N
N

N

HAL

open science

An efficient heuristic for minimizing the number of
moves for the retrieval of a single item in a puzzle-based

storage system with multiple escorts

Yunfeng Ma, Haoxun Chen, Yugang Yu

» To cite this version:

Yunfeng Ma, Haoxun Chen, Yugang Yu. An efficient heuristic for minimizing the number of moves
for the retrieval of a single item in a puzzle-based storage system with multiple escorts. European

Journal of Operational Research, 2021, 10.1016/j.ejor.2021.09.032 . hal-03613568

HAL Id: hal-03613568
https://utt.hal.science/hal-03613568
Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

https://utt.hal.science/hal-03613568
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Version of Record: https://www.sciencedirect.com/science/article/pii/S0377221721008079
Manuscript_ad1¢766a9¢d5170c88a99958a854bb68

An efficient heuristic for minimizing the number of moves for the retrieval of a single item in a
puzzle-based storage system with multiple escorts

Yunfeng MA*®, Haoxun CHEN®" Yugang YU
a School of Management, Wuhan University of Science and technology, Wuhan 430065, China
b Industrial Systems Optimization Laboratory, University of Technology of Troyes, 12 rue Marie Curie, CS
42060, 10004 Troyes, France
¢ International Institute of Finance, School of Management, University of Science and Technology of China,
230026 Hefei, China
d Anhui Province Key Laboratory of Contemporary Logistics and Supply Chain, School of Management,
University of Science and Technology of China, 230026 Hefei, China

Abstract

The Puzzle-Based Storage (PBS) system is an innovative high-density storage system for physical goods,
which has the advantage of gravity flow racks in terms of space efficiency and a relatively high accessibility
to each unit-load of a variety of personalized goods stored. For the PBS system, among many intricate
scheduling problems studied, the minimization of total number of item-moves when retrieving a single item
with multiple escorts is an essential building block for its operation. To tackle this problem, we propose a
hybrid approach that combines state appraisal, neighborhood search, and beam search. Our numerical
experiments on a large number of benchmark instances show that, compared with the results of these instances
provided by the best existing heuristic with computational complexity of O(n*), our algorithm with different
computational complexity settings can improve the overall average solution accuracy from 1.096% to 0.055%
by its setting of 0(n?), or to 0.570% by its setting of 0(n), where n is the size of the PBS system. For PBS
systems that are more in line with the actual storage density, our algorithm shows stronger robustness by
improving the accuracy from 1.086% to 0.026% by its setting of 0(n?), or to 0.249% by its setting of O(n).
The significant improvement in efficiency and accuracy of our algorithm for this basic problem makes its
industrial applications in PBS systems promising.

Keywords: Heuristics, Automated warehouses, Compact storage systems, Puzzle-based storage, Beam search

1. Introduction

The development of today’s e-commerce and the challenge of mass customization have significantly increased

U Corresponding authors
E-mail addresses: mayunfeng@wust. edu. cn (Yunfeng MA), haoxun. chen@utt. fr (Haoxun Chen), ygyu@ustc. edu. cn (Yugang
YU).

1

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0377221721008079
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0377221721008079

the variety of goods and number of orders. In addition, the scarcity of urban land requires modern storage
systems to be more space-efficient than ever. These situations give rise to an increasing demand on modern
storage systems with compactness, flexibility, and rapidly response capability. Therefore, with very narrower
aisles and high degree of automation, shuttle-based storage and retrieval systems (SBS/RS) have been widely
studied and adopted in real-life applications in recent years (Kiiciikyasar et al., 2021; Lerher et al., 2020;
Lerher et al., 2017; Carlo et al., 2012; Marchet et al.). During almost the same period, a more compact and
flexible automated storage system has gradually turned into reality, that is, the Puzzle-based storage (PBS)
system. The PBS system, originally proposed by Gue and Kim (2007), is a new generation of intelligent
storage system emerging in recent years. The PBS system can be regarded as one type of SBS/RS with the
highest space efficiency, as well as the most complicated one in terms of shuttle/AGV scheduling. Goods can
be stored in PBS system extremely compact to the limit with only one empty location (referred to as escort)
required to realize the storage and retrieval operation, and aisles are not necessarily used. Azadeh, De Koster
and Roy (2019) systematically reviewed some new types of automated and robotic warechouses. Among them,
PBS systems, also called grid-based shuttle systems, are identified as one of the most promising storage
systems, which need more research attentions.

A PBS system is composed of: (1) storage units (referred to as items) that can operate independently, such as
AGYV (Automated Guided Vehicles), shuttles, and conveyor belt modules; (2) one or multiple empty locations
(escortl); (3) one or multiple depots (Input/output location or I/O location for short). An item can move in four
cardinal directions, that is up, down, left, and right, respectively if the corresponding adjacent location is an
escort. An item move is a single move of one item from its current location to its adjacent escort location. A
series of item moves is required for retrieving a requested item (R)to an I/O location in a PBS system. Usually,
for the basic problem that does not allow block move (simultaneous movement of multi-items in a line), the
objective of a PBS scheduling problem is to minimize the total number of item-moves or retrieval time, the
two objectives are identical.

The hardware and information technology related to PBS systems are mature, such as modern electronic
information systems, sensors and control units, battery technology, equipment manufacturing, etc., The
evolution of AGVs into autonomous mobile robots has become possible due to new hardware and software
technologies (Fragapane et al., 2021). Meanwhile, the hardware costs for manufacturing robots, shuttles, and
other related equipment have dropped to an acceptable range, making it possible to deploy PBS physical

systems in a large variety of commercial applications. There have been some real-world implementations of
2

PBS in warehousing, carparking systems (Mayer, 2009; Mutrade, 2014; RR Parkon, 2014; ODTH, 2015; IFL,
2015; Doppler, 2016; Gebhard, 2016; Woehr, 2016; ICAM, 2019).

Compared to traditional warehouses with aisles, two major drawbacks of PBS systems are, respectively,
longer retrieval time and too many movements of stored items. Luckily, these drawbacks can be largely
overcome by properly increasing the number of escorts to make a good tradeoff among space efficiency,
retrieval time and energy consumption. However, the introduction of multiple escorts into PBS systems also
involves some intricate scheduling problems, the most critical one is the Single-item Retrieval Problem in
PBS systems with Multiple Escorts (SRPME). Fortunately, two breakthroughs have been made related to this
problem. The first one is the optimal algorithm for minimizing retrieval time, or item move time, of SRPME
(T-SRPME) designed by Yu et al. (2019) by allowing block move, the second one is the optimal and heuristic
algorithms for minimizing the number of item-moves of SRPME (M-SRPME) proposed by Yalcin et al.
(2019a). Their works make practical operations of PBS systems feasible.

If block move is not allowed, the problem of minimizing retrieval time and that of minimizing the number of
item moves are equivalent. In other words, T-SRPME is a special case of M-SRPME, where the latter is also
named as SPRME in the paper of Yalcin et al. (2019a). We give different names to the two problems here to
distinguish our work from that of Yu et al. (2019). In fact, M-SRPME is based on puzzle, hence a NP-hard
problem. The puzzle is so hard that even very small cases, i.e., 8-puzzle (3 X 3) and 15-puzzle (4 X 4), are
hard enough to be taken as workbench laboratory, for some decades, for testing the performance of searching
methods (Ratner and Warmuth, 1986).

As a basic building block for designing and operating PBS systems in today's e-commerce and mass
customization environment, M-SRPME is playing a vital role in PBS system design and business model
implementation, however, the need for finding faster and more precise heuristics to solve it has still not been
met yet. For example, Amazon’s KIVA system, JD’s warehousing robot handling system, and other similar
SBS/RS or AGV systems can be deployed as PBS systems to improve space utilization, item accessibility,
layout and control flexibility, as well as to reduce storage and retrieval time. However, the scale of these
systems, if rearranged as PBS systems, would be much larger than that the existing algorithms can efficiently
deal with. Although the heuristic algorithm proposed by Yalcin et al. (2019a) is good enough for the
operations of small and medium-sized PBS systems, M-SRPME deserves a better algorithm in terms of both
solution accuracy and computation time especially for large size PBS systems.

In this paper, we propose a hybrid algorithm that combines state appraisal, neighborhood search, and beam
3

search for M-SRPME. Our algorithm greatly improves the solution accuracy and computation speed
compared with the best benchmark algorithm proposed by Yalcin et al. (2019a), it can therefore better support
the design of larger and more complex PBS systems for fully realizing their commercial functions.

The remainder of this paper is organized as follows: Section 2 reviews the related literature. Section 3
describes the problem studied and the main idea of our heuristic algorithm. Section 4 describes the procedure
of the algorithm. Section 5 conducts extensive computational experiments and compares their results with
those of Yalcin et al. (2019a). Section 6 concludes this paper by a discussion on major features of the

algorithm and future research.

2. Related literature

The seminal work of PBS system was introduced by Gue and Kim (2007), they developed an optimal
analytical result for the single-item retrieval problem in one escort PBS systems. The authors also considered
the very specific scenario for multi escorts situation that all the escorts are horizontally arranged next to each
other and adjacent to the I/O location in the bottom left corner of the system. They developed a dynamic
program to solve this special configuration and provided optimal solutions for six cases of system size 5-by-9
with up to 6 escorts. They came up with a heuristic approach for larger size of this scenario. Kota, Taylor, and
Gue (2010) offered an integer programming formulation to find the optimal retrieval time for general cases of
multiple escorts, but not practicable because the time for solving the integer programming is unreasonable for
even a very small PBS system. Five years later, Kota, Taylor, and Gue (2015) develop a closed-form
expression for the retrieval time in PBS system with two escorts randomly distributed within the grid. For the
situations when the number of escorts is more than two, they proposed a heuristic that can produce a near
optimal solution, which provided the best result until Yalcin et al. (2019a) proposed an exact algorithm
MinMov and its heuristic variant, a very sophisticated design based on A* algorithm. The heuristic of Yalcin
et al. (2019a) improved the average accuracy from over 10% to less than 3.5%, and in terms of CPU time,
even the exact algorithm is 70 times fast than the heuristic algorithm of the Kota, Taylor, and Gue (2015) for
an instance with grid size of 10x10. Yalcin et al. (2019b) created a framework for the evaluation of a PBS
system based on a multi-agent routing algorithm, and a simulation-based case study of a grid-based baggage
storage system at a major German airport demonstrated that such a system can achieve a storage density of up

to 100% while being competitive in terms of retrieval time performance.

