
HAL Id: hal-03663628
https://utt.hal.science/hal-03663628

Submitted on 10 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multivariate Side-Informed Gaussian Embedding
Minimizing Statistical Detectability
Quentin Giboulot, Patrick Bas, Rémi Cogranne

To cite this version:
Quentin Giboulot, Patrick Bas, Rémi Cogranne. Multivariate Side-Informed Gaussian Embedding
Minimizing Statistical Detectability. IEEE Transactions on Information Forensics and Security, 2022,
17, pp.1841 - 1854. �10.1109/TIFS.2022.3173184�. �hal-03663628�

https://utt.hal.science/hal-03663628
https://hal.archives-ouvertes.fr


1

Multivariate Side-Informed Gaussian Embedding
Minimizing Statistical Detectability

Quentin Giboulot, Patrick Bas, Senior Member, IEEE and Rémi Cogranne, Member, IEEE

Abstract—Steganography schemes based on a deflection cri-
terion for embedding posses a clear advantage against schemes
based on heuristics as they provide a direct link between the-
oretical detectability and empirical performance. However, this
advantage depends on the accuracy of the cover and stego model
underlying the embedding scheme. In this work we propose an
original steganography scheme based on a realistic model of
sensor noise, taking into account the camera model, the ISO
setting and the processing pipeline. Exploiting this statistical
model allows us to take correlations between DCT coefficients
into account. Several types of dependency models are presented,
including a very general lattice model which accurately models
dependencies introduced by a large class of processing pipelines
of interest. We show in particular that the stego signal which
minimizes the KL divergence under this model has a covari-
ance proportional to the cover noise covariance. The resulting
embedding scheme achieves state-of-the-art performances which
go well beyond the current standards in side-informed JPEG
steganography.

I. INTRODUCTION

One of the stated goals of steganography is to design
algorithms able to hide information in an innocuous medium,
henceforth named a cover object. As of today, steganography
as a discipline has concentrated its effort on using digital
media as covers, particularly digital images which will be
the focus of this work. Modern steganography is based on
two main ingredients: a cost function and a coding scheme.
On the one hand, coding schemes improve steganography
performance by hiding more data with fewer changes. As
of today, it is considered as a mostly solved problem since
the Syndrome-Treillis Coding [1] scheme is very close to
Shannon efficiency. On the other hand, cost functions associate
to each cover element a cost of modification. The goal of
the steganographer is then to minimize the overall cost under
the constraint of hiding messages of a given payload size.
This allows for steganography to be adaptive; the underlying
heuristic being that hiding in a smooth region should be
more costly than hiding in a textured region because the
former should be intuitively more detectable than the latter.
It should be noted that cost functions currently used in the
literature are almost always additive. This means that the cost
of modifying one element does not depend on modifications
on other elements. This key assumption allows for tremendous
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simplifications when designing steganographic algorithms [1].
However, we need to forego this assumption in this work to
be able to leverage correlations between DCT coefficients.

The other side of the game – detecting objects in which
information has been hidden – is named steganalysis. As
of today, state-of-the-art methods are mainly based on su-
pervised machine learning techniques. Until recently, the fa-
vored approach was the use of handcrafted, high-dimensional
features specifically designed to capture artifacts introduced
by steganographic schemes. These features were then fed to
classifiers designed to handle such high-dimensional feature
sets, the most popular being an ensemble of FLD classifiers [2]
and a fast ridge linear classifier [3]. However, these techniques
are now being largely superseded by deep neural networks.
Those were at first specifically designed for steganography [4],
[5], but recent advances (see the results of the ALASKA2
competition [6]) showed that using neural networks pre-trained
on ImageNet such as Efficient-Net [7] can lead to similar or
better performance than these specialized networks.

A. State of the art

As was alluded to earlier, steganography is now mainly
concerned with the design of effective cost functions. There
exists currently two main paths for their design: heuristic
and statistical. The heuristic path has been by far the most
popular. The approach is based on designing cost functions
able to defeat the most effective steganalyzer available on a
given standard dataset. The performance of these schemes
is consequently only empirically validated. This approach
gave rise to the most successful schemes both in the spatial
domain [8], [9] and in the JPEG domain [8], [10]. Despite
this success, this approach has several limitations. First, be-
cause these techniques are only validated empirically, one can
observe significant differences in performance depending on
how the steganalysis is performed [11], [12]. Secondly, and
more generally, this approach uses cost functions that do not
apriori have a clear link with theoretical or even empirical de-
tectability. Consequently, this approach gives very little insight
on why a strategy works and why another does not. Worse, it
makes the approach incapable of giving any theoretical guar-
antees except under the precise setting for which it has been
designed. The second path is based on minimizing a quantity
which should be apriori linked to theoretical and/or empirical
detectability. The most recent strategy following this path,
adversarial embedding, directly tries to minimize empirical
detectability on a given dataset by iteratively modifying the
cost function to defeat a classifier which also updates at each
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step to defeat the steganographer. Though this approach has
been proven to be quite successful [13], [14] it has limitations
of its own, namely its high computational cost and the need for
large datasets, necessary to obtain a high-quality cost function.
Furthermore, it does not solve the problem of theoretical
guarantees for unseen datasets and there has not been, to
the best of our knowledge, a systematic study of the impact
cover-source mismatch for this strategy. For these reasons,
we work with another strategy in this paper which works by
bounding the theoretical power of an optimal detector. This
approach first appeared in [15] and culminated in the design
of the MiPOD algorithm [16]. The underlying framework is
based on hypothesis testing theory. The idea is to cast the
steganalysis problem as a simple test between two hypotheses:
H0, the image under scrutiny is a cover, or H1, it is a
stego. Using this theory, one can show under some conditions
that an optimal detector exists and analytically compute its
statistical performance. The goal of the steganographer is then
to minimize the power of this detector under the constraint of
embedding a payload of a given size. However, to be able
to cast the problem in this setting, one must have a model of
both the cover and the stego images. The limits of MiPOD and
the MG algorithm which preceded it mostly came from their
choice of the noise model. Indeed both of these algorithms
modeled natural images as pixels corrupted by an independent,
though not identical, Gaussian noise. Furthermore, it relied on
the so-called fine quantization limit assumption, which states
that the variances of the pixels are greater than one. These two
assumptions are both erroneous in practice. First, it is known
that the neighboring pixels are, more often than not, correlated
due to the impact of the processing pipeline [17], [18],
[19]. Secondly, the fine quantization limit is often violated,
especially in dark areas of an image due to the heteroscedastic
nature of the noise [20], [21, Chapter 5, Section 5] which
implies that the variance in these zones is quite small. This
assumption is even more problematic if one wants to extend
the approach in the JPEG domain as the quantization of DCT
coefficients can greatly lower the variance before rounding.

Despite these limitations, MiPOD still enjoys close to state-
of-the-art performances in the spatial domain, hence demon-
strating the merit of the approach.

