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Featured Application: This study provides a procedure-detailed scientific approach for the out-
patient planning problem at the chemotherapy department.

Abstract: In this paper, we study a complex outpatient planning problem in the chemotherapy depart-
ment. The planning concerns sequences of patients’ treatment sessions subject to exact in-between
resting periods (i.e., exact time-lags). The planning is constrained by the hospital infrastructure
and the availability of medical staff (i.e., multiple time-varying resources’ availability). In order to
maximize the patients’ service quality, the objective of the function considered is to minimize the
total wait times, which is equivalent to the criteria for minimizing the total completion time. Our
main contribution is a thorough analysis of this problem, using the Hybrid Flow Shop problem as a
theoretical framework to study the problem. A novel Mixed Integer Linear Programming (MILP) is
introduced. Concerning the resolution methods, priority-based heuristics and an adapted genetic al-
gorithm (GA) are presented. Numerical experiments are conducted on historical data to compare the
performances of the approximate resolution methods against the MILP solved by CPLEX. Numerical
results confirm the performances of the proposed methods.

Keywords: outpatient; planning techniques; hybrid flow shop; time-lag; time-varying resources;
genetic algorithm; dispatching rules

1. Introduction

According to Hesaraki [1], there are two treatment settings in hospitals: inpatient care
and outpatient care. Inpatient care requires more than one day of hospitalization. Outpatient
care concerns patients who are admitted to and leave hospitals on the same day. While
inpatient care demands dedicated resources such as a bed or a room with equipment for a
single patient, outpatient care allows for reusing the same resources for several patients a
day, thus increasing the utility and the flexibility of the hospital infrastructure. A challenge
arises with the growing number of patients’ demands: ensuring the service capability of
human and infrastructural resources while maintaining the quality of services.

In this work, we study the outpatient planning problem under medical resources.
The hybrid flow shop problem is applied as our theoretical framework for the problem
studied. The case-study context and data are provided by the service of Outpatient Care of
Pneumonology–Hematology–Oncology (Troyes Hospital Center, France).

The main contributions of this work are as follows: (1) a most detailed procedural
analysis, to the best of our knowledge, of a chemotherapy planning problem; (2) a novel
mixed-integer linear programming model that takes into account the exact time-lag and
time-varying resource constraints; (3) adapted heuristics and a genetic algorithm allowing
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for parallel computation to reduce time computation proposed to efficiently solve the
problem studied.

This paper is organized as follows: Section 2 provides a detailed description of the
problem following by a complexity analysis. Next, Section 3 gives the overview of the
outpatient scheduling/planning, especially the chemotherapy. The Mixed Integer Linear
Programming (MILP) model from our previous work [2] is detailed in Section 4. Section 5
is dedicated to resolution methods: eight priority-based heuristics and a genetic algorithm.
Section 6 specifies the test protocol and the numerical results to gauge the performances of
different approaches. Finally, Section 7 concludes this paper with our remarks and states
our future works.

2. Problem Description

This section provides a detailed description of the problem followed by a classification
of the problem and a complexity analysis.

2.1. Outpatient Scheduling Problem

The outpatient scheduling at the chemotherapy service includes two subproblems,
according to Condotta and Shakhlevich [3]. In the first problem, in which the time horizon
is considered by the number of days, the scheduler must decide the starting time of a
sequence of treatment sessions (as known as appointments) and rest days in-between (Figure 1).
The second planning problem has the time horizon limited by a day and consists of a
four-stage process requiring multiple resources at each stage (Figure 2).

1st session

Tuesday 6/3

2nd session

Tuesday 13/3

3rd session

Tuesday 27/3

7 resting days 14 resting days

Figure 1. Example of a cycle of three appointments.

A

Consultation

B

Installation

D

Monitoring

C

Drug Mixing

Figure 2. Gantt diagram of a chemotherapy outpatient care.

The first subproblem considers, for each patient, a complete chemotherapy outpatient
therapy, which is called the multi-day pattern. The therapy comprises several treatment
sessions (i.e., appointments) distanced by predefined resting time windows for healing,
as illustrated in Figure 1. These inter-appointment periods are fixed so that the patient’s
health recovers for the next session. For the sake of brevity, this sequence is denoted as a
cycle of a patient.

The second subproblem handles the scheduling on the day of the appointment, de-
cided by the first subproblem. After being admitted, the patient consults a doctor to check
up on her/his current health condition. If the patient is judged to be not healthy enough to
receive the treatment, the current session is rescheduled to another day. Otherwise, the pa-
tient follows a nurse to an available seat (a bed or an armchair). In parallel, the required
chemotherapy drug is prepared at the pharmacy unit. Once the drug is ready, the patient
proceeds to receive the treatment under the monitoring of a nurse.
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However, in some exceptional cases, the treatment session does not require a con-
sultation in the same day because this consultation can be made in advance. In this case,
the consulting time of the patient is considered zero. Furthermore, occasionally, the mixing
drug step is permitted to proceed one day in advance so that the waiting time can be reduced.
The Gantt diagram in Figure 3 illustrates those operations.

B

Installation

D

Monitoring

C

Drug Mixing

Figure 3. Gantt diagram of a particular case: no consultation, and drug mixing is allowed to process
in advance.

