of the recombination and mutation operations, which
depend on the so called hyper-parameters. These involve different probabilities of performing the
genetic operations as, for example, the crossover probability Pcr, the subtree mutation probability
Psm, the hoist mutation probability Phm and the point mutation probability Ppm [25]. Another
important hyper-parameter, known as the parsimony pressure pco, serves to control bloat, a
well known and not yet completely solved problem of GP that is defined as the uncontrolled
growth of the average size of an individual in the population [26]. It is noteworthy to say that the
hyper-parameters must be set before the starting of the regression process and that there is not
a fixed rule to establish them. However, as it will be mentioned in the next section, there are
typical values well suited for the problems studied in this contribution.
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As shown in Fig. 1, the next stage in the optimization loop is the evaluation of each modified
element. Although there exist several metrics, often the elements are evaluated trough the
computation of the Euclidean norm, which measures the closeness between the target data yT
and the prediction ySR obtained with the SR-based model. The Euclidean norm associates an
objective or fitness value to each element. Only those elements in the population with a low
fitness value will be selected for the next iteration of the optimization loop. Thus, when the fitness
value is close to zero one may consider, at least in principle, that the closed-form expression that
models the target data has been found.

To illustrate the operating principles of SR, we consider as reference the Nguyen’s fifth
benchmark function [27]

fT (x) = sin(x2) cos(x) − 1, (1)

which in the current example serves also to generate the target data depicted with blue crosses in
Fig. 2(b).

(a) (b)

Fig. 2. (a) A tree representation of the retrieved expression from GPLearn. (b) Comparison
between the target and the predicted data computed through Nguyen F5 benchmark function
(blue crosses) and Eq. (3) (solid red line), respectively. The related correlation coefficient is
R2 = 1.

Throughout this work we employ a GP-based SR numerical implementation known as GPLearn.
This is an open source library coded in Python [28] that provides a closed-form expression in
LISP format [29]

sub(mul(sin(mul(X0, X0)), cos(X0)), div(X0, X0)) (2)

that can be written as
fSR(X0) = sin(X02) cos(X0) − X0/X0, (3)

and has a tree representation, as illustrated in Fig. 2(a). It is noteworthy to say that, in the context
of GP, the length of an expression is defined as the number of functional and terminal nodes in
the tree. Consequently, it is not necessarily related with the number of terms in the expression
retrieved. In the current example, the length is 11 and not 2 as one might intuitively think. Also,
it is evident that the term X0/X0 in the expression (3), known as intron, can be written as 1.

In Fig. 2(b) we compare the target data yT = fT (x) with the data ySR = fSR(x), depicted with a
solid red line, computed by means of the expression retrieved.
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Although it was not necessary for this simple example, in certain cases the closed-form
expressions found require further simplification. This can be achieved by means of Sympy,
another open source Python library devoted to symbolic calculus [30].

It is important to mention that to talk about local or global convergence within the frame of SR
is not a trivial task. This is due to the fact that there is not a one-to-one relationship between the
closed-form expressions found and their fitness value. It means that two expressions of different
lengths and algebraic forms are equivalent. This can be an advantage for problems where there
is not a well-established model, and one can choose the most suitable expression. However,
in problems where the objective is to retrieve a known function, global convergence would be
achieved only if all the expressions obtained from the search for the optimum, starting from
different initial states, had the same length, the same fitness value and the same algebraic form as
the searched function. However, this result is impossible to obtain because of the random nature
of the recombination and mutation operators.

3. Results

At this stage some examples are convenient to assess the performance of our SR scheme when
used to model the optical properties of a given material. Throughout this section, as illustrated
in Fig. 3, we consider two case studies. In the first we search for the real dielectric function of
a transparent dielectric. In the second case we extend the applicability of the SR scheme for
the retrieval of the complex dielectric function of an absorbing dielectric. It is noteworthy to
mention that in the presence of absorption the problem becomes even more difficult. This is
because the SR scheme has to handle complex functions that must verify the causality principle.

