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Abstract 

The Puzzle-Based Storage (PBS) system is an innovative high-density storage system for physical goods, 

which has the advantage of gravity flow racks in terms of space efficiency and a relatively high accessibility 

to each unit-load of a variety of personalized goods stored. For the PBS system, among many intricate 

scheduling problems studied, the minimization of total number of item-moves when retrieving a single item 

with multiple escorts is an essential building block for its operation. To tackle this problem, we propose a 

hybrid approach that combines state appraisal, neighborhood search, and beam search. Our numerical 

experiments on a large number of benchmark instances show that, compared with the results of these instances 

provided by the best existing heuristic with computational complexity of �(��), our algorithm with different 

computational complexity settings can improve the overall average solution accuracy from 1.096% to 0.055% 

by its setting of �(�
), or to 0.570% by its setting of �(�), where � is the size of the PBS system. For PBS 

systems that are more in line with the actual storage density, our algorithm shows stronger robustness by 

improving the accuracy from 1.086% to 0.026% by its setting of �(�
), or to 0.249% by its setting of �(�). 

The significant improvement in efficiency and accuracy of our algorithm for this basic problem makes its 

industrial applications in PBS systems promising. 

Keywords: Heuristics, Automated warehouses, Compact storage systems, Puzzle-based storage, Beam search  

1. Introduction 

The development of today’s e-commerce and the challenge of mass customization have significantly increased 
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the variety of goods and number of orders. In addition, the scarcity of urban land requires modern storage 

systems to be more space-efficient than ever. These situations give rise to an increasing demand on modern 

storage systems with compactness, flexibility, and rapidly response capability. Therefore, with very narrower 

aisles and high degree of automation, shuttle-based storage and retrieval systems (SBS/RS) have been widely 

studied and adopted in real-life applications in recent years (Küçükyaşar et al., 2021; Lerher et al., 2020; 

Lerher et al., 2017; Carlo et al., 2012; Marchet et al.). During almost the same period, a more compact and 

flexible automated storage system has gradually turned into reality, that is, the Puzzle-based storage (PBS) 

system. The PBS system, originally proposed by Gue and Kim (2007), is a new generation of intelligent 

storage system emerging in recent years. The PBS system can be regarded as one type of SBS/RS with the 

highest space efficiency, as well as the most complicated one in terms of shuttle/AGV scheduling. Goods can 

be stored in PBS system extremely compact to the limit with only one empty location (referred to as escort) 

required to realize the storage and retrieval operation, and aisles are not necessarily used. Azadeh, De Koster 

and Roy (2019) systematically reviewed some new types of automated and robotic warehouses. Among them, 

PBS systems, also called grid-based shuttle systems, are identified as one of the most promising storage 

systems, which need more research attentions. 

A PBS system is composed of: (1) storage units (referred to as items) that can operate independently, such as 

AGV (Automated Guided Vehicles), shuttles, and conveyor belt modules; (2) one or multiple empty locations 

(escorts); (3) one or multiple depots (Input/output location or I/O location for short). An item can move in four 

cardinal directions, that is up, down, left, and right, respectively if the corresponding adjacent location is an 

escort. An item move is a single move of one item from its current location to its adjacent escort location. A 

series of item moves is required for retrieving a requested item (R)to an I/O location in a PBS system. Usually, 

for the basic problem that does not allow block move (simultaneous movement of multi-items in a line), the 

objective of a PBS scheduling problem is to minimize the total number of item-moves or retrieval time, the 

two objectives are identical. 

The hardware and information technology related to PBS systems are mature, such as modern electronic 

information systems, sensors and control units, battery technology, equipment manufacturing, etc., The 

evolution of AGVs into autonomous mobile robots has become possible due to new hardware and software 

technologies (Fragapane et al., 2021). Meanwhile, the hardware costs for manufacturing robots, shuttles, and 

other related equipment have dropped to an acceptable range, making it possible to deploy PBS physical 

systems in a large variety of commercial applications. There have been some real-world implementations of 
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PBS in warehousing, carparking systems (Mayer, 2009; Mutrade, 2014; RR Parkon, 2014; ODTH, 2015; IFL, 

2015; Doppler, 2016; Gebhard, 2016; Woehr, 2016; ICAM, 2019).  

Compared to traditional warehouses with aisles, two major drawbacks of PBS systems are, respectively, 

longer retrieval time and too many movements of stored items. Luckily, these drawbacks can be largely 

overcome by properly increasing the number of escorts to make a good tradeoff among space efficiency, 

retrieval time and energy consumption. However, the introduction of multiple escorts into PBS systems also 

involves some intricate scheduling problems, the most critical one is the Single-item Retrieval Problem in 

PBS systems with Multiple Escorts (SRPME). Fortunately, two breakthroughs have been made related to this 

problem. The first one is the optimal algorithm for minimizing retrieval time, or item move time, of SRPME 

(T-SRPME) designed by Yu et al. (2019) by allowing block move, the second one is the optimal and heuristic 

algorithms for minimizing the number of item-moves of SRPME (M-SRPME) proposed by Yalcin et al. 

(2019a). Their works make practical operations of PBS systems feasible.  

If block move is not allowed, the problem of minimizing retrieval time and that of minimizing the number of 

item moves are equivalent. In other words, T-SRPME is a special case of M-SRPME, where the latter is also 

named as SPRME in the paper of Yalcin et al. (2019a). We give different names to the two problems here to 

distinguish our work from that of Yu et al. (2019). In fact, M-SRPME is based on puzzle, hence a NP-hard 

problem. The puzzle is so hard that even very small cases, i.e., 8-puzzle (3 × 3) and 15-puzzle (4 × 4), are 

hard enough to be taken as workbench laboratory, for some decades, for testing the performance of searching 

methods (Ratner and Warmuth, 1986).  

As a basic building block for designing and operating PBS systems in today's e-commerce and mass 

customization environment, M-SRPME is playing a vital role in PBS system design and business model 

implementation, however, the need for finding faster and more precise heuristics to solve it has still not been 

met yet. For example, Amazon’s KIVA system, JD’s warehousing robot handling system, and other similar 

SBS/RS or AGV systems can be deployed as PBS systems to improve space utilization, item accessibility, 

layout and control flexibility, as well as to reduce storage and retrieval time. However, the scale of these 

systems, if rearranged as PBS systems, would be much larger than that the existing algorithms can efficiently 

deal with. Although the heuristic algorithm proposed by Yalcin et al. (2019a) is good enough for the 

operations of small and medium-sized PBS systems, M-SRPME deserves a better algorithm in terms of both 

solution accuracy and computation time especially for large size PBS systems.  

In this paper, we propose a hybrid algorithm that combines state appraisal, neighborhood search, and beam 
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search for M-SRPME. Our algorithm greatly improves the solution accuracy and computation speed 

compared with the best benchmark algorithm proposed by Yalcin et al. (2019a), it can therefore better support 

the design of larger and more complex PBS systems for fully realizing their commercial functions. 

The remainder of this paper is organized as follows: Section 2 reviews the related literature. Section 3 

describes the problem studied and the main idea of our heuristic algorithm. Section 4 describes the procedure 

of the algorithm. Section 5 conducts extensive computational experiments and compares their results with 

those of Yalcin et al. (2019a). Section 6 concludes this paper by a discussion on major features of the 

algorithm and future research. 

2. Related literature 

The seminal work of PBS system was introduced by Gue and Kim (2007), they developed an optimal 

analytical result for the single-item retrieval problem in one escort PBS systems. The authors also considered 

the very specific scenario for multi escorts situation that all the escorts are horizontally arranged next to each 

other and adjacent to the I/O location in the bottom left corner of the system. They developed a dynamic 

program to solve this special configuration and provided optimal solutions for six cases of system size 5-by-9 

with up to 6 escorts. They came up with a heuristic approach for larger size of this scenario. Kota, Taylor, and 

Gue (2010) offered an integer programming formulation to find the optimal retrieval time for general cases of 

multiple escorts, but not practicable because the time for solving the integer programming is unreasonable for 

even a very small PBS system. Five years later, Kota, Taylor, and Gue (2015) develop a closed-form 

expression for the retrieval time in PBS system with two escorts randomly distributed within the grid. For the 

situations when the number of escorts is more than two, they proposed a heuristic that can produce a near 

optimal solution, which provided the best result until Yalcin et al. (2019a) proposed an exact algorithm 