Both subproblems have time-varying resource availability, illustrated as in Figure 4.
Since the processing of each stage requires one or multiple resources, the variation in re-
sources implies the maximal number of patients that the service can handle simultaneously.
In this problem, four types of resources are considered:

• Pharmacy: a resource only available during the predefined opening hours. The capac-
ity of the pharmacy is considered unlimited.

• Doctor: a discrete time-varying resource. A doctor can receive a maximum of one
patient at a time.

• Nurse: a discrete time-varying shared resource. Each nurse can install a patient to a
seat or simultaneously monitor at most Ψ patients.

• Seat: a constant renewable resource. Each patient occupies a seat from the beginning
of installation until the end of the session of care.
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Figure 4. Example of resources’ variation in a day.

2.2. Problem Categorization

We denote the problem using the Graham notation α | β | γ [4].
For each session, the patient should go through four stages, as mentioned earlier

(Figures 2 and 3), and then, the problem belongs to the family of Flow Shop problems.
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In addition, according to the capacity of different types of resources, the last stage (moni-
toring) can be executed for multiple patients in parallel. The problem is classified to be a
Hybrid Flow Shop scheduling problem. Since each care session has four operations, we
denote α = FH4.

The resource constraints are denoted as res λσρ according to Blazewicz et al. [5],
with new modifications introduced by Weglarz [6]. There are four types of resources
required for the execution of jobs (λ = 4). No bound on the resource capacities is known
a priori (σ = ·). The requirement of resources is bounded correspondingly to the stage
(ρ = 1): one doctor for consultation, one pharmacy unit for drug mixing, one nurse and one
chair for installation, and 1/Ψ nurse (in terms of capacity Ψ) and one chair for monitoring.
The resource constraints notation is then res 4 · 1.

The final job constraint is the waiting time between two treatment sessions of a patient
(Figure 1). An outpatient chemotherapy cycle requires the patient in question to rest a
certain number of days before entering the next session. In the literature, this constraint is
described as the time-lag constraints, which are denoted as ljj′ [7,8]. The time-lag is a gener-
alization of the precedence constraint where one job has to wait an amount of time before
processing, depending on another job. Due to the technical aspects of the chemotherapy
care, we are only interested in the number of days between two consecutive jobs.

The objective of our studied problem is to maximize the quality of service. In this case,
we tend to reduce the mean waiting time of the patients, which is equivalent to minimizing
the total completion time [9].

In summary, the problem is noted as:

FH4 | ljj′ , res 4 · 1 | ∑ Cj

2.3. Problem Complexity

By assuming that the input is only patients with a single session and that consultation
and installation time are zero, the considered problem without resources constraints
is reduced to the two stages Flow Shop problem, which is NP-hard [10]. Furthermore,
the resource variation is usually seen as an element that makes the planning/scheduling
problem harder to solve [11]. Our problem thus should be at least NP-hard.

3. Literature Review

Healthcare services have been receiving a growing number of papers covering sev-
eral major domains in response to many complex problems from the increasing patients’
demands under limited and scarce resources. Multiple reviews [12–19] have shown an
extensive view about typical challenges regarding multiple aspects, levels, and criteria.

The hybrid approach of the branch-and-bound algorithm and the constraint program-
ming technique in [20] proposes exact solutions for the generic integrated problem of
employee timetabling and job-shop scheduling. The work is then applied to the outpatient
chemotherapy scheduling problem, yielding significant results. The work of Condotta and
Shakhlevich [3] considers the recovery duration after each session (multi-day time-lag)
and the intervention during the monitoring step (intraday time-lag) by resolving two ILP
models corresponding to multi-day and intraday subproblems over the rolling horizon.
Hahn-Goldberg et al. [21], on the other hand, proposed resolution methods based on
Constraint Programming and MIP that yield applicable performance. Liang and Turk-
can [22] tackled it using a multi-objective optimization, providing a helpful spreadsheet
decision-making solution for strategical clinic management. The branch-and-price algo-
rithm of Legrain et al. [23] founds an application in the nurse rostering problem. Under the
assumptions that the pharmacy unit and oncologists are abundant, the MILP model by
Hesaraki [1] focuses primarily on the last two stages because efficiently allocating nurses
in a day is more critical and complex. Then, the method aggregates the time-lag progres-
sively by applying a rolling horizon and schedule template to construct the long-term
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planning. Overall, few papers consider the problem with multiple types of resources and
time-varying resource availability.

On the other hand, a quick and approximate solution’s applicability in practical cases
has attracted the development of heuristic and meta-heuristic. Menting and Menting [24]
built several heuristic algorithms to enhance the schedule of affecting resources (nurses and
seats) to patients after applying LPT rule combined with First Fit Strategy. The resolution
time is less than several seconds, resulting in a good planning tool for the local hospital
in daily usage. The review of Marynissen and Demeulemeester [19] lists multiple meta-
heuristic approaches for multi-appointment planning and, in particular, chemotherapy
scheduling. The latter invokes multiple resources and requires repeating treatment sessions
over a long horizon.

As far as we know, there is a lack of work in the literature that studies all four men-
tioned stages. As indicated in Table 1, while some work considers the multi-day subproblem
(time-lag), few include all stages (intra-day subproblem) and required resources. That is the
reason why our previous work’s model [2] is the most detailed in terms of care operations
so far, according to our knowledge.