Unlike the normal SBS/RS system whose scheduling problem has been well solved, recent studies of the
system are focused more on the analysis of its overall performance (Lerher, 2018; Jerman et al., 2021; Ekren
et al., 2018), what we need urgently for the study of the PBS system is to solve the scheduling problem of its
shuttle or AGV. Mirzaei et al. (2017) proposed an approach for simultaneous retrieval of multiple items in a
1-escort PBS system. They designed an optimal way for the retrieval of two items, and a heuristic method for
three or more items. Furmans et al. (2011) investigated the PBS system with one vehicle and one escort, and
focused on the issues of system design such as aspect ratio and I/O point location, etc. Alfieri et al. (2012)
investigated a type of PBS system with limited number of AGV. They proposed a heuristic algorithm to
optimize the movement of shelves and to dispatch the AGVs. These literatures studied the PBS systems in
some simple special cases, which only account for a small part of actual application scenarios and cannot meet
the requirements of a general PBS system in terms of efficiency and service capacity.

Gue et al. (2014) proposed a decentralized PBS system by introducing a negotiation scheme among grid cells.
In the system, each row has at least one escort to ensure proper operation of the system and all the loads flow
from one side to the other side. Yu et al. (2019) considered a situation of where block move is allowed, by
employing integer programming, they obtained the optimal retrieval time of a single item in PBS system.
Bukchin and Raviv (2020) proposed an exact dynamic programming algorithm, for the problem with two
reconciling objectives of move time and move cost, this algorithm is only applicable to the problem with
grid size smaller than 9 X 9.

Zaerpour et al. (2015; 2017a; 2017b) proposed a scenario of 3-D PBS system (Live-Cube), and assumed there
are sufficient escorts available that a virtual aisle can be created in a situation, however, their works were
more about strategic solutions than operational decisions, because they did not specify on how to optimally
create a virtual aisle. The approaches of creating virtual aisles can ensure the speed of item retrieval, but it is
also accompanied by two major limitations, on the one hand, it will cause unnecessary movement and
therefore high energy consumption; on the other hand, there will be a higher demand for the number of escorts,
which reduces the storage density. These two drawbacks are also existed in the decentralized control PBS
systems, such as proposed by Gue et al. (2014). Although, the above drawbacks of virtual aisle can be
alleviated partially by the integer programming model designed by Yu et al. (2019), which, by allowing block
move, can find an optimal solution for minimizing item retrieval time at the cost of no guarantee of
minimization of item moves even as a secondary goal.

Beam search is a heuristic search method that explores a graph of possible partial solutions by selecting a
5

limited number (beam size or beam width) of most promising partial solutions at each iteration. This method
has been applied to cutting problems (Parrefio et al, 2020), assembly line balancing (Li et al, 2021), container
loading problem (Araya et al, 2020; Araya & Riff, 2014), scheduling problems (Birgin et al ,2020) and quay
crane scheduling (Kress et al, 2019). Although beam search has been used to solve these combinatorial
optimization problems with good performance, we have not found an application of beam search in
scheduling PBS systems.

Therefore, many research opportunities are still existed to make better use of the attributes of the basic
building block, i.e., M-SRPME, of the PBS system. The most critical issue of all is to find a better algorithm
for M-SRPME, which, so far, the best result is the heuristic MinMov algorithm designed by Yalcin et al.
(2019a). We will use their research as a benchmark to further advance the solution accuracy and to reduce the

CPU time consumption of the algorithm in the rest part of this paper.

3. Problem description and outline of the solution algorithm

3.1 Problem description and assumptions

In order to catch the main features of M-SRPME and evaluate the key performance of our algorithm for it, we

ignore its variants that may exist in commercial applications, such as the positions and number of multiple I/O

locations, which can be realized through some coordinate transformations and the adaptation of the algorithm.

The assumptions that are made to specify the problem in this paper are summarized below:

(1) The system is unit loads, i.e., each location in the grid can only keep one item.

(2) The cost of moving an item to its adjacent location of escort is one.

(3) The single I/O location is at the lower left corner of the system.

(4) The system has m rows and n columns, both counted from the I/O location (m =1,n = 1).

(5) The objective of the problem is to minimize the total number of moves of the requested item (R) and all
other items for the retrieval of item R.

(6) Backward move is not allowed. We ignore all backward-moves of item R in our heuristic and assume that
item R can only be moved down or to left.

The purpose of the first five assumptions, which are the same as those made in Yalcin et al. (2019a), is to

simplify the problem and make our algorithm comparable with theirs, while keeping the generality of the

problem. The sixth assumption is a tactic of our heuristic to make a good tradeoff between the solution
6

accuracy and computational efficiency, which will be revilited in detail in Cection 3.2

To move a requelfed item (R Move) to one of itfJadjacent location[] the adjacent location mult be an empty
location (el¢ort). If the adjacent location ilJoccupied by an item (thillitem ilJcalled an occupied item
hereafter), we mult fir(fly make a concatenated [équence of occupied item move[Jfrom an available e c¢ort to
that adjacent location (Escort move), we refer to (ich concatenated path of occupied item-el¢ort moveJalla
clearance path (T¢e Figure 1 (b, d, f)), and the colf of forming a clearance path i[lthe clearance cost. After
each move of item R, the prior location of item R becomelJan e[¢ort which referred alJthe base escort (Yalcin
et al., 2019). Obvioully, after the initial move, the large(t clearance colf of the bal¢ elcort iLl4. In 1-elcort
[ituation, a maneuver of 3-move([¢e Figure 1 (d, e, f)) or 5S-move([ée Figure 1 (f, g, h)) movelitem R to
the next adjacent location (Gue and Kim 2007), by the way of which an exact optimal [olution can attain.

In a PBS [ydem with multiple el¢ort[] utilizing an el¢ort other than the balé el[¢ort may reduce the total
number of item[JmovelJand the bal¢ elcort in each [tep can be regarded alla worlt-cal¢ alternative, by
utilizing an e[¢ort with a [Maller clearance cof than that of the bale el¢ort can ‘[ave’ item moveJand fich an
elcort ilJreferred to alJa saving escort (Yalcin et al., 2019). Different moving direction”Jof item R and
different utilizationJof the el¢ort[reult in different dilfribution of el¢ort[Jand item R in the PBS yfem in
each [fep, thilldifribution (layout) of el¢ort[Jand item R iCreferred to alJa state s of the [yfem. Figure 1

(how[18 different [fateJand the location exchangeTbetween e ¢ort[land item[]

C D a o
| — —_ i
a b € d
— R — i R — |
R ' i
h g f e
+— R-move Requested item D Escort DOccupied item
<« -~ Escort-move (Clearance path) «— Change direction between states

Figure 1. State[in a PBS and it[item movement![

3.2 Main idea of the algorithm

Although M-SRPME ilJan extremely hard problem, it[](mall-[ize in[tance have become tractable in recent

year[J Therefore, we can ule the propertie[Jof the [Mall-[ize infance[to delign the neighborhoodof the
7

problem for our search algorithm. In order to do so, the optimal solutions of tens of thousands of randomly
generated small-size instances of the problem obtained offline are exploited to fit an appraisal function for the
neighborhoods of the system. Based on this, we propose a hybrid algorithm that combines state appraisal,
neighborhood search and beam search. State appraisal provides the fitness value of the state derived by each
possible next move, which is like the estimate of the total cost for guiding its search in the A* algorithm but
the fitness value is much easier to compute and is accurate enough to well guide the neighborhood search in
our algorithm. The neighborhood search finds a local optimum for one step of move (the next move) and
calculates the cost of the current state and that of next state by the number of moves from the initial state. To
avoid the state explosion, we adopt the beam search approach, only keeps some most promising partial
solutions in each step of our algorithm. This can limit the number of states to be examined in each step and
helps the algorithm to make a good tradeoft between solution accuracy/optimality and computation time.

Moreover, we observe that the cost of a solution with backward-moves (up or right moves) of the requested
item R in a PBS system is usually much higher than forward-moves, thus the probability of a backward-move
of R in the optimal solution of M-SRPME is extremely small. In fact, our experiments in section 5 show that
the impact of considering backward-moves on the optimality of the solution obtained by our algorithm is only
account for at most 0.073% on average in terms of cost. After making a tradeoff between the searching efforts
saved by ignoring backward-moves and the tiny benefits gained by allowing backward-moves, we ignore all
backward-moves of item R and assume that item R can only be moved down or to left for the simplification of

our algorithm, that is no-backward-move assumption.

3.3 Definition of the neighborhood

The neighborhood of a PBS system defined in this paper has two properties: (1) Small enough for an exact
search method to find the optimal (best) neighbor quickly. For instance, the method MinMov proposed by
Yalcin et al. (2019a) can be employed in the neighborhood search, whereby we can extract useful information
to fit an appraisal function for the states of the system. (2) Big enough to include all escorts in one step move
of item R in an optimal solution of the system. Although the search approach we propose in this paper is a
heuristic one, we still do not want to miss opportunities of finding the optimal solution when it is possible in
case of small instances for the problem. Since the largest clearance cost of the base escort is 4 after the initial

move, we define the neighborhood as the area composed of all the locations with clearance cost less than or

equal to 3, plulthe location of the bare elcort ([ee Figure 2), where the number in each [quare i(the clearance
colt from it[Jlocation moved to item R’[inext move location, i.e., the [quare with O clearance colf. Since no
backward-move iTlallowed in thilCpaper, we only conTider two forward move[lin each [fep, i.e., left move and
down move. Under the no-backward-move alTimption and given the next move direction, the backward
zone in the neighborhood refer(Jto the area in which the clearance colt of each elcort cannot be reduced
regardle[Tlof the moving direction after the next move. The location[lin the neighborhood other than thole in

the backward zone con(titute the forward zone. (See Figure 2)

- Ol 413 Backward zone
s Boe G R [o2003
I 12 e AN v2.v3|
32 |1|0|R}Z e [Forward zone
SHIN2N RIS E28 S D
S| 2| 2|3 S
= | 2 @ El Requested item
3 i location
(a) Left move (b) Down move
neighborhood neighborhood

Figure 2. Neighborhood of the reque(ted item
Theorem 1: After the initial move, the neighborhood defined by Figure 2 include[Jall the po(Tible elcort[lin

an optimal [olution of M-SRPME at each [fep of item R move.

