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ABSTRACT
This paper presents the general goals of Horizon 2020 project UN-
COVER,whose overall purpose is to close the gap between academic
work and operational needs in the fields of data-hiding. While digi-
tal data-hiding is a relatively new area of research, our motivation
in this project has been rooted in the growing gap between the
academic community and the operational needs of a "real-life" sce-
nario of object inspection in order to UNCOVER the presence of
data secretly hidden.

As well as an oversight into the structure of UNCOVER, our
paper presents an empirical study on the impact of specifically
training a detection method for a given data-hiding scheme, the so-
called Stego-Source Mismatch, as an example of unexplored issues
that raises important and mostly ignored consequences within the
operational context the UNCOVER project targets.
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1 INTRODUCTION
Over recent years, steganography (the practice of concealing secret
information within nonsecret media) has seen a rise in criminal
use. At present, steganographic methods and technologies present
a major challenge to Law Enforcement Agencies (LEAs) due to a
lack of resources and procedures for investigations or structured
operations. In order to carry out a full investigation into criminal
and terrorist activities, LEAs currently use available (commercial)
tools to detect hidden information in collected digital media. How-
ever, these tools detect only a limited number of hiding methods
and lag a decade behind the scientific state-of-the-art. UNCOVER -
a joint international initiative funded by the European Commission
under the Horizon 2020 Research & Innovation program - aims to
address these issues and further develop steganographic tools in
order to establish a tailored toolkit for LEAs, as discussed in Section
3.

In this paper, we shall first provide a general background on
steganography. This will then lead into a discussion about recent
advances with state-of-the-art steganalysis and the LEAs current
status in relation to the fields (Section 2). Following this, we shall
discuss in more detail the structure, objectives and impacts of UN-
COVER (Section 3) and present some early results obtained through
the UNCOVER framework (Sections 4 & 5).

2 STEGANOGRAPHY & STEGANALYSIS
The term “steganography” comes from the Greek words stegos and
graphia, meaning covered writing. Closely linked to cryptography
(hidden writing), the difference between the two can be defined:
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Figure 1: Basic steganographic model

Definition 2.1. In the context of retaining message confiden-
tiality, Cryptography hides the meaning of a message, whereas
Steganography hides the presence of a message.

Imagine a scenario where a sender has sent a secret message to
a receiver encoded using a cryptographic scheme. Should a third
party find the encrypted message, they would be able to deduce
that the message was intentionally scrambled and thus this would
raise suspicion. The secret message would then be open to being
investigated and compromised. On the contrary, if the secret mes-
sage is hidden within another, “innocent” file the intercepting party
would not suspect the transfer of the message in the first place -
therefore adding a considerable security feature whenever com-
munication between parties could be considered compromising
(note that the message can also be encrypted before hidden in the
“innocent” media).

A basic steganographic model is depicted in Figure 1. A sender
combines a cover file (“innocent” media) and a secret message with
a secret key (used for embedding the message) in a steganographic
encoder to create a stego-object. The cover file could be, for example,
an image [1, 2], or a video [3], or nearly anything that can be
digitally sent from one person to another [4]. The secret key is
shared between sender and receiver by some external means and
the stego-object is sent through the communication channel for the
receiver to obtain. Once obtained, the receiver uses the key with a
steganographic decoder to retrieve the secret message.

If an idealistic steganographic model were to be considered, the
model would follow a cryptographic principle defined by 19th-
century cryptographer, Kerckhoffs, stating: the security of a crypto-
graphic system should depend only on the secret key [5]. Therefore
meaning that a method of secretly encoding and transmitting in-
formation should remain secure even if everyone knows how it
works. In fact, only the knowledge of the secret key will lead to a
successful recovery of the secret message. In “real-life” applications
steganographic models will unlikely follow Kerckhoffs’ principle,
which gives rise to the reverse process of steganography, steganaly-
sis. Steganalysis aims at attacking the security of the steganographic
scheme used to hide information by intercepting possible stego-
objects through the communication channel between sender and
receiver, as depicted in Figure 1. Generally speaking, the purpose
of steganalysis is not to retrieve the message being sent, but rather

simply confirm the existence of a secret message (this is due to the
fact that the main goal of steganography lies in hiding the very
existence of the secret message and its detection compromises the
security of steganographic scheme). However, once detected, the
stego-object can then be passed to the relevant party for a deeper
analysis in order to attempt the retrieval of the embedding algo-
rithm used, stego-secret key, message length or the message itself.