Table 1. Positioning our research (in bold) among the most related ones.

Researches
Multiday

Stages
Resources

Criteria(with Time-Lag) Types Variability

Turkcan et al. [25] Yes 4 (as a whole) 2 No Overtime +
Delay

Hahn-Goldberg et al. [21] No 4 4 No Makespan

Condotta and Shakhlevich [3] Yes 2 2 Constant except
middle break

Waiting,
Workload

Liang and Turkcan [22] No 1 2 Single shifts Overtime +
Waiting

Hesaraki [1] Yes 2 2 Constant except
middle break

Makespan +
Total weighted

flow time

Tran et al. [2] Yes 4 4 Yes
Total

completion
time

4. Mathematical Model

The mathematical models of Hesaraki [1] and Condotta and Shakhlevich [3] deal
principally with constant resources, which cannot be adapted to our problem where the
resources vary over time. For this reason, we develop another formulation using disjunctive
binary variable technique. This modeling approach brings us some benefits. The variation of
resources can be wholly taken into account and can be extensible to any number of discrete
resources types. Reordering operations can be made without complete modification of
resources constraints. Readers are referred to the work of Nguyen et al. [26] for more details.

Let us denote the disjunctive binary variable as follows:

σo
i,k,j,h =


1 if operation o of appointment k of patient i

starts at time h on day j

0 otherwise

(1)

χo
i,k,j,h =


1 if operation o of appointment k of patient i

ends at time h on day j

0 otherwise

(2)
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The detailed notations to the problem are stated in Table 2. With such a notation,
we can describe the fundamental measures of a given treatment session k of patient i
mathematically:

• Each operation o can be started and ended only once:

∑
j∈J

∑
h∈H

σo
i,k,j,h = 1 (3)

∑
j∈J

∑
h∈H

χo
i,k,j,h = 1 (4)

• The processing time po
i,k,j,h of an operation o must be equal to the difference between

the starting time σo
i,k,j,h and the completion time χo

i,k,j,h:

σo
i,k,j,h = χo

i,k,j,h+po
i,k

(5)

• Given a date j, the completion indicator variable ∑
h′≤h

χo
i,k,j,h′ checks whether the op-

eration o is completed by the moment h. Therefore, if an operation ô succeeds o,
the starting time of ô must not exceed o’s completion indicator:

σô
i,k,j,h ≤ ∑

h′≤h
χo

i,k,j,h′ (6)

• Since ∑
h∈H

χD
i,k,j,h indicates if the session k happens on day j, one can use the following

formula to extract the index of the day when the treatment session happened:

ji,k = ∑
j∈J \{0}

(
j× ∑

h∈H
χD

i,k,j,h

)
(7)

One can find the completion time of a process by a similar manner:

hi,k = ∑
j∈J \{0}

∑
h∈H

h× χD
i,k,j,h (8)

From (4), (7) and (8), we can rewrite the completion time of a session k by multiplying
ji,k the number of passing days by H the number of timeslots per day then adding up
with hi,k the elapsed time of the treatment:

Ci,k = H × (ji,k − 1) + (hi,k − 1)

= H ×
 ∑

j∈J\{0}
j× ∑

h∈H
χD

i,k,j,h − ∑
j∈J\{0}

∑
h∈H

χD
i,k,j,h

+

+

 ∑
j∈J\{0}

∑
h∈H

h× χD
i,k,j,h − ∑

j∈J\{0}
∑

h∈H
χD

i,k,j,h


= H × ∑

j∈J\{0}
∑

h∈H
(j− 1)× χD

i,k,j,h + ∑
j∈J\{0}

∑
h∈H

(h− 1)× χD
i,k,j,h

= ∑
j∈J\{0}

∑
h∈H

(H × (j− 1) + (h− 1))χD
i,k,j,h (9)

• Given a date j, the resource usage at the time h is determined by the execution of
operation o, which is calculated by the sum of the difference of the starting time
indicator variable σo

i,k,j,h′ and the completion time indicator variable σo
i,k,j,h′ from time

0 to h: ∑
h′≤h

(
σo

i,k,j,h′ − χo
i,k,j,h′

)
.
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Table 2. Notation of parameters.

Notation Description

O = {A, B, C, D} Four operations of an appointment (Figure 3)
J = {0, 1, 2, . . . , J} Set of days

j Index of day
H = {1, 2, . . . , H, H + 1} Set of time slots of a day (H + 1 indicates the end of day)

h Index of time
M Number of places

Ψ Maximal number of patients that one nurse can monitor in the
same time

D(j, h) Number of doctors at time h on day j
I(j, h) Number of nurses at time h on day j

F(j, h) 1 if pharmacy opens at time h on day j,
0 otherwise

P Set of patients
i Index of patient

Θi = {1, 2, . . . , ni} Set of required appointments for patient i
k Index of appointment

po
i,k Duration of operation o for patient i at appointment k

eC
i,k

Authorization of a priori drug mixing for patient i at
appointment k

∆i,k
Time-lag (days) of appointment k of patient i with respect to

appointment k− 1

From these formulas, we obtain the MILP model as follows:

Minimize ∑
i∈P

∑
k∈Θi

∑
j∈J \{0}

∑
h∈H

(H × (j− 1) + (h− 1))× χD
i,k,j,h (10)