As illustrated with a blue block in Fig. 3, regardless of the material, we consider two possible
inputs to the regression scheme. The first are previously published ellipsometric data. To keep
the complexity of the problem into a manageable level, the second possible input is spectral
reflectance data generated when a flat interface, separating two semi-infinite media, is illuminated
from vacuum with a plane wave at normal incidence. We assume that the transmission region is
filled with a homogeneous, linear, isotropic and non-magnetic medium with complex refractive
index ñ(ω) = n(ω) + iκ(ω). Then, the input reflectance spectrum is given by the equation [31]

R(ω) =
|︁|︁|︁|︁1 − ñ(ω)
1 + ñ(ω)

|︁|︁|︁|︁2 . (4)

Input Output

Symbolic Regression
“glass-box”

Ellipsometric 
or

Spectral data
(Reflectance, 

Transmittance, ...)

Closed-form 
expression of

( )

Case study I: 
Transparent 
dielectrics

Case study II: 
Absorbing 
dielectrics

Fig. 3. Schematic of the application of SR to retrieve the dispersion model of a given
material.

In any of the cases, the expected output, depicted with a red block in Fig. 3, must be a
closed-form expression that models the dielectric function of a given material.

The results of extensive numerical experiments led us to set g = 100 as the number of iterations
in the optimization loop. This parameter served also as termination criterion. Furthermore, the
size of the population was set to µ = 5000. The GP hyper-parameters were set to Pcr = 0.7 for
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the crossover probability, Psm = 0.1 for the sub-tree mutation probability, Phm = 0.1 for the hoist
mutation probability, Ppm = 0.1 for the point mutation probability and pco = 0.001 − 0.1 for the
parsimony coefficient. Moreover, we defined the functions set fs = {′+′,′ −′,′ ∗′,′ /′,′ ix′}, where
i =

√
−1 and x is a real variable. The operation ix is used in the regression scheme only when

searching for complex dielectric functions. Also, in each of our numerical experiments we search
for the optimal solution from 50 different random initial states.

Throughout the numerical experiments conducted in this section the fitness function or lost
error to be minimized is

f =
∥︁∥︁FT − FSR∥︁∥︁

2 , (5)

where ∥. . .∥2 is the Euclidean norm, FT may represent the target ellipsometric or spectral data,
respectively ϵ or R, from where the dispersion model should be retrieved and FSR are the data
predicted by means of the closed-form expression found through the SR process.

In order to make an objective comparison between the target data and the prediction by the
closed-expression retrieved, throughout this section we compute the mean absolute relative error
(MARE), which has an intuitive interpretation in terms of the relative error [32]

MARE(y, yT ) =
1
n

n∑︂
i=1

|︁|︁|︁|︁|︁yi − yT
i

yT
i

|︁|︁|︁|︁|︁ . (6)

3.1. Retrieval of dispersion models of transparent dielectrics

In this first example, the target ellipsometric data were generated with Sellmeier’s formula for
SiO2 [33,34]

ϵT (λ) = 1 +
0.6961663λ2

λ2 − 0.06840432 +
0.4079426λ2

λ2 − 0.11624142 +
0.8974794λ2

λ2 − 9.8961612 . (7)

We show, in Fig. 4(a), the results obtained when we searched for the dielectric function
from different initial states. Each point in the cloud represents the best closed-form expression
obtained through the SR process. The x and the y axes respectively denote the length and the
corresponding fitness value. The former is related to the algebraic form of the expression. The
latter is a measure of the closeness between the target and the predicted data.

Fig. 4. Optimal solutions retrieved through the SR scheme from 50 different initial states.
The pink diamonds represent the closed-form expression found considering the same initial
state when the target data were generated: (a) with Eq. (7) and (b) with Eqs. (4) and (7).

