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ABSTRACT 

The universe is made of multidimensional and heterogenous 

interactions which can be represented by a graph. These 

interactions and the terms they connect are heterogeneous and 

multidimensional, and therefore current graph representations and 

analytics techniques are insufficient. Our article aims to show two 

issues: firstly, how these representations and analytics methods 

are limited and secondly, the possible solutions to overcome the 

multidimensionality and the heterogeneity of situations at the 

same time. 
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1. INTRODUCTION  
It is easy to find examples of real situations composed of relations 

between things, the assumption being that the universe is lurking 

in interactions. For example, in a network of citations, authors 

come from laboratories, researchers write articles to present them 

during conferences; in a communication system, there are means 

of communication (cellphones, tablets, computers, servers, etc.) 

interacting with each other in networks in different ways; finally, 

in social networks, persons write posts, share pictures and like 

contents, etc. [41]. 

More recently, Shackel came up with the metaphysical idea that 

the universe could be seen as an infinite graph made up of nodes 

and relationships [45], as graphs are supposed to represent 

interactions. A graph is, in its simplest form, a set of vertices and 

a set of edges which connect two vertices. While this graph 

representation is used in many cases, reality is often more 

complex: a relation between two things can be unidirectional (for 

example, a graph representing the water flow of a water supply 

system), there can be multiple types of vertices or relations 

between two things (for example, a social network consists in 

many different objects such as people, photos, comments, etc., 

with multiple kinds of relations between them: friendship between 

two people, people-comment relationship, etc.) [48], etc. Thus, 

this kind of graphs can hardly represent some phenomena if they 

are composed of heterogeneous relations or entities, and if they 

are multidimensional. 

The analytical techniques which can be associated with the 

characterization of relationships between things can be of interest 

to better characterize them. Analytical techniques allow to obtain 

information from graphs. However, current methods do not 

succeed to fully handle the characteristics of the more complex 

kinds of graphs, such as the multidimensionality of edges or the 

heterogeneity of nodes and edges – for example, community 

detection. Current solutions tinker with the graph to make it 

compatible with classical analytics methods. 

Therefore, the aim of this article is to present an overview of the 

representation and analytics techniques of graphs. Starting from 

this overview, the idea is to highlight what is not currently 

considered and has to be developed, especially regarding 

heterogeneity and multidimensionality in order to work on 

phenomena whose components are in interaction and are 

heterogeneous and multidimensional.  

This paper is organized as follow: first, the mathematical 

definition of a simple graph is given in Section 2. Then, Section 3 

presents two paradigms to tackle graphs, as well as more complex 

techniques developed to represent and analyze them. In Section 4, 

some limits of the existing approaches are highlighted, before 

potential solutions presented to overcome them in Section 5. 

Finally, a summary of this work and research paths are exposed in 

Section 6. 

2. Background 
The origins of graphs date back the eighteenth century. The 

mathematician Euler described a new method to solve problems 

such as the Königsberg bridges and answer to the question: is it 

possible to find a path that would cross only one time each of the 

seven bridges of the city? [16] This new method consisted in 

representing the bridges by edges and the lands connected by the 

bridges by vertices. In this section we start by giving the 

mathematical definition of a graph, while section 3.2 presents 

more elaborated graphs. 

A finite graph is represented by a finite set of vertices (V) as well 

as a finite set of edges (E) with each edge connecting two 

different vertices [12]. Formally, the graph G is defined as a 
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couple such that G = (V; E). Unlike a finite graph, an infinite 

graph has an uncountable number of vertices and edges. In this 

paper, we will use the terms vertices and nodes interchangeably, 

as well as for edges and relation. 

Moreover, graphs are exploited in four different ways, to:  

 

The research in this paper is based on the first category of use: the 

representation of phenomena as a graph, that is that the 

phenomenon consists in “some things” connected together. 

However, it can be more complex than just pairs of things that are 

connected: these phenomena can hold multidimensionality and 

heterogeneity. In this paper, the multidimensionality of relations 

means that a relation can connect from one to an infinity of nodes 

and not only two as in simple graphs. The heterogeneity allows a 

graph to have multiple node labels and multiple relationship types. 

Therefore, simple graphs are too weak to represent complex 

systems, thus several classes of graph generalization have been 

developed in the literature. 

3. Graphs: an overview 
This part intends to give an overview of graphs and is split in 

three parts. First, two paradigms are presented. Then, we present 

some classes of graphs as well as methods to analyze them. This 

state of the art is not intended to be exhaustive but representative 

in order to have an overview of how graphs can be addressed, 

what it is possible to represent and how to analyze them. 

3.1 Paradigms 
Most of the time graphs concentrate on the nodes, which are the 

starting point of the analysis. However, there is another paradigm 

to tackle graphs. This section briefly presents those two paradigms, 

which are deeply rooted in specific philosophical trends. They 

both use the term “entity” which designates “something that 

exists”. 

3.1.1 Entity’s point of view 
The most common paradigm focuses on the entities. This means 

entities have their own characteristics like a substance and we 

start by detecting entities before relations. Entities always exist 

whether they are connected or not. For example, when we analyze 

a text with an NLP (Natural Language Processing) program, you 

first extract the entities then the relations between them. 

3.1.2 Relation’s point of view 
Another approach considers the relation first: for Abbott, it is the 

relations (which he calls “boundaries”) that pre-exist before the 

entities [1]. With this paradigm, the entities are “empty”, we do 

not presuppose them. They only exist when they are connected. 

