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Abstract

This study introduces new probabilistic constraints and objective functions to

manage the uncertain nature of the renewable energy sources in single-item

capacitated lot sizing problem for flow-shop configurations by integrating the

capacity contract selection problem with multiple energy sources. The aim of

the probabilistic models built by considering the different probabilistic con-

straints and objective functions is to provide a decision-making tool and to

promote the use of renewable energy sources in manufacturing industry despite

of their stochastic nature. Mixed Integer Non-Linear Programming models are

proposed by integrating the uncertainty of the renewable energy sources based

on different features. The developed models are tested on a small-size instance

and the results of the models are compared in terms of economical, ecological

and reliability aspects.

Keywords: Lot Sizing, Flow-Shop, Renewable, Probabilistic,

Chance-Constraints, MINLP

1. Introduction

According to the report of U.S. Energy Information Administration, world

energy consumption will grow by nearly 50 % between 2018 and 2050 [1]. An-

other noteworthy detail in the same report is that world’s energy demand still
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mainly depends on fossil fuels which are responsible for the increasing carbon

emissions. The same report reveals that the industrial sector, which includes

mining, manufacturing, agriculture, and construction, accounts for the largest

share of energy consumption of any end-use sector, accounting for more than

50% over the entire projection period [1]. A recently published report by the

Carbon Disclosure Project (CDP), reveals that between 1988 and 2015, 100 of

all the hundreds of thousands of companies in the world have been responsible

for 71 % of the global GHG emissions [2]. All these facts make the industrial

sector the hottest target to work on to reduce the high carbon emission levels.

It is a well-known fact that energy generation from renewable energy sources

is the only way to manage the energy starvation of the nations and to protect

the planet as well. If the conventional energy sources supplied to the industrial

customers are diversified with the renewable ones; while the energy reserves of

the world can be used more efficiently, environmental targets can be achieved

significantly by declining carbon emission levels.

Despite all these positive outcomes of renewable energy sources, the tran-

sition of the renewable sources in the industrial sector shows a slow progress.

Even though there are several socio-economic and technological barriers that

hinder the deployment of the renewable energy sources, their intermittent and

stochastic nature can be attributed as one of the main reasons that discourage

the industrial customers who need the continuity of the energy supply to sustain

the production activities without any disruption. At this point, the key ques-

tion that comes to the minds of decision makers is when and how much product

must be produced to meet the demands of the customers, and how this plan

can be carried out more safely by considering the random nature of renewable

energy sources. These two questions can be merged and translated as lot sizing

problem under renewable energy sources.

The main objective of the lot sizing problem is to determine the size of the

production and inventory lots by minimizing production, set-up and holding

related costs and satisfying the demand of the number of products over a defined
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time horizon. The viability of the decisions made at a tactical level is heavily

depending on the success of the implementation of them at the operational level.

Based on this fact, several studies which combine lot sizing and scheduling

problems have been produced by researchers over the years. In particular, since

the lot sizing problem for flow-shop systems is studied in this paper, it would be

useful to mention the previous studies on this type of system. Mohammadi et

al. [3] studied the multi-level multi-product capacitated lot sizing problem for

pure flow-shop system. Babaei et al. [4] handled multi-level and multi-period

capacitated lot sizing and scheduling problem with sequence-dependent set-ups

and set-up carry over in flow-shop environment. Ramezanian et al. [5] con-

sidered the problem of lot sizing and scheduling of multiple product types in

a capacitated flow-shop with machine availability constraints for multi-period

planning horizon and three MIP-based heuristics based on iterative procedures

are used to solve problem instances. Several works [6, 7, 8, 9, 10] developed

mathematical models and heuristic approaches for the integration of lot sizing

and flow-shop scheduling with lot streaming. Gong et al. [7] and Han et al. [8]

proposed to consider blocking constraints for the lot-streaming problem in flow

shops systems. Han et al. [9, 10] studied the same problem with interval pro-

cessing time and machine breakdowns. Ramezanian and Saidi-Mehrabad [11]

addressed lot sizing and scheduling problem of a flow-shop system with capacity

constraints, sequence-dependent setups, uncertain processing times and uncer-

tain multi-product and multi-period demand. The uncertain parameters are

modeled through probability distributions and chance-constrained programming

theory. Mahdieh [12] studied the integrated capacitated lot sizing and schedul-

ing problems in a flexible flow line system where flow-shop and parallel shop

manufacturing systems are hybridized. Villadiego et al. [13] studied integrated

lot sizing and sequencing problem in a permutation flow-shop with machine

sequence-dependent setups and proposed an iterated greedy heuristic to cope

with the complexity of the problem. Torkaman et al. [14] studied multi-product

multi-period capacitated lot sizing problem with remanufacturing for flow-shop

systems by including sequence-dependent setups and set-up carry over.
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Due to the rising awareness for constructing environmental friendly produc-

tion systems, lot sizing problem has been handled by controlling carbon emission

levels. Several works [15, 16, 17, 18, 19] can be exemplified for the studies based

on the environmental friendly lot sizing problems. The main characteristic of

these studies is that the energy aspect is integrated into the different variants

of the lot sizing problems by targeting to limit the carbon emission levels in ac-

cordance with the different carbon regulations and to minimize the operational

costs respecting the ecological ones. It can be said that the starting point of the

previous studies is ecological concerns rather than economical ones.

Different from referenced environmental-based lot sizing studies, Masmoudi

et al. [20] considered the energy as a resource whose cost is required to be

considered. They took into account the power and electricity consumption costs

and proposed a model for capacitated single-item lot sizing problem for flow-

shop production systems. In their study, the total power demand is calculated

for each period and limited by the maximum amount of power which can be

supplied by the energy supplier. The developed model aims to identify the

optimum production quantities by minimizing the production and energy costs.

To the best of our knowledge, the study of [20] is the first attempt that combines

lot sizing problems in flow-shop system with energy consideration.

The main shortcoming of the model proposed by [20] is that since the energy

consumption pattern is formed according to the varying energy prices, the power

demand of the system fluctuates considerably. However, in real life, energy

suppliers can provide the energy to their customers in a certain balance and, to

keep this balanced energy flow, they negotiate with the customers for different

power options including different tariffs and reach an agreement. Inspired from

the real life practices, Rodoplu et al. [21] extended the model proposed by

[20] to the optimum energy contract capacity selection problem. The proposed

model in the study of [21] aims to identify the optimum production quantity and

to generate the optimum energy mix. This is done while taking into account
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the demand, the system and energy related constraints, the power need of the

production system and the capacity options offered by the supplier. To the

best of our knowledge, the presented study in [21] is the first attempt that

combines optimal energy contract selection problem with lot sizing problem for

flow-shop configuration by integrating renewable energy sources. Rodoplu et

al. [22] improved the previously presented mathematical model in [21] in terms

of computing the exact value of the peak power demand and implemented Fix-

and-Relax heuristic to solve the problem efficiently. Therefore, the studies of

[21, 22] provided more realistic decision-making tool to the decision makers in

the manufacturing industry since their studies consider production planning and

energy purchasing constraints and objectives simultaneously (Table 1).

Nonetheless, there is still room for improvement. The common point of these

two works is that the single-item lot sizing problem is handled by assuming that

the renewable energy resources will be uninterruptedly supplied to the consumer

as agreed in the contract. However, these weather-dependent energy sources are

risky due to their intermittent nature and they might not be fully met as they

are agreed in the contract. The customers, who prefer to mix non-renewable and

renewable energy sources to achieve environmental targets, must consider this

risk. Therefore, to provide a better decision-making tool to the decision mak-

ers, it is necessary to consider this unavailability risk in the supply of renewable

energy sources during the production planning and energy purchasing process.

Based on this motivation, Rodoplu et al. [23] proposed a preliminary model

in order to identify the optimum quantity for production lots in a flow-shop

system and to generate the optimum energy mix which can cover the need of

the system by considering the stochastic nature of the renewable energy sources.

The chance-constraint modelling approach is applied to integrate the risk level

in the supply of the renewable sources into the lot sizing problem.