Subject to:

∑
j∈J

∑
h∈H

σo
i,k,j,h = ∑

j∈J
∑

h∈H
χo

i,k,j,h = 1 ∀i ∈ P , ∀k ∈ Θi, ∀o ∈ O (11)

χo
i,k,j,h+po

i,k
= σo

i,k,j,h ∀i ∈ P , ∀k ∈ Θi, ∀o ∈ O, ∀j ∈ J , ∀h ∈ H (12)

∑
h∈H

σo
i,k,j,h = ∑

h∈H
χo

i,k,j,h ∀i ∈ P , ∀k ∈ Θi, ∀o ∈ O, ∀j ∈ J (13)

∑
h∈H

σA
i,k,j,h = ∑

h∈H
σB

i,k,j,h = ∑
h∈H

σD
i,k,j,h ∀i ∈ P , ∀k ∈ Θi, ∀j ∈ J (14)

σo
i,k,0,h = χo

i,k,0,h = 0 ∀i ∈ P , ∀k ∈ Θi, ∀o ∈ {A, B, D}, ∀h ∈ H (15)

σB
i,k,j,h ≤ ∑

h′≤h
χA

i,k,j,h′ ∀i ∈ P , ∀k ∈ Θi, ∀j ∈ J , ∀h ∈ H (16)

∑
j′∈J :

j−eC
i,k≤j′≤j

∑
h∈H

σC
i,k,j′ ,h ≥ ∑

h∈H
σA

i,k,j,h ∀i ∈ P , ∀k ∈ Θi, ∀j ∈ J , ∀h ∈ H (17)

(
1− eC

i,k

)
σC

i,k,j,h ≤ ∑
h′≤h

χA
i,k,j,h′ ∀i ∈ P , ∀k ∈ Θi, ∀j ∈ J , ∀h ∈ H (18)

σD
i,k,j,h ≤ ∑

h′≤h
χB

i,k,j,h′ ∀i ∈ P , ∀k ∈ Θi, ∀j ∈ J , ∀h ∈ H (19)

σD
i,k,j,h ≤ ∑

j′∈J :
j−eC

i,k≤j′<j

∑
h′∈H

χC
i,k,j′ ,h′ + ∑

h′≤h
χC

i,k,j,h′ ∀i ∈ P , ∀k ∈ Θi, ∀j ∈ J , ∀h ∈ H (20)

∑
h∈H

σA
i,k+1,j+∆i

k+1,h = ∑
h∈H

σA
i,k,j,h ∀i ∈ P , ∀k ∈ {1, . . . , ni − 1}, ∀j ∈ J : j + ∆i

k+1 ∈ J (21)
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M ≥ ∑
i∈P

∑
k∈Θi

∑
h′≤h

(
σB

i,k,j,h′ − χD
i,k,j,h′

)
∀j ∈ J , ∀h ∈ H (22)

D(j, h) ≥ ∑
i∈P

∑
k∈Θi

∑
h′≤h

(
σA

i,k,j,h′ − χA
i,k,j,h′

)
∀j ∈ J , ∀h ∈ H (23)

I(j, h) ≥ ∑
i∈P

∑
k∈Θi

∑
h′≤h

((
σB

i,k,j,h′ − χB
i,k,j,h′

)
+
(

σD
i,k,j,h′ − χD

i,k,j,h′
)

/Ψ
)
∀j ∈ J , ∀h ∈ H (24)

F(j, h) ≥ ∑
h′≤h

(
σC

i,k,j,h′ − χC
i,k,j,h′

)
∀i ∈ P , ∀k ∈ Θi, ∀j ∈ J , ∀h ∈ H (25)

Since we aim to reduce the total waiting time of the patient in the hospital, the objective
function is the total completion time minimization (10), expressed by Equation (9). We
summarize here the explication of each group of constraints:

1. Operations: (11) obligates any operation to start and end exactly once on the horizon,
according to (3). (12) makes each operation non-preemptive, which means that, once
an operation starts, it must be processed without interruption. Equation (13) makes
their start and end dates the same (outpatient regime). For each session, three stages
(consultation, installation, and administration) are on a same day (14). However, since
day 0 is a dummy day to allow for mixing the drug in advance, if possible, for day 1,
these three steps are prohibited on day 0 (15).
According to the order of operations, the installation never precedes consultation (16).
The mixing, if a priori preparation is authorized (eC

i,k = 1), can proceed at most one day
before the day of treatment session (17); otherwise, it follows the end of consultation
(18). Finally, monitoring starts when the patient has been fully installed (19) and the
drug is available (20).

2. Appointments: Each patient has a set of appointments in which the time-lags have
been decided beforehand in terms of days (21).

3. Seats: A patient occupies one seat from the beginning of installation until finishing the
monitoring (22).

4. Doctors: One doctor takes in one patient at a time (23).
5. Nurses: A nurse can either install a patient into a seat or monitor a group of Ψ

patients (24).
6. Pharmacy: Unlimited orders are allowed to process in parallel as long as the mixing

procedures are in the pharmacy’s opening time (25).

5. Resolution Methods

Although the MILP model for our problem defined at Section 4 gives exact solutions
with the solver CPLEX, the resolution time increases exponentially as the instance size
grows. Thus, we seek other approaches with a more reasonable resolution time. We present
in this section eight priority rules and a genetic algorithm adapted to the problem.