B. Contributions and comparisons to current approaches

The work presented in this paper is the logical continuation
of our previous works on Gaussian Embedding [18], [19]. This
series of work has its roots in [12] where it was observed that
empirical steganalysis performance is mainly determined by
only three factors: sensor, ISO, and processing pipeline. This
motivated the construction of a statistical model of the noise
that was only based on these three parameters. The importance
of such a model was demonstrated by the success of the work
on Natural Steganography culminating in [17]. In particular,
this work highlighted the importance of the covariance matrix
of the cover noise for the security of a steganographic scheme.
However, the idea behind Natural Steganography is to imitate
the noise of an image if this image was taken at a higher ISO.
Its methodology thus relies on cover generation whereas our

approach is based on minimizing the statistical detectability
of a given stego signal to provide security guarantees to the
steganographer. To leverage the covariance of the noise, [22]
builds a model of the sensor noise in the JPEG domain using a
very general linear model of the processing pipeline. This al-
lows improvements on MiPOD by allowing a better estimation
of the variance maps. This work also innovated by modeling
the stego signal in the continuous domain (DCT domain before
rounding) as a Gaussian random variable while specifying
the payload constraint in the discrete domain (DCT domain
after rounding). This allows foregoing the fine quantization
limit assumption entirely. Despite these improvements, this
algorithm only used the covariance matrix to improve its cost
estimation. It does not use a multivariate Gaussian signal
which, as has been shown by Natural Steganography, has a
tremendous impact on security. Furthermore, recent heuristic
approaches [23], [9], [24] have shown that taking into account
embedding modifications performed on neighboring cover el-
ements can lead to a significant increase in security. However,
until our work, there was no statistically founded approach to
explain how to take neighboring modifications into account for
imperfect steganography. The subsequent work [19] improved
on [18] by allowing the use of a multivariate Gaussian stego
signal. This is achieved by using the Cholesky decomposition
of the covariance matrix which allows recasting the difficult
multivariate problem as a sequence of simple univariate ones.
This paper is an extension of our paper [19] and solves many
of the limitations of this works, namely:

• Our previous works assumed that the steganographer has
access to the RAW image to estimate the covariance
matrix of the noise. We relax this assumption greatly by
requiring only the knowledge of the camera and ISO used
– information usually available in the EXIF metadata –
as well as black-box access to the processing pipeline.

• Our previous work assumed macro-blocks of DCT coef-
ficients to be independent. This means that dependencies
between neighboring blocks not belonging to the same
macro-block were not taken into account. We solve this
limitation in this work using a lattice embedding strategy
akin to what was used in Natural Steganography [17].

• We extended our model to take saturation of pixels into
account.

• Last but not least, numerous new experimental results,
including results using recent steganalysis tools such as
Efficient-Net, are now given. Full proofs of all mathe-
matical results are also now available in the appendices.

C. Notation and terminology

When referring to blocks of elements in an image, we
always refer to 8 × 8 blocks of elements. When referring to
“blocks of blocks” we use the term macro-block. Except when
explicitly stated, we manipulate blocks in their vectorized
representation arranged lexicographically. Vectors and ma-
trices are always written in boldface. Vectors use small case
letters while matrices use uppercase, except for collections of
vectors which are denoted by bold small case letters without
indices. When indexing individual elements of an image we
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use the letter i. When indexing vectors of elements of an
image we use the letter k. Similarly, when referring to the
number of individual elements in an image we use the letter
n, whereas we use the letter m when referring to the number
of blocks or macro-blocks of a specified size. For the sake of
clarity, we use the same symbol for a random variable and its
realization. The Gaussian distribution is designated with N .
We do not differentiate the symbol between the univariate and
multivariate cases as it can be inferred from the typesetting
of the parameters. When referring to the distribution which
is obtained by quantizing a Gaussian random variable with a
uniform quantizer of step 1, we use the symbol N. We refer
to the diagonal matrix constructed with individual elements
from a vector σ as diag(σ). Similarly, we refer to the vector
constructed with the diagonal of a matrix Σ as diag(Σ).

II. STATISTICAL MODEL OF THE NOISE IN THE DEVELOPED
DOMAIN

In this section, we derive a model of the noise of a
developed image starting from the RAW image. We summarize
each step of the model derivation in Figure 1. Note that we
model the noise only up to the DCT transform of the JPEG
compression but not including the rounding operation as we
will mostly work with a model in the continuous domain
throughout this paper.

A. Model of the RAW image

We begin by giving a model of the noise of the image in
the RAW domain, that is, before any processing is applied. A
widely adopted model of the sensor noise is the heteroscedastic
Gaussian noise model studied by Foi et al. [20]. Under this
model, a RAW image is composed of n photo-sites where each
photo-site xi follows a Gaussian distribution :

xi ∼ N
(
µi, σ

2
i

)
,

σ2
i = c1µi + c2,

(1)

where µi is the value the sensor would have registered in
the absence of noise. The variance of the noise, σ2, depends
linearly on µi through two parameters c1 and c2. These two
parameters depend on the camera sensor and the ISO setting
– see [25], [26]. At his point, note that the noise is considered
independent between photo-sites.

B. Model of the processing pipeline

We now go on to model the processing pipeline which
takes a RAW image x as input and outputs a developed
image y (in the continuous domain). Many operations in
image processing can be modeled as convolutions (e.g demo-
saicking, sub-sampling, DCT transform) or sample-wise linear
functions (e.g white balance, RGB to greyscale conversion).
Even though non-linearities are also present, such as in the
gamma correction, in order to keep our model computationally
tractable, we model the processing pipeline as a stationary
linear map acting on vectors of photo-sites. By stationary,
we mean that the linear map is the same for every vector of
elements of the input image. Formally, we represent the linear

map as a full-rank matrix H ∈ RN×M where M and N are
freely chosen by the modeler depending on trade-off between
the model accuracy and computational complexity: larger M
and N allows for a model of more far-reaching dependencies
between DCT coefficients but will be more computationally
expensive due to the increased size of the processing pipeline
matrix. Note that some values are optimal for certain kinds of
pipelines, for example, the work in [17] shows that choosing
M = 262 and N = 242 is sufficient to model all the
dependencies introduced by a bilinear demosaicking followed
by a DCT transform. Finally, we require N to be a perfect
square integer which is also a multiple of 8 since the DCT
transform acts on 8× 8 blocks of pixels.

C. Model of the developed image

To apply the processing pipeline matrix H as modeled in
the previous subsection, we first write each macro-block of
the RAW image as xk:

xk ∼ N (µk,diag(σk)) . (2)

By multiplying the matrix H with a macro-block xk contain-
ing M elements, we obtain a new developed macro-block yk

which follows a multivariate Gaussian (MVG) distribution:

yk = Hxk, (3)
∼ N (Hµk,Σk) , (4)

with the covariance of yk simply obtained as:

Σk = Hdiag(σk)H
T . (5)

Depending on the processing pipeline, the dependency struc-
ture between the yk might differ. In this paper we will only
treat two models of dependency:

1) Independent model : Macro blocks of size
√
N ×

√
N

are considered independent.
2) Lattice model : Each block is considered to be depen-

dent on its neighboring block – including the diagonal
ones.

We illustrate each type of dependency model in Figure 2. .
Finally, note that contrary to the independent model, which

is heuristic in nature, the lattice model has been extensively
studied and justified in the work of Natural Steganography [17]
as the optimal dependency model for certain types of linear
pipeline.