������ and its heuristic variant, a very sophisticated design based on A* algorithm. The heuristic of Yalcin 

et al. (2019a) improved the average accuracy from over 10% to less than 3.5%, and in terms of CPU time, 

even the exact algorithm is 70 times fast than the heuristic algorithm of the Kota, Taylor, and Gue (2015) for 

an instance with grid size of 10×10. Yalcin et al. (2019b) created a framework for the evaluation of a PBS 

system based on a multi-agent routing algorithm, and a simulation-based case study of a grid-based baggage 

storage system at a major German airport demonstrated that such a system can achieve a storage density of up 

to 100% while being competitive in terms of retrieval time performance. 
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Unlike the normal SBS/RS system whose scheduling problem has been well solved, recent studies of the 

system are focused more on the analysis of its overall performance (Lerher, 2018; Jerman et al., 2021; Ekren 

et al., 2018), what we need urgently for the study of the PBS system is to solve the scheduling problem of its 

shuttle or AGV. Mirzaei et al. (2017) proposed an approach for simultaneous retrieval of multiple items in a 

1-escort PBS system. They designed an optimal way for the retrieval of two items, and a heuristic method for 

three or more items. Furmans et al. (2011) investigated the PBS system with one vehicle and one escort, and 

focused on the issues of system design such as aspect ratio and I/O point location, etc. Alfieri et al. (2012) 

investigated a type of PBS system with limited number of AGV. They proposed a heuristic algorithm to 

optimize the movement of shelves and to dispatch the AGVs. These literatures studied the PBS systems in 

some simple special cases, which only account for a small part of actual application scenarios and cannot meet 

the requirements of a general PBS system in terms of efficiency and service capacity. 

Gue et al. (2014) proposed a decentralized PBS system by introducing a negotiation scheme among grid cells. 

In the system, each row has at least one escort to ensure proper operation of the system and all the loads flow 

from one side to the other side. Yu et al. (2019) considered a situation of where block move is allowed, by 

employing integer programming, they obtained the optimal retrieval time of a single item in PBS system. 

Bukchin and Raviv (2020) proposed an exact dynamic programming algorithm, for the problem with two 

reconciling objectives of move time and move cost,  this algorithm is only applicable to the problem with 

grid size smaller than 9 × 9. 

Zaerpour et al. (2015; 2017a; 2017b) proposed a scenario of 3-D PBS system (Live-Cube), and assumed there 

are sufficient escorts available that a virtual aisle can be created in a situation, however, their works were 

more about strategic solutions than operational decisions, because they did not specify on how to optimally 

create a virtual aisle. The approaches of creating virtual aisles can ensure the speed of item retrieval, but it is 

also accompanied by two major limitations, on the one hand, it will cause unnecessary movement and 

therefore high energy consumption; on the other hand, there will be a higher demand for the number of escorts, 

which reduces the storage density. These two drawbacks are also existed in the decentralized control PBS 

systems, such as proposed by Gue et al. (2014). Although, the above drawbacks of virtual aisle can be 

alleviated partially by the integer programming model designed by Yu et al. (2019), which, by allowing block 

move, can find an optimal solution for minimizing item retrieval time at the cost of no guarantee of 

minimization of item moves even as a secondary goal. 

Beam search is a heuristic search method that explores a graph of possible partial solutions by selecting a 
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limited number (beam size or beam width) of most promising partial solutions at each iteration. This method 

has been applied to cutting problems (Parreño et al, 2020), assembly line balancing (Li et al, 2021), container 

loading problem (Araya et al, 2020; Araya & Riff, 2014), scheduling problems (Birgin et al ,2020) and quay 

crane scheduling (Kress et al, 2019). Although beam search has been used to solve these combinatorial 

optimization problems with good performance, we have not found an application of beam search in 

scheduling PBS systems. 

Therefore, many research opportunities are still existed to make better use of the attributes of the basic 

building block, i.e., M-SRPME, of the PBS system. The most critical issue of all is to find a better algorithm 

for M-SRPME, which, so far, the best result is the heuristic ������ algorithm designed by Yalcin et al. 

(2019a). We will use their research as a benchmark to further advance the solution accuracy and to reduce the 

CPU time consumption of the algorithm in the rest part of this paper. 

3. Problem description and outline of the solution algorithm  

3.1 Problem description and assumptions 

In order to catch the main features of M-SRPME and evaluate the key performance of our algorithm for it, we 

ignore its variants that may exist in commercial applications, such as the positions and number of multiple I/O 

locations, which can be realized through some coordinate transformations and the adaptation of the algorithm. 

The assumptions that are made to specify the problem in this paper are summarized below:  

(1) The system is unit loads, i.e., each location in the grid can only keep one item. 

(2) The cost of moving an item to its adjacent location of escort is one.  

(3) The single I/O location is at the lower left corner of the system.  

(4) The system has � rows and � columns, both counted from the I/O location (� = 1, � = 1). 

(5) The objective of the problem is to minimize the total number of moves of the requested item (R) and all 

other items for the retrieval of item R. 

(6) Backward move is not allowed. We ignore all backward-moves of item R in our heuristic and assume that 

item R can only be moved down or to left. 

The purpose of the first five assumptions, which are the same as those made in Yalcin et al. (2019a), is to 

simplify the problem and make our algorithm comparable with theirs, while keeping the generality of the 

problem. The sixth assumption is a tactic of our heuristic to make a good tradeoff between the solution 
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accuracy and computational efficiency, which will be revisited in detail in section 3.2 

To move a requested item (R Move) to one of its adjacent locations, the adjacent location must be an empty 

location (escort). If the adjacent location is occupied by an item (this item is called an occupied item 

hereafter), we must firstly make a concatenated sequence of occupied item moves from an available escort to 

that adjacent location (Escort move), we refer to such concatenated path of occupied item-escort moves as a 

clearance path (see Figure 1 (b, d, f)), and the cost of forming a clearance path is the clearance cost. After 

each move of item R, the prior location of item R becomes an escort which referred as the base escort (Yalcin 

et al., 2019). Obviously, after the initial move, the largest clearance cost of the base escort is 4. In 1-escort 

situation, a maneuver of 3-moves (see Figure 1 (d, e, f)) or 5-moves (see Figure 1 (f, g, h)) moves item R to 

the next adjacent location (Gue and Kim 2007), by the way of which an exact optimal solution can attain. 

In a PBS system with multiple escorts, utilizing an escort other than the base escort may reduce the total 

number of items moves and the base escort in each step can be regarded as a worst-case alternative, by 

utilizing an escort with a smaller clearance cost than that of the base escort can ‘save’ item moves and such an 

escort is referred to as a saving escort (Yalcin et al., 2019). Different moving directions of item R and 

different utilizations of the escorts result in different distribution of escorts and item R in the PBS system in 

each step, this distribution (layout) of escorts and item R is referred to as a state � of the system. Figure 1 

shows 8 different states and the location exchanges between escorts and items. 

 

Figure 1. States in a PBS and its item movements 

3.2 Main idea of the algorithm 

Although M-SRPME is an extremely hard problem, its small-size instances have become tractable in recent 

years. Therefore, we can use the properties of the small-size instances to design the neighborhoods of the 
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problem for our search algorithm. In order to do so, the optimal solutions of tens of thousands of randomly 

generated small-size instances of the problem obtained offline are exploited to fit an appraisal function for the 

neighborhoods of the system. Based on this, we propose a hybrid algorithm that combines state appraisal, 

neighborhood search and beam search. State appraisal provides the fitness value of the state derived by each 

possible next move, which is like the estimate of the total cost for guiding its search in the A* algorithm but 

the fitness value is much easier to compute and is accurate enough to well guide the neighborhood search in 

our algorithm. The neighborhood search finds a local optimum for one step of move (the next move) and 

calculates the cost of the current state and that of next state by the number of moves from the initial state. To 

avoid the state explosion, we adopt the beam search approach, only keeps some most promising partial 

solutions in each step of our algorithm. This can limit the number of states to be examined in each step and 

helps the algorithm to make a good tradeoff between solution accuracy/optimality and computation time. 

Moreover, we observe that the cost of a solution with backward-moves (up or right moves) of the requested 

item R in a PBS system is usually much higher than forward-moves, thus the probability of a backward-move 

of R in the optimal solution of M-SRPME is extremely small. In fact, our experiments in section 5 show that 

the impact of considering backward-moves on the optimality of the solution obtained by our algorithm is only 

account for at most 0.073% on average in terms of cost. After making a tradeoff between the searching efforts 

saved by ignoring backward-moves and the tiny benefits gained by allowing backward-moves, we ignore all 

backward-moves of item R and assume that item R can only be moved down or to left for the simplification of 

our algorithm, that is no-backward-move assumption.  