Different from the study of Rodoplu et al. [23], in which the proposed

constraints are displayed in brackets in Table 1, this paper proposes two types of

probabilistic objective functions and introduces three new types of probabilistic
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constraints as summarized in Table 1 which highlights the contributions of this

work compared to existing ones. With this attempt, it is aimed to provide

alternatives to evaluate the expected cost of the disturbance in the supply of

the renewable energy sources. The newly built models can give an insight to

industrial customers about the cost that might need to bear in case of failure

in the supply of the renewable energy sources. The provided decision-making

tool allows the customers to organize their production in a safer way under the

uncertain availability of the renewable energy sources.

Features [20] [21, 22] [23] This work

Energy cost consideration X X X(10) X
Contract capacity selection X X X
Use of traditional energy X X X X
Use of renewable energy X X X
Probabilistic objective function(s) X
Service level constraint.(required ener.) X(3, 14,15)

Service level constraint(contracted ener.) X
Probabilistic constraint(average power) X
Probabilistic constraint(average failure) X

Table 1: A comparison of this work with the previous studies

The remaining of the paper is organized as follows: In Section 2, the handled

problem is stated explicitly and the assumptions are detailed. In Section 3,

the newly proposed probabilistic constraints are classified and explained in a

general frame. In Section 4, the developed probabilistic objective functions

are introduced. In Section 5, developed constraints and objective functions

are studied with the consideration of exponential distribution. In Section 6, a

numerical study is conducted to underline the impact of the energy constraints

on the production planning and to illustrate the effects of the different types of

constraints on the obtained solution. In Section 7, an instance inspired from

an industrial case is studied. Section 8 concludes this study with some remarks
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and perspectives.

2. Single-Item Lot Sizing Problem with Energy Contract Selection

2.1. Problem Statement & Objective

The considered production system is composed of N machines and N-1

buffers (Figure 1). The planning horizon is separated into T periods. Each

period (t=1...T ) is depicted with its length (Lt), the deterministically known

demand (dt) to be met, and electricity prices (Cot).

Figure 1: A typical manufacturing system with N machines and N-1 buffer [24]

The purpose of the developed model is to determine the optimum production

quantities (xm,t) on each machine (m=1,...,N ) and in each period (t=1,...,T )

by minimizing the costs related to production, holding, set-up and energy and

to identify the required maximum power demand in each period by considering

the risks which can occur in the supply of contracted renewable energy sources.

2.2. Assumptions

The assumptions related to the handled problem are categorized into two

groups: Production Related Assumptions and Energy Related Assumptions.

The primary production related assumptions can be listed as follows: The

external demand is dynamic and deterministic and must be satisfied at the end

of each period. The backlogging is not taken into account. For each machine, a

single set-up is allowed. The first machine is never starved and the last machine

is never blocked at each period. A machine m can only start the production
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when all the quantity to be produced (xm,t) is available at the output of the

previous machine. Therefore, vertical interaction is considered as in the studies

of [25] and [22].

Energy related constraints can be ordered as follows: The use of K types

of energy sources (traditional, wind, solar) is assumed. The on-site generation

is not considered in this study, therefore, since the considered conventional and

renewable types of energy sources are supplied by the energy supplier, the unit

price of energy and the tariffs are fixed by the suppliers. A given number

Rk of capacity options (which are not necessarily equal for all sources) can

be offered by the suppliers for each type of energy sources k=1,...,K. The Rk

proposed options form the energy contract vectors Vk = Vk,1, ..., Vk,Rk
for each

type of energy sources. Each energy option (l=1,...Rk) for each energy source

(k=1,...K) is portrayed by its subscription fee (V costk,l). The customers are

bounded to generate their energy mix by choosing one capacity option from

each type of energy source. Contract switching during the planning horizon is

not permitted.

The parameters and the decision variables used in the developed models are

as follows:

N : Number of machines

T : Number of production periods

K : Number of energy sources

Rk : Number of contract options for energy source of k=1,...K

Vk,l : Contract option l=1,...Rk for energy source of k=1,...,K

V costk,l : Subscription fee for option l=1,...Rk of energy source k=1,...,K

SL : Minimum service level defined by industrial customer

αt : The decision variable which defines the total power need of each period

Xs : Random variable of solar energy source

Xw : Random variable of wind energy source

Pk,l : A binary variable, equal to 1 if option l (l=1,...Rk) is chosen for energy

source k (k=1,...K), otherwise 0

E[Xs] : Expected value for solar power generation
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E[Xw] : Expected value for wind power generation

∇s: Average failure amount based on the contracted power for the solar energy

∇w: Average failure amount based on the contracted power for the wind energy

γ: Penalty cost

3. Developed Probabilistic Constraints

In this section, three new types of probabilistic constraints are proposed to

model the stochastic nature of the availability of the renewable energy sources:

—Service Level Based Chance Constraints based on Contracted Renewable En-

ergy

—Average Power Amount Based Probabilistic Constraints

—Average Failure Amount Based Probabilistic Constraints

In the first group of constraints, the chance constraint programming ap-

proach is used and the risk in the supply of renewable energy sources is trans-

formed into the risk in the realization of the production plan by introducing

service level of industrial customers. In [23], the probability of meeting the re-

quired renewable energy source is investigated and compared to the service level.

Probabilistic constraints named CS1 and CS2 are proposed. In this study, the

probability of having at least the amount of renewable energy agreed in the

contract is compared with the promised service level.

In the second group of constraints, the randomness in the availability of the

renewable energy sources is reflected in the model as the expected value of the

availability.

Lastly, in the third group of constraints, the expected failure amount that

might not be met according to the contracted option is calculated and optimum

contract options are selected by considering risky amount of energy.
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3.1. Service Level Based Chance Constraints

Chance-constraint programming which is also known as probabilistic pro-

gramming was firstly introduced by [26] to deal with the linear models includ-

ing uncertain features. Since then, it has been extensively used for the solution

of several types of problems such as capacitated facility location [27], supplier

selection [28], blood inventory management [29], disassembly scheduling [30],

shelter site location [31], vehicle routing problem [32], single-item capacitated

lot sizing problem [33].

In particular, the studies of [34], [35], [36], [37] can be referred as the exam-

ples for the application of chance-constraint programming for energy manage-

ment problems. [38] reviews the chance-constraint programming approach with

applications in energy management in their study.

3.1.1. Contracted Renewable Energy Based Constraints

In service level based chance constraints; a service level (SL), correspond-

ing to a production rate under the uncertainty of renewable energy sources, is

defined by the manufacturer. The service level (SL) represents the minimum

probability for the availability of renewable energy source. In other words, the

probability of available renewable energy amount (Xs) is greater than the con-

tracted amount of renewable energy must be at least as much as the specified

service level (SL) to satisfy the targeted service level. This idea is translated to

the following chance constraint:

Prob(Xs ≥ the contracted quantity for renewable energy source) ≥ SL (1)

This primitive version can be expanded according to the different energy mixes.

The proposed constraint in (1) can be expressed for the traditional and one/two

type(s) of renewable energy mix, where s and w mean solar and wind energy

sources respectively, as follows:

CS3 : (1) ⇐⇒ P (
∑

o∈{s,w}
Xo < (

Ro∑

o∈{s,w}
(Vo,l.Po,l)) ≤ 1− SL (2)
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where:
∑Rs

l=1(Vs,l.Ps,l), is the contracted capacity option for solar energy source
∑Rw

l=1(Vw,l.Pw,l), is the contracted capacity option for wind energy source

At this point, it is necessary to recall the constraints proposed in [23] and

emphasis the difference between the two different types of service level based

chance constraints. The proposed “required renewable energy” based con-

straints, named CS1 and CS2, in [23] are as follows:

CS1&CS2 : P (
∑

o∈{s,w}
Xo < αt −

Rtr∑

l=1

(Vtr,l.Ptr,l)) ≤ 1− SL ∀t = 1, ..., T (3)

The main difference between the constraints (2) and (3) is that periodical

power need (αt) is taken into account in one but not in the other. In the

constraints (2), the service level is satisfied according to the probability of having

at least contracted amount of renewable energy. The constraints (2) bring more

rigidness to the model, thus, keep the industrial customer on the safer side.