III. ESTIMATION AND APPROXIMATION OF THE
COVARIANCE MATRIX WITHOUT THE RAW FILE

Our previous work [18] gave a methodology to estimate
the covariance matrix when the RAW file and processing
pipeline are available. This section provides a novel method
to estimate the covariance matrix without having access to the
RAW file. Note that this section is an option However, we still
assume access to the processing pipeline, at least as a black
box, since the estimation method mostly relies on having a
linear approximation of this pipeline. We will also assume
that the steganographer knows the c1 and c2 parameters of the
heteroscedastic model of the cover. This knowledge does not
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Lossy compression

Unprocessed image
RAW image : x

xi ∼ N (µi, c1µi + c2)
xk ∼ N (µk, diag (c1µk + c2))

Processing pipeline : H

Ex : Demosaicking,
White balance, DCT
transform, . . .

Developed image
Precover : y

yk ∼ N (Hµk, Σk)

Compressed image
Cover : z

zk ∼ N (Hµk, Σk)

Fig. 1: Summary of the model of natural images that is described in Section II.

(a) Independent macro-
block model: every non-
overlapping macro-blocks
of a given size is considered
to be independent with the
others. In this figure,the
chosen size is 24 × 24,
hence every block is only
dependent with blocks with
which it shares its color.
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(b) Lattice model: every
block is considered
dependent only with its
direct neighboring blocks.
This induces four sets
of blocks, called lattices,
Λ1,Λ2,Λ3,Λ4 where each
block in a given set is
independent of every other
block in the same set.

Fig. 2: The two dependency models studied in this paper

necessarily require access to the RAW image, it is sufficient
to know the camera and ISO which were used to capture
the cover; this information is usually available in the EXIF
metadata of an image.

The estimation method presented in this section is based
on estimating a generic correlation matrix which depends
only on the processing pipeline. The idea is then to compute
the variance of every DCT coefficient using an approximate
heteroscedastic model of the DC coefficients before computing
an estimation of the covariance of each block by scaling the
correlation matrix using these estimated variances.

A. Heteroscedastic model of the DC coefficients

Our goal here is to show that, under some additional
assumptions on the processing pipeline, the variance of the
DC coefficients of each block is linear with respect to the
expectation of this DC coefficient. Note that, for this section
only, we distinguish between HDCT , the 64 × 64 matrix
representing the DCT transform and Hs the 64 × M matrix

representing all operations performed in the RAW and spatial
domain. We therefore have: H = HDCTHs.

We assume, as usual, that the processing pipeline is both
linear and stationary. Furthermore, we assume the RAW image
is almost constant by block, that is, for all k we have µk =
µ̂+ ek with |ek,i| ≪ µ̂, 1 ≤ i ≤ M .

First of all, let us rewrite the models of the block of photo-
sites and of DCT coefficients:

xk ∼ N (µk, c1diag (µk) + c2) , (6)

yk ∼ N
(
HDCT (Hs µk −128),Hdiag (c1 µk +c2)H

T
)
.
(7)

Note here that, contrary to Eq 3, we take into account
the fact that we subtract 128 to each pixel before the DCT
transform as this has an impact on the estimation method of
this section (whereas it does not when using the method which
uses RAW file). We can express the first two moments of the
DC coefficient yk,1 of each block:

E [yk,1] =

(
M∑
l=1

H1,l (µ̂+ ek,l)

)
− 1024, (8)

Var [yk,1] = c1

M∑
l=1

H2
1,lµ̂+H2

1,lc2 + c1

M∑
l=1

H2
1,lek,l. (9)

Let us note the following quantities:

H̄i,j ≜
∑M

l=1 H
2
i,l∑M

l=1 Hj,l

, H̄
(2)
i,j ≜

∑M
l=1 H

2
i,l∑M

l=1 H
2
j,l

. (10)

The variance of yk,1 can be expressed using its expectation:

Var [yk,1] = c1H̄1,1E [yk,1] +

M∑
l=1

H2
1,lc2 + 1024 · c1H̄1,1

+ c1

(
M∑
l=1

H2
1,lek,l − H̄1,1

M∑
l=1

H1,lek,l

)
≜ cDC

1 E [yk,1] + cDC
2 + error,

(11)
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with cDC
1 and cDC

2 defined as:

cDC
1 = c1H̄1,1, (12)

cDC
2 =

(
M∑
l=1

H2
1,lc2

)
+ 1024 · c1H̄1,1. (13)

This shows that the variance of the DC coefficients is linear
with their expectation up to an error which is small as long
as the ratio H̄1,1 is small. As a particular case, note that if all
the H1,l are constant, for example if the only operation of the
processing pipeline performed is the DCT transform, then the
error is simply 0. In this paper, we assume that the error is
negligible in practice.

Note however, that the Hi,l usually alternate sign for i > 1
because of the structure of the DCT transform. This leads to
the ratio H̄i,l possibly exploding and the error can not be con-
sidered small anymore for AC coefficients in general. However
we can still express the variance of the AC coefficients as a
function of the variance of the DC coefficient:

Var [yk,i] = c1µ̂

M∑
l=1

H2
i,l + c2

M∑
l=1

H2
i,l + c1

M∑
l=1

H2
i,lek,l

≃ H̄
(2)
i,1 Var [yk,1] ,

(14)

using the fact that |ek,l| is small compared to µ̂.

B. Processing pipeline and correlation matrix estimations

The first step is to estimate the processing pipeline matrix
H since we only assumed a black-box access to the processing
pipeline.

To do so, we first generate an image x̄ so that:

x̄i ∼ N
(
0, σ2

)
, (15)

where the value of σ2 can be freely chosen and does not
impact the estimation.

Using the black-box access to the pipelines, we develop this
image to obtain the developed image ȳ.

Using Eq (3), we know that for a given macro-block size
M , the processing pipeline outputs a macro-block of size N
and that the k-th macro-block of the image follows:

ȳk = Hx̄k, (16)

which can be solved using any type of linear regression
method. For example, we can solve for H using a least-square
estimation:

H = ȳx̄T
(
x̄x̄T

)−1
. (17)

where x̄ and ȳ here correspond respectively to the M×m and
N ×m matrices where each line corresponds to a vectorized
macro-block. Note that, here, H is the closest solution (in the
least-square sense) to the set of equations in Eq (16) and not
an exact solution.

To approximate the covariance matrices, we will also use
a correlation matrix ρ based on the processing pipeline. First
we compute the sample covariance matrix of ȳ:

Σȳ =
1

m− 1

∑
ȳkȳ

T
k , (18)

and obtain the correlation matrix:

ρ = diag
(
ϱ2ȳ
)− 1

2 Σȳdiag
(
ϱ2ȳ
)− 1

2 . (19)

where ϱ2ȳ ≜ diag (Σȳ).

C. Approximation of the covariance matrix
With the use of the heteroscedastic parameters cDC

1 and
cDC
2 , it is now possible to compute an approximation of the

covariance matrix using the correlation matrix ρ computed in
Section III-B. In this subsection, we denote Var [yk,i] as ϱ2k,i.