2.1 State-of-the-art steganalysis: data-hiding
competitions

Recent advances in the field of steganalysis can be attributed to
the launching of various data-hiding challenges. In this section,
we provide insight into how the “real-life” test case scenario of
steganalysis came to be explored.

2.1.1 BOWS: Break Our Watermarking System. Steganog-
raphy and digital watermarking both aim to hide one piece of
information (the message) inside another medium (the cover). Gen-
erally speaking, the difference between the two can be understood
as [6]:

Definition 2.2. Steganography “undetectably” alters a cover:
the message is an asset. The cover means to protect the message.
Watermarking “imperceptibly” alters a work to embed a message
about that work: the cover is an asset. In this context, the message
means to protect the cover.

It should be noted, however, that there are other applications of
watermarking, such as assessing the effectiveness of audio trans-
mission [7]. One of the most recognizable forms of visible water-
marking can be seen if one were, for example, to use a free-version
of a commercially available editing software to alter the content
(such as an image). In this situation, it is common practice that the
software would allow one to edit the image with no issues, but then
overlay their logo on the edited image once the user decides to save
or download their final result (see Figure 2). The goal here is to
protect the features available in the paid-version of the software
and thus encourage the user to purchase their product. This process
can also be applied invisibly to protect content: a good example of
which is within the audio of cinema and blue-ray disks to protect
the content from being pirated [8]. The decoder is embedded in the
blue-ray player and if it detects the watermark while playing the
disk it will conclude the disk is a pirated copy and thus stop the
playback.

The European Network of Excellence in Cryptology (ECRYPT)
supported the data-hiding community in launching two watermark-
ing challenges, BOWS [9] and BOWS-2 [10] (Break Our Watermark-
ing System), between 2005 and 2007. The purpose of the challenges
was twofold: to assess the robustness and security of different wa-
termarking systems, and to push research progress in the field
overall. Both challenges were popular and saw the derivation of
many novel approaches toward breaking watermarking systems.
The success of BOWS and BOWS-2 henceforth inspired a drive to-
wards assessing the robustness of steganographic systems, leading
to a new challenge: BOSS (Break Our Steganographic System) [11].

2.1.2 BOSS: Break Our Steganographic System. One of the
most successful approaches towards steganography in recent years
is content-adaptive steganography, [12]:
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(a) original image (b) visibly watermarked image

Figure 2: Example of visible watermarking on an image
after using the free-version of a commercially available

editing software

Definition 2.3. Content-adaptive steganography refers to a
steganographic algorithm in which the payload is embedded while
minimizing a relative distortion function. Therefore, this enables
the steganographer to evaluate any distortion which may occur as
a result of embedding changes.

An important motivation for the first steganalysis challenge,
BOSS, was to evaluate the effectiveness of content-adaptive steganog-
raphy for improving the empirical security of ensuing stego-media.
To achieve this, in 2010 a new spatial-domain (meaning the pixel
representation of an image) content-adaptive algorithm (HUGO -
Highly Undetectable steGO) was designed for the creation of the
competition’s stego-objects.

BOSS advanced the field of steganalysis by forcing participants
to deal with many new challenging problems [13–15]. While the
competition was a success, it highlighted a significant problem for
the practical applications of steganalyzers based on machine learn-
ing algorithms. The problem is known as Cover-Source Mismatch
and will be discussed in section 2.2.