5.1. Dispatching Rule Heuristics

Due to the time-lag constraint, one must always ensure the exact waiting time between
two patient sessions. With First Fit Strategy (FFS) [27], we can find a resource, precedence,
and feasible planning for a sequence of appointments of a patient by scheduling as soon as
possible while ensuring the time-lag and resources’ availability for the patient. In addition,
the time-lag is only applied to the appointments of each patient. Hence, it is sufficient to
represent the problem’s instance as an orderly list of patients.

Since the SPT rule is a well-known rule for 1 | |∑ Cj [28] by prioritizing the job with
lower processing time, we first define the priority value total processing time as the sum of
the entire elapsed time for all steps at all appointments.

We also define the ideal total processing time, a variation that takes into account the
flexibility of jobs in the ideal case where we process without resource constraints:
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IPTi,k : ideal total processing time of appointment k of patient i

= pA
i,k + max

{
pB

i,k;
(

1− eC
i,k

)
pC

i,k

}
+ pD

i,k

=

{
pA

i,k + max
{

pB
i,k; pC

i,k

}
+ pD

i,k if C is not allowed to preproceed

pA
i,k + pB

i,k + pD
i,k otherwise

⇒ IPTi = ∑
k∈Θi

IPTi,k : ideal total processing time of patient i

Finally, note that, if we delay the first session by one day, the time-lag pushes the second
session an equal amount, resulting in an increase of two days (2× H time slots) in total on
the objective (10). In other words, delaying the first session of patient i by one day increases
the objective (10) by at least ni × H. For that reason, we see by intuition that prioritizing
long requests reduces the objective substantially. Combining with the idea of MTS (Most
Total Successor) [29], we construct hence the RLIPT priority value, as a lexicographical order
(ni; IPTi) so that the lengthier cycle (greater ni) is prioritized, tie-broken by the ideal total
processing time (IPTi) as processing the shorter jobs first might be beneficial. There are thus
four possible variations of ordering (all listed for the sake of completeness) RLIPT-DD (both
(ni; IPTi) in decreasing order), RLIPT-II (both (ni; IPTi) in increasing order), RLIPT-DI
(decreasing order of ni then increasing order of IPTi), and RLIPT-ID (increasing order of ni
then decreasing order of IPTi).

In summary, we sort patients’ planning requests in increasing (or decreasing) order of
priority values defined formally in Table 3. The heuristics to examine are SPT, LPT, SIPT,
LIPT, RLIPT-DD, RLIPT-II, RLIPT-DI, and RLIPT-ID.

Table 3. Priority definition.

Priority Description Formulation

PT Total Processing Time ∑
k∈Θi

∑
o∈O

po
i,k

IPT Ideal Total Processing Time ∑
k∈Θi

IPTi,k

RLIPT Request’s Length and Ideal
Total Processing Time (ni; IPTi)

5.2. Genetic Algorithm

Meta-heuristics methods received more attention as its performance increased signifi-
cantly to solve resource-constrained project scheduling for healthcare services [12,18,19,30].
In this problem, since it is straightforward to calculate the planning given a list of patients’
entrance using FFS, we decided to use genetic algorithm to generate numerous lists and to
converge toward the best.

The main elements of our GA are as follows:

• Encoding: We encode a chromosome as an ordinal sequence of patients, i.e., a chro-
mosome is a permutation of the list of patients because we try to determine a priority
list to schedule with FFS, similar to the priority-based heuristics earlier.

• Initial population: Given the permutation encoding scheme above, the initial popula-
tion is created by randomly shuffling NP times the set of patients {1, 2, . . . , n}.

• Selection: Tournament Selector (TS) is chosen because of its O(n) time complexity
and easy parallelization for speeding up calculation in practical use. Furthermore, while
a large tournament results in loss of diversity, a binary tournament performance is
generally inferior to a three-tournament. Hence, the tournament size is fixed by 3.
Let us denote FO (0 ≤ FO ≤ 1) as the fraction of population selected to give offspring.
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• Crossover: Due to the permutation encoding, the order of requests is critical to deduce
the planning. Hence, we adopt Partially Mapped Crossover (PMX, Figure 5), first
introduced by Grefenstette [31], so that a potentially good local order is transferred
from parent to child.

• Mutation: The offspring are then applied Partial Mutator Shuffle (PSM, known as
Swap Mutator, Figure 6) with probability PM [32], so that a new order not in the current
research neighborhood may appear.

• Population management: Denote FS(= 1− FO) as the fraction of current population
that we want to keep for the next generation in order to preserve diversity. The popula-
tion is kept constant by combining the children (dFO × NPe) and parents (bFS × NPc).

• Stop condition: The process is terminated after NG successive generations that the
objective value of the incumbent has not been changed.

p1 ( 1 2 3 4 5 6 7 8 ) × p2 ( 3 7 5 1 6 8 2 4 )

c1 ( 4 2 3 1 6 8 7 5 ) c2 ( 3 7 8 4 5 6 2 1 )

4↔ 1

5↔ 6

6↔ 8

1↔ 4

6↔ 5

8↔ 6

Figure 5. Example of PMX taken from [33]. Commencing with uniformly random two cut points,
the subsequences passed to children (p1 → c2; p2 → c1) defines the element map to swap (continu-
ously if necessary) in case of duplication when copying parent information to children.

m ( 1 2 3 4 5 6 7 8 )

m′ ( 1 2 5 4 3 6 7 8 )

Figure 6. Example of PSM taken from [33]. Randomly choosing two distinct elements then swap-
ping them.