We first compute an approximation of the true variance map
of the DCT coefficients and use it to scale the correlation
matrix:

1) Compute the variance ϱ2k,1 of the DC coefficient of the
k-th block yk as:

ϱ2k,1 = cDC
1 yk,1 + cDC

2 . (20)

2) Compute the variances of the l-th coefficients of the k-th
block simply as:

ϱ2k,i = H̄
(2)
i,1 ϱ

2
k,1. (21)

.
3) Compute the covariance matrix of the k-th block by

scaling the correlation matrix ρ with the variances of
the DCT coefficients of the block using the standard
formula:

Σ̂k = diag(ϱk) ρ diag(ϱk), (22)

where ϱk is the vector of standard deviation of the
k-th block of DCT coefficients and Σ̂k the resulting
estimation of the covariance matrix.

IV. OPTIMAL DETECTOR

The goal of the steganographer is to find the optimal
prestego signal to use in order to evade the steganalyst. By
prestego, we refer to the stego signal in the continuous domain,
which will be the only domain of interest in this section.
Section V addresses the transition to the quantized domain
in detail.

To find the form of an optimal prestego signal, three
ingredients are needed:

1) A model of both the precover, in our case, the cover
after the DCT transform but before rounding – see yk

in Figure 1 and the prestego,
2) A criterion of optimality,
3) An optimal detector built from the two first items.
Once these ingredients are available, the optimal prestego

signal is the signal which minimizes the power of the optimal
detector under a given payload size constraint.

In this section we provide these three elements, beginning
with a choice of prestego model. The optimal detector is then
derived using the precover and the prestego model under the
Neyman-Pearson of optimality.
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Observations
ξ = {ξ0, . . . , ξm}

Precover parameters
Denoised image:

µ = (µ1, . . . ,µm)
Precover noise covariances:

Σ = (Σ1, . . . ,Σm)

Prestego parameters
Prestego signal covariances:

E = (E1, . . . ,Em)

Simple hypotheses

H0 = {ξk ∼ N (µk,Σk)}
H1 = {ξk ∼ N (µk,Σk +Ek)}

Likelihood Ratio Test
Fixed false alarm rate : PFA

Maximizes power : PD

Λ(ξ,Σ,E) =
qΣ,E(ξ)
pΣ(ξ) ≶H0

H1
τ

Fig. 3: Summary of the construction of the Likelihood Ratio
Test for two simple hypotheses H0, the image is cover, H1,
the image is stego.

A. Prestego model

Despite the fact that the precover model has been fully
defined in Section II, the steganographer still needs a model
of the prestego signal.

We will assume for the rest of the paper that the steganog-
rapher uses a centered multivariate Gaussian signal:

sk ∼ N (0,Ek) , (23)

where Ek is the covariance of the prestego signal sk.
The signal sk is then simply added to the k-th macro-block

of the precover, creating the prestego macro-block γk:

γk = yk + sk,

∼ N (µk,Σk +Ek) .
(24)

This choice of distribution, though we do not prove its
optimality, is motivated by three nice properties of this distri-
bution. First, the sum of two Gaussian random variables is also
a Gaussian random variable which obviously facilitates the
derivations in this paper. Secondly, for a given expectation and
variance, the Gaussian distribution is the maximum entropy
distribution in the continuous domain [27], we can thus expect
the distribution to maximize the embedded payload for a given
KL-divergence. Finally, using a multivariate Gaussian distri-
bution allows us to construct extremely efficient algorithms
to compute the stego signal is the quantized domain – see
Section V.

B. Optimal detector

Now that both the precover and prestego model are defined,
it is possible to construct the optimal detector. To do so, we
use the Neyman-Pearson criterion of optimality [28, Chapter

3, Section 2]. In this setting the steganalyst constructs a test δ :
Rn → {H0,H1} which maximizes the power of all possible
tests PD ≜ P (δ (x) = H1|H1) whose false-alarm probability
PFA ≜ P (δ (x) = H1|H0) is upper bounded by a chosen α0.

We also assume a worst-case adversary for the steganog-
rapher and as such consider that the steganalyst has access
to all the model parameters : E = (E1,E2, . . . ,Em), µ =
(µ1,µ2, . . . ,µm) and Σ = (Σ1,Σ2, . . . ,Σm). Finally, the
image under scrutiny by the steganalyst, which can be either
a precover or a prestego, is written as ξ.

The problem of the steganalyst reduces to a choice between
two hypotheses: H0, the image under consideration is cover,
H1, the image under consideration is stego:{

H0 = {ξk ∼ N (µk,Σk)} ,
H1 = {ξk ∼ N (µk,Σk +Ek)} .

(25)

Because under our model the two hypotheses are simple, the
Neyman-Pearson Lemma states that the most-powerful test is
the likelihood ratio test (LRT) which maximizes the power PD

for a given PFA ≤ α0, defined, in our case as follows:

Λ(ξ,Σ,E) =
qΣ,E (ξ)

pΣ (ξ)

H0

≶
H1

τ, (26)

where pΣ and qΣ,E are the joint pdf of all macro-blocks of
the precover and of the prestego respectively. The threshold τ
is fixed in advance by the steganalyst depending on her choice
of PFA = P (δ(x) > τ |H0) = α0.

The study of the performance of the LRT is detailed in
Appendix A and B.

V. DESIGN OF A SIDE-INFORMED MULTIVARIATE
STEGANOGRAPHIC SCHEME

A. Problem specification and optimal stego signal

At this point of the paper, the steganographer has access to
a model of both the precover and of the prestego as well as
to the detector of the worst-case adversary. His goal is then to
design a steganographic scheme which minimizes the power
of this detector while still hiding a secret message of a given
size in the cover.

Until now, all of our models have been specified in the
continuous domain. However, the payload has to be embedded
in the cover in the quantized domain. We make the assumption
that minimizing the power of the LRT in the continuous
domain also minimizes the power of the optimal detector in
the quantized domain. As such we specify the problem of the
steganographer as minimizing the power PD of the optimal
detector in the continuous domain under a payload constraint
R in the quantized domain:

min
E

PD (E)

R =

n∑
i=0

∑
j∈Z

β
(j)
i log

(
β
(j)
i

) (27)

where β
(j)
i is the probability of modifying the i-th DCT

coefficient by +j. Note that the payload constraint is written
under the assumption that we embed at the optimal rate.
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Pre-cover P
Covariances Σk

Sample white
Gaussian noise w

Compute Cholesky
decomposition Σk =
LkL

T
k – Eq (31)

Compute conditionnal
Gaussians parameters
η̄i,ϵ̄i – Eq (33 ,34)

Compute pre-
stego signal sk =
Lkwk – Eq (32)

Scale signal and
parameters by α

Compute embedding
probabilities
β
(j)
i – Eq 36

Compute
entropy H(β).

Compare to payload
constraint R

Stego image

If H(β) = R

If H(β) ̸= R

Fig. 4: Principle of all variants of Multivariate Gaussian Embedding (MGE) presented in this paper. The main idea is to
generate a multivariate Gaussian stego signal with covariance proportional to the covariance of the cover noise. The Cholesky
decomposition of the cover noise covariance matrix is used to generate the stego signal as well as to compute the entropy of
the signal.