As illustrated in Fig. 4(a), there is not a unique solution and it is then possible to find different
closed-form expressions that model the material’s dielectric function. However, throughout our
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numerical experiments we found that best predictions are those of solutions with a moderate
fitness and length values. A typical result of this situation is illustrated with the pink diamond in
Fig. 4(a), whose related closed-form expression is given by

ϵSR
e (λ) = 2.44838 +

−2.277λ4 + 0.6815λ3 − 0.14648λ2

7.227λ4 − 2.922λ3 + 1.06193λ2 − 0.1787λ + 0.038407
. (8)

At a first sight, the algebraic form of Eq. (8) does not respect the parsimony principle and
seems to be a direct consequence of bloat. In order to discuss this result, let us make use of
Sellmeier’s equation with two terms [35]

ϵ(λ) = 1 +
2∑︂

i=1

Biλ
2

λ2 − Ci
, (9)

where Bi and Ci represent real coefficients. After some straightforward algebraic manipulations
we arrive to the equation

ϵ(λ) = 1 +
β1λ

4 − β2λ
2

λ4 − β3λ2 + β4
, (10)

with β1 = B1 + B2, β2 = B1C2 + B2C1, β3 = C1 + C2 and β4 = C1C2.
Although the algebraic forms of Eqs. (9) and (10) are different and the physical interpretation

of the second is less evident, both equations provide the same information. On this basis, a
comparison of Eqs. (10) and (8) suggests that the algebraic form of Eq. (8) is not a failure of the
SR scheme but just that it is unable to render the closed-form expression written in a compact
form. Furthermore, this result can be interpreted as if the SR would have learned, during the
optimization process, that it was necessary to add several corrective terms to the dispersion model
to obtain an accurate fit. Then, contrary to common practice, increasing the parsimony pressure
to search for a compact expression would have prevented the SR scheme from converging to the
best solution in the current case.

In Fig. 5(a) we respectively depict with blue dots and red upside-down triangles the target
dielectric function, computed with Eq. (7), and the dielectric function predicted by Eq. (8).
Also, by means of Eq. (6) we find, MARE

[︁
ϵSR
e , ϵT

]︁
= 0.001 which confirms the acceptable

agreement observed. Furthermore, in Fig. 5(b) we compare the target reflectance spectrum with
the spectrum computed using Eq. (4). As expected , the agreement between the two curves is
evident and corroborates that the retrieved closed-form expression found accurately models the
dielectric function of SiO2.

In order to explore further the capabilities of SR, we repeat the search for the dielectric function
keeping the same conditions considered in the previous example as well as the same 50 initial
states. However, this time F = R in Eq. (5) and the input to the SR scheme is a reflectance
spectrum computed using Eq. (4) assuming ℑ{ñ(ω)} = 0.

The results obtained from spectral information are shown in Fig. 4(b). A somewhat expected
result is the lack of uniqueness of the solution. Also, the scales of the axes differ significantly
from those in Fig. 4(a). An interesting feature is that the solutions are not spread but rather
confined to regions defined by specific lengths. The pink diamond in the figure corresponds to
the same initial state shown in Fig. 4(a) and its related closed-form expression is

ϵSR
R (λ) = 2.046666 +

0.051
λ

. (11)

The significant difference between the algebraic forms of Eq. (11) and Eqs. (7) and (8) illustrates
the effect of the input data on the SR-scheme. In this case the fitness value is related to the
reflectance spectra and not, at least directly, to the dielectric function retrieved. Thus the problem
is reduced to find the best fit between the spectra irrespective of whether the algebraic form of
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Fig. 5. (a) Target dielectric function generated with Eq. (7) (blue dotted line), the dielectric
functions predicted by Eq. (8) (red upside down triangles) and Eq. (11) (yellow triangles).
(b) Target spectrum (blue dots) and reflectance spectrum computed using Eqs. (11) and (4)
(yellow triangles).

the expression found is that of the target dielectric function. This statement is supported by the
comparison between the data predicted by Eq. (11), yellow triangles in Fig. 5(a), and the target
data and confirmed by a MARE

[︁
ϵSR
R , ϵT

]︁
= 0.004. Furthermore, a visual comparison between

the target spectrum and that generated considering Eq. (11) in Eq. (4) is shown in Fig. 5(b). The
agreement between both spectra is also confirmed by a MARE

[︁
RSR

R , RT ]︁ = 0.010.

3.2. Retrieval of dispersion models of absorbing dielectrics

The results obtained in the previous paragraphs are encouraging and show the potential of SR
for the case of lossless dielectrics. It seems thus natural to assess the performance of SR when
absorbing dielectrics are considered. It is convenient to note that in this case the dielectric
function is complex and this fact makes the search for the closed-form expression more difficult.
This is because the real and the imaginary parts are not independent from each other but they must
be related through Kramers-Kronig (K-K) relations in order to satisfy the principle of causality.