Proof: The el¢ort optimally [elected mult have a maller clearance colf than that of the balé elc¢ort, and the
maximum po[Tible clearance colf of the balé el¢ort i[14, [d the maximum polTible clearance co’f of a faving
el¢ort iLJ3. The neighborhood defined by (a) or (b) of Figure 2 includellall the el¢ortlIwith clearance colt
[maller than or equal to 3, and the bale el¢ort, hence includeall the po(Tible e¢ort[lin an optimal [olution of

M-SRPME at each [tep of R move.

3.4 Definition of the notation and list of abbreviations

The TymbolTithat will be uled later in thiCpaper are liTfed in Table 1 for reference, and [ome of them will be

further explained where the corre[ponding conceptare introduced.

Table 1. Lilf of notation[]

Symbol Definition
G=(LE) Grid graph

L=(i,)) A location in the grid with coordinate (i,)

L Set of location[in the grid

Symbol Definition
neighbours(l) Set of location"adjacent to location [
forwardNeighbours(l) Set of locationadjacent to location ! on it[lleft or down [ide

backwardNeighbours(l)
e= (1,

" € neighbours(l))

lo

5

d(ly, 1)

d"*, ' € neighbours(l))
n', I € neighbours(l))
Lg

l, € Lg

Ne

g = ey, ..., €y)
length(mg)
head(mg)
ending(e)

Sk

mn

ls « location(s)
s ={Lg s}

Mg

R,

lp < location(R;)
L(Fg)

lynr < NextLocation(Fg)

Ly

Il €ELy

Lgc Ly

Ly, €Ly, Lyp € Ly

9, 19left lgdown

Wlljft, Wliown
dy

F(dy)

a(s)

Set of location[Jadjacent to location [on it[right or up lide

Edge

I/O location

The [tart location of the requelted item

The diltance or number of movefrom location [; to location [,

The minimum move colt of clearance path[from all e[¢ort[to a next move location

The [ize of the clearance path[] (¢t of a next move location

Set of elcort location[]

Location of an e[cort

Number of e[¢ort[]

Clearance path

Length, or move co(t of a clearance path

The head, or fir(t edge of a clearance path

Ending location of edge e

Set of clearance path[Jof location [

Grid zein mXn, m<n

The requelted item location at [tate s

State [

The motion plan of a partial [6lution leading to [tate s from initial [fate

A rivet, which ilJa et of [tate[!(allociate with their partial [olution[l(motion plan[)) with the [ame
current requeted item location [

A frontier iJa [ét of rivet[iwith all their [tate[? location[] [having the [ame Manhattan diltance[lto
the I/O location

Maximum [ize of Fg, i.e., the maximum number of rivet[that can be kept in each frontier
Maximum [ize of Ry, i.e., the maximum number of [tate[](allociated with their partial [olutionl)
that can be retained in each rivet

Location of rivet, i.e., current requelted item location of any partial [olution in rivet R;

The (¢t of location[of the rivet"on frontier Fg

Location of head rivet in next frontier which ilrealized by a forward move of Fg, i.e., by moving
the item at the top left location in [et L(Fg) to left. If fuich move can’t be made, the item will be
moved down

Set of locationof the neighborhood of the reque(ted item

A location in the neighborhood, where 7 illthe clearance colt and A illthe e[¢ort location index

Set of location[Jof the backward zone in the neighborhood

Set of location[Jof the left, down move neighborhood

Neighborhood [ize regulator; Left move, and down move neighborhood [ize regulator

Elcort weight in the left move and down move, re[pectively, of the apprailal neighborhood
Elcortdenlity of a neighborhood

The fitted function uled to calculate the overall elcort weight of a neighborhood

The value of [fate s allelTed by a neighborhood apprailal procedure

10

Symbol Definition

g(s) Minimum move cost leading to state s from the initial state

f(s) =als)—g(s) Fitness of state s

f(R) The best fitness of all states in rivet R, which is the minimum of f(s) over all states in the rivet
Cs = {s, M, f(s),g(s)} A label associated with state s, its motion plan Mg and the values of f(s) and g(s)

To facilitate reference, the following Table 2 provides a list of abbreviations for the key concepts/words used

in this paper.

Table 2. List of abbreviations

Abbreviation Detailed explanation
AGV Automated Guided Vehicles.
/0O location Input and output location.
MinMov The exact algorithm developed by Yalcin et al. (2019b) for solving M-SRPME.
M-SRPME The problem that minimizes the number of item-moves of SRPME.
PBS Puzzle-based storage.
SBS/RS Shuttle-based storage and retrieval systems.
SRPME Single-item Retrieval Problem for PBS systems with Multiple Escorts.
T-SRPME The problem that minimizes the retrieval time or the item move time of SRPME.
Input a PBS Create an initial
grid graph P state s and its initial
G=(L,E) escort set

v

Form an initial
solution pool

Output the best
solution inthe |&Yes
solution pool

Reach the 1/0

No

For all states in
solution pool create
an escort set

For all escorts in the
escort set, create a
new state s’

v

Assess the state s’

v

Keep limited
number of top best
states in the updated

solution pool

Figure 3. flow chart of the procedure of the heuristic

11

4. The algorithm procedure

In thilJCection, we fir(f introduce the Beam Search Procedure, which i(Jal[6 the main framework of our
propoled heuri(fic algorithm. Then introduce the neighborhood [éarch, which include[three [Wibroutinelin the

algorithm, and finally analyze the computational complexity of the heuri(ficll

4.1 Beam Search Procedure

We incorporate a neighborhood [earch into beam [earch via a [fate apprailal function fitting and a beam [ize
control tactic[) which [éek[Ta better balance between the [olution accuracy and the computational efficiency.

Beam Search act[Jallthe main frame of our algorithm, it con[i[fJof a main beam [¢arch proce[lland a frontier
iterative proce(T) both of which iteratively calculate/update the [élution pool in the form of a frontier and

[everal rivet(See Figure 3).

4.1.1 Main beam [earch proce T

The Tolution pool, with the function of beam [ize controlling, iC/defined alJa frontier which con[ifJof one or
more rivetl) where each rivet iCla [iblet of the frontier (See Figure 4). Since backward-move il[Inot allowed in
the heuriic, the frontier iCJmoving down left towardthe I/O point in each iteration. The detailed procedure
of thillproceMillgiven in the pféudo code of Algorithm 1, BeamSearchPBS, which i[Jallo an expanded

del¢ription of Figure 3.

983

oo
S

Pa
= 7
Rivet ¢ y
\\

N
~
N
~ \
AN \ 1
N \
\
\
\

\ i
.
Frontier

Figure 4. Illultration of the rivet[and frontier[‘while the heuriltic algorithm iterate[]

We define and initialize a global [fate variable, label C; to hold and keep the fate[Jand Tolution[’data
updated during the execution of BeamSearchPBS and it[] (ibroutinel] Algorithm(]2 to 4 (line 1). In
Algorithm 1, Line 2 to line 4 check if the goal I/O location ilJreached, then return the initial motion plan,

which mean[Jan empty et with zero move colf. Line 5 conlider[Jall available el¢ort[Tto create two [et[Jof

12

clearance paths for the next R locations. The Dijkstra Algorithm (Dijkstra, 1959) or the Maximum Nearest
Escort Search algorithm proposed by Yalcin et al. (2019a) can be used here to find the shortest path (minimal
moving cost) between two locations.Yalcin et al. (2019a) has proved that at most six best escorts with move
cost less than or equal to the lowest clearance cost plus 3 are needed to consider in a search towards an
optimal solution at the initial escort move step, so we adopt the same rule at the initial move step (lines 6-8).
Line 10 to line 19 build the initial solution pool by exploring all the forward move directions for all the
clearance paths in set S; and generating new states, then assess each state in the pool by the subroutine
StateAppraisal (Algorithm 4) (line 13), and finally control/limit the size of solution pool rivet R;(line 16)
and frontier Fp (line 19). Line 21 to line 24 is the frontier loop which will be executed if the goal location is
not reached, where Frontierlteration (Algorithm 2) is a subroutine that moves a frontier forward by one
step. When the algorithm iterates to the second last frontier, lyyr Will be at the I/O point (line 21), and the
information of all the states till the last frontier will be stored in the set Fp. When the frontier loop ends, there

are 2 rivets in the frontier and the best one is chosen (lines 25 and 26).

Algorithm 1. BeamSearchPBS(G,Lg,ly,7,p)

Input:
Grid graph G = (L,E), the initial set of escort locations L, the initial location I; of the requested
item, the maximum number of rivets r and the maximum number of states p.

Output:

M, a motion plan that moves item R from [to the I/O point

1: create initial state s with [« I, and Lg, Mg « @, g(s) « 0,

f(s) « 0,Cs « {5, M, f(s), g(s)} & C, is a global state variable
2:if 1 =1, then o Check if the goal location is reached
3: return Mg
4: end if
5: S,l,' « set of all the clearance paths between [€ I o Initial move

and ' € forwardNeighbours(l)

6: d'* « min length(my)
ngesk
7: n' = min(6, the number ofmgin SL
and length(ng) with length(mg) < d'* + 3)

8: Keep in SL only the n!" shortest clearance paths

9: Fr < 0, o Initial frontier generation
10: for all I' € forwardNeighbours(l) do

11: R «®

12: forall mz € SY do

13: Cy « StateAppraisal(Cs, ',) o Assess each new state
14: R, <« R/ UCy

15: end for

13

16: keep best p statesin R, > Choose best states according to the

17: Fr <« FRUR; value of f(s)
18: end for

19: keep best r rivets in Fg o Choose best rivets according to the
20: lyyp < NextLocation(Fg) value of f(R)
21: while lyyp # Iy do o> While the goal location is not reached
22: Fr « Frontierlteration(Fg,r,p) o Frontier loop
23: lynr < NextLocation(Fg)

24: end while
25: R} « argmingep,f(R)

26: return Mg < argmingep:g(s")

4.1.2 Frontier iteration

With the assumption of no-backward-move, the search effort of our heuristic is greatly reduced to at most
2n — 3 iterations (see Figure 4). In each frontier iteration, a new frontier is created from the last frontier, all
the states in the solution pool of the last frontier are updated by Algorithm 3 and assessed by Algorithm 4
successively, and a solution pool for the new frontier is created by retaining some best states. Each frontier
iteration provides a container (pool) for possible solutions, and the states in the same frontier are comparable
in terms of Manhattan distance from their requested item location to the I/O location. During each frontier
iteration, the evolution of states and their performances (g(s) and f(s)), as well as their corresponding

partial solutions (motion plan Mj), are stored implicitly in label Cg of Algorithm 2.