Due to the difficulty of obtaining an exact expression of
the power of the LRT in our setting – see Appendix A –
we simplify this optimization problem by minimizing the KL-
divergence between the precover and prestego instead:

min
E

DKL (pΣ|qΣ,E)

R =

n∑
i=0

∑
j∈Z

β
(j)
i log

(
β
(j)
i

) (28)

This simplification is justified by a data-processing in-
equality stating that the KL-divergence between the precover
and the prestego provides an upper bound on the power of
the LRT [29]. Consequently, we sacrifice the guarantee of
optimality while conserving a guarantee of security. We now
use the key result of this paper – proven in Appendix B –
which states that the prestego signal which minimizes the
KL-divergence between the precover and the prestego under
a given entropy in the continuous domain has the following
form:

sk ∼ N (0, αΣk) ,∀k (29)

with α ∈ R+. In other words, the prestego signal has a
covariance proportional to the covariance of the precover
noise. In particular, α is the same for all macro-blocks of
the precover.

However, the reader should be aware that the form of the
matrix in Eq (29) has only been shown to be optimal – in
the KL-divergence sense – for an entropy constraint in the
continuous domain. We have to assume this result to translate
for an entropy constraint in the quantized domain. This is
not always guaranteed. Indeed, in the case where we have
αϵ̄i < 0.5 for some i (see Eq (33) for a definition of ϵ̄i),
the expression of the entropy is a complicated function of the
rounding errors ri, ϵ̄i and η̄i (again see Eq (34) for a definition
of η̄i) and might not be strictly increasing.

In practice, these cases are rare enough in a single im-
age, for payloads of interest, that we have not observed
their impact. Therefore, we assume Eq (29) to hold for
payload constraint in the quantized domain and, in par-
ticular, that

∑n
i=0

∑
j∈Z β

(j)
i log

(
β
(j)
i

)
is strictly increas-

ing in α. Notice that, in the particular case where all the
ϵ̄i are large enough, the entropy is well approximated by
n∑

i=1

1

2
log

(
2πe

(
ϵ̄i +

1

12

)2
)

.

Following this assumption, the system in Eq (28) is easily
solved by a simple bisection search on α.

However, to be able to compute the value of the payload
size for a given α it is necessary to compute all individual β(j)

i

which is not an obvious task since we want to compute an
individual value in the quantized domain from a multivariate
signal in the continuous domain. The next subsection addresses
this difficulty and presents a solution that does not rely on
expensive Monte-Carlo simulations.

Note however, that for the rest on this paper, we only discuss
methods related to simulating the pre-stego signal as simply
and effectively as possible. These methods can be adapted to
practical uses with a multi-layered STC by using the rejection
sampling method used in [17, Section V.C].

B. Computing embedding probabilities

First, let sk be a pre-stego signal macro-block. It follows
a centered multivariate Gaussian (MVG) random variable (rv)
of N elements with a full-rank covariance Ek. Denote the i-th
element of sk as sk,i. Then we have, for all i:

sk,i|sk,1, sk,2, ...sk,i−1 ∼ N
(
η̄k,i, ϵ̄

2
k,i

)
. (30)

In other words, every element of an MVG rv conditioned on all
its previous elements follows a univariate Gaussian distribution
with mean η̄k,i and variance ϵ̄2k,i.

Secondly, since Ek is a full-rank covariance matrix, it is
symmetric positive definite. Consequently it can factorized
uniquely by a lower triangular matrix Lk with positive di-
agonal entries [30, Corollary 7.2.9]:

Ek = LkL
T
k , (31)

which corresponds to the Cholesky decomposition of the
covariance matrix.

Finally, let wk be a vector of M univariate standard
Gaussian rvs. We can correlate white noise by multiplying it
by the Cholesky decomposition of a chosen covariance matrix:

Lkwk ∼ N (0,Ek) . (32)
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The parameters η̄ and ϵ̄ can be computed efficiently using
the Cholesky decomposition and the realization of s using the
following equations:

ϵ̄k = diag(Lk), (33)
η̄k = (Lkwk − diag(Lk)wk) . (34)

Now observe that all of this methodology can be applied
to every macro-block of the prestego signal sk as defined in
Eq (29). If we apply Eq (33 ,34) to every sk, we obtain a
vector s̄ of n elements such that:

s̄i ∼ N (η̄i, ϵ̄i) . (35)

Finally, using the chain rule of probability on each β
(j)
i , the

embedding probabilities β
(j)
i are obtained by:

β
(j)
i = Φ

(
j − ri − η̄i + 0.5

ϵ̄i

)
−Φ

(
j − ri − η̄i − 0.5

ϵ̄i

)
,

(36)

where Φ(·) represents the cumulative distribution function of
the standard normal distribution and ri = yi− [yi] denotes the
rounding error of i-th DCT coefficient. In practice, we perform
a 2q+1-ary embedding. Consequently, the alphabet size of the
embedding scheme is finite; j is thus constrained to a finite
range q and the β

(j)
i must be normalized accordingly:

β
(j)
i,normalized =

β
(j)
i∑q

j=−q β
(j)
i

. (37)

To understand Equation (36), observe that after adding the
prestego signal, the new value will either stay in the same
integer bin after rounding or fall into a neighboring one. The
probability of falling into one bin or another depends on
the original rounding error ri, the conditioned mean η̄i and
variance ϵ̄2i of the prestego signal – see Figure 5. Computing
β
(j)
i is then simply a matter of computing the probability of

falling into each bin which is simply the area under the curve
of the prestego signal centered at the original rounding error
inside each integer bin.

Note that for the STC implementation as described in [17,
Section V.C], one would have to convert the embedding
probabilities into costs using the following equation:

β
(j)
i =

e−λρ
(j)
i

1 +
∑

j ̸=0 e
−λρ

(j)
i

, (38)

where ρ
(j)
i is the cost of modifying the i-th DCT coefficient

by +j and λ is the Lagrange multiplier which allows solving
Eq (28).

VI. PRACTICAL IMPLEMENTATION

We are now ready to give the algorithms for the simulators
of the steganographic scheme outlined in Section V. One
algorithm is given for each of the two dependency models
defined in Section II-C, namely the independent macro-block
model and the lattice model.

β0
i β1

i β2
iβ−1

iβ−2
i

ri + η̄i

−2 −1 0 1 2

Fig. 5: Figure explaining how β
(j)
i are computed with a pre-

stego signal centered at the original rounding error ri. The
dashed boxes represent the integer bins after rounding the DCT
coefficient whereas the colored parts represent the area under
the curve of the pre-stego signal which will be taken into
account for each β

(j)
i .

All the algorithms specified in this section assume that the
steganographer has access to a precover y, its corresponding
RAW file x and full knowledge of the processing pipeline.
It is assumed that the covariance matrices of the cover are
estimated using the method given in [18] which will not be
repeated here due to space considerations.

The effect of pixel saturation, which is not directly taken
into account by our model, is discussed a the end of the
section.

A. Independent macro-block model

The first dependency model assumes that all the elements
in the same

√
N ×

√
N macro-block are possibly dependent

while elements in two different macro-blocks are considered
independent. As shown in Figure 2a, only non-overlapping
macro-blocks are considered.

To build the macro-blocks in this model, one just has to
split the whole image y into non-overlapping macro-blocks
yk of the same size so that every element yi of the precover
belongs to one and only one macro-block.

Consequently we have each yk independent from every
other yk and following a MVG distribution:

yk ∼ N (µk,Σk) . (39)

To simulate the stego signal, we follow Eq (28). The
steganographer first samples the prestego signal according to
the precover distribution and secondly, performs a bisection
search on α in order to scale the signal so that it matches the
payload constraint. The signal is finally added to the precover
and quantized.