2.1.3 ALASKA. The BOSS challenge provided a large reference
dataset for the steganalysis community and, while advances in the
research community can be attributed to the use of this dataset, the
specificity of content within the BOSS database was highlighted,
[16]. BOSS bases were generated from RAW images captured with
only 7 different cameras (in 2010, only high-end cameras allowed
the exportation of RAW images) and those RAW files were de-
veloped into grayscale images, all using the same development
pipeline - notably including a harsh resizing of the images to obtain
a final image size of 512 × 512 pixels. This observation motivated
the organisation of the ALASKA steganalysis challenges. Papers
describing these challenges provide details regarding how academic
research up until this point had been focused on image datasets
with such specific features (grayscale, uncompressed, downscaled
with a very high resizing factor, as with the BOSS database) [17, 18].
Additionally, steganalysis research works are often designed to
benchmark steganography (as the BOSS challenge benchmarked
the HUGO algorithm) which leads to the use of a worst-case sce-
nario (following Kerckhoff’s principle of cryptography, see Section
2.). This means that the steganalysist is provided with all informa-
tion about the image generation process, the embedding rate, and

the steganographic scheme - which is an unrealistic situation in
“real-life” applications, such as operational forensic steganalysis.
The goal of the ALASKA challenge was to move the application
of steganalysis from a purely experimental environment to a more
practical “real-life” environment. In particular, the image dataset
was much larger (80, 000 images) and the images were developed in
JPEG format using a combination of several different image process-
ing algorithms to mimic what can be found in a more operational
context. More details can be found in the aforementioned papers
describing the challenges, [17, 18].

2.2 Cover-Source Mismatch
As mentioned in Section 2.1.2., the success of the BOSS challenge in
2011 highlighted a significant problem for practical applications of
steganalyzers based on machine-learning: this problem is known as
Cover-Source Mismatch. A thorough analysis of the Cover-Source
Mismatch problem can be found in the papers[19, 20] which analyse
the origin of image source heterogeneity and how this can affect the
accuracy of steganalysis. However, for the readability of the present
paper, we briefly recall the context of Cover-SourceMismatch (CSM)
and some essential definitions below.

Definition 2.4. A source can be defined as an acquisition device
(e.g. a camera), combined with a set of algorithms that generate
cover contents such that for a given semantic content, the succes-
sion of acquisitions forms a stationary signal.

Definition 2.5. The term Cover-Source Mismatch (CSM) refers
to the fact that when using two different sources for training a
steganalysis method (usually based on a machine-learning algo-
rithm), the learning outcome differs significantly while the set of
embedding parameters (same algorithms, same embedding rate)
and steganalysis method are the same.

One can note that CSM was already pointed out as one of the
main barriers for the application of steganalysis under operational
conditions in the review paper [21]. However, over almost one
decade this problem has remained very seldom studied by the aca-
demic community.

2.3 Status in law enforcement
The modern world comes hand-in-hand with the rise in use of the
internet. In parallel, a significant increase in the use of stegano-
graphic methods for criminal activities has been observed. This
is attributed to the increased availability of steganographic tools,
which have been made available as source code packages. Con-
sequently, perpetrators can easily and selectively pick, adapt and
combine information hiding tools for their criminal activities. An
initial survey of the Criminal Use of Information Hiding (CUIng)
initiative on the Europol Platform for Experts (EPE) revealed that
evidence of steganography has been found in a wide variety of types
of crime including child pornography [22], industrial espionage,
criminal attacks on enterprises, credit card fraud & skimming, sys-
tem intrusion, and backdoor injection & delivery methods [23].

Due to a lack of resources and procedures for structured opera-
tions, tackling steganographic technologies is a particularly chal-
lenging problem for LEAs - a problem which is heightened by the
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increasing amount of digital evidence that LEAs and judicial part-
ners have to handle. At present, LEAs use commercially-available
tools to detect hidden information in digital media. These tools
detect only a limited number of hiding methods, are slow, and of-
fer no indication of confidence. Moreover, many commercial tools
lag a decade behind the scientific state-of-the-art. The members of
UNCOVER are committed to bridging these gaps and thus substan-
tially increasing the technological autonomy of LEAs in the field of
digital media steganalysis.