Algorithm 2. Frontierlteration(Fg,r,p)

Input:
Previous frontier Fr with set of rivets, where the number of rivets is limited by 7, and the number of

states in a rivet is limited by p.

Output:
New frontier Fg with set of rivets
1: Fp<0 o Initialize new frontier
2:forall R; € Fp do
3: for all Iy € forwardNeighbours(location(R;)) do
4: Ry « @ with location of [y
5 F, « F4 URy
6: end for
7: end for
8: forall Ry € F} do o Rivet loop
9: " « location(Ry)
10: for all | € backwardNeighbours(l') && | € L(Fp) do
11: forall s € R; do
12: SY « EscortSearch(s,1,1")
13: for all my € S}r’ do o Candidate escorts loop

14

14: Cy « StateAppraisal(Cs, ', mg) > Assess each new state

15: Ry < Ry UCy

16: end for

17: end for

18: end for

19: keep best p states in Ry & Choose the best states according
20: end for to the value of f(s)
21: keep best r rivetsin Fg & Choose the best rivets according

to the value of f(R)

Algorithm 2. Frontierlteration conducts frontier iteration and completes the one-step transformation from
previous frontier to the new one. Line 1 to line 7 initialize a new frontier, generates an empty frontier with
empty set of states, and initialize the size and the locations of the frontier. All states in each rivet in the
previous frontier are extended to new states by using their available escorts (lines 8-21). Algorithm 2 Assesses
and saves each new state in the new rivets and new frontier, and finally controls the size of the solution pools
of rivets and the new frontier. The subroutine EscortSearch(Algorithm 3) finds a local optimum set of
escorts and its clearance path for a given state (linel2), and the subroutine StateAppraisal(Algorithm 4)

assess each new state (line 14).

4.2 Neighborhood search

Neighborhood search deals with the changes between states, it includes two subroutines: (1) escort search, to
find a suitable escort to swap with the next move location to form a new state. (2) state appraisal, to assess the

fitness value of each new state.

4.2.1 Escort search

Given a next move location [’ of a state, EscortSearch (Algorithm 3) searches for a set of escorts and then
builds a clearance path for each escort from its current location to the next move location of the state. In order
to facilitate the reference and save the computation time of the clearance cost, we code each escort location in
the neighborhood (see Figure 5) by two numbers separated by a comma, where the number before the comma
is the clearance cost 7, and the number after the comma is the escort location index A, and the locations in the
neighborhood are referred as [, € Ly, where Ly is the set of locations in the neighborhood of the requested

item.

15

:-:33::-:
Rl

Backward zone

34 [122:1:32:

Ga | | e RN G X TR
— 39 | 26 | 13 | 01 [Ei) .;:‘15:53(3535|
36 | 24 [12 | 04 | R |41 I:I Forward zone
38 | 25 | 12 | 23 | 34

3,825 S, S| 2 7 81

37 | 24 | 85

38 | 26 [310 Requested item
0 El location
3.9
(a) Left move (b) Down move
neighborhood neighborhood

Figure 5. The zoning and coding of each el[¢ort location in the neighborhood

Observation 1: Under the alTumption of no-backward-move, for any el¢ort in the backward zone of the
neighborhood of a [tate, it[Iclearance colt will increale allthe [fate evolvellinto any future [tate.

We can oblerve the refult of thiCJoblervation by moving the next move location downward or leftward. In
both [¢enariol) the conclulion of oblervation 1 ilJtrue, and the farther the el¢ort il the higher it[Jclearance
colt becomel]

AlTime that an e¢ort E in the backward zone of the neighborhood of the current fate hallthe ‘mallel®
clearance colf among all el¢cort[Jin the neighborhood, according to Oblérvation 1, the opportunity colt of not
uling E in the current [fate will increale in the future, therefore E [hould be uled fir(t. (Cale 1)

In Figure 5, the location with 0 diltance from the current requelted item’[Inext move location ilJl’. The
pLeudo code of Algorithm 3 involvelltwo [¢enariol] which are left move and down move, re[pectively. For the

lake of brevity, we only Thow the two [¢enariolin a general way in Algorithm3.

Algorithm 3. EscortSearch(s,[,1")

Input:
State s and it[location [, and the next move location [
Output:
Set of clearance path S,
1: S; « @, and define Ly and Lg according to location(1l, I' and Figure 5. o initialization
2:if ' € Lg then
3 g < @
4: return
S:elle > Calel
6 I, =arg leggglLB d(le, 1"
7 it d(l3,1") < leEL%i&\LB d(le,1l") then
8: mg «the clearance path form [} to I
9: SV « Sl umy
10: return
11: end if
12: end if

16

13:if I, € Lg or I, € Lg then o Case 2
14: SY « set of clearance paths for all I, € Iy and d(l,, 1) < 2

15: n = min(3,the number ofng € S},')

16:elseif I3; € Lg or I3, € Lg or l33 € L then o> Case 3

17: SY « set of clearance paths for all I, € Iy and d(l,,1") <3

18: n = min(4, the number ofng € S},')

19: else o> Case 4
20: S,l,’ « set of clearance paths for all [, € Iy

21: n = min(5,the number ofng € S}TI)

22: end if

23: keep in S,l,’ only the n shortest clearance paths

In order to reduce unnecessary state generation as much as possible, we consider four cases to limit the
number of escorts in Algorithm 3. Line 1 defines the set of locations of the neighborhood of the current state
and its backward zone based on relative position of [and !" in Figure 5. If the next move location is an
escort, R move can be done immediately, therefore the clearance path is an empty set, and return (lines 2-4). If
an escort in the backward zone has the lowest clearance cost in the neighborhood, then use it and return
according to Observation 1 (lines 5-12). Yalcin et al. (2019a) proved that in the situations of 3-move, 4-move
and 5-move, corresponding to Case 2, Case 3 and Case 4 in EscortSearch respectively, we only need to
consider at most 3, 4, and 5 escorts, respectively, whose clearance costs are smaller than or equal to the
clearance cost of the corresponding base escort (lines 13-23). The base escorts here are [, 4, l34, and Iy,
respectively. In case 2, because l,, is also in the backward zone and has the same clearance cost and
opportunity cost as [, ; does, consequently, [,, is equivalent to [, ; and can be used as the base escort in
the no-backward-move situation (line 13). In case 3, the same equivalence relationship exists among I3, I3,

and [33 (linel6).

4.2.2 State appraisal

Algorithm 4, StateAppraisal, generates and assesses a new state s’, and returns its fitness value together
with the new state in the form of a label C,. Firstly, this algorithm obtains the location of the selected escort
from the set of clearance paths, and excludes it from the set of escort locations in the new state, and the next
move location of the last state becomes the requested item location of the new state (line 1). Then, this
algorithm defines a new neighborhood by its locations of left moves and down moves and generates a new
state for subsequent calculations (lines 2-3), and update the set of motion plans (line 4) as well as the cost of
the current motion plan (line 5). Line 6 realize the assessment operation for the two states of the forward

neighborhood and choose the bigger one as the state assessment value, then the fitness and the label of the

17

new state are updated (lines 7-8).

Our heuristic must keep two frontiers in memory at each iteration, but does not need to assess the new states at
the final iteration due to its invalid forward neighborhood. When item R approaches the edge of the grid, one
or two exploring directions may become unavailable, then the corresponding appraisal value should be set as a
negative infinity. The fitted function F(-) with the weights of the escorts defined in line 6 will be explained

immediately below.

Algorithm 4. StateAppraisal(Cg, ', mg)

Input:
the label Cs of state s, next move location [’, and clearance path mg
Output:

New solution collection set C

I: Ly « Ly Ul \ {ending (head(mg))} ,and Iy < ' © get the new escorts set and the
2: define Ly; and Lyp according to locations I, I' and figure 2 location of new state
3: 8"« {Ly, Iy}

4: My « concatenate(M;, g, (l,1'))

5: g(s") « g(s) + length(mg) + 1

@)}

F (ZleeLgnLNL Wzl:ft)ﬁlef L) & appraisal the density of
F(ZZeEL'EnLND Wiown)ﬁdown

7: f(s") < a(s") —g(sh)

8: Cyr = {s', My, f(s"),g(s")}

sa(s’) « max(

escorts

1) Appraisal function F(-)
The cost estimation for each move of item R is critical and very time consuming when searching for a good
solution for M-SRPME. An A* algorithm-based shortest path method is employed to estimate the move cost
from the current state to the goal state in the algorithms of Yalcin et al. (2019a), with the computational
complexity of O(n?). We propose an assessment procedure to replace this time-consuming process. The
assessment is based on an appraisal function which is fitted by utilizing the optimal solutions of a group of
small-size instances of M-SRPME obtained offline.
Yalcin et al. (2019a) reported optimal solutions of tens of thousands of randomly generated small-size
instances of M-SRPME, the size of these instances is ranged from n = 5 to n = 10. The neighborhoods we
have defined in Figure 2 are 6 X 7 in size, which are trimmed grids area and smaller than size 7 X 7, we just
use the optimal solutions of the 6 X 6 instances considered in Yalcin et al. (2019a) to approximately fit the
appraisal function as a third-order polynomial:

F(dy) = 22.394d} — 67.005d% + 66.818dy — 1.9879 (1)

where dy = n,/(n? — 1), and n, is the number of escorts.

18

dy can be regarded as the density of escorts. Obviously, its feasible region is (0,1]. We assume that the larger
the escorts density the better is the new state, that is, the greater dy is, the higher the value of F(dy) is.
Based on this assumption, function (1) should be greater than or equal to zero and strictly increase in the value
of dy. However, due to the random way of the instance’s generation, this prerequisite of the appraisal
function cannot be guaranteed. Therefore, we remove the constant term from function (1), so that the appraisal
function can meet the requirements as much as possible, and avoid the situation of negative value of F(dy)
when dy approaches 0. It should also be noted, when item R reaches the border of the grid, the size of the
neighborhood will be shrunken, we introduce a regulator ¥ to neutralize the impact of the change of the
neighborhood size on the evaluation results by dividing dy by 9. Thus, in our algorithm, we use function (2)
as the appraisal function instead.

F(dy) = 22.394 ("fT”)3 — 67.005 (‘fTN)Z +66.818 (‘%”)1)
where 9 is the sum of the weights of the escorts within the shrunken neighborhood, and the escorts weights
will be explained in the following section.