We chose (FO, FS) = (0.5, 0.5) for a balance of the intensity and the diversity of the
search. The process stops after continuously staying at an objective value for long enough.
The preliminary numerical experiments show that the incumbent rarely descends after
100 generations. Therefore, we can make the GA finish earlier by terminating it after a
certain number of times, obtaining the same objective value instead of a fixed number of
generations in total.

6. Computational Results

This section presents the benchmark based on historical data and then calibrates the
proposed genetic algorithm. Finally, the results are shown and discussed.

6.1. Instance Generation

We use the test protocol and instances introduced in our previous work [2]. The dataset
is published at [34]. Each instance has two sets of data: resources availability (seats M, doc-
tors D(j, h), nurses I(j, h), pharmacy unit F(j, h)), and planning requests ({Θ1, Θ2, . . . , Θn}
with n number of patients).
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The generator’s data is based on the data of Hospital Center of Troyes (CHT) in France
(2020). The instances are generated as follows:

• The number of seats M is 30.
• Horizon is 4 weeks (J = 28), and each day consists of 22 time slots (H = 22).
• The maximal number of patients a nurse can monitor simultaneously: Ψ = 6.
• Human resources’ presence are generated using a discrete uniform distribution (unif),

of which the amount is an integer number varying between 0 (unavailable) and the
maximum (fully available), noted as unif[0; M] with M the major bound the resource
capacity. Historical data gives us ND = 5, NI = 6 maximal number of doctors and
nurses, respectively. Unlimited resource such as pharmacy could use 1 to represent to
up state (open) and 0 for down state (close).
We divide further the resources’ availability into four different scenarios to represent
the reality:

– Uniform: D(j, h) ∼ unif[0; ND]; I(j, h) ∼ unif[0; NI ]; F(j, h) ∼ unif[0; 1].
– Daily: Similar to Uniform, but the distribution is repeated daily.
– Weekly: Similar to Uniform, but the distribution is repeated weekly.
– Weekend: Similar to Uniform but no resource available on weekends, simulating

the current working schedule at the service.

• For each request of indexed i patient, we define the following:

– Number of required sessions |Θi| ∼ unif[1; 3].
– Time-lag ∆i,k ∼ unif[1; 3], except ∆i,1 = 0.
– Consultation time pA

i,k ∼ unif[0; 1] (yes or no).
– Installation time pB

i,k = 1.
– Drug mixing time pC

i,k ∼ unif[0; 3].
– Authorization of a priori drug mixing eC

i,k ∼ unif[0; 1] (yes or no).
– Treatment time pD

i,k ∼ unif[0; 3].

• Na, which is the total number of treatment sessions, takes a value from {15; 30; 60; 90;
120; 150; 180; 210}. In order to avoid service congestion, given the limited resources,
we have fixed the maximum number of treatment sessions to 210.

Using the generator implemented by Java 8 with its native random engine, we created
ten instances for each scenario each Na, resulting in 320 test instances in total.

All of the numerical tests were executed on the same machine with CPU Intel Core
i7–9750H (2.6 GHz∼4.5 GHz), and the time limit and the specific implementation of each
method are defined as follows:

• Solver CPLEX 12.10 solves the MILP within a time limit of 1 hour by using one
CPU thread.

• Heuristic approaches are implemented purely on Java 8.
• Genetic algorithm’s implementation based on Jenetic library 5.0 [35].

6.2. Calibration on the Genetic Algorithm

For each generated instance, we assign it to a difficulty level. The estimation of the
difficulty level was based on the GAP found by MIP resolution with CPLEX after one hour
of resolution. Three test instances were selected to represent the different levels of difficulty:

• Easy (low GAP): 90 weekly 3 (GAP = 0.10%).
• Normal (medium GAP): 180 daily 8 (GAP = 12.74%).
• Hard (high GAP): 210 daily 9 (GAP = 44.40%).

First, NP = 1000 was chosen for a large enough population. We observed the incum-
bent after 500 generations before picking a suitable number of steady generation NG.

Furthermore, because PM is usually small and PC is frequently high, we tried the test
with PM ∈ {0.01, 0.1} and PC ∈ {0.8, 1.0}. For each instance and tuple (PC; PM), we ran
Algorithm 1 30 times and recorded the best objective value in order to trace the convergence.
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In general, as we can see in Figure 7, the genetic algorithm generally converges after
100 generations. Therefore, we chose NG = 100.