3 UNCOVER
TheUNCOVER consortium consists of 22multidisciplinary partners
from 9 different European countries and is coordinated by the
Royal Military Academy of Brussels, Belgium. The well-balanced
consortium comprises of:

• LEAs
• Leading researchers from universities and other research
institutions

• Partners in private and industrial sectors

3.1 Objectives & Impacts
With the goal of outperforming available steganalysis solutions
in terms of performance, usability, operational needs, privacy pro-
tection, and chain-of-custody considerations, UNCOVER partners
have joined forces to achieve the following eight objectives:

(1) Conduct a detailed analysis of the needs and requirements
of LEAs for detecting and investigating steganography.

(2) Consolidate relevant information about existing stegano-
graphic tools and centralise this information in an intuitive
database for LEAs.

(3) Improve existing methods for operational steganalysis in
digital media workflows.

(4) Implement a flexible investigation platform.
(5) Demonstrate the steganographic detection capabilities with

realistic test cases and scenarios delivered by the LEAs.
(6) Analyse the requirements in order to make the obtained

results admissible in European court rules.
(7) Provide a comprehensive training program for LEAs and

forensic institutes by providing in-house training.
(8) Validate the project results with practitioners, disseminate

the outcomes, and prepare an exploitation plan.

A schematic overview of how UNCOVER will achieve these
objectives is shown in Figure 3. By taking into account the require-
ments of LEAs at every step of this methodology, foreseen impacts
of the previously defined objectives can be summarised:

• The LEAs and forensics institutes have the ability to detect
and extract information hidden in different types of digital
media.

• The UNCOVER tools will make the work of the LEAs and
forensics institutes more efficient by speeding-up the pro-
cessing time and reliability.

• UNCOVER will establish a network for cooperation, raising
awareness, tracking progress, sharing information, working
jointly, and training the staff.

• UNCOVER will contribute to the reduction or prevention
of threats emanating from criminals and terrorists using
steganography.

• UNCOVER will work towards a harmonisation of informa-
tion formats at the international level, the improved cross-
border acceptance and an exchange of court-proof evidence.

3.2 A General Issue: Fighting the Cover-Source
Mismatch (CSM)

One of the main goals of the ALASKA challenge was to draw atten-
tion from the academic community to practical problems and sci-
entific barriers that make the application of research works hardly
usable in “real-life” scenarios [17, 18]. In this context, several facts
were presented to show the difference between academic uses and
practical needs, the most striking of which are the use of uncom-
pressed and grayscale images, and the use of a reference dataset
(namely BOSS [11]) in which all images are processed in the very
same fashion (thus increasing so the CSM as reported in [16]).

The UNCOVER project aims at continuing this effort towards re-
ducing the gap between academic works and practical applications,
and the ALASKA challenge mostly focused on problems related
with the CSM using content-adaptive state-of-the-art algorithms
from the academic community. On the opposite, we have chosen, in
this paper, to detail the almost unexplored problem of “Stego-Source
Mismatch”. For the sake of clarity, let us state that in the present
study this term does not include the problem of recognizing the
exact embedding which has been studied, see for instances [24, 25]
and the references therein. In this paper the “Stego-Source Mismatch”
is defined:

Definition 3.1. The Stego-Source Mismatch is the sensitivity
of a steganalysis method with respect to the steganographic algo-
rithm. In practice, this “sensitivity” is measured by how effectively
a steganalysis method specifically designed for the detection of
one specific steganography software is able to detect traces left by
another, different tool.

Note that this problem can be also closely related to the so-
called “universal steganalysis” which aims at detecting any embed-
ding scheme and not targeting only one. Additionally, it should be
noted that our study also aims at focusing on practical embedding
software: meaning that (as all current state-of-the-art steganalysis
methods are assessed against state-of-the-art embedding schemes)
there is a considerable amount of software already in existence and
readily available on the internet which are yet to be investigated.