2) The weights of escorts

When calculate the escort density, it is not appropriate to simply divide the number of escorts by the total
number of locations of a neighborhood. When estimating move efficiency in a neighborhood, different escorts
should be given different weights because their different clearance costs and location zones. We weigh more
on an escort with a smaller clearance cost or in the forward zone. Taking the left-move neighborhood as an
example, firstly, based on the clearance cost of each location (see Figure 2 and Figure 5), 0.5 is added to the
weight of each location in the area on the upper side of R (including the row of R), the area on the right side of
R (including the column of R), and the area on the upper right of R (including the row and column of R),
respectively. In this way, 0.5 can be added to the weight of each location in the upper right area of R three
times. Secondly, use the maximum possible weight 5.5 (=4+3%0.5, where 4 is the maximum possible
clearance cost, i.e., the base escort) to subtract the weight of each location obtained so far to get its new
weight, regardless of the weight of the location of R. Finally, the weights of all locations in the neighborhood
are normalized to obtain the final weight of each location such that their total weight is equal to one (see
Figure 6).

This method of determining the weight of each escort is somewhat arbitrary, but it has been proved effective

by our numerical experiments, even though there may be a better method for setting escort weights such as by

19

machine learning. When alTe[Ting the fitne[Tlof a [fate in [olving M-SRPME by our heurific, we define the
im of total weight of all the [fate’ Telcort[in the neighborhood allthe el¢ort denlity djy, and adjult the value
F(dy) by multiply it by the neighborhood [ize regulator ¥ when the neighborhood illincomplete in cal¢ it

approachelthe border of the underlying grid.

0.0342

0.0256[0: 0000 0: 0171

0.0342 [-10::0513-)0::0171

D Backward zone

0.0256 0. 0427/ 0. 0000(0. 034200171

0.0342 | 0.0513 | 0,068 [0::0342'|0::0171

0.0427| 0.0598| 0. 0769 0. 0855 | 0. 068 -0 0513} 0: 0343

S D Forward zone

0.0342 | 0.0513 | 0.0684| 0.0855 | 0.0000 |:0;:0000

0. 0427 0. 0598 0. 0684 0. 0513] 0. 0342

0.0427 [0.0598 | 0.0769 [0.0427 | 0. 0256

0.0427| 0. 0513 0. 0342 Requested ltem
0.0427| 0.0598 | 0.0256 I:l .
location
0. 0342
0. 0427
(a) Left move weights in (b) Down move weights in
neighborhood neighborhood

Figure 6. Weightlof e[cort location[Jin a neighborhood for [tate apprailal

4.3 An illustrative example

The example in[fance ilJof [ize 5 X 5 with the requelted item R located at the upper right corner of the grid
graph, to be moved to the I/O point located at the bottom left corner of the grid graph (Lée the initial [fate in
Figure 7). The procedure BeamSearchPBS, with beam [ize of r = 2,p = 3, yield[Jthe motion plan with 18
movel,] of which 10 movellare e ¢ort-movelJand 8 movelJare R-movel) The motion plan ilJproved to be

optimal by uling MinMov of Yalcin et al. (2019a) to [olve thillin[tance.

*

R

R | i
]

I R | Requested item
l:l Escort

Initial state 1 2 3 4l I:l Occupied item
+<— R-move

L@J #[R] #1 «-- Escort-move
— — 1= = * (Clearance path)

Change direction
between states

« The mark of the
rivet with the
biggest f(s) value in
the frontier

R | W # The mark of the
v ordinary rivet in
10 11 12 13 Final state the frontier

| - =[-% m,/
I

e
o

|t

E
}

|20 |

Figure 7. The motion plan obtained by running beamSearchPBS with r = 2,p =3

There are total 7 frontier(lin thilJ [6lution, but not every time the requelted item ilJmoved to the location

who e rivet hallthe belT fitneTlin itCfrontier, Mich allfate(11, 5 and 8 in Figure 7, becaule the off(pring [fate

20

expanded from the current best state is not necessarily the best, although it has a relatively large chance to be
the best in the next iteration. If the values of 7 and p are both set to 1, that is, each iteration only retains the
best state to expand, then BeamSearchPBS becomes a typical greedy algorithm, the motion plan of this
setting is 19 moves. In this situation, the requested item will always be moved to the location of the rivet with
the best fitness value in the frontier. This example shows that the beam size of BeamSearchPBS plays a key
role in jumping out of local optimum, it also shows the poor effect of simply applying a greedy tactic in

solving M-SRPME. For a more detailed explanation of this example, please see Appendices Al.

4.4 Computational complexity analysis

In order to capture the main aspects of the algorithm complexity, we only analyze the major loop of the
algorithm, that is the while loop in algorithm 1 (line 21 to line 24), and its subroutines. Firstly, we set r < p
for the two parameters of our algorithm (see Section 5.1 and AppendicesA2 for why we set r and p in this way)
and define two additional parameters as follows:

(1) k, the number of escorts, or clearance paths, considered in each candidate escort loop (linel3 to 16 in
Algorithm 2.)

(2) c, the constant computing time of subroutines Algorithm 3 and Algorithm 4. Because the operations of
both algorithms are performed in a neighborhood, and the computational complexities of all their
operations are linear with bounded parameters, so the computing time of the two subroutines can be
considered a constant.

The outermost loop is the while loop in algorithm 1 (line 21 to 24), there are at most m+n—2 (m+n—3

when n = m = 3) frontier moves.

In frontier iteration (Algorithm 2), the major loop is the rivet loop (line 8 to 20), there are at most r iterations.

At most 2 directions needed in the for loops (lines 10-18). There are at most p iterations in a rivet (lines

11-17), and at most k iterations in a set of clearance path (lines 13-16). By considering the computation time

of sorting (lines 19, 21), escort searching (line 12), state appraisal (line 14), but ignoring the initialization

operations (lines 1-7) with a lower-order computational complexity, we obtain the complexity expression of
the algorithm 2 as:
2r(p(c + kc) + pk In(pk)) + 2r In(2r) 3)

Where 2r is 2 move directions and r iterations of rivet. p(c + kc) is p iterations in a rivet, ¢ is the

21

constant time of escort search in linel2, and kc is k times of escort constant appraisal time (lines 13-16).
pk In(pk) is the sorting time needed to find the best p states in pk states (line 19). 2rIn(2r) is the sorting
time needed to find the best r rivets in 2r rivets (line 21).
Combined with m + n — 2 frontier moves of while loop, the outer most loop in Algorithm 1, the complexity
expression of our heuristics is
(m+n—-2)2r(p(c + kc) + pkIn(pk)) + 2rIn(2r)) 4)

The first term m +n — 2 can be estimated as 2n given that m < n, after doing some adjustment
operations, function (4) is turned into:

dnr(p(c + k(c + In(pk)) + In(2r)) = 4nr(p(c + k(c + In(p) + In(k)) + In(2r)) (5)
From Table 1 and Figure 4, we know r < m < n, and k can be considered a constant since it is smaller than
or equal to 6, then In(2r), In(k), and c in (5) can be ignored, leading to the complexity of the heuristic:

O (4nrpk In(p))

By further ignoring the constant 4 and the constant parameter k, the complexity of our heuristic becomes:

O(nrp In(p)) (6)

5. Computational experiments

5.1 The parameter design of our heuristic

The computational complexity expression (6) of our heuristic has three parameters, it would be easier for
intuitive understanding if it was simplified to depend on only one parameter. In addition, it is also conducive
to design reasonable parameters in real-world applications to control the computational time of the heuristic
by setting appropriate values for r and p. To this end, we developed a mathematical model to appropriately
set v and p as functions of n and calculated their corresponding computational complexity. Due to space
limitation, we describe this model in Appendices A2, and get the five computational complexity settings of

our heuristic, namely 0(n), 0(n'®), 0(n?), 0(n*®) and 0(n®).

5.2 Experimental problem design and computing environment

We designed two types of experimental instances. The first type contains the small-size instances generated in

the same way as that of Yalcin et al. (2019a) with the grid sizes ranged from 2 to 10, mainly used to compare

22

the solution accuracy of our heuristic with the exact algorithm proposed by them. The second type is the
large-size instances we generated to compare our heuristic with their heuristic.

According to whether the location of the requested item R is in the upper right corner of the grid or is
randomly distributed in the grid, the small-size instances are divided into collection 1 and collection 2,
respectively. A total of 41437 small-size instances in collection 1, 20455 small-size instances in collection 2
and 2300 large-size instances are generated. According to the grid size or/and the number of escorts of the
instance, the small-size and large-size instances are further classified into several groups. See Appendices A3
for the detailed way to generate all instances in our numerical experiments.

Our heuristic algorithm was coded in MATLAB 2016b academic setting. Because we could not obtain the
code of the exact and heuristic algorithms of Yalcin et al. (2019a), we recoded them in MATLAB to make our
experimental results comparable with theirs. The experiments were conducted on a HP desktop with Windows

10 of home setting, 3.20 GHz Intel Core i5-6500U processor and 8 GB of RAM.
5.3 Experimental results

5.3.1 Results for small-size instances
We compared the computational results of our heuristic BeamSearchPBS with five complexity settings with
those of Yalcin’s heuristic. The optimal solution of each instance is obtained by running MinMov of Yalcin

et al. (2019a), and the average relative percentage deviation of solution accuracy is calculated as:

100 YviHgi—2viOg,i

ARPD = 223, =R @

where G means the total number of groups for a given grid size, Hy; is the solution value obtained by
BeamSearchPBS or Yalcin’s heuristic for instance i in group g. Oy; means the optimal solution value

obtained by MinMov for instance i in group g.
1) The solution accuracy analysis

The results in Table 3 and 4 show that BeamSearchPBS under all the computational complexity settings
outperforms Yalcin’s heuristic with computational complexity O(n*). The summarized results of these two
tables are given in Table 7 in this section, which shows that our algorithm with computational complexity
0(n3), 0(n?), and 0(n) respectively can improve the overall average solution accuracy of all instances
tested from Yalcin’s 1.096% to 0.055%, 0.107%, and 0.570%, respectively, where n is the size of the PBS

system. For PBS systems with high storage density, our algorithm shows stronger robustness by improving the

23

accuracy from Yalcin’s 1.086% to 0.026%, 0.051%, and 0.249% by its complexity setting 0(n3), 0(n?), and
0(n), respectively.