The difference between the constraints (2) and (3) will be highlighted with a

numerical study in Section 6.

Therefore, the “contracted renewable energy” based chance constraints are

developed in a global manner. In the following section, the second group of

constraints which is defined as “Average Power Amount Based Probabilistic

Constraints” is explained broadly.

3.2. Average Power Amount Based Probabilistic Constraints

The power generation from solar and wind energy sources depends on the

solar irradiation and wind speed, respectively. When the solar power generation

is considered, the irradiation value changes continuously from the first hours of

the sunrise to the sunset. The same type of fluctuations in solar irradiation can

be observed over a season. When it comes to the power generation from the

wind energy, it is possible to say that the wind speed diversifies during the day or

season. In this constraint, it is aimed to take into account the mean value of the
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power generation to cope with the stochastic aspect of renewable energy sources.

In probability theory, the mean of a random variable (X) is defined as expected

value and the expected value of a continuous random variable is calculated using

the probability density function (f(x)) via the following formula:

E(x) =

∫ ∞

−∞
xf(x)dx (4)

Even though the availability of renewable energy sources is uncertain, it

is a fact that when the traditional energy source is mixed with the renewable

energy sources, the sum of the deterministically known traditional power and

the expected renewable power generation must cover the energy need of the

production system. This idea can be translated for the traditional and one/two

type(s) of renewable energy mix, where s and w mean solar and wind energy

sources respectively as follows:

CS4 : αt ≤
Rtr∑

l=1

(Vtr,lPtr,l) +
∑

o∈{s,w}
E[Xo] (5)

where:
∑Rtr

l=1(Vtr,l.Ptr,l), is the selected capacity option for traditional energy source.

As it is shown in the constraints (5), the randomness of the renewable energy

sources can be taken into account in the contract capacity selection procedure

by calculating the expected values of the random variables according to the

given probability density functions. Therefore, the second group of constraints

is completed.

In the subsequent section, the constraints which are built on the expected

failure amount in the supply of the renewable energy sources are presented in a

general frame as the other constraints.

3.3. Average Failure Amount Based Probabilistic Constraints

When the clients negotiate for the certain capacity options for the renewable

energy sources, they must consider that the complete amount of the contracted
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option might not be supplied due to the random weather conditions. In the case

of increasing the contracted value, the risk of dissatisfying the whole contracted

amount increases and the risky amount which can not be met increases propor-

tionally. In this constraint, the stochastic aspect of the renewable energy sources

is taken into account by figuring out the expected failure amount depending on

the contracted option.

In case of using one type of renewable energy, solar for instance, the failure

amount (∇s) for solar energy can be defined as follows:

∇s =





∑Rs

l=1(Vs,l.Ps,l)−Xs Xs ≤
∑Rs

l=1(Vs,l.Ps,l);

0 Xs >
∑Rs

l=1(Vs,l.Ps,l);
(6)

where:
∑Rs

l=1(Vs,l.Ps,l), is the contracted amount for solar energy source.

From the definition given in (4) and assuming Xs has a probability density

function fs(x) the expected failure amount can be calculated as follows:

∇s =

∫ ∑Rs
l=1(Vs,l.Ps,l)

0

(

Rs∑

l=1

(Vs,l.Ps,l)−Xs)fs(x)dx (7)

Based on the average failure amount (∇s) obtained in (7), the average failure

amount constraint can be built for the traditional and one/two type(s) of renew-

able energy mix, where s and w mean solar and wind energy sources respectively

as follows:

CS5 : αt ≤
K∑

k=1

Rk∑

l=1

(Vk,l.Pk,l)−
∑

o∈{s,w}
∇o ∀t = 1, ..., T (8)
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(8) ⇐⇒ αt ≤
K∑

k=1

Rk∑

l=1

(Vk,l.Pk,l)− [

Rs∑

l=1

(Vs,l.Ps,l)

∫ ∑Rs
l=1(Vs,l.Ps,l)

0

fs(x)dx (9)

−
∫ ∑Rs

l=1(Vs,l.Ps,l)

0

Xs.fs(x)dx]− [

Rw∑

l=1

(Vw,l.Pw,l)

∫ ∑Rw
l=1(Vw,l.Pw,l)

0

fw(x)dx−
∫ ∑Rw

l=1(Vw,l.Pw,l)

0

Xw.fw(x)dx] ∀t = 1, ..., T

where:
∑K
k=1

∑Rk

l=1(Vk,l.Pk,l), is the sum of the contracted power amount.

Thus, three types of probabilistic constraints have been proposed. The de-

veloped probabilistic constraints can be integrated into the mathematical model

presented in [23]. The probabilistic models obtained by the integration of the

developed probabilistic constraints in this section and the objective functions

which will be detailed in the next section are given in Table 2 and Table 3.

4. Developed Objective Functions

In [23], the authors do not introduce any stochastic aspect of renewable

energy sources in the objective function. They develop the objective function

by considering the operational and power cost as follows:

Minz =
T∑

t=1

N∑

m=1

(ψm,txm,t + hIm,t + wm,tym,t)

+

Rk∑

l=1

K∑

k=1

(V costk,lPk,l) (10)

The first part of the objective function minimizes the operational costs

(including electricity consumption based production cost, holding and set-up

costs). In the second part, the power purchasing cost is minimized. Further

detail on the notations of the model can be found in [23]. However, in case of
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renewable energy shortage, the industrial customer may encounter some situa-

tions such as using extra traditional energy to compensate the unmet renewable

energy to sustain the production activities. All these cases increase the costs

for the customers and this fact should be integrated into the cost function.

Based on this motivation, in this study, two types of probabilistic objective

functions are introduced. In the first type, expected cost depending on the

failure probability is taken into consideration and added to the classical pro-

duction and energy purchasing costs. In the second type of objective function,

directly the cost of the amount that is expected to be failed in the supply of the

renewable energy sources is considered.

4.1. OF.1 : Expected Cost of The Probability of Failure

In order to avoid over consumption of traditional energy, it is considered

to penalize the probability of the failure in the supply of the renewable energy

sources. Accordingly, for the customers who wish to mix traditional energy with

only one/two types of renewable energy source, the following objective function

is developed:

OF.1 : Minz =
T∑

t=1

N∑

m=1

(ψm,txm,t + hIm,t + wm,tym,t)

+

Rk∑

l=1

K∑

k=1

(V costk,lPk,l) +
T∑

t=1

γ.P (
∑

o∈{s,w}
Xo < αt −

Rtr∑

l=1

(Vtr,l.Ptr,l)) (11)

where:

αt −
∑Rtr

l=1(Vtr,l.Ptr,l): Required amount for renewable energy source.

In the last part, in case of having less solar energy than the required amount

since the customer might need to consume more traditional source than planned

to compensate the energy gap, the occurring additional cost is added.

In this study, as an alternative to the “required renewable energy based”

service level chance constraints presented in [23], “contracted renewable energy

based” chance constraints had been developed in the constraint (2). In the
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case of introducing the contracted renewable energy based constraints to the

model, the expected cost is computed according to the unmet amount of energy

based on the contracted power and the objective functions proposed in (11) is

remodelled as follows:

OF.1.a : Minz =
T∑

t=1

N∑

m=1

(ψm,txm,t + hIm,t + wm,tym,t)

+

Rk∑

l=1

K∑

k=1

(V costk,lPk,l) +
T∑

t=1

γ.P (
∑

o∈{s,w}
Xo <

Ro∑

o∈{s,w}
(Vo,l.Po,l)) (12)

In Section 5, these proposed objective functions will be enhanced by considering

exponential distribution.

4.2. OF.2 : Expected Cost of Failure Amount of Renewable Energy

It is obvious that as long as the value of contracted option for renewable

energy increases, it will be more risky to meet all amount of energy contracted

for the supplier and, correspondingly, the average amount of failure increases.

The following objective function for the use of one/two type(s) of renewable

energy with traditional source is proposed by computing the expected failure

amount in the supply of the renewable energy sources as in constraint (9) :

OF.2 : Minz =
T∑

t=1

N∑

m=1

(ψm,txm,t + hIm,t + wm,tym,t) (13)

+

Rk∑

l=1

K∑

k=1

(V costk,lPk,l) + γ.
∑

o∈{s,w}
∇o

where:

γ : Penalty cost per unit.