This specific topic exemplifies the discrepancy between the re-
search works and the needs of LEAs. On the one hand, LEAs will
likely face stego-objects generated with steganography software
downloaded from the internet however on the other hand, research
in steganalysis focuses on the most advanced stego-tools. One could
naively assume that when aiming to detect a state-of-the-art stego-
tool such research should also detect stego-objects generated with
less secure methods (such as those downloaded from the internet).
However, it has been shown in the context of Cover-Source Mis-
match that the transferability of steganlaysis remains a challenge
and that, in fact, this approach of using state-of-the-art steganalysis
on less-secure steganography methods is sub-optimal. The vast
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Figure 3: Schematic overview of UNCOVER
The methodological framework encompasses the following main steps: analysis of existing steganographic tools; development, training and theoretical

validation of state-of-the-art detectors and tools; integration of tools into a user-friendly platform; field validation of UNCOVER solutions; and continuous
feedback cycle.

majority of a stego-software available on the internet has been de-
signed below the state-of-the-art benchmark and hence generates
stego-objects leaving specific traces which can be easily detected;
in this context, focusing on an extremely secure embedding scheme
from the academic community would lead not to consider such
traces despite their high practical interest.

4 EXPERIMENTAL SETUP: STUDY OF THE
STEGO-SOURCE MISMATCH

As this is an empirical study, we shall start by presenting the exper-
imental setup. The image dataset chosen was the ALASKA colour
image dataset [17, 18] (which can be downloaded from kaggle or
from the website https://alaska.utt.fr) and, for reproducibility, the
embedding algorithms used for the ALASKA challenge were also
chosen for this experiment (namely J-UNIWARD [26], UERD [27]
and J-MiPOD [28] - note that the latter was improved in [29]). Due
to the fact that the steganography algorithms / software selected
for this experiment operate directly on the JPEG compressed im-
ages, we opted to use the version of the dataset compressed with
different JPEG quality factors (using libjpeg version 8 used on our
server within pillow package python3). Thus, a total of 120, 000
images were used for training (60, 000 cover-images and 60, 000
stego-images) with another 20, 000 for validation and 20, 000 for
testing.

Many different stego-software available on the internet were
explored but it was concluded that only three would be used. For
the purpose of studying the "Stego-Source" mismatch we needed to
select embedding software that does not use any pre-processing,
such as recompression or resizing, as these would create a strong

“Cover-Source” Mismatch. To this end we focused on JPEG com-
pressed images as those are, by far, the most widely used and hence
would appear as the least suspicious cover. Furthermore, many
software also re-compress the image during the embedding pro-
cess, leading to two problems: first, when using a JPEG image as a
cover, the recompression gives birth to a double compression which
can be easily detected (raising suspicion about this image); second,
when starting from an uncompressed image (note: the use of an
uncompressed image as an original cover is not common in real life
due to, for example, difficulty transferring the larger size of cover)
the software may rely on a specific JPEG implementation and we do
not want to detect this peculiar side-effect. As a final requirement,
it was important to use software that can be used in command-line
mode (and not only throughout the use of a graphical interface) so
that we can generate large stego-image datasets.

Combining the aforementioned requirements and focusing on
software both easily usable and available, three software were se-
lected: outguess, steghide and JPhide (some of them are directly
available from the main Linux repositories); note that F5 also fit the
requirements, but was unable to be used with our server because
(even operating in the command-line mode) a graphical interface is
required and thus prevents the generation of a large dataset on our
server.

In order to comply with the usual practices in the academic
community, themessage length (or payload) depends on the number
of non-zero AC DCT coefficients of each and every JPEG cover
image. Note that for the dataset from the ALASKA2 steganalysis
challenge, the payload was not constant (average of 0.4 bpnzAC, or
0.4 bits of secret message per non-zero AC coefficient). For the stego-
software, a considerably smaller payload of 0.001 bpnzAC was used,

https://www.kaggle.com/c/alaska2-image-steganalysis
https://alaska.utt.fr
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as this prevents us from falling into a trivial detection problem from
the point-of-view of operational steganalysis. Additionally, three
JPEG compression rates were used - defined by the standardized
JPEG quantization matrix corresponding to quality factor (QF) 100,
95 and 75 respectively.