In this section, we proceed as we did for the case of transparent dielectrics and look for the
dielectric function from 50 different initial states. Also, we keep the same hyper parameters of
the SR-scheme. Moreover, once the closed-form expression has been found we compute K-K
relations numerically using the implementation described in [36].

We consider Lorentz model for MgO with two oscillators as the target dielectric function [31]

ϵT (ω) = 3.01 +
6.6 ∗ 4012

(4012 − ω2) − i7.62ω
+

0.045 ∗ 6402

(6402 − ω2) − i102.4ω
, (12)

where ω is in cm−1 and, in this example, ω ∈ [200, 800]. That is, the frequencies considered are
not in the visible range as it was the case for transparent dielectrics but in the far-infrared.

The results obtained when the dielectric function is searched from different initial states are
shown in Fig. 6(a). The high fitness values together with the long lengths of several solutions
give a clear indication of the complexity of the problem. As in the case of transparent dielectrics,
the solution is not unique. However, those solutions with a low fitness value seem to be the best
suited to model the complex dielectric function. The closed-form expression related to the pink
diamond in Fig. 6(a) is given by

ϵSR
e (ω) = 4.046632 +

ω2 − 2ω + 1
A

, (13)
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with

A = (2.696582ω5 + 2.030805ω4 − 3.172874ω3 + 3.790689ω2 − 5.725337ω + 0.277823)

−i(0.836455ω5 − 0.862450ω4 − 8.980376ω3 + 1.498696ω2).

Fig. 6. Optimal solutions retrieved through the SR scheme from 50 different initial states.
The pink diamonds represent the closed-form expression found considering the same initial
state when the target data were generated: (a) with Eq. (12) and (b) with Eqs. (4) and (12).

The algebraic form of Eq. (13) could be considered again as a failure of the SR scheme.
However, this result can explained by a reasoning similar to that used in the case of transparent
dielectrics. That is, if we develop Eq. (12) we arrive to

ϵT (ω) = 3.01 +
(−1.066422ω2 + 0.006645) − iω0.013325

(64.251919ω4 − 0.564148ω2 + 0.001) + i(0.876444ω3 − 0.002399ω)
. (14)

A visual inspection of Eqs. (13) and (14) suggests a behavior similar to that observed for
lossless dielectrics. Putting aside the somehow expected differences between the terms in the
fractions’ numerator and denominator, the SR-scheme retrieves a complex closed-form expression
whose algebraic form is similar to that of the target dielectric function. The predictions of
Eq. (13) are shown in Fig. (7). For consistency we use the same markers as in the case of
lossless dielectrics and the target data are depicted with blue dots, whereas the data predicted
from ellipsometric and spectral data are respectively depicted with red upside-down and yellow
triangles.

With reference to Fig. 7(a), the visual agreement between the target and predicted imaginary
parts is confirmed by a MARE[ϵiSR

e , ϵiT ] = 0.482. This behavior is also observed in Fig. 7(b),
where the predicted and the target real parts are similar and they give a MARE[ϵrSR

e , ϵrT ] = 0.525.
In Fig. 8(c), we compare the reflectance spectrum computed using the data predicted by

Eq. (14) in Eq. (4). Excepting the slight differences between 600 and 700 nm, both spectra
present a similar behavior.

With reference to Fig. 7(b), the green diamonds illustrate the result obtained when ℜ{ϵKK
e (ω)}

is computed from ℑ{ϵSR(ω)} through K-K relations. The comparison between ℜ{ϵKK
e } and

ℜ{ϵT } leads to MARE[ℜ{ϵKK
e },ℜ{ϵT }] = 2.588 and this low error value suggests that dielectric

function found is casual. Although not shown here for space reasons, the results of computing the
imaginary part from the real part predicted by SR seem to confirm the causality of the dispersion
model retrieved.