B. Lattice model

The second dependency model we study in this paper is the
lattice model. In this model, we assume dependencies between
DCT coefficients within the same block as well as among DCT
coefficients with neighboring blocks.

First, we introduce some notation that will be used through-
out this subsection. We write Λ to denote a set of blocks,
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a) Λ∗
1

Λ2

Λ1

Λ1 Λ1

Λ1

b) Λ∗
2

Λ3

Λ2

Λ2

Λ1Λ1

c) Λ∗
3

Λ4

Λ1

Λ1

Λ2Λ2

Λ3

Λ3

Λ3

Λ3

d) Λ∗
4

Fig. 6: Graphical representation of the blocks used to construct
each Λ∗

i . Note that the central block of each figure, corre-
sponding to the last block of each Λ∗

i is sampled conditionally
on each of its drawn neighboring blocks.

which we call a lattice, such that all blocks in the set are
independent from one another.

For a given block yk we write ycardinal
k with cardinal ∈

{N,S,E,W,NE,NW,SE, SW} to designate the block
which is respectively above, below, right of, left of, etc. . .
of yk.

Now, from Figure 2b, observe that the lattice model assump-
tions lead to a natural decomposition of the image into four
lattices Λ1,Λ2,Λ3,Λ4.

The steganographer’s goal is, first, to sample a MVG signal
s with the same covariance as the noise of the precover. To
do so, we use the fact that the pdf of the whole image can
be decomposed using the chain rule of probability so that the
pdf of s is:

p (s) =p
(
sΛ1
)
p
(
sΛ2 |sΛ1

)
p
(
sΛ3 |sΛ1 , sΛ2

)
p
(
sΛ4 |sΛ1 , sΛ2 , sΛ3

)
.

(40)

Consequently, we can first sample the prestego signal in Λ1

by sampling from p
(
sΛ1
)
, then sample the prestego signal

in Λ2 according to p
(
sΛ2 |sΛ1

)
and so on for the two other

lattices.
Now let Λ∗

1,Λ
∗
2,Λ

∗
3,Λ

∗
4 be such that:

Λ∗
1 = Λ1, (41)

Λ∗
2 = {[yNE , yNW , ySE , ySW , y]|y ∈ Λ2]}, (42)

Λ∗
3 = {[yN , yS , yE , yW , y]|y ∈ Λ3]}, (43)

Λ∗
4 = {[yN , yS , yE , yW , yNE , yNW , ySE , ySW , y]|y ∈ Λ4]}.

(44)

In other words, each Λ∗ contains vectors built from each block
in Λ along with the blocks from previous lattices on which
it is dependent. See Figure 6 for a graphical representation of
the dependency structure of each lattice used to construct each
Λ∗. In what follows, we refer to the covariance matrix of the
k-th vector of the i-th lattice Λ∗

i as Σ
Λ∗

i

k

By using exactly the same reasoning as in Section V-B,
adapted to a multivariate setting, we can easily sample the
blocks in each lattice by using the Cholesky decomposition of
the covariance of each vector in each Λ∗

i :

sΛi

k = L
Λ∗

i

k wΛi

k ,∀i ∈ {1, 2, 3, 4} (45)

with L
Λ∗

i

k being the rectangular submatrix of the Choleksy
decomposition of ΣΛ∗

i

k referring to the central block of the k-th
vector of Λ∗

i . In practice, using the convention of Eq (41-44),
where the central block is always at the end of each vector of

0 500 1000 1500 2000 2500 3000 3500 4000

µ

1000

2000

3000

4000

5000

σ
2

Hetersocedastic model

Clipped heteroscedastic model

Fig. 7: Variance σ2 of 10000 samples of N (µ, c1µ+ c2) as
function of µ with c1 = 1 and c2 = 1000. The curve in red is
obtained when the samples are clipped at 0 and 4096 while the
curve in black is obtained when the samples are not clipped.

.

Λ∗
i , LΛ∗

i

k would be constructed by taking the 64 last lines of
the Cholesky decomposition of ΣΛ∗

i

k .
Once every sΛi

k is computed, the algorithm to sample the
pre-stego signal is exactly the same as for the independent
macro-block model.

C. Impact of pixel saturation

An important feature of the noise model in the RAW
domain, which was not taken into account in Section II, is the
saturation of photo-sites. It is known from the work of Foi et
al. [25] that the heteroscedastic model breaks near saturating
values of camera sensor. The variance decreases sharply in
this regime due to the clipping of the photo-sites values – see
Figure 7 for an example.

In order to solve this problem while keeping the simplicity
of our model, we have experimentally found that forbidding
some embedding locations is counter-productive as it destroys
the covariance structure of the block where the changes are
forbidden.

A better solution is to modify directly the covariance matrix
in the RAW domain during the estimation phase. In particular,
we empirically found that a relevant heuristic is to set the
variance to 1 when the mean value of the photo-site µi is
greater than 0.95S where S is the saturating value of the
camera sensor.

Similarly, it is important to set a threshold for variances
near zero so that the Cholesky decomposition can still be
numerically computed. As long as the value is small we have
not found the exact value of the threshold to matter; as a
consequence, we fixed it to 10−5, that is we fix the variance
σ2
i to 10−5 if σ2

i < 10−5 .

VII. NUMERICAL EVALUATIONS AND COMPARISONS

In this section, we study the performance of our different
extensions of Gaussian Embedding in the JPEG domain. To
have access to a precise estimation of the covariance matrix,
we use the estimation method described in our previous work
[18, Section II]. Consequently, we use the knowledge of the
RAW file and the processing pipeline in those cases and
prefix the name of the embedding scheme with Σ. When
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Fig. 8: PE as function of payload size for BossBase developed with the BOSS pipeline using Efficient-Net-b3.
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Fig. 9: PE as function of payload size for BossBase developed with the Linear pipeline using Efficient-Net-b3.

TABLE I: Names and operations of the processing pipelines used in the experiments. The operations are performed in the
order they are presented in the table

Pipeline name Demosaicking White Balance RGB to grey Downsampling method

Linear Pipeline Bilinear No Yes Edge crop, 264× 264
BOSS Pipeline PPG Yes, Camera Yes Resize from 792× 792 (Edge crop) to 264× 264, Lanczos kernel

TABLE II: Nomenclature of the embedding schemes

Name Meaning

GE Minimizes the power of of the MP detector in the continuous
domain supposing every DCT coefficients to be independent as
described in [18].

MGE Intra Only Minimizes the KL divergence detector in the continuous domain
supposing 8× 8 DCT blocks to be independent.

MGE Intra+Inter Minimizes the KL divergence in the continuous domain supposing
24× 24 DCT macro-blocks to be independent.

Lat MGE Minimizes the power of the MP detector in the continuous domain
using lattice embedding as described in Section VI-B.