3.3 Definition of the neighborhood 

The neighborhood of a PBS system defined in this paper has two properties: (1) Small enough for an exact 

search method to find the optimal (best) neighbor quickly. For instance, the method ������ proposed by 

Yalcin et al. (2019a) can be employed in the neighborhood search, whereby we can extract useful information 

to fit an appraisal function for the states of the system. (2) Big enough to include all escorts in one step move 

of item � in an optimal solution of the system. Although the search approach we propose in this paper is a 

heuristic one, we still do not want to miss opportunities of finding the optimal solution when it is possible in 

case of small instances for the problem. Since the largest clearance cost of the base escort is 4 after the initial 

move, we define the neighborhood as the area composed of all the locations with clearance cost less than or 



 

9 

 

equal to 3, plus the location of the base escort (see Figure 2), where the number in each square is the clearance 

cost from its location moved to item R’s next move location, i.e., the square with 0 clearance cost. Since no 

backward-move is allowed in this paper, we only consider two forward moves in each step, i.e., left move and 

down move. Under the no-backward-move assumption and given the next move direction, the backward 

zone in the neighborhood refers to the area in which the clearance cost of each escort cannot be reduced 

regardless of the moving direction after the next move. The locations in the neighborhood other than those in 

the backward zone constitute the forward zone. (See Figure 2) 

 

Figure 2. Neighborhood of the requested item 

Theorem 1: After the initial move, the neighborhood defined by Figure 2 includes all the possible escorts in 

an optimal solution of M-SRPME at each step of item R move. 

Proof: The escort optimally selected must have a smaller clearance cost than that of the base escort, and the 

maximum possible clearance cost of the base escort is 4, so the maximum possible clearance cost of a saving 

escort is 3. The neighborhood defined by (a) or (b) of Figure 2 includes all the escorts with clearance cost 

smaller than or equal to 3, and the base escort, hence includes all the possible escorts in an optimal solution of 

M-SRPME at each step of R move.  

3.4 Definition of the notation and list of abbreviations 

The symbols that will be used later in this paper are listed in Table 1 for reference, and some of them will be 

further explained where the corresponding concepts are introduced. 

 

Table 1. List of notations 

Symbol Definition 

� = (�, �) Grid graph 

� = (�, �) A location in the grid with coordinate (�, �) 

� Set of locations in the grid 
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Symbol Definition 

��� !��"#�(�) Set of locations adjacent to location � 
$�#%�#�&�� !��"#�(�) Set of locations adjacent to location � on its left or down side 

���'%�#�&�� !��"#�(�) Set of locations adjacent to location � on its right or up side 

� = (�, �(), 
�( ∈ ��� !��"#�(�)) 

Edge 

�* I/O location 

�+ The start location of the requested item 

�(�+, �,) The distance or number of moves from location �+ to location �, 

�-.∗, �( ∈ ��� !��"#�(�)) The minimum move cost of clearance paths from all escorts to a next move location 

�-.
, �( ∈ ��� !��"#�(�)) The size of the clearance paths’ set of a next move location 

�0 Set of escort locations 

�1 ∈ �0 Location of an escort 

�1 Number of escorts 

20 = 〈�+, … , �5〉 Clearance path 

��� 7!(20) Length, or move cost of a clearance path 

!���(20) The head, or first edge of a clearance path 

����� (�) Ending location of edge � 

89-  Set of clearance paths of location � 
�, � Grid size in � × �, � : � 

�; ← ����7���(�) The requested item location at state �  

� = =�0 , �;> State s 

�; The motion plan of a partial solution leading to state � from initial state 

�- A rivet, which is a set of states (associate with their partial solutions (motion plans)) with the same 

current requested item location � 
?@ A frontier is a set of rivets with all their states’ locations �; having the same Manhattan distances to 

the I/O location 

# Maximum size of ?@, i.e., the maximum number of rivets that can be kept in each frontier  

A Maximum size of �-, i.e., the maximum number of states (associated with their partial solutions) 

that can be retained in each rivet 

�@ ← ����7���(�-) Location of rivet, i.e., current requested item location of any partial solution in rivet �- 
�(?@) The set of locations of the rivets on frontier ?@ 

�BCD ← &�E7����7���(?@) Location of head rivet in next frontier which is realized by a forward move of ?@, i.e., by moving 

the item at the top left location in set �(?@) to left. If such move can’t be made, the item will be 

moved down 

�C Set of locations of the neighborhood of the requested item 

�F,G ∈ �C A location in the neighborhood, where H is the clearance cost and I is the escort location index 

�J ⊂ �C Set of locations of the backward zone in the neighborhood 

�CL ⊂ �C, �CM ⊂ �C Set of locations of the left, down move neighborhood 

N, N-1OP , NQRS5 Neighborhood size regulator; Left move, and down move neighborhood size regulator 

%-T
-1OP

, %-TQRS5 Escort weight in the left move and down move, respectively, of the appraisal neighborhood 

�C Escorts density of a neighborhood 

?(�C)  The fitted function used to calculate the overall escort weight of a neighborhood 

�(�) The value of state � assessed by a neighborhood appraisal procedure 
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Symbol Definition 

 (�) Minimum move cost leading to state � from the initial state 

$(�) = �(�) −  (�) Fitness of state � 

$(�) The best fitness of all states in rivet R, which is the minimum of $(�) over all states in the rivet 

V; = =�, �;, $(�),  (�)> A label associated with state �, its motion plan �; and the values of $(�) and  (�) 

 

To facilitate reference, the following Table 2 provides a list of abbreviations for the key concepts/words used 

in this paper. 

Table 2. List of abbreviations 

Abbreviation Detailed explanation 

AGV Automated Guided Vehicles. 

I/O location Input and output location. 

������  The exact algorithm developed by Yalcin et al. (2019b) for solving M-SRPME. 

M-SRPME The problem that minimizes the number of item-moves of SRPME. 

PBS Puzzle-based storage. 

SBS/RS Shuttle-based storage and retrieval systems. 

SRPME Single-item Retrieval Problem for PBS systems with Multiple Escorts. 

T-SRPME The problem that minimizes the retrieval time or the item move time of SRPME. 

 

 

 
Figure 3. flow chart of the procedure of the heuristic 
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4. The algorithm procedure 

In this section, we first introduce the Beam Search Procedure, which is also the main framework of our 

proposed heuristic algorithm. Then introduce the neighborhood search, which includes three subroutines in the 

algorithm, and finally analyze the computational complexity of the heuristics. 

4.1 Beam Search Procedure 

We incorporate a neighborhood search into beam search via a state appraisal function fitting and a beam size 

control tactics, which seeks a better balance between the solution accuracy and the computational efficiency. 

Beam Search acts as the main frame of our algorithm, it consists of a main beam search process and a frontier 

iterative process, both of which iteratively calculate/update the solution pool in the form of a frontier and 

several rivets (See Figure 3). 

4.1.1 Main beam search process 

The solution pool, with the function of beam size controlling, is defined as a frontier which consists of one or 

more rivets, where each rivet is a subset of the frontier (See Figure 4). Since backward-move is not allowed in 

the heuristic, the frontier is moving down left towards the I/O point in each iteration. The detailed procedure 

of this process is given in the pseudo code of Algorithm 1, W���8��#�!XW8, which is also an expanded 

description of Figure 3. 

 

Figure 4. Illustration of the rivets and frontiers while the heuristic algorithm iterates 

We define and initialize a global state variable, label V; to hold and keep the states and solutions data 

updated during the execution of W���8��#�!XW8 and its subroutines Algorithms 2 to 4 (line 1). In 

Algorithm 1, Line 2 to line 4 check if the goal I/O location is reached, then return the initial motion plan, 

which means an empty set with zero move cost. Line 5 considers all available escorts to create two sets of 
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clearance paths for the next R locations. The Dijkstra Algorithm (Dijkstra, 1959) or the Maximum Nearest 

Escort Search algorithm proposed by Yalcin et al. (2019a) can be used here to find the shortest path (minimal 

moving cost) between two locations.Yalcin et al. (2019a) has proved that at most six best escorts with move 

cost less than or equal to the lowest clearance cost plus 3 are needed to consider in a search towards an 

optimal solution at the initial escort move step, so we adopt the same rule at the initial move step (lines 6-8). 

Line 10 to line 19 build the initial solution pool by exploring all the forward move directions for all the 

clearance paths in set 89 and generating new states, then assess each state in the pool by the subroutine 

87�7�YAA#����� (Algorithm 4) (line 13), and finally control/limit the size of solution pool rivet �-(line 16) 

and frontier ?@ (line 19). Line 21 to line 24 is the frontier loop which will be executed if the goal location is 

not reached, where ?#��7��#Z7�#�7��� (Algorithm 2) is a subroutine that moves a frontier forward by one 

step. When the algorithm iterates to the second last frontier, �BCD will be at the I/O point (line 21), and the 

information of all the states till the last frontier will be stored in the set ?@. When the frontier loop ends, there 

are 2 rivets in the frontier and the best one is chosen (lines 25 and 26).  