From Table 3 and Table 4, we can also see that the solution accuracy of both algorithms deteriorates as the
grid size increases. The main reason is that the estimation function h(s) used in the two algorithms will
become more and more inaccurate as the problem size increases, just as the accuracy of a long-term forecast is
lower than that of a short-term one. However, the deterioration rate of BeamSearchPBS slows down as its
computational complexity increases. Please also see (A) and (B) in figure 8 for the relationships between the

instance size and the solution accuracy for both algorithms.

Table 3. Overall solution accuracy comparison (ARPD) of the two heuristics for small-size instances - collection 1

n G 1 YalH o(n) o(n'%) 0(n? 0(n?>) 0(n?)
2 3 7 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
3 8 255 0.376% 0.000% 0.000% 0.000% 0.000% 0.000%
4 15 4011 1.042% 0.056% 0.026% 0.009% 0.000% 0.000%
5 24 8201 1.205% 0.288% 0.076% 0.021% 0.008% 0.001%
6 35 19261 1.403% 0.667% 0.203% 0.071% 0.030% 0.010%
7 48 5751 1.508% 0.936% 0.179% 0.104% 0.046% 0.014%
8 15 1875 1.587% 1.270% 0.284% 0.155% 0.072% 0.022%
9 16 1126 1.553% 1.429% 0.377% 0.195% 0.093% 0.029%
10 19 950 1.769% 1.753% 0.532% 0.208% 0.104% 0.053%
sum/#Avg. 183" 41437 1.160%* 0.711%* 0.186%" 0.085%" 0.039%" 0.014%*

n: grid size (nXn), G: number of groups,]: number of instances, YalH: Yalcin’s heuristic, 0(n),0(n*>),---,0(n%):
BeamSearchPBS with five computational complexity settings respectively, #: simple average of the data above in the corresponding
column of the table

Table 4. Overall solution accuracy comparison (ARPD) of the two heuristics for small-size instances — collection 2

n G 1 YalH o(n) o0(n'%) 0(n?) 0(n?%) 0(n®)
5 24 2325 0.718% 0.052% 0.016% 0.012% 0.012% 0.012%
6 35 3436 0.893% 0.214% 0.106% 0.056% 0.048% 0.045%
7 48 4749 0.997% 0.423% 0.110% 0.088% 0.068% 0.061%
8 63 6264 1.202% 0.533% 0.213% 0.159% 0.136% 0.121%
9 17 1681 1.061% 0.562% 0.248% 0.193% 0.164% 0.139%
10 20 2000 1.317% 0.790% 0.364% 0.272% 0.205% 0.196%
sum/#Avg. 207" 20455" 1.031% 0.429%* 0.176%* 0.130%* 0.105%* 0.096%*

n: grid size (nXn), G: number of groups,]: number of instances, YalH: Yalcin’s heuristic, 0(n),0(n*>),---,0(n%):
BeamSearchPBS with five computational complexity settings respectively, #: simple average of the data above in the corresponding
column of the table

2) Backward-move impact analysis

Algorithm BeamSearchPBS is based on the hypothesis of no-backward-move of requested item, it is
necessary to analyze the impact of this assumption.

We checked every motion plan of all the 41437 instances in the first collection of small-size instances solved
24

by MinMov, find that there is no instance with backward move in its optimal motion plan, this may be
because the requested item is located at the upper right corner of the grid. Table A.4 in Appendices A4 shows
the impact of no-backward-move on the solution accuracy of small-size instances in the second collection,
whose requested item can be located anywhere initially and may result in an extreme situation where one or
two steps of backward move could generate a little cost savings. There are only 181 out of 20455 instances
with 1 or 2 backward moves, most of the 181 instances have a single backward move, only 8 out of the 181
instances have 2 backward moves. and the overall impact of no-backward-move on solution optimality is only

about 0.073%. (See Table A.4 in Appendices A4)
3) The algorithms’ CPU time analysis

The average CPU time consumption by the two heuristics is calculated as:

ACT = 2, (£ EiTy) ®)
where G means the total number of groups for a given grid size, I; means the number of instances in group
g, Ty, is the CPU time obtained by an algorithm for instance i in group g.

Table 5 and Table 6 show that in all complexity settings, BeamSearchPBS run faster than Yalcin’s heuristic.

Please also see figure (C) and (D) in figure 8 for the relationships between the instance size and the average

CPU time.

Table 5. Average CPU time in seconds (ACT) for solving small-size instances - collection 1
n G I YalH 0(n) 0(n*>) 0(n?) 0(n?%) 0n®)
2 3 7 0.028 0.043 0.007 0.012 0.023 0.021
3 8 255 0.109 0.065 0.085 0.085 0.089 0.092
4 15 4011 0.534 0.123 0.177 0.232 0.311 0.399
5 24 8201 1.687 0.190 0.301 0.462 0.692 1.072
6 35 19261 4.179 0.256 0.434 0.750 1.221 2.135
7 48 5751 9.018 0.318 0.738 1.096 1.934 3.718
8 15 1875 17.462 0.385 0.937 1.613 2.948 5.883
9 16 1126 28.638 0.445 1.112 2.086 4.022 8.561
10 19 950 46.912 0.508 1.296 2.588 5.458 12.140

n: grid size (nxXn), G: number of groups,I: number of instances, YalH: Yalcin’s heuristic, 0(n),0(n'?>),---,0(n%):
BeamSearchPBS with five computational complexity settings, respectively

Table 6. Average CPU time in seconds (ACT) for solving small-size instances - collection 2

n G 1 YalH o) 0(n*%) 0(n?) 0(n?%) 0(n®)
5 24 2325 0.677 0.061 0.080 0.105 0.142 0.189
6 35 3436 1.804 0.086 0.119 0.169 0.249 0.375
7 48 4749 2.800 0.116 0.199 0.258 0.411 0.688
8 63 6264 4911 0.141 0.255 0.364 0.601 1.050
9 17 1681 7.843 0.166 0.314 0.467 0.810 1.516

25

10

20 2000 12.709

0.197

0.394 0.610 1.130

2.283

n: grid size (nxXn), G: number of groups,I: number of instances, YalH: Yalcin’s heuristic, 0(n),0(n'?>),---,0(n%):

BeamSearchPBS with five computational complexity [etting[) re[pectively

ACCURACY OF SOLUTION

(A) SMALL -SIZE INSTANCES -
COLLECTION 1

2.000%

~—&—Yalcin's heuristic

1500% —g—0(n)

0(n”1.5)
1.000%

ACCURACY OF SOLUTION

(B) SMALL -SIZE INSTANCES -

COLLECTION 2
—&—0(n) /
Qabt”
—

0(n"2)

9 ——Yalcin's heuristic

N
S
S
xR

1.000%

0.800%

0.600% omeas] I R
" e 0(N"2. L
o5t 0.400%) e A
0200% OO g —3
0.000% WF - 4 — 0.000% B
2 3 4 5 3 7 8 9 10 5 6 7 8 9 10
GRID SIZE GRID SIZE
50.000 (C) SMALL -SIZE INSTANCES - 14.000 (D) SMALL -SIZE INSTANCES -
12.000 ; COLLECTION 2
40.000 ==Yalcin's Heuristic COLLECTION 1 / —+—VYalcin's Heuristic
@ —e—0(n"3) & 10000 —@—0(n"3)
w 30.000 —=0(n"2.5) o goo0 —*—0(n"2.5)
s s R
B 0(n"2) F 6000 o)
g 20.000 O(nAL5) 2 0(nAL.5)
—8—0(n) 4000 —g—0(n)
10.000
2.000 ::o
0.000 W = A — 0.000 & = o i =il

GRID SIZE GRID SIZE

Figure 8. The [olution accuracy and CPU time comparilon between beamSearchPBS and Yalcin’ [heuri(tic

4) Overall comparison of the two heuristics on instances with high storage density

The PBS [yltem illprimarily deligned to [olve high-denlity [forage [¢enarioll From the per(pective of the
fealibility of the algorithm, the previouTJexperimental delign conlidered all po[Tible [forage denlitiel]

The Gue’[Irel¢arch [igge[tl that when the [torage denlity exceed190%, PBS [y[tem[perform better than the
aile-baleéd Mforage [Y[fem[Jin term[Jof [forage or retrieval efficiency (Gue and Kim, 2007). Therefore, to
further compare the performance of the two heuriltic algorithm[Jin high-den[ity [forage [¢enariol] we choole
the high forage den(ity infanceJwith about 10% of el¢ortTlor leMin the two collection] Table 6 provide[
the computational reultClof the two heurilficJon the [mall-lize in[tancewith high [forage denlity. Pleal¢ [¢e

Table A.5 in Appendice["AS for the featureJof the group Cof the in[fanceconlidered.

Table 7. Overall solution accuracy comparison of the two heuristics on small-size instances with high storage density

Instance type G 1 YalH o) 0(n*%) 0(n?) 0(n%%) 0(n®)
All groups in collection 1 157 37164 1.504% 1.057% 0.275% 0.126% 0.059% 0.021%
All groups in collection 2 207 20455 1.031% 0.429% 0.176% 0.130% 0.105% 0.096%
All groups in collections . B
364 57619 1.096%* 0.570%* 0.181%* 0.107%* 0.072%* 0.055%*"
*sum/ #average
High storage density groups 1 16 3780 1.274% 0.321% 0.134% 0.055% 0.029% 0.016%
High storage density groups 2 25 2500 0.899% 0.177% 0.081% 0.047% 0.037% 0.036%
High storage density groups . .
417 6280 1.086%* 0.249%* 0.108%* 0.051%* 0.033%* 0.026%*"

*sum /#average

AOnly conlider grid fze of 5X5—10X%10. G: number of groups,/: number of instances, YalH: Yalcin’s heuristic,

0(m),0(n*?%),---,0(n?): BeamSearchPBS with five computational complexity [étting[] re[pectively

26

Table 6 shows that the average solution accuracy of Yalcin’s heuristic in high storage density groups keep
almost unchanged compared with the all-groups situation (from 1.096% to 1.086%). However, the average
solution accuracy of BeamSearchPBS has more than doubled in 4 out of 5 computational complexity
settings. What’s more, Table A.6 in Appendices A5 shows that the BeamSearchPBS uses less average
computation time while Yalcin’s heuristic uses more computation time. Therefore, BeamSearchPBS is
more suitable for high-density storage scenarios than Yalcin’s heuristic in terms of both algorithm accuracy
and algorithm computational time. a deep analysis of this phenomenon on performance differences is

described in appendices AS.