As shown in Table 5, the power options that are offered to customers are

composed of given values. While the industrial customer negotiates for the

renewable energy options, he/she should consider that a portion of the agreed

power might not be supplied. The key point is to select the best renewable

17



option which can cover the need of the system and cause the least expected

cost under the given climate conditions. In return, this allow the customers to

meet the requirements related to the environmental policies and enable them

to communicate with their clients with the notion of “green production”. The

objective functions (11)-(13) are developed for this purpose.

Two types of objective functions have, so far, been proposed to consider

the cost of the uncertainty of the renewable energy sources. The developed

constraints and the objective functions are presented globally without specifying

any probability distribution for the random variables.

In the following section, the constructed probabilistic constraints (2), (5),

(8), and the objective functions (11)-(13) will be studied by considering expo-

nential distribution. Mathematical models that take into account the stochastic

nature of the renewable energy sources for the single-item lot sizing problem will

be generated by merging the probabilistic constraints and the newly developed

objective functions.

5. The Case Study Using the Exponential Distribution

As [39] pointed out in their study, the wind power generation extremely

appertains to wind speed and the solar power generation is dependent on the

solar radiation and environment temperature. To model the wind energy output,

the first task is to generate wind speed samples by Weibull distribution which

is a mathematical idealization of the distribution of wind speed over time [40],

then these samples are transformed to power output by using “wind speedpower”

curve.

The same approach is conducted for the solar power generation. In this case,

the solar radiation is modelled via Beta distribution [40] or Normal distribution

as in the study of [41] and the power generation is computed by using the curve

of “radiation-power”.

In [23], the authors look for the probability of meeting the required renew-

able energy source by the energy supplier. To do so, it is required to model
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the uncertainty based on the “probability-power demand” curve. As long as

the power need increases, the risk of not meeting the required power amount

increases (Figure 2). Moreover, in recently published study of [42], they prove

that the “probability-power” distribution follows the exponential distribution in

the case of wind speed is 2m/s. Based on these considerations:

• It is assumed that both of the random variables follow exponential distri-

bution with the parameters λs and λw independently.

• Since the expected value of average generation of wind and solar energy

sources are generally different, it is assumed that λs 6= λw.

• The values of λs and λw only depend on the type of the energy and they

are constant over the horizon.

Figure 2: The adaptation of exponential distribution to the power demand

To compute the area under the curve (P(Xs ≤ αt −
∑Rtr

l=1(Vtr,l.Ptr,l)) in

Figure 2, a continuous random variable X, following exponential distribution,

with parameter λ is considered. Its probability density function is defined as

follows:
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f(x) =





λ.e−λ.x x ≥ 0;

0 x < 0;

In this section, the probabilistic constraints and objective functions pre-

sented in the previous sections are expanded by considering the exponential

distribution.

5.1. Probabilistic Constraints Based on Exponential Distribution

5.1.1. Service Level Based Chance Constraints

The constraint CS1 of [23] illustrated in Figure 2 by assuming that the

random variable (Xs) follows the exponential distribution, with the parameter

of λs. This constraint is expressed as follows:

Rtr∑

l=1

(Vtr,l.Ptr,l) ≥
ln(SL)

λs
+ αt ∀t = 1, ..., T (14)

The constraint CS2 of [23], recalled in (3), is developed as follows:

λs.(1− e−λw.Qt)− λw(1− e−λs.Qt)

λs − λw
≤ 1− SL ∀t = 1, ..., T (15)

where:

Qt = (αt −
∑Rtr

l=1 Vtr,lPtr,l)

The equivalents of contracted renewable energy based probabilistic con-

straints, which are defined as (CS3) can be obtained in the same way. The

constraint CS3, proposed in (2), is transformed as follows by assuming that the

continuous random variable follows the exponential distribution:

CS3 :

∫ ∑Rs
l=1(Vs,l.Ps,l)

0

f(x)dx ≤ 1− SL ∀t = 1, ..., T (16)

⇐⇒
Rs∑

l=1

(Vs,l.Ps,l) ≤
ln(SL)

−λs
∀t = 1, ..., T (17)
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When two types or renewable energy sources are blended with the traditional

source, the left hand side of the constraint involves the sum of the distributions of

two independent random variables and to get the probability density function

of the sum of the continuous random variables on the left hand side of the

inequality, the convolution product is computed as it is done in (15), thus, the

equivalence of the constraint (2) with the parameters of the distributions λs,

λw is obtained as follows:

CS3 :
λs(1− e−λw.Qt)− λw(1− e−λsQt)

λs − λw
≤ 1− SL ∀t = 1, ..., T (18)

where:

Qt =
∑Rs

l=1(Vs,l.Ps,l) +
∑Rw

l=1(Vw,l.Pw,l)

To clarify the relation between the randomness of the renewable energy

source and the power demand (αt) at period t, it is necessary to recall the

following constraint from [23]:

K∑

k=1

Rk∑

l=1

(Vk,lPk,l) ≥ αt ∀t = 1, ..., T (19)

Constraint (19) implies that the total contracted power must cover the power

need of the system. If constraint (17) is employed for a case whose average solar

power generation is quite high, (correspondingly, the value of λs is quite small)

the right hand side of the constraint (17) increases and this case allows the

customer to purchase more solar energy. On the other hand, if the price of the

traditional energy source is affordable, more traditional can be contracted and

the abundance of energy can enable many machines work in parallel since (αt)

is satisfied easily.

5.1.2. Average Power Amount Based Probabilistic Constraints

Considering a random variable Xs following the exponential distribution

with the parameter λs, the average of Xs is:
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E(Xs) =
1

λs
(20)

Accordingly the constraints (CS4), given in (5), with λs and λw parameters

of the exponential distribution become:

CS4 : αt ≤
Rtr∑

l=1

(Vtr,l.Ptr,l) +
1

λs
∀t = 1, ..., T (21)

CS4 : αt ≤
Rtr∑

l=1

(Vtr,l.Ptr,l) +
1

λs
+

1

λw
∀t = 1, ..., T (22)

5.1.3. Average Failure Amount Based Probabilistic Constraints

By considering f(x) = λs.e
−λs.x, the constraint (8), for the use of one type

of renewable energy source, becomes:

αt ≤
K∑

k=1

Rk∑

l=1

(Vk,l.Pk,l)− [(

Rs∑

l=1

(Vs,l.Ps,l)−
1

λs
+
e−λs∗

∑Rs
l=1(Vs,l.Ps,l)

λs
)] (23)

∀t = 1, ..., T

In the case of using two types of renewable sources, constraint (CS5) be-

comes:

αt ≤
K∑

k=1

Rk∑

l=1

(Vk,l.Pk,l)− [(

Rs∑

l=1

(Vs,l.Ps,l)−
1

λs
+
e−λs∗

∑Rs
l=1(Vs,l.Ps,l)

λs
)] (24)

− [(

Rw∑

l=1

(Vw,l.Pw,l)−
1

λw
+
e−λw∗

∑Rw
l=1(Vw,l.Pw,l)

λw
)] ∀t = 1, ..., T

Thus, according to the assumption that Xs, Xw random variables follow

the exponential distribution, the equivalents of the proposed constraints are

obtained. In the subsequent section, as the last step, the equivalences of the

proposed objective functions are obtained and the stochastic models are built.
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5.2. Probabilistic Objective Functions

5.2.1. OF.1: Expected Cost of The Probability of Failure

The objective function OF.1 is introduced in the constraint (11) and the

expression of P (
∑
o∈{s,w}Xo < αt −

∑Rtr

l=1(Vtr,l.Ptr,l)) is studied for the con-

straint (3). Accordingly, for the use of one type of renewable energy (solar, for

instance) the objective function OF.1, (11), becomes:

OF.1 : Minz =
T∑

t=1

N∑

m=1

(ψm,txm,t + hIm,t + wm,tym,t)

+

Rk∑

l=1

K∑

k=1

(V costk,lPk,l) (25)

+

T∑

t=1

γ.(1− e[−λs.(αt−
∑Rtr

l=1 (Vtr,l.Ptr,l)])