Algorithm 1. W���8��#�!XW8(�, �0 , �+, #, A) 

Input:  

    Grid graph � = (�, �),  the initial set of escort locations �0, the initial location �+ of the requested 

item, the maximum number of rivets # and the maximum number of states A. 

Output: 

 �;, a motion plan that moves item R from �+to the I/O point 

1: create initial state � with � ← �+ and �0, �; ← ∅,  (�) ← 0, 

$(�) ← ∞, V; ← =�, �;, $(�),  (�)> 

2: if � = �* then 

3:     return �; 

4: end if 

5: 89-. ← set of all the clearance paths between � ∈ �0 

                   and  �( ∈ $�#%�#�&�� !��"#�(�) 

6: �-.∗ ← min9a. ∈bcd. ��� 7!(20( ) 

7: �-. = min (6, 7!� �"���# �$20�� 89-.   

 ��� ��� 7!(20) with ��� 7!(20) : �-.∗ + 3) 

8: Keep in 89-.
 only the �-.

 shortest clearance paths  

9: ?@ ← ∅,  

10: for all �( ∈ $�#%�#�&�� !��"#�(�) do 

11:     �- ← ∅ 

12:     for all 20 ∈ 89-.
 do 

13:         V;. ← 87�7�YAA#�����(V;, �(, 20) 

14:         �- ← �- ∪ V;. 
15:     end for 

 

⊳ V; is a global state variable 

⊳ Check if the goal location is reached 

 

 

⊳ Initial move 

 

 

 

 

 

 

⊳ Initial frontier generation 

 

 

 

⊳ Assess each new state 
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16:     keep best A states in �- 
17:     ?@ ← ?@ ∪ �- 
18: end for 

19: keep best # rivets in ?@ 

20: �BCD ← &�E7����7���(?@) 

21: while �BCD ≠ �* do 

22:      ?@ ← ?#��7��#Z7�#�7���(?@, #, A) 

23:      �BCD ← &�E7����7���(?@) 

24: end while 

25: �-∗ ← �# ���@d, ∈Dm$(�) 

26: return �; ← �# ���;.∈@d∗ (�() 

⊳ Choose best states according to the 

value of $(�) 

 

⊳ Choose best rivets according to the 

value of $(�) 

⊳ While the goal location is not reached 

⊳ Frontier loop 

 

4.1.2 Frontier iteration 

With the assumption of no-backward-move, the search effort of our heuristic is greatly reduced to at most 

2� − 3 iterations (see Figure 4). In each frontier iteration, a new frontier is created from the last frontier, all 

the states in the solution pool of the last frontier are updated by Algorithm 3 and assessed by Algorithm 4 

successively, and a solution pool for the new frontier is created by retaining some best states. Each frontier 

iteration provides a container (pool) for possible solutions, and the states in the same frontier are comparable 

in terms of Manhattan distance from their requested item location to the I/O location. During each frontier 

iteration, the evolution of states and their performances ( (�) and $(�)), as well as their corresponding 

partial solutions (motion plan �;), are stored implicitly in label V; of Algorithm 2. 

Algorithm 2. ?#��7��#Z7�#�7���(?@, #, A) 

Input:  

    Previous frontier ?@ with set of rivets, where the number of rivets is limited by #, and the number of 

states in a rivet is limited by A. 

Output: 

    New frontier ?@(  with set of rivets 

1: ?@( ← ∅ 

2: for all �- ∈ ?@ do 

3:     for all �@( ∈ $�#%�#�&�� !��"#�(����7���(�-)) do 

4:         �-. ← ∅ with location of �@(  

5:         ?@( ← ?@( ∪ �-. 
6:     end for 

7: end for 

8: for all �-. ∈ ?@(  do 

9:     �( ← ����7���(�-.) 

10:    for all � ∈ ���'%�#�&�� !��"#�(�() && � ∈ �(?@) do 

11:         for all � ∈ �- do 

12:             89-. ← ����#78��#�!(�, �, �() 

13:             for all 20( ∈ 89-.
 do 

⊳ Initialize new frontier 

 

 

 

 

 

 

⊳ Rivet loop 

 

 

 

 

⊳ Candidate escorts loop 
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14:                 V;. ← 87�7�YAA#�����(V;, �(, 20( ) 

15:                 �-. ← �-. ∪ V;. 
16:             end for 

17:         end for 

18:     end for 

19:     keep best A states in �-. 
20: end for 

21: keep best # rivets in ?@(  

⊳ Assess each new state 

 

 

 

 

⊳ Choose the best states according 

to the value of $(�) 

⊳ Choose the best rivets according 

to the value of $(�) 

Algorithm 2. ?#��7��#Z7�#�7��� conducts frontier iteration and completes the one-step transformation from 

previous frontier to the new one. Line 1 to line 7 initialize a new frontier, generates an empty frontier with 

empty set of states, and initialize the size and the locations of the frontier. All states in each rivet in the 

previous frontier are extended to new states by using their available escorts (lines 8-21). Algorithm 2 Assesses 

and saves each new state in the new rivets and new frontier, and finally controls the size of the solution pools 

of rivets and the new frontier. The subroutine ����#78��#�!(Algorithm 3) finds a local optimum set of 

escorts and its clearance path for a given state (line12), and the subroutine 87�7�YAA#�����(Algorithm 4) 

assess each new state (line 14). 

4.2 Neighborhood search 

Neighborhood search deals with the changes between states, it includes two subroutines: (1) escort search, to 

find a suitable escort to swap with the next move location to form a new state. (2) state appraisal, to assess the 

fitness value of each new state.  

4.2.1 Escort search 

Given a next move location �( of a state, ����#78��#�! (Algorithm 3) searches for a set of escorts and then 

builds a clearance path for each escort from its current location to the next move location of the state. In order 

to facilitate the reference and save the computation time of the clearance cost, we code each escort location in 

the neighborhood (see Figure 5) by two numbers separated by a comma, where the number before the comma 

is the clearance cost H, and the number after the comma is the escort location index I, and the locations in the 

neighborhood are referred as �F,G ∈ �C, where �C is the set of locations in the neighborhood of the requested 

item. 
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Figure 5. The zoning and coding of each escort location in the neighborhood 

Observation 1: Under the assumption of no-backward-move, for any escort in the backward zone of the 

neighborhood of a state, its clearance cost will increase as the state evolves into any future state. 

We can observe the result of this observation by moving the next move location downward or leftward. In 

both scenarios, the conclusion of observation 1 is true, and the farther the escort is, the higher its clearance 

cost becomes. 

Assume that an escort � in the backward zone of the neighborhood of the current state has the smallest 

clearance cost among all escorts in the neighborhood, according to Observation 1, the opportunity cost of not 

using � in the current state will increase in the future, therefore � should be used first. (Case 1) 

In Figure 5, the location with 0 distance from the current requested item’s next move location is �(. The 

pseudo code of Algorithm 3 involves two scenarios, which are left move and down move, respectively. For the 

sake of brevity, we only show the two scenarios in a general way in Algorithm3. 

Algorithm 3. ����#78��#�!(�, �, �() 

Input:  

    State � and its location �, and the next move location �( 
Output: 

    Set of clearance path 89 

1: 89 ← ∅, and define �C and �J according to locations �, �( and Figure 5. 

2: if �( ∈ �0 then 

3:     20 ← ∅ 

4:     return 

5: else  

6:     �1∗ = �# min-T∈La∩Lp �(�1 , �() 

7:     if �(�1∗ , �() : min-T∈La∩Lq\Lp �(�1 , �() then 

8:         20 ←the clearance path form �1∗  to �( 
9:         89-. ← 89-. ∪ 20 

10:        return 

11:     end if  

12: end if 

⊳ initialization 

 

 

 

⊳ Case 1 
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13: if �,,+ ∈ �0 or �,,, ∈ �0 then 

14:    89-. ← set of clearance paths for all �1 ∈ �C and �(�1 , �() : 2 

15:    � = min (3, 7!� �"���# �$20 ∈ 89-.  ) 

16: else if �
,+ ∈ �0 or �
,, ∈ �0 or �
,
 ∈ �0 then 

17:    89-. ← set of clearance paths for all �1 ∈ �C and �(�1 , �() : 3 

18:    � = min (4, 7!� �"���# �$20 ∈ 89-.  ) 

19: else  

20:    89-. ← set of clearance paths for all �1 ∈ �C 

21:    � = min (5, 7!� �"���# �$20 ∈ 89-.
) 

22: end if 

23: keep in 89-.
 only the � shortest clearance paths  

⊳ Case 2 

 

 

⊳ Case 3 

 

 

⊳ Case 4 

 

In order to reduce unnecessary state generation as much as possible, we consider four cases to limit the 

number of escorts in Algorithm 3. Line 1 defines the set of locations of the neighborhood of the current state 

and its backward zone based on relative position of � and �( in Figure 5. If the next move location is an 

escort, R move can be done immediately, therefore the clearance path is an empty set, and return (lines 2-4). If 

an escort in the backward zone has the lowest clearance cost in the neighborhood, then use it and return 

according to Observation 1 (lines 5-12). Yalcin et al. (2019a) proved that in the situations of 3-move, 4-move 

and 5-move, corresponding to Case 2, Case 3 and Case 4 in ����#78��#�! respectively, we only need to 

consider at most 3, 4, and 5 escorts, respectively, whose clearance costs are smaller than or equal to the 

clearance cost of the corresponding base escort (lines 13-23). The base escorts here are �,,+, �
,+, and ��,+, 

respectively. In case 2, because �,,, is also in the backward zone and has the same clearance cost and 

opportunity cost as �,,+ does, consequently, �,,, is equivalent to �,,+ and can be used as the base escort in 

the no-backward-move situation (line 13). In case 3, the same equivalence relationship exists among �
,+, �
,, 

and �
,
 (line16). 