5.3.2 Results for large-size instances

In this section, we only consider two representative complexity settings of BeamSearchPBS to compare our
heuristic with Yalcin’s. Although BeamSearchPBS in all of the complexity settings are better than Yalcin’s
heuristic in term of solution accuracy when solving the small-size instances, the complexity setting of O(n)
deteriorates faster than Yalcin’s heuristic with the increase of instance size. Therefore we only consider the
complexity settings of 0(n®) and 0(n®) for BeamSearchPBS to do this comparison on the large-size
instances, in order to ensure that the overall solution accuracy of BeamSearchPBS is better than that of
Yalcin’s heuristic, we focus on the improvement of the computational speed and the solution accuracy of
BeamSearchPBS relative to Yalcin’s heuristic.

1) General results of CPU time

Figure 8 shows the computation time difference of the three algorithms. Due to the huge difference in CPU
time consumption of the algorithms, we must use the logarithm of the computation times when we depict
them together in a figure (see (A) in Figure 9). The computation times of the three algorithms differ from each

other in almost two orders of magnitude.

27

(A) COMPARISON (B) Yalcin's heuristic

40000
—— Yheuristic

4 0O(n"3) y»‘}(qr y = 0.008x" + 0.1391x* - 20.534x? + 387.11x - 1848.4
A 2 _
o—t—e" 30000 R?=0.9621

_
g 35000

3 —0(nA1.5) i

r 25000

20000 s
15000 oo

10000

LOG (CPU TIME (S))
Y
1Y
CPUTIME (S)
.

5000 °

B
s-0'®
PR 0 0900 9-0-0-9.9-0.8.9

5 10 15 20 25 30 35 40 a5 50 5000 2 0 22 2% B P 4 H ¥
GRID SIZE GRID SIZE

(C) O(n"1.5) (D) O(n"3)

450
y = 0.0025x? + 0.0283x - 0.1099 » 400
R*=0.9947 e-® y = 0.0052x* - 0.1468x” + 2.4758x - 12.107
- 350 R?=0.9875

. 300 L
250 °
200
150 ®

CPU TIME (5)

100 e
{ i 50 .-®
PRRCER
0 o0 00 0 0@
5 10 15 20 25 30 35 40 45 50 50 10 15 20 2 20 35 40 5 50
GRID SIZE GRID SIZE

CPU TIME (S)
O kN W s UL O N o®

Figure 9. The CPU time comparion between beamSearchPBS and Yalcin’ Cheuriltic for large-lize in(tancel]

2) Function fitting of the computational complexity

Yalcin’ Theuriffic iTbaleéd on A* algorithm, it iC'mainly compoleéd of two iterative loop Owhich are the outer
R-move loop and inner Eflcort Effimate loop. It retain[lonly one [fate at an iteration and refrain from
repeatedly viliting a [ame location, [fill it may need to traver[¢ all the locationin the grid, therefore, in a PBS
[y[tem with [ize n X n, there will be at mo(t n? time[lof R-movel! The inner loop il llike the [horte(t path
algorithm, it’ Ccomputational complexity can be regarded all 0(n?) (Yalcin, 2017), even though the number
of [Mate[Ineeded to be compared ilJmany timel[]larger (in a conlfant way) than that in the Thorte’® path
algorithm in cla(Tical graph theory. Anyway, theoretically the computational complexity of Yalcin’heurilfic
ino(n*).
In order to accurately elfimate the computational complexity of each algorithm, we fitted the average
computational time of different [ize inlfancelJin the experiment[Jby a linear regreTion model developed all
following:
Let O(n') be the computational complexity of an algorithm, where y ilthe complexity factor we are going
to fit by the experimental re(ultl] t;; be the CPU time of inltance i in group g, ng be the grid lize of
inltance group g, I; be the total number of inltancelin group g, G be the total number of group!.
The average CPU time of the intancellin group g illt, = izi tg,i> and let y, be the complexity factor of
inlfance group g, let § be a poflitive conlfant factor that makethe equation (17) true.

Sxn'¥ =t

g g)

By equation (17), we eltablilh the relation[hip between grid [ize and CPU time, from which we can obtain the

28

complexity factor y; by taking the logarithm of equation (17), that il

log(6) + 1og(ng)yg = log(tg)

By conlidering log(6) and y, alltwo variable[and applying the linear regre(Tion, we can eltimate the

(10)

complexity factor y, and conltant factor § of an algorithm. The following Table 8. givellthe eltimation

reltl]
Table 8. Computational complexity: theoretical and experimental fitting of CPU time
Parameter name Yalcin's heuristic 0(n®) o(n*%)
é 0.00043 0.00124 0.00505
Standard deviation of the estimation 0.122 0.073 0.047
y 4.510 3.236 1.879
Complexity by theoretical analysis o(n%) 0(n®) 0(n*%)
Complexity by fitting experimental data 0(n*510) 0(n3239) 0(n®79)
Theoretical B/Y - 1/n 1/n%5
Fitted B/Y - 1/nt-274 1/n?632

n: grid size (n X n), B:the CPU time of BeamSearchPBS, Y: the CPU time of Yalcin’s heuristic.

Although the computational complexity of each algorithm fitted by the experimental re(ult[JilJa little higher

than that drawn from the theoretical analy[i[] conlidering that thi(Jincrea’¢ i[l[imilar among all the algorithm[]

the reultOhould be trultworthy in practical applicationl

3) Overall comparison

Overall comparilon between the algorithm(JilJ[hown in Table[]9 and 10. From the table[] we can [¢e that

BeamSearchPBS in the two complexity [étting[Jare both better than Yalcin’ Uheuriltic in term[Jof [olution

accuracy and computation time.

In addition, when [olving the inltancel]of different [zelJand el¢ort denlitie[] BeamSearchPBS behavel]

more robulf than Yalcin’ Cheurilfic in term[Jof both CPU time and [olution accuracy. Generally [peaking, the

performance differenceJbetween the two algorithmJon large-fize infanceJare the fame in trend and in

mechanilin alJthole on [inall-lize inlfancel] [0 we will not repeat their analyldJhere. For more detailed

information, pleale refer to the Mupplemental data aTociated with thiCpaper.

Table 9. Overall average move costs and improvement for large-size instances

Algorithms/Improvement AM cost GM cost MAX cost AM CPU GM CPU
Yalcin's heuristic 44.46 36.82 136.26 6347.66 722.42
0(n®) 43.74 36.41 133.70 108.97 46.43
o(n'%) 44.12 36.65 134.09 3.07 2.15
0(m®) improvement* 1.622% 1.088% 1.883% 98.283% 93.573%
0(n*®) improvement* 0.751% 0.447% 1.595% 99.952% 99.702%

n: grid size (n X n), AM: arithmetic mean, GM: geometric mean. All the values in rows 2-4 are the simple average of the

corresponding values of all groups, each of which is again the simple average of the corresponding values of all the instances in that

29

group. Improvement* = (Y — B)/Y, where B is the corresponding value of BeamSearchPBS, and Y is the corresponding value of
Yalcin’s heuristic.

Table 10. Overall comparison of BeamSearchPBS with Yalcin’s heuristic for large-size instances

Complexity settings AM cost AM CPU # B<Y # B=Y # B>Y
03 1.052%%* 47.850%* 28.826% 66.261% 4.913%
o(n*®) 0.546%* 90.792%%* 24.130% 62.739% 13.130%

n: grid size (n X n), AM: arithmetic mean, # B <Y means the number of instances of the move cost of BeamSearchPBS is
smaller than that of Yalcin’s heuristic, # B = Y means the number of instances of the move cost of BeamSearchPBS is equal to

that of Yalcin’s heuristic, # B > Y means the number of instances of the move cost of BeamSearchPBS is greater than that of

. o 100 Ygi~Bg.i
Yalcin’s heuristic. * calculated by TZ"H YviZ ;,g 2:

, where G is the total number of groups, By; and Y, ; are the values of move

cost or CPU time of instance i in group g solved by BeamSearchPBS and Yalcin’s heuristic, respectively.

6. Conclusions

A beam search algorithm, BeamSearchPBS, based on state appraisal and neighborhood search is proposed
for minimizing the number of moves of the single-item retrieval problem in a puzzle-based storage system
with multiple escorts. BeamSearchPBS can control the computation time and solution accuracy by setting
the size of the beam (solution pool) appropriately. Our experiments on a large number of instances show the
superiority of BeamSearchPBS over the benchmark methods proposed in the literature, with an improved
solution accuracy achieved in less than 1/n?° of their CPU time theoretically, or 1/n%%32 of their CPU
time experimentally. What’s more, our heuristic performs even better when dealing with high storage density
situation, which is more in line with the primitively defined of PBS systems. By increasing the size of the
solution pool, the solution accuracy of BeamSearchPBS can improve further to the limit of about 0.073%
which is the estimated opportunity cost of no-backward-move. In addition, the large-size instances of various
types of PBS system we generated and their solutions obtained by BeamSearchPBS with different size of
the solution pool provide good benchmarks for further theoretical study and commercial applications of PBS.

The improvement in algorithm accuracy (solution quality) has two advantages in practical applications. One is
that fewer item moves leads to a reduction in energy consumption. The other is it increases the throughput of a
warehouse. Although the accuracy of the Yalcin’s algorithm is already very good, our BeamSearchPBS
algorithm still achieves an overall improvement of more than 1% over Yalcin’s in terms of accuracy, which
means the energy consumption and throughput of the warehouse are both improved by over 1%, this is
considerable for large e-commerce warehouses. In addition, the improvement on computational efficiency of

our algorithm implies reduced computing power requirements, the warehouse can also benefit from both

30

hardware investment and energy saving in its construction and operation. What is more, our algorithm maybe
the only feasible approach for large-scale PBS-based warehouses. We provide five versions of the algorithm
with different computational complexities with the overall accuracy and efficiency superior to those of the
benchmark algorithm, the managers of those warehouses can thus choose a version of our algorithm with
proper complexity by making the best tradeoff between the solution accuracy/system throughput and the
computation time.