Similarly, the objective function proposed for the “ contracted renewable en-

ergy” (12) is expanded according to the exponential distribution as follows:

OF.1.a : Minz =
T∑

t=1

N∑

m=1

(ψm,txm,t + hIm,t + wm,tym,t)

+

Rk∑

l=1

K∑

k=1

(V costk,lPk,l) (26)

+

T∑

t=1

γ.(1− e[−λs.(
∑Rs

l=1(Vs,l.Ps,l)])

Considering two types of renewable sources, the objective function given in (11),

with the expression of P (Xs + Xw < αt −
∑Rtr

l=1(Vtr,l.Ptr,l)) obtained in (15),

becomes:
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OF.1 : Minz =

T∑

t=1

N∑

m=1

(ψm,txm,t + hIm,t + wm,tym,t)

+

Rk∑

l=1

K∑

k=1

(V costk,lPk,l)

+
T∑

t=1

γ.
λs.(1− e−λw.(Qt))− λw(1− e−λs.(Qt))

λs − λw
(27)

where:

Qt = αt −
∑Rtr

l=1(Vtr,l.Ptr,l)

The objective function developed for the constraint CS3 becomes:

OF.1.a : Minz =
T∑

t=1

N∑

m=1

(ψm,txm,t + hIm,t + wm,tym,t)

+

Rk∑

l=1

K∑

k=1

(V costk,lPk,l)

+

T∑

t=1

γ.
λs.(1− e−λw.(Qt))− λw(1− e−λs.(Qt)

λs − λw
(28)

where:

Qt = (
∑Rs

l=1(Vs,l.Ps,l) +
∑Rw

l=1(Vw,l.Pw,l)

5.2.2. OF.2 : Expected Cost of The Average Failure Amount of Renewable En-

ergy

In the second type of objective function, the expected cost is calculated based

on the amount of renewable energy that is not met. Expected failure amount

of the renewable energy source (solar energy for instance) is obtained in the

constraint (23). Thus, the expected failure amount based objective functions

given in (13) are acquired, for the use of one/two type(s) of renewable energy

source, as follows:
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OF.2 : Minz =

T∑

t=1

N∑

m=1

(ψm,txm,t + hIm,t + wm,tym,t)

+

Rk∑

l=1

K∑

k=1

(V costk,lPk,l) (29)

+

T∑

t=1

γ.[(

Rs∑

l=1

(Vs,l.Ps,l)−
1

λs
+
e−λs∗

∑Rs
l=1(Vs,l.Ps,l)

λs
)]

OF.2 : Minz =
T∑

t=1

N∑

m=1

(ψm,txm,t + hIm,t + wm,tym,t)

+

Rk∑

l=1

K∑

k=1

(V costk,lPk,l)

+

T∑

t=1

γ.[(

Rs∑

l=1

(Vs,l.Ps,l)−
1

λs
+
e−λs∗

∑Rs
l=1(Vs,l.Ps,l)

λs
)] (30)

+

T∑

t=1

γ.[(

Rw∑

l=1

(Vw,l.Pw,l)−
1

λw
+
e−λw∗

∑Rw
l=1(Vw,l.Pw,l)

λw
)]

So far, the equivalences of the proposed probabilistic constraints and the

objective functions have been obtained with the exponential distribution con-

sideration. Now, the stochastic models can be built by merging the model

presented in [23] with the equivalences of the probabilistic constraints and ob-

jective functions. The constructed probabilistic models are presented into two

categories based on the type of the objective functions in Table 2 and Table 3.

Table 2: The probabilistic models with the Objective Function (OF.1)

Models. PS1 PS1a PS2 PS2a PS3 PS4 PS5 PS6

Obj. Func. 25 26 27 28 25 27 25 27

Pro. Cons. 14 17 15 18 21 22 23 24

The sum of the contracted capacity is already considered in constraints (23)

and (24). Therefore, when these constraints are added to the model in [23], the

constraint (19) becomes redundant and is removed.
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Table 3: The probabilistic models with the Objective Function (OF.2)

Models PS7 PS8 PS9 PS10 PS11 PS12

Obj. Func. 29 30 29 30 29 30

Pro. Cons. 14 15 21 22 23 24

Therefore, all the proposed probabilistic constraints and objective functions

have been expanded by considering the exponential distribution for the random

variables which represent the availability of renewable energy sources. Then,

the equivalences of them have been merged with the model of [23]. Finally,

probabilistic models (named as PS1 to PS12) are obtained to cope with the un-

certainty of the renewable energy sources for the single-item lot sizing problems

with capacity selection consideration. In the following section, the proposed

Mixed Integer Non-Linear Programming models are tested on small size in-

stances and the results are analyzed in detail.

6. Numerical Study

In this section, with the aim of validation of the proposed models, different

combinations of the proposed constraints and objective functions are tested

on an illustrative example and the results are discussed in detail. Since the

proposed models involve non linear components, they are solved by LINGO

18.0 on an Intel Core i7 with 1.6 GHz and 16 GB RAM. It is noteworthy to

indicate that the proposed models have been firstly linearized (using piece-wise

linear functions) and solved using CPLEX on the same computer. However,

the model could not be solved to optimality in an affordable time for small size

instances. This experience led us to use the LINGO solver.

6.1. Data Generation

In the numerical example, three machines (N=3) are considered and the

planning horizon is split into three periods (T=3). The machines’ powers are

φm =[8 9 7] (KW) and processing times of the machines pm =[5 6 6] (min).
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Table 4: Time related data of instance N3 T3

Period (t) 1 2 3

dt(piece) 53 47 75

Lt(min) 1080 360 1080

Cot(e/KWh) 0.16 0.08 0.16

w1, t (e) 74 52 91

w2, t (e) 64 89 99

w3, t (e) 57 96 75

Time related data is given in Table 4. In Table 5, contract options for different

types of energy sources which are offered by energy supplier and corresponding

prices are given. In this example, it is assumed that the price of the traditional

energy sources is more expensive than the renewable energy sources. Therefore,

it is aimed to constitute a trade-off between the costly-reliable and cheaper - less

reliable options. To conduct a comparative study and to highlight the impact

of the probabilistic objective functions and constraints in this study, the same

data set presented in [23] is used for the energy, time and machine related data.

The penalty cost (γ) is considered as 10e for all the models including penalty

cost in the objective function.

Table 5: Contract options

Trad. Vcost(e) Solar Vcost(e) Wind Vcost(e)

3 KW 75 2 KW 30 3 KW 20

6 KW 82,5 4 KW 35 5 KW 25

9 KW 120 6 KW 40 7 KW 30

12 KW 135 8 KW 50 11 KW 40

15 KW 150 10 KW 60 13 KW 50

18 KW 300 12 KW 85 15 KW 75

24 KW 375 14 KW 120 17 KW 100
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As it is pointed out before, the main parameter describing the stochastic

nature of the renewable energy sources is λs used for solar energy and λw used

for wind energy. In Figure 3, different availability levels of the wind and solar

energy sources are displayed. Accordingly, it can be said that when λw values

are equal to 0.04 and 0.02, wind energy source is pretty reliable. However, when

λw is equal to 0.2, the wind energy source is less reliable. The high reliability

levels such as λw=0.04 or 0.02 are introduced to the instance intentionally, in

order to analyze the behaviour of the model while selecting the best contract

options when the reliability of the renewable source is nearly the same with the

deterministic case.

(a) Contract Options for Wind Energy (b) Contract Options for Solar Energy

Figure 3: The curves of the probability-wind/solar power

The reliability of the contract options of solar energy can be interpreted in

the same way. While the λs= 0.75 and λs=1, promise less reliability, under

the weather conditions where the availability of solar energy is expressed with

λs=0.1, the solar energy becomes more reliable for the end-users.

Some of the models which can best highlight the impact of the conducted

study are tested by taking into account the given instance and the different λw

and λs values which are displayed in Figure 3.
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6.2. Results of The Model PS1

First of all, the results of the model presented in [23] are recalled in Table 6.