4.2.2 State appraisal 

Algorithm 4, 87�7�YAA#�����, generates and assesses a new state �(, and returns its fitness value together 

with the new state in the form of a label V;. . Firstly, this algorithm obtains the location of the selected escort 

from the set of clearance paths, and excludes it from the set of escort locations in the new state, and the next 

move location of the last state becomes the requested item location of the new state (line 1). Then, this 

algorithm defines a new neighborhood by its locations of left moves and down moves and generates a new 

state for subsequent calculations (lines 2-3), and update the set of motion plans (line 4) as well as the cost of 

the current motion plan (line 5). Line 6 realize the assessment operation for the two states of the forward 

neighborhood and choose the bigger one as the state assessment value, then the fitness and the label of the 
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new state are updated (lines 7-8).  

Our heuristic must keep two frontiers in memory at each iteration, but does not need to assess the new states at 

the final iteration due to its invalid forward neighborhood. When item R approaches the edge of the grid, one 

or two exploring directions may become unavailable, then the corresponding appraisal value should be set as a 

negative infinity. The fitted function ?(∙) with the weights of the escorts defined in line 6 will be explained 

immediately below. 

Algorithm 4. 87�7�YAA#�����(V;, �(, 20) 

Input:  

     the label V; of state s, next move location �(, and clearance path 20 

Output: 

    New solution collection set V;. 
1: �0( ← �0 ∪ �; ∖ =����� (!���(20))> , and �;. ← �( 
2: define �CL and �CM according to locations �;, �( and figure 2 

3: �( ← =�0( , �;.> 

4: �;. ← �����7���7�(�;, 20 , 〈�, �(〉) 

5:  (�() ←  (�) + ��� 7!(20) + 1 

6: �(�() ← max x ?y∑ %-T
-1OP-T∈La. ∩Lq{ |N-1OP ,

 ?}∑ %-TQRS5-T∈La. ∩Lq~ �NQRS5� 

7: $(�() ← �(�() −  (�() 

8: V;. ← =�(, �;. , $(�(),  (�()> 

⊳ get the new escorts set and the 

location of new state 

 

 

 

⊳ appraisal the density of 

escorts 

1)  Appraisal function �(∙) 

The cost estimation for each move of item R is critical and very time consuming when searching for a good 

solution for M-SRPME. An A* algorithm-based shortest path method is employed to estimate the move cost 

from the current state to the goal state in the algorithms of Yalcin et al. (2019a), with the computational 

complexity of �(�,). We propose an assessment procedure to replace this time-consuming process. The 

assessment is based on an appraisal function which is fitted by utilizing the optimal solutions of a group of 

small-size instances of M-SRPME obtained offline.  

Yalcin et al. (2019a) reported optimal solutions of tens of thousands of randomly generated small-size 

instances of M-SRPME, the size of these instances is ranged from n = 5 to n = 10. The neighborhoods we 

have defined in Figure 2 are 6 × 7 in size, which are trimmed grids area and smaller than size 7 × 7, we just 

use the optimal solutions of the 6 × 6 instances considered in Yalcin et al. (2019a) to approximately fit the 

appraisal function as a third-order polynomial: 

?(�C) = 22.394�C
 − 67.005�C, + 66.818�C+ − 1.9879              (1) 

where �C = �1 (�, − 1)⁄ , and �1 is the number of escorts.  
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�C can be regarded as the density of escorts. Obviously, its feasible region is (0,1]. We assume that the larger 

the escorts density the better is the new state, that is, the greater �C is, the higher the value of ?(�C) is. 

Based on this assumption, function (1) should be greater than or equal to zero and strictly increase in the value 

of �C. However, due to the random way of the instance’s generation, this prerequisite of the appraisal 

function cannot be guaranteed. Therefore, we remove the constant term from function (1), so that the appraisal 

function can meet the requirements as much as possible, and avoid the situation of negative value of ?(�C) 

when �C approaches 0. It should also be noted, when item R reaches the border of the grid, the size of the 

neighborhood will be shrunken, we introduce a regulator N to neutralize the impact of the change of the 

neighborhood size on the evaluation results by dividing �C by N. Thus, in our algorithm, we use function (2) 

as the appraisal function instead. 

?(�C) = 22.394 yQq
N |
 − 67.005 yQq

N |, + 66.818 yQq
N |+

                   (2) 

where N is the sum of the weights of the escorts within the shrunken neighborhood, and the escorts weights 

will be explained in the following section. 

2)  The weights of escorts 

When calculate the escort density, it is not appropriate to simply divide the number of escorts by the total 

number of locations of a neighborhood. When estimating move efficiency in a neighborhood, different escorts 

should be given different weights because their different clearance costs and location zones. We weigh more 

on an escort with a smaller clearance cost or in the forward zone. Taking the left-move neighborhood as an 

example, firstly, based on the clearance cost of each location (see Figure 2 and Figure 5), 0.5 is added to the 

weight of each location in the area on the upper side of R (including the row of R), the area on the right side of 

R (including the column of R), and the area on the upper right of R (including the row and column of R), 

respectively. In this way, 0.5 can be added to the weight of each location in the upper right area of R three 

times. Secondly, use the maximum possible weight 5.5 (=4+3×0.5, where 4 is the maximum possible 

clearance cost, i.e., the base escort) to subtract the weight of each location obtained so far to get its new 

weight, regardless of the weight of the location of R. Finally, the weights of all locations in the neighborhood 

are normalized to obtain the final weight of each location such that their total weight is equal to one (see 

Figure 6).  

This method of determining the weight of each escort is somewhat arbitrary, but it has been proved effective 

by our numerical experiments, even though there may be a better method for setting escort weights such as by 



 

20 

 

machine learning. When assessing the fitness of a state in solving M-SRPME by our heuristic, we define the 

sum of total weight of all the state’s escorts in the neighborhood as the escort density �C, and adjust the value 

?(�C) by multiply it by the neighborhood size regulator N when the neighborhood is incomplete in case it 

approaches the border of the underlying grid.  

 

Figure 6. Weights of escort locations in a neighborhood for state appraisal 

4.3 An illustrative example 

The example instance is of size 5 × 5 with the requested item R located at the upper right corner of the grid 

graph, to be moved to the I/O point located at the bottom left corner of the grid graph (see the initial state in 

Figure 7). The procedure W���8��#�!XW8, with beam size of # = 2, A = 3, yields the motion plan with 18 

moves, of which 10 moves are escort-moves and 8 moves are R-moves. The motion plan is proved to be 

optimal by using ������ of Yalcin et al. (2019a) to solve this instance. 

 

Figure 7. The motion plan obtained by running ����8��#�!XW8 with # = 2, A = 3 

There are total 7 frontiers in this solution, but not every time the requested item is moved to the location 

whose rivet has the best fitness in its frontier, such as states 1, 5 and 8 in Figure 7, because the offspring state 
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expanded from the current best state is not necessarily the best, although it has a relatively large chance to be 

the best in the next iteration. If the values of # and A are both set to 1, that is, each iteration only retains the 

best state to expand, then W���8��#�!XW8 becomes a typical greedy algorithm, the motion plan of this 

setting is 19 moves. In this situation, the requested item will always be moved to the location of the rivet with 

the best fitness value in the frontier. This example shows that the beam size of W���8��#�!XW8 plays a key 

role in jumping out of local optimum, it also shows the poor effect of simply applying a greedy tactic in 

solving M-SRPME. For a more detailed explanation of this example, please see Appendices A1. 