SI-UNIWARD Side informed distortion based schemes as described in [8].

using the estimation method described in Section III which
does not require access to the RAW dataset, we add the suffix
noRAW at the end of the embedding scheme name. We use
the BOSS RAW dataset excluding the M9 camera because
of the peculiar distribution of its photonic noise (see [31],
Fig. 2) which would lead to an imprecise estimation of the
covariance matrix. From this dataset comprising 7240 RAW
images taken with 6 different cameras, we produce two new
datasets using two different processing pipelines: a linear
processing pipeline and a processing pipeline close to the
original BOSSBase. Both these pipelines output 264 × 264
greyscale JPEG images. The details are exposed in Table I.
Note that for cropping we used an algorithm – Edge crop1 –

1Available at https://alaska.utt.fr/#material

which selects crops containing the greatest number of edges
– that is the zone that should contain the most textured areas.
This choice of cropping was made because it is known that
SI-UNIWARD does not perform well on smooth images [18,
Section V.A]; using such a cropping algorithm allows us
to compare our embedding schemes in a situation where
SI-UNIWARD is not disfavored due to a suboptimal content
choice.
The parameters of the photonic noise c1 and c2 were estimated
as described in [18, Section II] using the algorithm described
in [26]. The H matrix is estimated once for each processing
pipeline using the method described in Section III-B. The
different embedding schemes used as well as their parameters
are described in Table II. Since we performed optimal
simulations of the embedding, which finds the optimal
stego-signal in the continuous domain, we always chose the
smallest alphabet necessary to encode all amplitudes of the
stego-signal once discretized.

Steganalysis was performed with Efficient-Net-b3 [13] mod-
ified so that the stride of the stem is equal to 1. The network
was trained by training from the highest payload for 30 epochs,
then 10 epochs for other payloads. The model for the highest
payload was initialized with ImageNet weights. The base
learning rate was fixed at 0.0005 and divided by 2 on loss
plateau. The batch size was fixed to 24. This configuration
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Fig. 10: PE as function of payload size for different the
different heuristics and design decisions made in this paper.

of Efficient-Net-b3 was the one used during the ALASKA2
competition. The rest of the parameters are initialized in the
same way as in the original paper.

A. Performance evaluation

We now proceed to discuss the performance of the embed-
ding schemes developed in this paper with SI-UNIWARD on
the two datasets presented at the beginning of the section. The
results are presented in Figure 8a-9c.

Beginning with QF100, regardless of the processing
pipeline, there is a clear gap between the performance of
SI-UNIWARD and the different variants of MGE. For the
linear pipeline, the gap is, on average, of 6% and 9% in
terms of absolute PE for Σ-MGE Intra only and Σ-MGE
intra + inter respectively. However, it is of 22% on average
when using Σ-Lat MGE, showing the importance of using the
most precise model for this pipeline. The difference between
the different models is less pronounced for the Bosslike
pipeline with an average gain of 13.5% in terms of absolute
PE wrt SI-UNIWARD for the MGE schemes whatever the
chosen correlation model. This is due to the fact that the
downsampling operation removes most correlations between
blocks due to the removal of neighboring pixels before the
DCT transform.

At QF95, the difference between the different schemes
becomes less pronounced for the Linear pipeline. However,
there is still a gap in performance between these schemes
and SI-UNIWARD. Compared with Σ-Lat MGE, there is an
average gain of 10.5% wrt to SI-UNIWARD for the Linear
pipeline and 4% for the BOSS pipeline. At QF75, every
scheme performs approximately the same irrespective of the
pipeline. This is most likely due to the fact that, at such a
low QF, most of the covariances are now close to 0 – see
[18][Section VI.B]. As such most of the performance of the

steganography is likely due to the side-information related to
the rounding errors.

We also note that the implementation of Σ-Lat MGE which
does not use the RAW file has a performance virtually identical
with the original implementation showing that the assumptions
on the processing pipeline we used in Section III are quite
practical for a steganography context.

Finally, note that when using Σ-GE, which does not use any
correlation between DCT coefficient, there is always a small
gain with respect to SI-UNIWARD for both QF100 and QF95.
However, its performance are always subpar even compared
to Σ-MGE intra only, showing the importance of taking these
correlations into account.

One interesting thing to note here is the impact of the
processing pipeline on the correlation structure necessary to
obtain good performances. In the Bosslike case, the downsam-
pling operation has made most inter-block dependencies very
small compared to intra-block dependencies. Consequently,
using a more sophisticated model of dependencies does not
bring any gain in performance. On the other hand, in the Linear
pipeline case where all dependencies are preserved until the
end of the pipeline since no downsampling is performed, there
is quite a substantial gain when using the most sophisticated
model.

B. Impact of the estimation of the covariance matrix

In this subsection we study the impact of errors on the
estimation of the covariance matrix. Three main types of error
can occur on the estimation: errors on the heteroscedastic
parameters c1 and c2, errors on the pipeline matrix H and
errors due to the saturation of the pixels (see Section VI-C).

Errors on the heteroscedastic parameters can be studied
analytically. Let c1 and c2 be the true parameters; ĉ1 and ĉ2
are the estimated parameters. The variances σi and estimated
variances σ̂i in the RAW domain are given by σi = c1µi + c2
and σ̂i = ĉ1µi + ĉ2 respectively. Let α′ = ĉ1

c1
be relative

estimation error on the c1 parameter. We have that σ̂i =
α′σi + C where C = ĉ2 − α′c2 is a constant which does
not depend on the photo-site. Consequently, the resulting
estimated covariance Σ̂k in the developed domain is given
by Σ̂k = α′Σk + CHHT . As a particular case, note that if
we have ĉ1

ĉ2
= c1

c2
, then the estimation error has no impact

on the MGE steganography schemes, because a multiplicative
error on the covariance does not change the optimal solution.
If we take the Bosslike pipeline as an example, we computed
HHT for each camera and found that the average absolute
value of the non-diagonal entries is of the order of 10−7

and 10−4 for the diagonal elements. If we set ĉ2 = 0, the
relative estimation error would then have to be very high (i.e,
in the order of at least 100) to begin to have an impact. To
validate this analysis on the Bosslike pipeline, we repeated
the experiments of Section VII-A except that the covariance
matrices were estimated by fixing c1 = 0.5 and c2 = 0 for
every image. The results are given in Figure 10a. As expected
they are extremely close to the original Σ-Lat-MGE results on
this pipeline.
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The two other types of error are an error on the estimation
of the processing pipeline and the error due to saturation of the
pixels. In this paper, we always assumed the steganographer
had access to the correct processing pipeline for the estima-
tion of the covariance matrix, even in the “no RAW” case
presented in Section III. It would then be interesting to see the
impact on security when using mismatched pipelines for the
covariance estimation. To do so, we repeated the experiments
of Section VII-A, but this time using the covariance matrices
estimated with the Boss pipeline on the Linear dataset and
vice versa. Similarly, we also repeated the experiments when
using the heuristic presented in Section VI-C and when not
using it. The results are presented in Figure 10a-10b.

The results are clear: using strongly mismatched pipelines or
not taking the saturation of pixels into account leads to near
useless schemes, showing the importance of having a good
model of the pipeline in the first place. Note, however, that
such a mismatch is quite significant since one pipeline uses
cropping and the other downsampling, leading to very different
correlation structures. A complete study of this phenomenon
should find a good measure of mismatch using the covariance
matrices and link this measure to empirical detectability but it
is out of the scope of this paper.