To close this section, we search for the dispersion model using spectral information as input to
the SR-scheme. The results of 50 different realisations of the SR-scheme are shown in Fig. 6(b),
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Fig. 7. (a) Imaginary part and (b) real part of MgO (blue dotted line) compared with the
dielectric functions predicted by SR using ellipsometric data (red upside down triangles).
The respective real parts in (b) computed through K-K relations are depicted with green
diamonds.

Fig. 8. (a) Imaginary part and (b) real part of MgO (blue dotted line) compared with the
dielectric functions predicted by the expressions retrieved using reflectance data (yellow
triangles). The respective real parts in (b) computed through K-K relations are depicted
with purple stars. In (c) we compare target reflectance spectrum (blue dotted line) with the
spectra predicted by SR using ellipsometric data (upside down triangles) and reflectance
data (yellow triangles).
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where the pink diamond corresponds to the same initial state considered when the search was
done using ellipsometric data. As expected, there is a significant effect of the input data on the
fitness value and the length of the solutions found. This can be also seen writing the closed-form
expression related to the pink diamond that has the form

ϵSR
R (ω) =

−0.287023ω + 0.046929 + i(0.304372ω3 + 0.941903ω2 − 9.623235ω + 0.865766)
ω2 − 0.201880ω + 0.008484 − i(3.238ω2 + 1.923933ω − 0.103801)

.

(15)
The difference between the algebraic forms of Eqs. (12) and (15) is due, on the one hand, to

the fact that the relationship between the real and imaginary parts of the dielectric function is lost
because the squared modulus of the reflection coefficient is used. Also, when spectral information
is taken as input to the SR, the problem is reduced to finding the best fit between the target and
the predicted spectra regardless of the algebraic form of the dielectric function that generates the
latter. The direct consequence of this situation is that the SR-scheme will find a complex function
that, as illustrated in Figs. 8(a) and (b) accurately predicts the real and imaginary parts of the
target dielectric function without resembling their algebraic forms. Furthermore, the reflectance
spectrum generated with the expression retrieved agrees with the target one, as shown in Fig. 8(c).

The result obtained from computing ℜ{ϵKK
R (ω)} through K-K relations is depicted in Fig. 8(b)

with purple stars and the related MARE value is 2.644. The agreement between ℜ{ϵT (ω)}
and ℜ{ϵKK

R (ω)}, together with the fairly low MARE, suggest that the SR scheme was able to
find a causal model, although its algebraic form is not that of the target dielectric function.
This situation could be useful for the resolution of certain problems where there is not an well
established model.

4. Conclusions

In this contribution, which can be considered as a proof of concept, we illustrate how SR can be a
suitable computational tool to model the optical properties of transparent and absorbing dielectric
materials. The numerical evidence shows that, in addition to not requiring any assumptions
about the algebraic form of the model being searched, this machine learning glass-box can treat
complex functions, a possibility that to our knowledge had not been explored so much before.
This fact led to find closed-form expressions that verify K-K relations. This is something that
recent works making use of approaches based on AI, to describe the causal of behavior different
materials, are not yet able to do. Thus, SR could complement the versatility of the approaches
just mentioned.

Another finding of this work is that a closed expression with a complicated algebraic form does
not necessarily imply a failure of the regression scheme or a violation of the parsimony principle.
The results of our numerical experiments suggest that SR favors the minimization of the lost
error (fitness function) rather than to keep the algebraic complexity low. That is, the regression
scheme finds an equivalent but not simplified version of the mathematical model. While it is true
that this fact could make difficult the physical interpretation of the expression found, the search
for a compact expression depends on the problem studied. Thus, increasing systematically the
parsimony pressure may limit the performance of SR and lead it to non-optimal solutions.

Although the results of this work are encouraging, further work is still required. The use of a
multi-objective approach could contribute to simultaneously reduce the algebraic complexity of
the expressions to be retrieved and the lost error. Furthermore, in this exploratory work we only
considered reflectance spectra at normal incidence. Taking into account transmitance information,
oblique incidence and the polarization could contribute to constrain the search space.

This contribution opens the possibility to use SR in problems where there are not well
established models or the existing ones are not well suited. Moreover, there are not visible
limitations to extend its application to more complex cases involving, for example, anisotropic
materials or multilayer structures.
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