4.4 Computational complexity analysis 

In order to capture the main aspects of the algorithm complexity, we only analyze the major loop of the 

algorithm, that is the while loop in algorithm 1 (line 21 to line 24), and its subroutines. Firstly, we set # < A 

for the two parameters of our algorithm (see Section 5.1 and AppendicesA2 for why we set r and p in this way) 

and define two additional parameters as follows: 

(1) ', the number of escorts, or clearance paths, considered in each candidate escort loop (line13 to 16 in 

Algorithm 2.)  

(2) �, the constant computing time of subroutines Algorithm 3 and Algorithm 4. Because the operations of 

both algorithms are performed in a neighborhood, and the computational complexities of all their 

operations are linear with bounded parameters, so the computing time of the two subroutines can be 

considered a constant. 

The outermost loop is the while loop in algorithm 1 (line 21 to 24), there are at most � + � − 2 (� + � − 3 

when � ≥ � ≥ 3) frontier moves. 

In frontier iteration (Algorithm 2), the major loop is the rivet loop (line 8 to 20), there are at most # iterations. 

At most 2 directions needed in the for loops (lines 10-18). There are at most A iterations in a rivet (lines 

11-17), and at most ' iterations in a set of clearance path (lines 13-16). By considering the computation time 

of sorting (lines 19, 21), escort searching (line 12), state appraisal (line 14), but ignoring the initialization 

operations (lines 1-7) with a lower-order computational complexity, we obtain the complexity expression of 

the algorithm 2 as:  

2#(A(� + '�) + A' ln(A')) + 2# ln(2#)                       (3) 

Where 2# is 2 move directions and # iterations of rivet. A(� + '�) is A iterations in a rivet, � is the 
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constant time of escort search in line12, and '� is ' times of escort constant appraisal time (lines 13-16). 

A' ln(A') is the sorting time needed to find the best A states in A' states (line 19). 2# ln(2#) is the sorting 

time needed to find the best # rivets in 2# rivets (line 21). 

Combined with � + � − 2 frontier moves of while loop, the outer most loop in Algorithm 1, the complexity 

expression of our heuristics is  

(� + � − 2)(2#(A(� + '�) + A' ln(A')) + 2# ln(2#))               (4) 

The first term � + � − 2 can be estimated as 2�  given that  � : �, after doing some adjustment 

operations, function (4) is turned into:  

4�#(A(� + '(� + ln(A')) + ln(2#)) = 4�#(A(� + '(� + ln(A) + ln (')) + ln(2#))      (5) 

From Table 1 and Figure 4, we know # : � : �, and ' can be considered a constant since it is smaller than 

or equal to 6, then ��(2#), ��('), and c in (5) can be ignored, leading to the complexity of the heuristic: 

�(4�#A' ln(A)) 

By further ignoring the constant 4 and the constant parameter ', the complexity of our heuristic becomes: 

 �(�#A ln(A))                                  (6) 

5. Computational experiments 

5.1 The parameter design of our heuristic 

The computational complexity expression (6) of our heuristic has three parameters, it would be easier for 

intuitive understanding if it was simplified to depend on only one parameter. In addition, it is also conducive 

to design reasonable parameters in real-world applications to control the computational time of the heuristic 

by setting appropriate values for # and A. To this end, we developed a mathematical model to appropriately 

set # and A as functions of � and calculated their corresponding computational complexity. Due to space 

limitation, we describe this model in Appendices A2, and get the five computational complexity settings of 

our heuristic, namely �(�), �(�+.�), �(�,), �(�,.�) and �(�
). 

5.2 Experimental problem design and computing environment 

We designed two types of experimental instances. The first type contains the small-size instances generated in 

the same way as that of Yalcin et al. (2019a) with the grid sizes ranged from 2 to 10, mainly used to compare 
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the solution accuracy of our heuristic with the exact algorithm proposed by them. The second type is the 

large-size instances we generated to compare our heuristic with their heuristic.  

According to whether the location of the requested item � is in the upper right corner of the grid or is 

randomly distributed in the grid, the small-size instances are divided into collection 1 and collection 2, 

respectively. A total of 41437 small-size instances in collection 1, 20455 small-size instances in collection 2 

and 2300 large-size instances are generated. According to the grid size or/and the number of escorts of the 

instance, the small-size and large-size instances are further classified into several groups. See Appendices A3 

for the detailed way to generate all instances in our numerical experiments. 

Our heuristic algorithm was coded in MATLAB 2016b academic setting. Because we could not obtain the 

code of the exact and heuristic algorithms of Yalcin et al. (2019a), we recoded them in MATLAB to make our 

experimental results comparable with theirs. The experiments were conducted on a HP desktop with Windows 

10 of home setting, 3.20 GHz Intel Core i5-6500U processor and 8 GB of RAM.  

5.3 Experimental results 

5.3.1 Results for small-size instances 

We compared the computational results of our heuristic W���8��#�!XW8 with five complexity settings with 

those of Yalcin’s heuristic. The optimal solution of each instance is obtained by running ������ of Yalcin 

et al. (2019a), and the average relative percentage deviation of solution accuracy is calculated as: 

 Y�X� = +**
� ∑ ∑ B�,��∑ ��,�∀�∀� ∑ ��,�∀�∀�                         (7) 

where � means the total number of groups for a given grid size, ��,� is the solution value obtained by 

W���8��#�!XW8 or Yalcin’s heuristic for instance � in group  . ��,� means the optimal solution value 

obtained by ������ for instance � in group  . 

1)  The solution accuracy analysis 

The results in Table 3 and 4 show that W���8��#�!XW8 under all the computational complexity settings 

outperforms Yalcin’s heuristic with computational complexity �(��). The summarized results of these two 

tables are given in Table 7 in this section, which shows that our algorithm with computational complexity 

�(�
), �(�,), and �(�) respectively can improve the overall average solution accuracy of all instances 

tested from Yalcin’s 1.096% to 0.055%, 0.107%, and 0.570%, respectively, where � is the size of the PBS 

system. For PBS systems with high storage density, our algorithm shows stronger robustness by improving the 
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accuracy from Yalcin’s 1.086% to 0.026%, 0.051%, and 0.249% by its complexity setting �(�
), �(�,), and 

�(�), respectively. 

From Table 3 and Table 4, we can also see that the solution accuracy of both algorithms deteriorates as the 

grid size increases. The main reason is that the estimation function !(�) used in the two algorithms will 

become more and more inaccurate as the problem size increases, just as the accuracy of a long-term forecast is 

lower than that of a short-term one. However, the deterioration rate of W���8��#�!XW8 slows down as its 

computational complexity increases. Please also see (A) and (B) in figure 8 for the relationships between the 

instance size and the solution accuracy for both algorithms. 

Table 3. Overall solution accuracy comparison (Y�X�) of the two heuristics for small-size instances - collection 1 

�  �  Z ���� �(�) �(�+.�) �(�,) �(�,.�) �(�
) 

2 3 7 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

3 8 255 0.376% 0.000% 0.000% 0.000% 0.000% 0.000% 

4 15 4011 1.042% 0.056% 0.026% 0.009% 0.000% 0.000% 

5 24 8201 1.205% 0.288% 0.076% 0.021% 0.008% 0.001% 

6 35 19261 1.403% 0.667% 0.203% 0.071% 0.030% 0.010% 

7 48 5751 1.508% 0.936% 0.179% 0.104% 0.046% 0.014% 

8 15 1875 1.587% 1.270% 0.284% 0.155% 0.072% 0.022% 

9 16 1126 1.553% 1.429% 0.377% 0.195% 0.093% 0.029% 

10 19 950 1.769% 1.753% 0.532% 0.208% 0.104% 0.053% 

*sum/#Avg. 183* 41437* 1.160%# 0.711%# 0.186%# 0.085%# 0.039%# 0.014%# 

� : grid size (� × �) , � : number of groups, Z : number of instances, ���� : Yalcin’s heuristic, �(�), �(�+.�), ⋯ , �(�
) : 

W���8��#�!XW8 with five computational complexity settings respectively, #: simple average of the data above in the corresponding 

column of the table 

Table 4. Overall solution accuracy comparison (Y�X�) of the two heuristics for small-size instances – collection 2 

�  �  Z ���� �(�) �(�+.�) �(�,) �(�,.�) �(�
) 

5 24 2325 0.718% 0.052% 0.016% 0.012% 0.012% 0.012% 

6 35 3436 0.893% 0.214% 0.106% 0.056% 0.048% 0.045% 

7 48 4749 0.997% 0.423% 0.110% 0.088% 0.068% 0.061% 

8 63 6264 1.202% 0.533% 0.213% 0.159% 0.136% 0.121% 

9 17 1681 1.061% 0.562% 0.248% 0.193% 0.164% 0.139% 

10 20 2000 1.317% 0.790% 0.364% 0.272% 0.205% 0.196% 

*sum/#Avg. 207* 20455* 1.031%# 0.429%# 0.176%# 0.130%# 0.105%# 0.096%# 

� : grid size (� × �) , � : number of groups, Z : number of instances, ���� : Yalcin’s heuristic, �(�), �(�+.�), ⋯ , �(�
) : 

W���8��#�!XW8 with five computational complexity settings respectively, #: simple average of the data above in the corresponding 

column of the table 

2)  Backward-move impact analysis 

Algorithm W���8��#�!XW8 is based on the hypothesis of no-backward-move of requested item, it is 

necessary to analyze the impact of this assumption. 