In this model, required renewable energy based service level constraint (CS1) is

applied to cope with the uncertainty of the renewable energy sources. However,

the objective function of the model is as in (10) and the cost of the probable

failure in the supply of the renewable energy sources is not considered.

In Table 7, the objective function of the model presented in [23] is replaced

with the proposed objective function in (11), thus, the probabilistic cost is

added to production and energy purchasing costs. It is evidently seen that

when the objective function is extended by adding the non-linear components,

the computation time increases. While the model of [23] can be solved in less

than 1 second, the computation times of PS1 change between 10 and 20 seconds.

When it comes to the contract options, the optimum energy mix which can

satisfy the demand under the given service level does not change for the two

models. However, it is necessary to indicate that when the penalty cost (γ)

is increased from 10e to 200e , it is seen that the optimum contract options

significantly change. For example, when the service level is 0.5 and λw=0.02

and the penalty cost is increased from 10e to 200e , the model PS1 finds 15

KW traditional and 3 KW wind energy mix as the optimum solution instead

of the 6-11 mix obtained under the assumption that the penalty cost is 10e

(Table 7). Therefore, the penalty cost has vital importance on the obtained

results. Based on the current assumption and results, PS1 gives an insight to

the industrial customers about the costs that must be burdened due to the

uncertain nature of the renewable energy sources. In Figure 4, the production

configuration obtained by the model PS1 is illustrated. As it can be seen, the

maximum power amount (17 KW) is demanded in the first period. When the

customer prefers to mix 18KW traditional energy and 3 KW energy, this choice

keeps the customer 100% safe side since 18 KW,“risk free”, traditional energy

source always satisfies the energy need of the system. This choice does not

include any risk costs, that’s why, the cost of this choice is always 1355.59 e for

two models. However, in case of mixing the 6 KW traditional and 11 KW wind
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energy sources, under the service level 0.5 and λw=0.04, the customer knows

that he/she should pay 7.98 e (1166.07-1158.09) more to purchase the risk in

the supply. When the reliability is increased from 0.04 to 0.02, this additional

cost decreases as expected (1166.07>1162.46) (Table 7). Thus, PS1 can provide

better guidance to the industrial customers to generate the optimum energy mix

by evaluating the risk cost of different choices.

Table 6: The results of the model in [23]

Service Level λw Contract (Tr-W) Objective Value CPU(s)

SL=0.5

0.2 15-3 1205.59 <1

0.1 12-5 1195.59 < 1

0.04 6-11 1158.09 < 1

0.02 6-11 1158.09 < 1

SL=0.9

0.2 18-3 1355.59 < 1

0.1 18-3 1355.59 < 1

0.04 15-3 1205.59 <1

0.02 12-5 1195.31 < 1

SL=0.99

0.2 18-3 1355.59 < 1

0.1 18-3 1355.59 < 1

0.04 18-3 1355.59 < 1

0.02 18-3 1355.59 < 1

In Table 7, the other noticeable result is that as long as the service level

is increased, the manufacturer tends to mix the renewable energy source with

more traditional energy source to be on the safe side. This tendency can be

clearly observed in the results of the model where the service level is assumed

to be 0.99. Since the values λw=0.04 or λw=0.02 guarantee more reliability,

under these conditions, the customer can choose more renewable energy sources

compared to the less reliable circumstances where the λw=0.2 or λw=0.1. While

the customer can guarantee to realize the production with 50% (SL=0.5), by

mixing 15 KW traditional and 3 KW wind sources under λw=0.2, he can sat-
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Figure 4: The production configuration of PS1

Table 7: The results of the model PS1

Service Level λw Contract (Tr-W) Objective Value CPU(s)

SL=0.5

0.2 15-3 1210.7 11

0.1 12-5 1202.8 17

0.04 6-11 1166.07 12

0.02 6-11 1162.46 14

SL=0.9

0.2 18-3 1355.59 12

0.1 18-3 1355.59 19

0.04 15-3 1206.75 16

0.02 12-5 1197.31 11

SL=0.99

0.2 18-3 1355.59 12

0.1 18-3 1355.59 12

0.04 18-3 1355.59 11

0.02 18-3 1355.59 13

isfy the same service level by mixing 6 KW traditional and 11 KW wind source

when the λw is changed to 0.04. The results for the other service levels can be

interpreted in the same way.
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Table 8: The results of the model PS1a

Service Level λw Contract Values (Tr-W) Objective Value CPU(s)

SL=0.5

0.2 15-3 1219.12 <1

0.1 12-5 1207.39 <1

0.04 6-11 1168.77 <1

0.02 6-11 1164.01 <1

SL=0.9

0.2 N.F

0.1 N.F

0.04 N.F

0.02 12-5 1198.44 5

SL=0.99

0.2 N.F

0.1 N.F

0.04 N.F

0.02 N.F

6.3. Results of The Model PS1a

The results shown in Table 8 allow us to compare two types of service level

based chance constraints: PS1 and PS1a. As it is mentioned before, the models

PS1a and PS2a help industrial customers to make decisions that can keep them

in a safer side compare to PS1 and PS2. The rigidness of the model PS1a is

proved by the results displayed in Table 8. First noticeable result is that when

the service level is guaranteed by the manufacturers as 0.5, they negotiate for

the same mixes which are obtained by model PS1 in Table 7, however, they

accept to pay more. In other words, the customer purchases the rigidness by

paying more. While the production is feasible under service level 0.9 and 0.99

when the model PS1 is applied (Table 7), when it comes to the results of the

model PS1a (Table 8), it is not possible to realize the production by guaran-

teeing the service level 0.99. The manufacturer can satisfy the demand with

the confidence of 90% by mixing the 12 KW traditional and 5 KW wind energy

sources when the reliability of wind energy source is 0.02 and the less reliable
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conditions (λw=0.2, λw=0.1) make realizing the production impossible.

6.4. Results of The Model PS3

Table 9 shows the results of PS3. The service level is left out of the context

and the uncertainty in the availability of the renewable energy source is handled

by considering the expected availability of the renewable energy source. The

results show that the expected availability based constraint is softer than the

service level based chance constraint whose results are exhibited in Table 7.

This variant proposes to generate energy mixes composing of less traditional-

more renewable energy sources as it can be seen in Table 7 and Table 9 when

the reliability is defined with λw=0.2.

Table 9: The results of the model PS3

λw Contract (Tr-W) Objective Value CPU(s)

0.2 12-5 1207.41 15

0.1 12-5 1202.82 32

0.04 6-11 1166.07 11

0.02 6-11 1162.46 25

6.5. Results of The Model PS5

The model PS5 tested for the same data set. If the customer prefers to

negotiate with the energy supplier according to expected failure amount of the

renewable energy options, he can reach an agreement with the energy supplier

by purchasing more renewable energy source compared to the other types of

constraints as shown Table 10. Based on this evidence, it can be interpreted

that expected failure amount based constraint can help the industrial customers

to generate the best energy mix to sustain their production activities more

environment-friendly way.
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Table 10: The results of the model PS5

λw Contract Values (Tr-W) Objective Value CPU(s)

0.2 15-3 1210.7 29

0.1 12-7 1207.82 10

0.04 9-11 1200.77 22

0.02 6-13 1172.46 32

Though the nature of the constraints CS4 and CS5 is the same, since the

two constraints are developed based on the average amount of renewable energy

availability, two approaches have been studied to reflect the stochasticity of the

renewable energy. In the first one (based on the average power amount), the

expected value of the contract is used to satisfy the energy need. Therefore, the

expected power of one or two renewable energy sources are considered as the

energy supplied. In the second one (based on the average failure amount), the

contracted power of the renewable energy is considered and the stochasticity is

taken into account as a failure. Thus, their impact on generating best energy

mix under the same weather conditions and objective function is different.

6.6. Results of The Model P7

The results given in Table 7 and Table 11 allow us to compare the impact

of the two different types of objective functions since the rest of the models

are the same (PS1 and PS7). When the service level is 0.5, the manufacturer

has the tendency to generate the energy mix with the smaller amount of wind

energy sources compared to the results given in Table 7. The main idea behind

this behaviour of the model is that; under a given reliability level, an increase

in the amount of the contracted wind energy source causes an increase in the

expected failure amount, too. Since the same constraint (14) is applied in two

models, both of the combinations (6-11, 12-5) shown in Table 7 and Table 11

under λw=0.04 satisfy the related constraint. However, increasing amount in

the renewable energy portion (11>5) causes an increase in the expected failure
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amount, so, the expected cost increases as well. As a result, the model (PS7)

combines the traditional energy with less amount of renewable energy compared

to (PS1).