Algorithm 1: Pseudo-code for the genetic algorithm
Data: The set of planning requests Θ = {Θ1, Θ2, . . . , Θn} where n is the number

of input patients.
Result: An ordered permutation Θ∗ =

{
Θ[1], Θ[2], . . . , Θ[n]

}
of requests to apply

First Fit strategy.
begin

Initialize the population Π by inserting the randomly shuffled Θ until
|Π| = NP.

current_best_chromosome← null.
current_best_objective← +∞.
steady_counter ← 0.
while steady_counter ≤ NG do

Evaluate fitness function of individuals of Π.
Use selector TS to get dFO × NPe individuals from Π to mate by cross-over

operator PMX with probability PC.
Mutate the offspring by mutator PSM with probability PM.
Use TS to get bFS × NPc survival individuals from Π for next generation.
Replace old generation: Π← survivors

⋃
offsprings .

if current_best_objective > objective value of the best chromosome of Π then
Save the best chromosome of Π to current_best_chromosome.
current_best_objective← objective value of current_best_chromosome.
steady_counter ← 0.

else
steady_counter ← steady_counter + 1.

end
end
Return current_best_chromosome.

end

Figure 7. Evolution of GAP (%) for different difficulty and different values (PC; PM).
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Furthermore, the GAP values of multiple runs on the same parameters stay close
together, as we can see in Figure 7, and the difference between the best (min GAP) and the
worst (max GAP) found objective values is always under 5% after 100 generations. Thus,
the GA is converged (i.e., stable) with the corresponding parameters.

We observe a general decrease of final GAP when the mutator probability PM going
from 0.01 to 0.1 and the cross-over probability PC increasing from 0.8 to 1.0 (Table 4 and
Figure 7). Hence, the choice (PC; PM) = (1.0; 0.1) is reasonable.

Table 4. Attained GAP (%) at the 500th generation for different difficulties and different values
(PC; PM). The best results are in bold.

Instances PC PM Min Max Mean

180 daily 8 0.80 0.01 14.18 17.64 15.93
0.10 14.28 17.92 15.96

1.00 0.01 14.30 17.37 15.59
0.10 14.12 17.24 15.88

210 daily 9 0.80 0.01 4.86 6.97 5.74
0.10 4.54 6.92 5.69

1.00 0.01 4.82 6.47 5.54
0.10 4.60 6.36 5.45

90 weekly 3 0.80 0.01 0.37 0.71 0.50
0.10 0.39 0.74 0.54

1.00 0.01 0.31 0.72 0.52
0.10 0.39 0.69 0.51

6.3. Numerical Test Results

The relative gap for method m on an instance is calculated using the following formula:

GAPm =

(
objective value found by m

Optimal objective value or best LB found by MILP
− 1
)
× 100%

Figure 8 and Table 5 show similar behaviors for the different heuristic methods with
small instances (Na < 90). However, when the total number of treatment sessions grows
(Na ≥ 90), CPLEX cannot find an optimal solution within the limit of 1 hour due to expo-
nentially increased combinations (Figure 9). Additionally, from this point, the performance
of solving methods can be grouped into three distinct tiers:

• Low performance: including RLIPT-ID, RLIPT-II, SIPT, SPT in which the GAP vastly
climbed from under 10% to over 20%, even 35% in weekend’s scenario.

• Medium performance: including RLIPT-DD, RLIPT-DI, LIPT, LPT, in which the GAP
increased arguably slower than low group and stayed overall below 15%.

• Good performance: including MILP and GA, which in most cases give lower GAPs
than the medium group, generally under 10%.

In general, CPLEX is effective for solving the proposed MILP. Nevertheless, when the
problem grows in size and resource availability congestion appears, the GA method yields
better performance. Furthermore, GA is better in terms of execution time (Figure 9 and
Table 6).
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Figure 8. The relative gap of different approaches for varying instances sizes.

Table 5. Efficacy of different approaches (%). The best results are in bold.

Scenario Na
RLIPT-

DD
RLIPT-

DI
RLIPT-

ID
RLIPT-

II LIPT LPT SIPT SPT GA MILP

daily 15 0.75 0.96 1.22 0.95 0.92 0.75 1.01 0.84 0.00 0.00
30 0.89 2.30 0.92 1.65 1.07 1.07 1.45 1.45 0.00 0.00
60 2.95 2.71 3.31 4.14 3.27 3.36 4.44 3.63 0.45 0.04
90 5.05 4.84 7.91 10.37 5.53 5.69 10.34 9.50 1.56 0.29

120 5.84 6.12 15.39 14.81 6.80 6.71 14.73 14.51 2.39 0.32
150 9.80 9.19 24.25 23.66 12.66 12.76 21.17 22.38 5.19 0.89
180 8.42 11.87 20.64 22.17 11.26 11.26 21.49 22.55 2.57 8.21
210 9.99 9.01 23.79 23.71 13.26 13.61 20.48 20.82 5.84 8.58

uniform 15 0.59 0.37 0.41 0.35 0.59 0.54 0.35 0.35 0.02 0.00
30 1.41 1.95 1.29 2.16 1.54 1.40 2.02 1.99 0.06 0.00
60 2.36 1.74 2.73 2.34 2.79 2.64 2.13 1.99 0.40 0.01
90 3.19 3.13 4.02 5.77 3.61 3.47 5.16 5.19 0.78 0.11