We checked every motion plan of all the 41437 instances in the first collection of small-size instances solved 
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by ������, find that there is no instance with backward move in its optimal motion plan, this may be 

because the requested item is located at the upper right corner of the grid. Table A.4 in Appendices A4 shows 

the impact of no-backward-move on the solution accuracy of small-size instances in the second collection, 

whose requested item can be located anywhere initially and may result in an extreme situation where one or 

two steps of backward move could generate a little cost savings. There are only 181 out of 20455 instances 

with 1 or 2 backward moves, most of the 181 instances have a single backward move, only 8 out of the 181 

instances have 2 backward moves. and the overall impact of no-backward-move on solution optimality is only 

about 0.073%. (See Table A.4 in Appendices A4) 

3)  The algorithms’ CPU time analysis 

The average CPU time consumption by the two heuristics is calculated as:  

YV� = +
� ∑ � +

�� ∑ ��,�∀� �∀�                              (8) 

where � means the total number of groups for a given grid size, Z� means the number of instances in group 

 , ��,� is the CPU time obtained by an algorithm for instance � in group  .  

Table 5 and Table 6 show that in all complexity settings, W���8��#�!XW8 run faster than Yalcin’s heuristic. 

Please also see figure (C) and (D) in figure 8 for the relationships between the instance size and the average 

CPU time. 

Table 5. Average CPU time in seconds (YV�) for solving small-size instances - collection 1 

�  �  Z ���� �(�) �(�+.�) �(�,) �(�,.�) �(�
) 

2 3 7 0.028 0.043 0.007 0.012 0.023 0.021 

3 8 255 0.109 0.065 0.085 0.085 0.089 0.092 

4 15 4011 0.534 0.123 0.177 0.232 0.311 0.399 

5 24 8201 1.687 0.190 0.301 0.462 0.692 1.072 

6 35 19261 4.179 0.256 0.434 0.750 1.221 2.135 

7 48 5751 9.018 0.318 0.738 1.096 1.934 3.718 

8 15 1875 17.462 0.385 0.937 1.613 2.948 5.883 

9 16 1126 28.638 0.445 1.112 2.086 4.022 8.561 

10 19 950 46.912 0.508 1.296 2.588 5.458 12.140 

� : grid size (� × �) , � : number of groups, Z : number of instances, ���� : Yalcin’s heuristic, �(�), �(�+.�), ⋯ , �(�
) : 

W���8��#�!XW8 with five computational complexity settings, respectively 

Table 6. Average CPU time in seconds (YV�) for solving small-size instances - collection 2 

� �   Z ���� �(�) �(�+.�) �(�,) �(�,.�) �(�
) 

5 24 2325 0.677 0.061 0.080 0.105 0.142 0.189 

6 35 3436 1.804 0.086 0.119 0.169 0.249 0.375 

7 48 4749 2.800 0.116 0.199 0.258 0.411 0.688 

8 63 6264 4.911 0.141 0.255 0.364 0.601 1.050 

9 17 1681 7.843 0.166 0.314 0.467 0.810 1.516 
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10 20 2000 12.709 0.197 0.394 0.610 1.130 2.283 

� : grid size (� × �) , � : number of groups, Z : number of instances, ���� : Yalcin’s heuristic, �(�), �(�+.�), ⋯ , �(�
) : 

W���8��#�!XW8 with five computational complexity settings, respectively 

 

Figure 8. The solution accuracy and CPU time comparison between ����8��#�!XW8 and Yalcin’s heuristic 

4)  Overall comparison of the two heuristics on instances with high storage density 

The PBS system is primarily designed to solve high-density storage scenarios. From the perspective of the 

feasibility of the algorithm, the previous experimental design considered all possible storage densities. 

The Gue’s research suggests that when the storage density exceeds 90%, PBS systems perform better than the 

aisle-based storage systems in terms of storage or retrieval efficiency (Gue and Kim, 2007). Therefore, to 

further compare the performance of the two heuristic algorithms in high-density storage scenarios, we choose 

the high storage density instances with about 10% of escorts or less in the two collections. Table 6 provides 

the computational results of the two heuristics on the small-size instances with high storage density. Please see 

Table A.5 in Appendices A5 for the features of the groups of the instances considered.  

Table 7. Overall solution accuracy comparison of the two heuristics on small-size instances with high storage density  

Instance type �   Z ���� �(�) �(�+.�) �(�,) �(�,.�) �(�
) 

All groups in collection 1^ 157 37164 1.504% 1.057% 0.275% 0.126% 0.059% 0.021% 

All groups in collection 2 207 20455 1.031% 0.429% 0.176% 0.130% 0.105% 0.096% 

All groups in collections  

*sum/ #average 
364* 57619* 1.096%# 0.570%# 0.181%# 0.107%# 0.072%# 0.055%# 

High storage density groups 1^ 16 3780 1.274% 0.321% 0.134% 0.055% 0.029% 0.016% 

High storage density groups 2 25 2500 0.899% 0.177% 0.081% 0.047% 0.037% 0.036% 

High storage density groups 

*sum /#average 
41* 6280* 1.086%# 0.249%# 0.108%# 0.051%# 0.033%# 0.026%# 

^Only consider grid size of 5 × 5 − 10 × 10 . � : number of groups, Z : number of instances, ���� : Yalcin’s heuristic, 

�(�), �(�+.�), ⋯ , �(�
): W���8��#�!XW8 with five computational complexity settings, respectively 
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Table 6 shows that the average solution accuracy of Yalcin’s heuristic in high storage density groups keep 

almost unchanged compared with the all-groups situation (from 1.096% to 1.086%). However, the average 

solution accuracy of W���8��#�!XW8 has more than doubled in 4 out of 5 computational complexity 

settings. What’s more, Table A.6 in Appendices A5 shows that the W���8��#�!XW8 uses less average 

computation time while Yalcin’s heuristic uses more computation time. Therefore, W���8��#�!XW8 is 

more suitable for high-density storage scenarios than Yalcin’s heuristic in terms of both algorithm accuracy 

and algorithm computational time. a deep analysis of this phenomenon on performance differences is 

described in appendices A5. 

5.3.2 Results for large-size instances 

In this section, we only consider two representative complexity settings of W���8��#�!XW8 to compare our 

heuristic with Yalcin’s. Although W���8��#�!XW8 in all of the complexity settings are better than Yalcin’s 

heuristic in term of solution accuracy when solving the small-size instances, the complexity setting of �(�) 

deteriorates faster than Yalcin’s heuristic with the increase of instance size. Therefore we only consider the 

complexity settings of �(�+.�) and �(�
) for W���8��#�!XW8 to do this comparison on the large-size 

instances, in order to ensure that the overall solution accuracy of W���8��#�!XW8 is better than that of 

Yalcin’s heuristic, we focus on the improvement of the computational speed and the solution accuracy of 

W���8��#�!XW8 relative to Yalcin’s heuristic. 

1)  General results of CPU time 

Figure 8 shows the computation time difference of the three algorithms. Due to the huge difference in CPU 

time consumption of the algorithms, we must use the logarithm of the computation times when we depict 

them together in a figure (see (A) in Figure 9). The computation times of the three algorithms differ from each 

other in almost two orders of magnitude. 
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Figure 9. The CPU time comparison between ����8��#�!XW8 and Yalcin’s heuristic for large-size instances 

2)  Function fitting of the computational complexity 

Yalcin’s heuristic is based on A* algorithm, it is mainly composed of two iterative loops which are the outer 

R-move loop and inner Escort Estimate loop. It retains only one state at an iteration and refrain from 

repeatedly visiting a same location, still it may need to traverse all the locations in the grid, therefore, in a PBS 

system with size � × �, there will be at most �, times of R-moves. The inner loop is like the shortest path 

algorithm, it’s computational complexity can be regarded as �(�,) (Yalcin, 2017), even though the number 

of states needed to be compared is many times larger (in a constant way) than that in the shortest path 

algorithm in classical graph theory. Anyway, theoretically the computational complexity of Yalcin’s heuristic 

is �(��). 