Table 11: The results of the model PS7

Service Level λw Contract (Tr-W) Objective Value CPU(s)

SL=0.5

0.2 15-3 1227.91 6

0.1 15-3 1217.83 6

0.04 12-5 1209.63 11

0.02 6-11 1191.86 6

SL=0.9

0.2 18-3 1377.91 11

0.1 18-3 1367.83 9

0.04 15-3 1210.78 12

0.02 12-5 1202.84 5

SL=0.99

0.2 18-3 1377.91 9

0.1 18-3 1367.83 7

0.04 18-3 1360.78 4

0.02 18-3 1358.23 5

6.7. Complexity Analysis on Larger-Size Instances

So far, the results obtained from the models PS1, PS1a, PS3, PS5 and PS7

have been compared based on economical, environmental and reliability aspects.

Now, to draw attention to the complexity of the proposed models, a few more

numerical experiments on larger-size instances can be conducted.

The models PS1, PS3 and PS5 are tested on two groups of slightly larger

instances, which are composed of 4 machines and 4 periods (N4 T4) and 5

machines and 5 periods (N5 T5). For each group, three instances are tested for

each model. The computation time is limited to 10 minutes in our tests. If the

model reaches a solution within the defined time limit, the computation time is
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taken as it is and given in the following table, otherwise, the model is stopped

at the end of the time limit and the found solution is used as the reference

objective value for further analysis. When the service level based model (PS1)

is tested, based on the illustrative study presented in Table 7, the service level

is considered as 0.5 and λs=0.02, thus, it is intended to see the behavior of the

models under relatively less rigid case compared to the case in which service

level is considered as 0.9 or 0.99.

The results are presented in Table 12. It had been proved that when the

small size instance (N3 T3) is tested, it is seen that the LINGO solver can reach

the optimality within short computational times. However, the results shown in

Table 12 prove that the models PS1, PS3 and PS5 can not reach the optimum

solution for the (N4 T4) and (N5 T5) instances within defined time limit. It

is possible to have a feasible solution for some of the instances which include

four machines (N4 T4) at the end of 10 minutes, when the instances including

5 machines (N5 T5) are solved, the difficulty increases and any of the instances

can not reach any feasible solution after 10 minutes.

Table 12: The results of the probabilistic models for larger instances

PS1 PS3 PS5

Instance Obj.Value CPU Obj.Value CPU Obj.Value CPU

4-4 1 1611.17 600 1611.17 600 1220.93. 600

4-4 2 No Sol. 600 No Sol. 600 No.Sol. 600

4-4 3 No Sol. 600 No Sol. 600 No Sol. 600

5-5 1 No Sol. 600 No Sol. 600 No Sol. 600

5-5 2 No Sol. 600 No Sol. 600 No Sol. 600

5-5 3 No Sol. 600 No Sol. 600 No Sol. 600

In Table 13, the instances (N4 T4) are tested by introducing fewer contract

options into the model to reduce the complexity. This time, instead of seven

options as it is displayed in Table 5, three options for each energy source are

presented to the customers. The results show that; reducing the power options
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allows to reach a feasible solution for the models PS1 and PS3 for the second

and third instance, which could not be solved to feasibility when all the options

are included. However, the models still can not reach an optimum solution after

10 minutes even the number of options is reduced.

Table 13: The results of PS1, PS3, PS5 with less contract options

PS1 PS3 PS5

Instance Obj.Value CPU Obj.Value CPU Obj.Value CPU

4-4 1 1610.16 600 1610.16 600 1365.99 600

4-4 2 2143.49 600 2143.49 600 No Sol. 600

4-4 3 1514.63 600 1514.63 600 No Sol. 600

6.8. Results of The Models PS2 and PS4

The model PS2 is tested on the data set given in Table 4 and Table 5 and the

results are given in Table 14. Since two types of renewable sources are mixed

with the traditional energy source, increasing complexity of the developed model

causes longer computation times. In most cases, the constructed model can

not reach the optimum solution at the end of the time limit and the reference

solutions are displayed.

When the service level is increased to 0.9 and the reliability of the renewable

energy sources quite low such λs=0.3 and λw=0.2, the production configuration

shown in Figure 4 changes slightly (see, Figure 5). When the service level is risen

to 0.99, 24 KW is chosen for the traditional energy source, the configuration

changes as in Figure 6, thus, the customer can conduct the production activities

in a safer way.

When the service level consideration is excluded and the model PS4 is tested

on the same instance, as it is seen in Table 15, it is not possible to obtain

an optimum solution for some conditions within the defined time limit on the

contrary to the results obtained within seconds in Table 9 where single type

renewable energy source is mixed with traditional energy source.
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Table 14: The results of the model PS2

Service Level λs-λw Contract (Tr-S-W) Obj. Value CPU(s)

0.1- 0.04 6-6-5 1186.01 600

0.1- 0.02 6-6-5 1184.65 193

SL=0.5 0.3- 0.2 12-2-3 1226.56 600

0.3- 0.1 9-6-3 1222.46 600

0.3- 0.02 6-4-7 1185.98 177

0.75- 0.02 6-6-5 1186.78 106

0.1- 0.04 9-6-3 1217.19 600

0.1- 0.02 6-6-5 1184.65 147

SL=0.9 0.3- 0.2 15-2-3 1241.681 600

0.3- 0.1 15-2-3 1240.75 600

0.3- 0.02 9-4-5 1217.29 231

0.75- 0.02 12-2-3 1226.64 88

0.1- 0.04 15-2-3 1239.85 600

0.1- 0.02 15-2-3 1239.78 600

SL=0.99 0.3- 0.2 24-2-3 1881.54 600

0.3- 0.1 24-2-3 1881.54 600

0.3- 0.02 15-2-3 1239.92 600

0.75- 0.02 18-2-3 1437.62 600

Therefore, in this section, some of the proposed probabilistic models have

been tested on small size instances and the obtained results have been discussed

shortly to give better insight to the customers who intend to use the developed

models. The most noteworthy result of this effort in this section is that, even

though, the models are tested on small-size instances, it is seen that in most

cases the model can not reach the optimum solution after 10 minutes. When

the models that are particularly thought for the mix of traditional and two

types of renewable energy sources, can not reach the optimum solution even for

the instance including three machines within the defined time limit (Table 14,
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Figure 5: The production configuration of PS2, λs = 0.3, λw=0.2, SL=0.9

Figure 6: The production configuration of PS2, λs = 0.3,λw=0.2, SL=0.99

Table 15: The results of the model PS4

λs-λw Contract Values (Tr-S-W) Objective Value CPU(s)

0.1-0.04 6-6-5 1186.01 600

0.1-0.02 6-6-5 1184.65 176

0.3-0.2 9-4-5 1226.39 600

0.3-0.1 6-6-5 1193.93 196

0.3-0.02 6-6-5 1185.98 84

0.75-0.02 6-6-5 1186.78 64

Table 15). The same complexity is observed in the models which consider the

mix of traditional and one type of renewable energy source even the number of
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the power options are reduced (see Table 13).

7. Case Study: A three-machine flow-shop in a textile company

In this section, to test the proposed probabilistic models, a real workshop,

composed of a three-machine flow shop system, of a traditional French textile

company is considered. The planning horizon is divided into three periods

(T=3). The machines’ powers are φm =[12 8 15] (KW) and processing times

of the machines pm =[3 6 6] (min). In the company, the production, firstly, is

planned in weekly manner. Later on, the detailed production plan is established

by allocating the weekly demand to days and hours. The demanded production

quantities for these three periods are dt=[45 55 60]. The electricity consumption

is based on TOU strategy. Accordingly, the electricity prices (e) considered are

(0.17, 0.13) for the corresponding ON-OFF periods inspired by a tariff offered

by a retailer in a French electricity market. Given the environment of the

study, in which prices of energy sources do not correspond to current prices,

the price of traditional power is directly taken from market prices and the price

of renewable sources is artificially generated (see Table 5). The availability of

renewable energy source is assumed λw=0.02.