With the improved efficiency and accuracy, we think the application of BeamSearchPBS in a wider range
of warehouses and parking systems is quite promising. For example, the kiva system has been widely adopted
by major e-commerce companies around the world, but it was not commonly deployed as a multi-deep
warehouse system to achieve higher space efficiency because of its scheduling algorithm constraint.
Compared with those SBS/RS that are already very space efficient, PBS can further improve the space
utilization, which leads to a shorter distance between items. Consequently, a properly designed PBS system,
i.e., a good combination of aisles and PBS modules of different sizes, can not only increase the space
utilization, item accessibility, layout and control flexibility, but can also shorten the retrieval time of items.
With the development of AGYV, shuttle, information system and warehouse design technology, as well as the
PBS system, the only bottleneck for implementing a PBS system in practice is an efficient scheduling
algorithm. With the aid of BeamSearchPBS, a variety of SBS/RS systems may also have a chance to be
re-designed as PBS systems and gain the benefits of both space and retrieval efficiency, as well as the
flexibility of system design and operation. Possible obstacles to implement a PBS system are the
system-specific requirements of its scheduling algorithm in real-world scenarios, which needs a further
application-oriented research.

Future research on the application of our algorithm in the operation/optimization of PBS systems may include:
1) improving the setting of solution pool parameters r and p, 2) finding a better state appraisal function
through machine learning, 3) relaxing the constraint of no-backward-move, 4) considering multiple-items
joint retrieval, 5) finding a better trade-off between retrieval time and energy consumption by allowing block
movements, 6) considering the cost of changing the direction of item move, 7) Considering the influence of
acceleration and deceleration of shuttles/AGVs, 8) considering the scenario with multiple I/O locations, 9)
comparing the performance of PBS systems with other SBS/RS systems, 10) Analyzing the performance of
different layout of aisles and PBS modules of different sizes in terms of throughput, 11) designing layout and

control policy based on our algorithm.
31

Fundings

This work was supported in part by the Humanity and Social Science Foundation of Ministry of Education of
China (Grant Number 19YJA630054); State Scholar hip Fund of China Scholarlhip Council (Grant Number
201808420328); National Key R&D Program of China (Grant Number 2018YFB1601401); the National
Natural Science Foundation of China (Grant Number(171921001); and the Major Program of the National

Natural Science Foundation of China (Grant Number 72091210/72091215).

References

Alfieri, A., Cantamessa, M., Monchiero, A., & Montagna, F. (2012). Heuristics for puzzle-based storage
systems driven by a limited set of automated guided vehicles. Journal of Intelligent Manufacturing,
23(5),1695-1705.

Araya, 1., & Riff, M. (2014). A beam search approach to the container loading problem. Computers and
Operations Research, 43, 100-107.

Araya, 1., Moyano, M., & Sanchez, C. (2020). A beam search algorithm for the biobjective container loading
problem. European Journal of Operational Research, 286, 417-431.

Azadeh, K., De Koster, R., & Roy, D. (2019). Robotized and Automated Warehouse Systems: Review and
Recent Developments. Transportation Science, 53(4), 917-945. https://doi.org/10.1287/trsc.2018.0873

Birgin, E., Ferreira, J., & Ronconi, D. (2020). A filtered beam search method for the m-machine permutation
flow shops scheduling problem minimizing the earliness and tardiness penalties and the waiting time of
the jobs. Computers and Operations Research, 114, 104824.

Bukchin, Y., & Raviv, T. (2020). Optimal retrieval in puzzle-based storage systems with simultaneous load
and block movement. Accessed July 19, 2020, DOI: 10.13140/RG.2.2.29406.05442

Carlo HJ., & Vis, LFEA. (2012). Sequencing dynamic storage systems with multiple lifts and shuttles.
International Journal of Production Economics, 140(2), 844-853.

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1 (1):
269-271.

Doppler. (2016). “DCS 2DL.” Accessed December 7, 2019.
http://doppler.gr/en/products/parking-systems/dps-xryc/

Ekren, B.Y., Akpunar, A., Sari, Z., & Lerher, T. (2018). A tool for time, variance and energy related
performance estimations in a shuttle-based storage and retrieval system. Applied Mathematical Modelling.
63, 109-127.

Fragapane, G., De Koster, R., Sgarbossa, F., & Strandhagen, J.0.(2021). Planning and control of autonomous
mobile robots for intralogistics: Literature review and research agenda, European Journal of Operational
Research (2021), doi: https://doi.org/10.1016/j.ejor.2021.01.019

Furmans, K., Nobbe, C., Schwab, M. (2011). Future of material handling—modular, flexible and efficient.
Amato, N.M., Chen, LM., De Luca, A., Jenkins, C., Kragic, D., Papanikolopoulos, N., Park, F., Parker, L.,

32

Sugano, S., van der Stappen, F., eds. IEEE/RSJ Internat. Conf. Intelligent Robots Systems (Institute of
Electrical and Electronics Engineers, Piscataway, NJ).

Gue, K.R., & Kim, B. S. (2007). Puzzle-based storage systems. Naval Research Logistics(NRL), 54(5), 556—
567.

Gue, K.R., Furmans, K., Seibold, Z., & Uludag, O. (2014). GridStore: A Puzzle-Based Storage System With
Decentralized Control. IEEE Transactions on Automation Science and Engineering 11 (2), 429—-438.
Gebhardt. (2016). “GEBHARDTFlexConveyor.” Accessed December 7, 2019.

http://www.gebhardt-foerdertechnik.de/de/produkte/flexconveyor/

ICAM. (2016). “SMOOV ASRV GENERATION 2.” Accessed December 7, 2019. http://www.smoov-asrv.eu/

IFL, Institut fiir Fordertechnik und Logistiksysteme. 2015. “GridStore.” Accessed December 7, 2019.
https://www.youtube.com/watch?v=LxzBuB_JCN4

Jerman, B., Ekren, B. Y., Kiiciikyasar, M., & Lerher, T. (2021). Simulation-Based Performance Analysis for a
Novel AVS/RS Technology with Movable Lifts. Applied Sciences, 11(5), 2283.

Kota, V.R., Taylor, D., & Gue, K.R. (2010). Retrieval Time Performance in Puzzle-based Storage Systems. In
Proceedings of the 2010 Industrial Engineering Research Conference (IERC), edited by A. Johnson and J.
Miller, 1558-1563. Cancun, Mexico.

Kota, V.R., Taylor, D., & Gue, K.R. (2015). Retrieval Time Performance in Puzzle-based Storage Systems.
Journal of Manufacturing Technology Management 26 (4): 582—-602.

Kress, D., Dornseifer, J., & Jaehn, F. (2019). An exact solution approach for scheduling cooperative gantry
cranes. European Journal of Operational Research, 273, 82—101.

Kiiciikyasar, M., Ekren, B. Y., & Lerher, T. (2021). Cost and performance comparison for tier-captive and
tier-to-tier SBS/RS warehouse configurations. International transactions in operational research, 28,
1847-1863.

Lerher, T. (2018). Aisle changing shuttle carriers in autonomous vehicle storage and retrieval systems.
International Journal of Production Research, 56(11), 3859-3879.

Lerher, T., Borovinsek, M., Ficko, M., & Palci¢, 1. (2017). Parametric study of throughput performance in
SBS/RS based on simulation. International journal of simulation modelling, 16(1), 96-107.

Lerher, T., Ficko, M., & Palci¢. 1. (2020). Throughput performance analysis of automated vehicle storage and
retrieval systems with multiple-tier shuttle vehicles. Applied mathematical modelling, 2020 doi:
https://doi. org/10. 1016/ j. apm. 2020. 10. 032

Li, Z., Kucukkoc, I.,& Tang, Q. (2021). Enhanced branch-bound-remember and iterative beam search
algorithms for type II assembly line balancing problem. Computers and Operations Research, 131,
105235.

Marchet, G., Melacini, M., Perotti, S., &Tappia, E. (2012). Analytical model to estimate performances of
autonomous vehicle storage and retrieval systems for product totes. International Journal of Production
Research, 50(24), 7134-7148.

Mayer, S.H. (2009). Development of a Completely Decentralized Control System for Modular Continuous
Conveyors. PhD diss. Karlsruhe. Karlsruhe, Univ., Diss., 2009. http://d-nb.info/101409898X/34.

Mirzaei, M., De Koster, R., & Zaerpour, N. (2017). Modelling load retrievals in puzzle-based storage systems.
International Journal of Production Research. 55(21):6423—6435.

Mutrade. (2014). Automatic Parking System. Accessed December 7, 2019.
http://www.mutrad.com/AutomaticParkingSystem.html

ODTH. (2015). Magic Black Box. Accessed December 7, 2019. https://www.odth.be/black-box/

Parrefio, F., Alonso, M. T., & Alvarez-Valdes, R. (2020). Solving a large cutting problem in the glass

33

manufacturing industry. European Journal of Operational Research, 287, 378-388.

Ratner, D,, Warmuth, M. (1986). Finding a Shortest Solution for the N x N Extension of the 15-PUZZLE is
Intractable. In AAAI edited by Tom Kehler, 168—172. Burlington, MA: Morgan Kaufmann.

RR Parkon. (2014). Puzzle Parking. Accessed December 7, 2019.
http://www.rrparkon.com/product/puzzle-parking

Woehr. (2016). Liverpool — Parksafe 583. Accessed December 7, 2019.
http://www.woehr.de/en/project/liverpool-parksafe-583.html

Yalcin, A. (2017). Multi-Agent Route Planning in Grid-Based Storage Systems. Doctoral dissertation of der
Europa-University Viadrina in Frankfurt.

Yalcin, A., Koberstein, A., & Schocke, K. O. (2019a). An optimal and a heuristic algorithm for the single-item
retrieval problem in puzzle-based storage systems with multiple escorts. International Journal of
Production Research, 57, 1, 143-165, DOI: 10.1080/00207543.2018.1461952.

Yalcin, A., Koberstein, A., & Schocke, K. O. (2019b). Motion and layout planning in a grid-based early
baggage storage system: Heuristic algorithms and a simulation study. OR Spectrum 41, 683-725.

Yu, Y., Yu, H., De Koster, R., & Zaerpour, N. (2019). Optimal algorithm for minimizing retrieval time in
puzzle-based storage system with multiple simultaneously movable empty cells. Working paper, School
of Management, University of Science and Technology of China, Hefei.

Zaerpour, N., Yu, Y., & De Koster, R. (2015). Small is Beautiful: A Framework for Evaluating and Optimizing
Live-Cube Compact Storage Systems. Transportation Science. 51, 34-51. doi:10.1287/trsc.2015.0586.

Zaerpour, N., Yu, Y., & De Koster, R. (2017a). Optimal two-class-based storage in a live-cube compact
storage system. IISE Trans. 49(7), 653—668.

Zaerpour, N., Yu, Y., & De Koster, R. (2017b). Response time analysis of a live-cube compact storage system
with two storage classes. IISE Trans. 49(5), 461-480.

34