In order to accurately estimate the computational complexity of each algorithm, we fitted the average 

computational time of different size instances in the experiments by a linear regression model developed as 

following: 

Let �(� ) be the computational complexity of an algorithm, where ¡ is the complexity factor we are going 

to fit by the experimental results, 7�,� be the CPU time of instance � in group  , �� be the grid size of 

instance group  , Z� be the total number of instances in group  , � be the total number of groups.  

The average CPU time of the instances in group   is 7� = +
�� ∑ 7�,�� , and let ¡� be the complexity factor of 

instance group  , let ¢ be a positive constant factor that makes the equation (17) true. 

¢×�� � = 7�                                    (9) 

By equation (17), we establish the relationship between grid size and CPU time, from which we can obtain the 
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complexity factor ¡� by taking the logarithm of equation (17), that is 

log(¢) + log}���¡� =  log}7��                             (10) 

By considering log(¢) and  ¡� as two variables and applying the linear regression, we can estimate the 

complexity factor ¡� and constant factor ¢ of an algorithm. The following Table 8. gives the estimation 

results. 

Table 8. Computational complexity: theoretical and experimental fitting of CPU time 

Parameter name Yalcin's heuristic �(�
) �(�+.�) 

¢ 0.00043 0.00124 0.00505 

Standard deviation of the estimation 0.122 0.073 0.047 

¡ 4.510 3.236 1.879 

Complexity by theoretical analysis �(��) �(�
) �(�+.�) 

Complexity by fitting experimental data �(��.�+*) �(�
.,
¤) �(�+.¥¦§) 

Theoretical W �⁄  --- 1 �⁄  1 �,.�⁄  

Fitted W �⁄  --- 1 �+.,¦�⁄  1 �,.¤
,⁄  

�: grid size (� × �), W: the CPU time of W���8��#�!XW8, �: the CPU time of Yalcin’s heuristic. 

Although the computational complexity of each algorithm fitted by the experimental results is a little higher 

than that drawn from the theoretical analysis, considering that this increase is similar among all the algorithms, 

the results should be trustworthy in practical applications. 

3)  Overall comparison 

Overall comparison between the algorithms is shown in Tables 9 and 10. From the tables, we can see that 

W���8��#�!XW8 in the two complexity settings are both better than Yalcin’s heuristic in terms of solution 

accuracy and computation time.  

In addition, when solving the instances of different sizes and escort densities, W���8��#�!XW8 behaves 

more robust than Yalcin’s heuristic in terms of both CPU time and solution accuracy. Generally speaking, the 

performance differences between the two algorithms on large-size instances are the same in trend and in 

mechanism as those on small-size instances, so we will not repeat their analysis here. For more detailed 

information, please refer to the supplemental data associated with this paper.  

Table 9. Overall average move costs and improvement for large-size instances 

Algorithms/Improvement AM cost GM cost MAX cost AM CPU GM CPU 

Yalcin's heuristic 44.46 36.82 136.26 6347.66 722.42 

�(�
) 43.74 36.41 133.70 108.97 46.43 

�(�+.�) 44.12 36.65 134.09 3.07 2.15 

�(�
) improvement* 1.622% 1.088% 1.883% 98.283% 93.573% 

�(�+.�) improvement* 0.751% 0.447% 1.595% 99.952% 99.702% 

�: grid size (� × �), AM: arithmetic mean, GM: geometric mean. All the values in rows 2-4 are the simple average of the 

corresponding values of all groups, each of which is again the simple average of the corresponding values of all the instances in that 
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group. Improvement* = (� − W) �⁄ , where W is the corresponding value of W���8��#�!XW8, and � is the corresponding value of 

Yalcin’s heuristic. 

Table 10. Overall comparison of W���8��#�!XW8 with Yalcin’s heuristic for large-size instances 

Complexity settings AM cost AM CPU # W < � # W = � # W > � 

�(�
) 1.052%* 47.850%* 28.826% 66.261% 4.913% 

�(�+.�) 0.546%* 90.792%* 24.130% 62.739% 13.130% 

�: grid size (� × �), AM: arithmetic mean,  # W < � means the number of instances of the move cost of W���8��#�!XW8 is 

smaller than that of Yalcin’s heuristic, # W = � means the number of instances of the move cost of W���8��#�!XW8 is equal to 

that of Yalcin’s heuristic, # W > � means the number of instances of the move cost of W���8��#�!XW8 is greater than that of 

Yalcin’s heuristic. * calculated by 
+**

� ∑ ∑ ª�,��J�,�ª�,�∀�∀� , where � is the total number of groups, W�,� and ��,� are the values of move 

cost or CPU time of instance � in group   solved by W���8��#�!XW8 and Yalcin’s heuristic, respectively. 

6. Conclusions 

A beam search algorithm, W���8��#�!XW8, based on state appraisal and neighborhood search is proposed 

for minimizing the number of moves of the single-item retrieval problem in a puzzle-based storage system 

with multiple escorts. W���8��#�!XW8 can control the computation time and solution accuracy by setting 

the size of the beam (solution pool) appropriately. Our experiments on a large number of instances show the 

superiority of W���8��#�!XW8 over the benchmark methods proposed in the literature, with an improved 

solution accuracy achieved in less than 1 �,.�⁄  of their CPU time theoretically, or 1 �,.¤
,⁄  of their CPU 

time experimentally. What’s more, our heuristic performs even better when dealing with high storage density 

situation, which is more in line with the primitively defined of PBS systems. By increasing the size of the 

solution pool, the solution accuracy of W���8��#�!XW8 can improve further to the limit of about 0.073% 

which is the estimated opportunity cost of no-backward-move. In addition, the large-size instances of various 

types of PBS system we generated and their solutions obtained by W���8��#�!XW8 with different size of 

the solution pool provide good benchmarks for further theoretical study and commercial applications of PBS. 

The improvement in algorithm accuracy (solution quality) has two advantages in practical applications. One is 

that fewer item moves leads to a reduction in energy consumption. The other is it increases the throughput of a 

warehouse. Although the accuracy of the Yalcin’s algorithm is already very good, our W���8��#�!XW8 

algorithm still achieves an overall improvement of more than 1% over Yalcin’s in terms of accuracy, which 

means the energy consumption and throughput of the warehouse are both improved by over 1%, this is 

considerable for large e-commerce warehouses. In addition, the improvement on computational efficiency of 

our algorithm implies reduced computing power requirements, the warehouse can also benefit from both 
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hardware investment and energy saving in its construction and operation. What is more, our algorithm maybe 

the only feasible approach for large-scale PBS-based warehouses. We provide five versions of the algorithm 

with different computational complexities with the overall accuracy and efficiency superior to those of the 

benchmark algorithm, the managers of those warehouses can thus choose a version of our algorithm with 

proper complexity by making the best tradeoff between the solution accuracy/system throughput and the 

computation time.  

With the improved efficiency and accuracy, we think the application of W���8��#�!XW8 in a wider range 

of warehouses and parking systems is quite promising. For example, the kiva system has been widely adopted 

by major e-commerce companies around the world, but it was not commonly deployed as a multi-deep 

warehouse system to achieve higher space efficiency because of its scheduling algorithm constraint. 

Compared with those SBS/RS that are already very space efficient, PBS can further improve the space 

utilization, which leads to a shorter distance between items. Consequently, a properly designed PBS system, 

i.e., a good combination of aisles and PBS modules of different sizes, can not only increase the space 

utilization, item accessibility, layout and control flexibility, but can also shorten the retrieval time of items. 

With the development of AGV, shuttle, information system and warehouse design technology, as well as the 

PBS system, the only bottleneck for implementing a PBS system in practice is an efficient scheduling 

algorithm. With the aid of W���8��#�!XW8, a variety of SBS/RS systems may also have a chance to be 

re-designed as PBS systems and gain the benefits of both space and retrieval efficiency, as well as the 

flexibility of system design and operation. Possible obstacles to implement a PBS system are the 

system-specific requirements of its scheduling algorithm in real-world scenarios, which needs a further 

application-oriented research. 

Future research on the application of our algorithm in the operation/optimization of PBS systems may include: 

1) improving the setting of solution pool parameters # and A, 2) finding a better state appraisal function 

through machine learning, 3) relaxing the constraint of no-backward-move, 4) considering multiple-items 

joint retrieval, 5) finding a better trade-off between retrieval time and energy consumption by allowing block 

movements, 6) considering the cost of changing the direction of item move, 7) Considering the influence of 

acceleration and deceleration of shuttles/AGVs, 8) considering the scenario with multiple I/O locations, 9) 

comparing the performance of PBS systems with other SBS/RS systems, 10) Analyzing the performance of 

different layout of aisles and PBS modules of different sizes in terms of throughput, 11) designing layout and 

control policy based on our algorithm. 
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