120 6.43 7.96 17.75 17.44 7.01 6.43 16.91 16.57 2.55 0.34
150 6.29 8.09 19.39 20.19 8.26 8.46 17.95 17.66 3.20 0.44
180 7.96 8.87 20.12 20.47 9.56 9.28 19.60 19.83 4.39 0.75
210 9.96 11.75 25.68 28.08 12.91 12.86 26.36 27.34 6.74 6.86

weekend 15 0.08 0.12 0.10 0.13 0.14 0.15 0.08 0.11 0.00 0.00
30 0.49 0.41 0.57 0.45 0.54 0.57 0.40 0.40 0.00 0.00
60 0.90 0.85 0.82 1.15 0.92 0.94 1.94 1.80 0.08 0.00
90 2.22 1.91 7.41 7.05 2.42 2.77 7.72 8.21 0.38 0.04

120 2.28 3.77 11.89 11.77 3.07 3.57 10.24 10.80 0.68 0.10
150 4.89 5.98 21.66 22.61 6.00 5.27 20.87 19.86 1.46 0.21
180 5.60 6.41 26.14 26.56 8.58 7.45 23.28 25.67 2.67 0.34
210 5.78 7.94 32.60 34.35 10.25 8.73 29.31 31.88 3.46 0.78
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Table 5. Cont.

Scenario Na
RLIPT-

DD
RLIPT-

DI
RLIPT-

ID
RLIPT-

II LIPT LPT SIPT SPT GA MILP

weekly 15 0.55 0.54 0.74 0.60 0.61 0.58 0.49 0.55 0.00 0.00
30 0.99 1.03 1.78 1.69 1.27 1.26 1.48 1.51 0.04 0.00
60 2.30 1.96 1.84 1.77 2.40 2.35 1.80 1.76 0.21 0.01
90 3.93 3.36 4.68 5.46 4.45 4.30 5.10 5.48 0.87 0.13

120 6.53 8.18 19.23 20.12 6.79 6.69 20.25 19.77 2.56 0.41
150 7.27 7.83 23.14 21.06 9.44 9.40 20.79 21.06 3.75 0.56
180 8.31 8.06 23.29 23.14 11.06 11.16 21.15 21.46 4.77 0.56
210 9.27 9.85 23.96 25.45 11.41 11.22 23.84 24.56 5.60 7.19

Figure 9. Execution time (in seconds) of different approaches. The priority-based heuristics give
responses in several milliseconds, which is significantly faster than GA and MILP. We thus do not
display them here.

Finally, regarding the heuristics, we can see their GAP is decided by how they priori-
tized the complicated jobs regarding the heuristics. The low group puts the short jobs at the
top of their list, while the medium group plans the long jobs first. Hence, good heuristics
should focus on the number of appointments and the total processing time.

On the other hand, almost no difference is observed between RLIPT-DD and RLIPT-DI:
the priority lists of both methods put the lengthier jobs’ sequences higher, but the former
gives priority to longer processing times. At the same time, the latter arranges for a shorter
processing time. In other words, tie-breaking by processing time has little effect. The
number of treatment sessions in a sequence is probably critical for better performance,
confirming our intuition for the RLIPT priority rule.
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Furthermore, considering the ideal case of process, which helps reduce the weight
of the processing time of the drug mixing stage, does not improve the results significantly,
as seen in (LIPT; LPT), (SIPT; SPT).

Thus, MTS (Most Total Successor), which is the incentive for the RLIPT method, has the
best promising performance among the studied heuristics.

Table 6. Execution time (in seconds) of different approaches. The priority-based heuristics give
responses in several milliseconds, which is significantly faster than GA and MILP. We thus do not
display them here. The best results are in bold.

Scenario Na GA MILP

daily 15 0.54 2.64
30 0.81 5.17
60 1.96 481.84
90 3.67 3144.82

120 8.88 3607.37
150 9.52 3605.55
180 14.99 3607.27
210 13.91 3606.57

uniform 15 0.65 3.15
30 0.94 6.93
60 2.01 388.04
90 3.81 2560.58

120 5.84 3605.26
150 10.96 3603.58
180 13.26 3607.83
210 19.85 3605.19

weekend 15 0.69 1.86
30 1.07 4.17
60 2.66 85.48
90 5.01 1131.40

120 8.59 2892.92
150 16.28 3614.94
180 19.63 3604.99
210 20.97 3606.20

weekly 15 0.54 2.86
30 0.85 6.71
60 1.83 420.77
90 3.81 3236.47

120 6.88 3608.38
150 9.64 3608.42
180 18.29 3607.80
210 15.09 3606.19

7. Conclusions and Future Works

This work proposed a novel mathematical model for planning with time-varying
resource constraints and strict time-lags, applied in a real-world outpatient chemotherapy
service. The model included all four stages of each care session (consultation, installation,
monitoring, and drug mixing), thus providing the most mathematically detailed description
of the therapy. The formulation can be reused for more complex constraints such as
restricting resource access and unavailability of patients to maximize patients’ satisfaction.

Using an empirical test with real-world data, we demonstrated the efficiency of
heuristics and meta-heuristics under the objective function of minimizing total completion
time. The Most Total Successor (MTS) rule, which prioritizes lengthier sequences of treatment
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sessions, should bring about practical use in planning management. On the other hand,
the genetic algorithm proves to be an excellent candidate to handle complicated constraints
as a alternative for commercial solver. In practice, the heuristic can be useful for quick
and simple planning tools, while the GA might be useful for long-term and sustainable
planning systems.

Finally, we are moving to an online version of this problem to provide an efficient
algorithm that responds to the unpredictable fluctuation of resources and demands while
leveraging the system’s maximal operation.
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