For the steganalysis itself, the Deep Learning model Efficient-
B3 [30] was shown to be particularly effective during the ALASKA2
steganalysis challenge and so was also selected for this experiment.
We have used a curriculum learning technique which consists, for
the application in steganalysis, iteratively training the network
starting with a higher payload in order to ease the convergence of
the training process. In all our experimentation, we have used the
pytorch implementation of EfficientNet with adamW optimizer over
NVIDIA RTX 3090 GPU, allowing us to use a batch size of 24 images;
we started with a learning rate of 0.001 and a scheduler “Reduce
on plateau” with reduction factor 0.5 and patience parameter 1
while the number of epochs is set to 15 (after curriculum during
which we used only one single epoch).

5 RESULTS
As the main goal of the present paper is to empirically study the
Stego-Source Mismatch with a special attention devoted to real em-
bedding software, we go straight to the point by looking at Tables 1-
2. The two tables provide the same results over images compressed
with JPEG standard at 𝑄𝐹 = 75, table 1, and at 𝑄𝐹 = 95, table 2.

The tables present the total probability of error, under equal
prior, usually denoted 𝑃𝐸 ; the rows correspond to the embedding
software used in the testing set and, on the opposite, the columns
represent the embeddingmethod used for the training set (including
validation). To be more specific, we would like to emphasize that
the code used a seeded-pseudo random number generator such
that the training, validation and testing sets are always the same
regardless of the steganographic embedding.

There are two obvious results one can conclude from Tables 1-2.
First, looking at the “diagonal” leftmost part of those tables (with
a light-grey background), when the embedding schemes match
during the training and testing sets, the embedding software we
have chosen are rather simple to detect, while those are amongst the
most advanced readily available from the internet. More specifically,
it seems thatOutguess leaves some specific traces that a well-trained
deep learning model can efficiently detect. Similarly, JP-hide also
seems very easily detectable for low QF but surprisingly more
secure for 𝑄𝐹 = 95. The third software, Steghide, is the most secure
among the three embedding software we used; we would like to
recall that for an easier comparison we used the same and very low
embedding rate for all those embedding software of 0.001 bpnzAC
(bits per non-zero AC coefficients) which actually correspond to a
few dozens of bytes embedded in most of the case for 𝑄𝐹 = 75.

The second striking observation from Tables 1-2 is that the de-
tection accuracy depends very much on the specific stego-source
used during the training phase. Looking at the rows of those ta-
bles one can see that, when the training is carried out using a
different embedding technique, the detection accuracy is very sig-
nificantly reduced; in fact, in the vast majority of cases the Stego-
Source Mismatch leads to a detection comparable to a random
guess. Interestingly, one can note that this observation always
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Figure 4: ROC Curve obtained with EfficientNet-B3 over im-
age compressed at QF=75

holds true regardless of the testing algorithms. Using either the
most-advanced embedding algorithms from the academic commu-
nity (namely, J-MiPOD, J-UNIWARD or UERD) or using similar
software for training does not seem to make the transferability of
steganalysis straightforward detection or even doubtful.

To end with a more positive result, it is of interest to the au-
thors to further investigate the detection results of real-life stegano-
graphic algorithms using EfficientNet-B3, which is among the state-
of-the-art for steganalysis. The UNCOVER project focuses on prac-
tical applications of steganalysis for Law Enforcement Agencies
and, while the Stego-Source Mismatch is an important aspect, the
possibility to achieve a very reliable detection (with a very low
false-positive rate) also constitutes another major barrier in this
direction.