VIII. CONCLUSION

This paper is the conclusion to a series of work on Gaussian
Embedding. Through the development of a multivariate Gaus-
sian model of the sensor noise and the processing pipeline,
we derived the optimal detector when the sensor noise follows
this very general model. We showed that in this setting, the
signal which minimizes the KL-divergence under a given
payload constraint has a covariance matrix proportional to the
covariance matrix of the cover noise. With these results, we
designed the general form of Gaussian Embedding using a
lattice embedding strategy. This allows us to use an embed-
ding scheme taking into account correlations between every
neighboring block. Furthermore, this algorithm does not need
access to a RAW file. This yields an algorithm that beats the
previous state-of-the-art by an important margin, even when
our model does not match exactly the real distribution of the
sensor noise.
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APPENDIX

In this appendix, we provide proofs and derivations of
the main results of the paper. First, we derive the optimal
detector of the hypothesis testing problem given in Section IV.
Secondly we simplify the power minimization problem as a
minimization of the KL-divergence of the likelihood-ratio and
show that the optimal covariance in this setting is a scaling of
the covariance of the cover noise.

A. Derivation of the optimal detector

To be as general as possible, we will not consider any
particular dependency model in this appendix. As such we
will consider that the sample ξ is the whole image under
scrutiny. Consequently we try to derive the optimal test which
discriminate between the two following hypotheses:{

H0 = {ξ ∼ N (µ,Σ)} ,
H1 = {ξ ∼ N (µ,Σ+E)} . (46)

Notice that we consider here the covariance of the whole
image Σ and not the covariance of the blocks. Now recall that
the optimal test under our setting is the likelihood-ratio test
given by Eq (26). To compute the power of this test, we need
to compute the distribution of the likelihood ratio under both
hypotheses. To do so, we use the fact that the statistic of the
LRT can be written as a quadratic form – see [32][Chapter 3,
Section 3] for a derivation:

1

2

(
ξT
(
Σ-1 − (Σ +E)

-1
)
ξ+ log

( |Σ|
|Σ+E |

))H0

≶
H1

τ. (47)

This test can be simplified as:

Λ̂(ξ,Σ,E) = ξT
(
Σ-1 − (Σ +E)

-1
)
ξ

H0

≶
H1

τ ′. (48)

by putting the contribution of the constant values in the
threshold.

We will show that this test can be rewritten as a sum
of weighted independent standard chi-squared rv.s. We will
develop only the case under H0; the case for H1 follows
exactly from the same method.

Let:
A = Σ-1 − (Σ +E)

-1
, (49)

and decompose Σ using the symmetric square-root matrix :

Σ = Σ1/2Σ1/2. (50)

Using the spectral theorem we can write:

Σ1/2AΣ1/2 = UKUT , (51)

where U is an orthogonal matrix and K a diagonal matrix.
Finally, let ξu = UTΣ−1/2 ξ and note that it follows a

centered multivariate Gaussian distribution with covariance the
identity matrix (by the orthogonality of U).

Now write:

ξT A ξ = ξT Σ−1/2UKUTΣ−1/2 ξ (52)

= ξTu K ξu =

M∑
i=0

Kiiξ
2
u,i. (53)

The statistic in Eq (48) is thus a realization of a sum of
independent standard chi-squared random variable weighted
by the eigenvalues of AΣ and A (Σ +E) under H0 and H1

respectively.

B. Form of the covariance matrix which minimizes the KL-
divergence

Computing the power of the LRT when the distribution
under both hypotheses are weighted sum of chi-square dis-
tribution is difficult in the general case. Furthermore, we
cannot appeal to the central limit theorem since we have no
information on the distribution of the weights Kii.

If we cannot give the form of the optimal pre-stego signal
due to this fact, we can however give security guarantees for a
given pre-stego signal. To do so, we use the result of Cachin’s
work on steganographic security [29], which shows, using
a simple data-processing inequality, that the performance of
an optimal detector is upper bounded by the KL divergence
between the distributions of the two hypotheses.

Instead of minimizing the power of LRT under an en-
tropy constraint we will thus minimize the KL-divergence
DKL (p||q) under an entropy constraint:{

min
E

DKL (pΣ||qΣ,E)

R = 1
2 log (2πe|E|)

(54)

where R is the payload constraint in the continuous domain
and |.| the matrix determinant. Recall that we assume here Σ
and E to be both positive definite matrices.

Note that the KL divergence between p and q is given by:

1

2
(trace

(
(Σ +E)−1Σ

)
+ log

( |Σ+E |
|Σ|

)
− n). (55)

The main idea of this proof is that we can simplify the
problem by working in a basis where the covariance of the
cover noise is the identity matrix. This is done by showing that
the KL-divergence is invariant when changing to this basis. We
then express the Lagrangian of the system as a function of the
eigenvalues of E and show that there exists a unique minimum
for our system.

First, let L be the Cholseky decomposition of Σ such that:

Σ = LLT . (56)

Let us also define Ew as:

Ew ≜ L−1 E
(
L−1

)T
. (57)

We now want to show the following equality:

DKL (pΣ || qΣ,E) = DKL (pI || qI,Ew) , (58)

where I is the identity matrix (with relevant dimensions).
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To do so, we begin by showing the equality for the trace
term:

trace
(
(Σ +E)−1Σ

)
= trace

(
LT (Σ +E)−1L

)
= trace

(((
LT (Σ +E)−1L

)−1
)−1

)
= trace

((
L−1 (Σ +E)

(
L−1

)T)−1
)

= trace

((
I+ L−1 E

(
L−1

)T)−1
)

= trace
(
(I+Ew)

−1
)
.

(59)

and secondly for the determinant term:

|Σ+E | · |Σ−1| = |I+EΣ−1|
= |I+EL−1(L−1)T |
= |I+Ew |,

(60)

with the last line obtained using Sylvester’s Law of determi-
nant. This validates the invariance of the KL-divergence to our
change of basis.

Using Eq (58), we rewrite the system in Eq (54) as:

{
min
Ew

DKL (pI || qI,Ew)

R = 1
2

(
log (2πe|Ew|)− log

(
2πe|Σ−1|

))
.

(61)

Now, let ki be the i-th eigenvalues of Ew, we have that:

DKL (pI || qI,Ew
) =

1

2

(
trace

(
(I+Ew)

−1
))

+
1

2
(log (|I+Ew |)− n)

=
1

2

(
n∑

i=1

1

1 + ki
+

n∑
i=1

log (1 + ki)− n

)
(62)

With a change of variable such that k′i = log (ki) we obtain
the following optimization problem:

min
k′
i

1
2

(∑n
i=1

1

ek
′
i+1

+ log(ek
′
i + 1)

)
− n

R′ =
∑n

i=1 k
′
i.

(63)

where R′ = −2R+ log (2πe|Ew|)− n log (2πe).
Since the objective function is a sum of identical convex

functions and the constraint is the sum of k′i, the problem
is convex and consequently admits a single, global minimum
which is attained when all k′i are equal.

From this observation, it follows that Ew is a a matrix where
all eigenvalues are equal. Since, Ew is positive definite (hence
normal), this implies that it is proportional to the identity
matrix:

Ew = αI, (64)

for some α > 0.

Going back to the original system in Eq (54), the solution
is obtained by:

E = LEw LT

= LαILT

= αΣ.

(65)
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