Figure 7: The production configuration of PS7, SL = 0.99
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Figure 8: The production configuration of PS11

The handled case is tested with the three probabilistic models: PS7, PS9 and

PS11 and the results are displayed in Table 16. The production configurations

obtained presented in Figure 7 and Figure 8. The squares serve as machines and

the numbers inside them represent the found optimum production quantities for

each machine and period. The power demand for each period is displayed at

the top of each interval with the solid lines. By displaying these configurations,

it is aimed to observe the impact of different probabilistic constraints on the

production plan. PS7 gives an insight to the customers who desire to build the

production plan under renewable energy uncertainty by guaranteeing a certain

service level (=0.99, for the related case). This model yields that the energy mix

composed of 24 KW traditional and 3 KW wind energy source is the optimum

energy mix. When the customer prefers to take into account the expected failure

amount in the supply of wind energy, as PS11, the model is resulted with the

mix of 15 KW traditional and 7 KW wind energy source.

The manufacturers can approach the model PS7 when they need to be on the

safer side and to guarantee their customers that the production will be realized

with the 99% service level. If they are not subject to this type of strict condition,

they can apply PS11 and satisfy the demand under more environmental friendly

conditions by mixing the traditional energy source with more renewable energy
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Table 16: The results of the model PS7, PS9 and PS11

N3 T3 C7 N3 T5 C7 N5 T5 C7 N5 T5 C3

Service Level λs CPU(s) CPU(s) CPU(s) CPU(s)

PS7

0,5

0.2 14 216 600 600

0.1 19 167 600 600

0.04 27 367 600 600

0.02 20 372 600 600

0,9

0.2 9 109 600 600

0.1 10 148 600 600

0.04 17 207 600 600

0.02 14 176 600 600

0,99

0.2 12 116 600 600

0.1 15 121 600 600

0.04 10 120 600 600

0.02 11 127 600 600

PS9

0.2 27 321 600 600

0.1 24 229 600 600

0.04 24 460 600 600

0.02 19 398 600 600

PS11

0.2 18 177 600 600

0.1 15 91 600 600

0.04 55 247 600 600

0.02 26 213 600 600

source.

In Table 16, under the column named with N3 T3 C7, the computation time

of the considered real case, including three machines, is presented. The models

PS7, PS9 and PS11 can be solved less than 1 minute. In order to give a better

sense about the complexity of the models, they are tested for the same working

environment by augmenting the number of the periods to 5. As it can be
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observed under the column named with N3 T5 C7, although the computation

time increases compare to the instance N3 T3 C7 the models can be solved

to optimality before ten minutes. When two more machines are added to the

workshop and tested for the same models (N5 T5 C7), in this case, any solution

cannot be obtained within the defined time limit. The results below the column

(N5 T5 C3), (C3, indicates that the number of contracts is three) clearly show

that this complexity of the models continues even if the number of contracts

has been reduced.

7.1. Managerial Insights and Limitations

The proposed models in this work allow the managers:

• to reach an agreement for the exact electricity power they need to realize

the production plan by evaluating the unavailability risks in the supply

of the renewable sources. Contrary to the work of [24], since a relation-

ship is established between the production plan and the contract values,

it prevents the purchase of unnecessary amounts of energy even under

renewable energy related uncertainty.

• to use energy sources more efficiently. Contrary to the work proposed

in [22], which assumes that renewable energy sources are supplied unin-

terruptedly, and to the work proposed in [24] , which only considers the

unit energy cost, when the current work is tested for the same instance, it

yields a higher cost since it takes into account several aspects that are not

considered in [22] and [24] (stochastic supply of renewable energy and elec-

tricity power limit). Therefore, our work yields a cost that adheres much

better to real costs faced by the managers. Moreover, the production and

energy mix configurations correspond best to the real life problem.

• to communicate better with the clients. The uncertainty of renewable

energy sources can be translated to a service level and this approach can

help managers if the production plan can be realized for a given service

level and a weather condition. If the production is feasible under given
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conditions, the service level can be used to communicate with the clients,

ie. the demand will be satisfied by 90% under given weather conditions,

by considering green production targets.

• to evaluate economical, environmental and reliability aspects of different

energy mixes.

• to meet governmental objectives for green production.

• to measure and minimize the risks related to the utilisation of the renew-

able energy sources. The managers can plan their production activities

based on the estimated risks in the supply of renewable energy sources.

In their current form, the proposed models in this work can be used by

enterprises which have the intention to conduct their production activities in a

more energy efficient and environmental friendly way. As a perspective, efficient

(meta) heuristic approaches can be developed and the proposed models can

become useful for large sized of production facilities.

8. Conclusion

In this study, three groups of probabilistic constraints and two types of

objective functions are developed to deal with the uncertain nature of the re-

newable energy sources during the power purchasing procedure. Firstly, the

developed constraints and objective functions are explained in detail and their

general forms are given. Then, their equivalences are obtained based on the

exponential distribution.

The proposed constraints and the objective functions allow to obtain sev-

eral mathematical models for single-item capacitated lot sizing problem with

capacity selection aspect. The proposed probabilistic models help the decision

makers to cope with the intermittent nature of the renewable energy sources

while deciding the power contract and the size of the production lots simultane-

ously. The provided decision-making tools encourage the industrial customers
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to conduct their production activities in a more environmental friendly way and

contribute to establish better communication with their customers.

It is necessary to indicate that there are still some rooms to improve in this

work. Firstly, the probabilistic mathematical models are proposed based on

the exponential distribution consideration. Different probability distributions

such as Weibull, Normal, Rayleigh, etc. can be tailored into the probabilistic

constraints and objective functions proposed in this paper by following the steps

presented in Section 3 and Section 4.

The obtained Mixed Integer Non-Linear Programming models give solutions

for small-size instances. For large size instances, to deal with the complexity of

the models, it would be interesting to propose appropriate heuristic approaches

or approximation algorithms that can cope with the complexity of the handled

NP-hard problem. Therefore the proposed probabilistic models would become

more applicable for the real life production environments composed of more

machines and organised based on longer planning horizons.

In this study, the on-site energy generation, which would be significantly ben-

eficial in reducing energy costs and in following a more environmental friendly

production policy for the industrial customers, is not considered. Integrating

on-site generation into the problem requires taking into account many features

such as the charge and discharge rates of energy storage systems, the cost of stor-

ing energy, the dynamics between the purchasing and selling prices of renewable

energy sources. Therefore, the on-site generation is an interesting extension of

this work to tackle the case of companies having on-site generation and storage

systems. It is also possible to take into account interruptions in the supply of the

traditional energy which would be a fruitful subject to manage the production

in the cities/countries where such electricity interruptions are frequent.
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[37] T. Mühlpfordt, T. Faulwasser, V. Hagenmeyer, A generalized framework for

chance-constrained optimal power flow, arXiv preprint arXiv:1803.08299.

[38] W. Van Ackooij, Chance constrained programming: with applications in

energy management, Ph.D. thesis, Ecole Centrale Paris (2013).

[39] F. S. Gazijahani, S. N. Ravadanegh, J. Salehi, Stochastic multi-objective

model for optimal energy exchange optimization of networked microgrids

with presence of renewable generation under risk-based strategies, ISA

transactions 73 (2018) 100–111.

[40] N. Nikmehr, S. N. Ravadanegh, Reliability evaluation of multi-microgrids

considering optimal operation of small scale energy zones under load-

generation uncertainties, International Journal of Electrical Power & En-

ergy Systems 78 (2016) 80–87.

[41] T. Tran, A. Smith, Stochastic optimization for integration of renewable en-

ergy technologies in district energy systems for cost-effective use, Energies

12 (2019) 533.

[42] Y. Kun, K. Zhang, Y. Zheng, L. Dawei, W. Ying, Y. Zhenglin, Irregular

distribution of wind power prediction, Journal of Modern Power Systems

and Clean Energy 6 (6) (2018) 1172–1180.

50