To this end, Figures 4-5 present the so-called ROC1 curves, plot-
ting the True-positive detection rate as a function of the False-
positive rate. Note that for readability those figures are drawn using
a logarithmic scale on the x-axis in order to feature low-positive
rates. Clearly Figures 4-5 show that Outguess embedding software
can be detected very reliably. This may be due to a specific signature,
and more investigation to understand this phenomenon is needed.
Similarly, JPHide can also be detected with high reliability with
both 𝑄𝐹 = 75 and 𝑄𝐹 = 95 since the True-Positive rate remains as
high 50% for a very low False-Positive rate of 10−4. In practice, this
seems very much acceptable as this means detecting “only” half of
the stego-objects but almost never erroneously raising an alarm
for a cover falsely classified as a stego. Note that in this specific
case we used a total of 20, 000 images (cover and stego) which can
explain large variation for False-positive rates as low as 10−4 as
those actually correspond to a few samples. However, one can note
that, on the opposite, the detection of Steghide with a deep learn-
ing method “as it” seems out of reach and that a specific training
method focusing on low false-positive rates is badly needed in that
case.

1ROC stands for Receiver Operational Characteristics ; this not so explicit name is due
to the fact that such a plot was originally developed for operators of radar receivers.
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Embedding algorithm used for: Training phase
JPhide Outguess Steghide J-MiPOD UERD J-UNIWARD

Testing phase
JPHide 2.37% 49.87% 48.24% 46.37% 48.26% 27.01%
Outguess 49.13% 0.16% 42.31% 49.04% 29.73% 37.45%
Steghide 49.69% 49.89% 10.55% 44.71% 49.72% 49.04%

Table 1: Empirical results on steganalysis efficiency (in 𝑃𝐸 ) depending on the training embedding algorithm for 𝑄𝐹 = 75.

Embedding algorithm used for: Training phase
JPhide Outguess Steghide J-MiPOD UERD J-UNIWARD

Testing phase
JPHide 15.56% 49.80% 49.84% 48.69% 49.47% 44.58%
Outguess 48.57% 0.14% 41.08% 47.82% 23.46% 38.24%
Steghide 49.80% 49.66% 22.76% 46.04% 49.83% 49.10%

Table 2: Empirical results on steganalysis efficiency (in 𝑃𝐸 ) depending on the training embedding algorithm for 𝑄𝐹 = 95.
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Figure 5: ROC Curve obtained with EfficientNet-B3 over im-
age compressed at 𝑄𝐹 = 95

6 FUTUREWORK
Themain goal of the experimental results provided in this paper is to
show the reader that in the fields of steganography and steganalysis,
many practical issues of major importance are seldom studied by
the academic community. We have also explained that some of
those major barriers can only be lifted with scientific advances and
not only engineering work. This has been exemplified in the present
paper by the problem of the extremely large heterogeneity of cover-
and stego-objects one has to deal with in a practical situation while
detection can heavily depend on each and every factor that gives
birth to this massive diversity, some of those factors being not even
clearly identified.

In addition, we have shown that the current steganalysis tools
are extremely efficient and can be used directly for the detection
of steganographic software one can find on the internet. However,
it was also demonstrated that learning methods focusing on the
reliability of the detection, in the sense of controllable and very-low
false-positive rate, constitutes a major challenge that can only be
addressed by novel scientific methods.

The results presented in the present paper are based on the
ALASKA dataset [17, 18]. Additional works on extremely diverse
dataset such as those that one can find on the internet is also
required to confirm that an extremely reliable detector can be
achieved in this operational context.

Within the UNCOVER project, we aim to focus on those often
unexplored aspects of steganalysis from different points of view
including understanding the source of media heterogeneity better,
improving forensics analysis to classify media origin, investigating
signatures left by specific embedding methods, and how to perform
reliable detection in this complex environment.

7 CONCLUSIONS
This paper provided a general presentation of Horizon 2020 project
UNCOVER, whosemain goal is tomove steganalysis researchworks
closer to the needs of the operational context. We have sketched
how the data-hiding competitions helped the community while
also pushing to focus on specific cases which are not always very
realistic.

In order to exemplify how much moving steganalysis into an
operation context raises unanswered questions, this paper presents
a short empirical study on Stego-Source Mismatch between embed-
ding software available on the Internet. Our findings confirm that,
on the one hand, such software is much easier to detect with high
accuracy, i.e. with a very low false-positive rate. On the other hand,
the so-called universal steganalysis, that is the detection of a wide
range of data-hiding schemes, remains a challenging problem.
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