The relations will give entities and modify them. This paradigm is 

dynamic in a way because relations make entities evolve. In the 

case of an NLP program, the idea would be to first extract 

relations that will give you entities and how they evolve. This 

paradigm is more pragmatic: it follows what is happening, what 

are the relations, and then, what are the entities. 

3.2 Graph classes 
The representation of multidimensionality and heterogeneity in a 

graph is not placed at the same level. Indeed, multidimensionality 

is a question of structure of the graph while heterogeneity is given 

by its characteristics, and can refer to nodes or relations types. 

3.2.1 Structures 
As an analogy to object-oriented programming, there is an 

inheritance between the simple graph and the other graphs. The 

simple graph is the parent of the whole classes of graphs. The 

definition of a simple graph is given in Section 2. 

In 1973, then 1984, through his books [12], [13], Claude Berge 

developed the notion of hypergraph. Formally, a hypergraph H is 

defined as a couple such that H = (V; E). A hypergraph H is a set 

of vertices (V) and a set of subsets of V (E) called hyperedges (as 

represented in Figure 1.B). Unlike the edges of ordinary graphs, a 

hyperedge can be related to k nodes such that: 𝑘 ∈ [1, 𝑛] where 

𝑛 = |𝑉|, number of vertices of the set V, whereas a relation of a 

simple graph can only be linked to two nodes maximum. A 

hypergraph is a good way to represent sets like members of an 

organization [2]. Each hypergraph has a double (or conjugate) 

hypergraph [12], [13]. That is, from two sets and a relation 

between these two sets, it is possible to construct two hypergraphs. 

The hypergraph can be seen as a bipartite graph [12], [13]. 

The notion of hypergraph can lead to that of simplicial complex, a 

concept having its source in the field of algebraic topology. As it 

is composed of two sets (a set V of vertices and a subset S of V 

called simplices), it can be approached as a bipartite graph (as 

represented in Figure 1.C). In this regard, this makes it possible to 

represent a hypergraph in a geometrical way. Atkin worked on 

simplicial complexes and developed methods to apply them to 

various application domains such as social systems [3], [5], [6], 

[8]. In his conception, a simplex have a meaning as a whole [7]. 

A multilayer network with N levels is formally defined as a 

couple such that M = (G, C) where (G) is a set of simple graphs 

and (C) is a set of edges between graphs of (G) [15] (see Figure 

1.D). Multilayer networks have been used in a wide variety of 

fields such as social networks, communication, economy, 

computer science, etc. 

Hypergraphs are the generalization of graphs in a sense they allow 

edges to connect more than two nodes. It is the same for 

multilayer hypergraphs which are the generalization of multilayer 

networks. In a multilayer hypergraph, (G) is a set of hypergraphs 

[10]. 

In 2013, Johnson used the term hypernetwork to unify several 

structures cohesively including hypergraphs, simplicial complexes 

and networks [29]. The definition of this term should not be 

confused with the different definitions given in other fields. 

Readers should refer to [26] for more details. A hypernetwork is a 

set of hypersimplexes. A hypersimplex is a simplex with an 

explicit n-ary relation. Formally, a hypersimplex is noted 𝜎 =

 〈𝑣1,  𝑣2,  𝑣3; 𝑅〉  where 𝑣1,  𝑣2,  𝑣3  are vertices and 𝑅  the named 

relation. This notation allows two hypersimplexes to be 

discriminated while two simplexes cannot. Johnson idea is to be 

able to represent complex hierarchical systems as well as to obtain 

a global structure facilitating the relational analysis and the 

different dynamics of the systems. Nevertheless, it should be 

• model or represent a situation (e.g., ontologies, 
knowledge graphs) 

• store data (e.g., graph-oriented database) 

• visualize data (e.g., Human Machine Interface) 

• exchange data (e.g., GEXF or GDF) 



noted that the unification of all these structures remains a theory, 

and that some bricks remain to be developed. He illustrated how 

works a hypernetwork with the robot football (not the American 

one) [30], [31], [36]–[38], [43] which is the most popular example 

in hypernetworks. 

3.2.2 Characteristics 
The graph structures previously presented can be augmented by 

some characteristics. Structures will be said directed, weighed, 

attributed, or labeled. 

A directed graph (also called digraph) is a graph where its edges 

can carry an orientation [12]. A digraph can represent a road 

network: a one-way road between two neighborhoods will be 

represented by a single directed relation while a two-way road 

will be materialized by two opposite directed relations. Extending 

this concept to hypergraphs, a directed hypergraph makes it 

possible to connect k nodes by directed relations [9]. Directed 

hypergraphs have been used to represent implication systems [24]. 

 

Figure 1. Representation of A) a graph with heterogeneous 

nodes, B) a hypergraph with eight vertices and three 

hyperedges, C) a simplicial complex with three simplices and 

six vertices, and D) a multilayer network composed of two 

layers. 

When weights are added on nodes and/or relations, it is called a 

weighted graph [12] or a weighted hypergraph [47]. Still taking 

the example of a road network, the weights of the relationships 

can represent the distance between the two neighborhoods. The 

weights of the nodes can represent the number of inhabitants of 

the districts. In the case of hypernetworks and simplicial 

complexes, the notion of weights is called the traffic [11], [32]. 

Graph structures can also carry properties which are represented 

as key/value pairs on nodes and relations. It is called an attributed 

graph or a property graph [44]. 

A labeled graph is a structure which have labels on nodes and type 

on relations. Labels and types can come from data or functions 

associated to set of vertices (vertex labelling) and set of edges 

(edge labelling). Figure 1.A presents graph with three types of 

nodes. 

Some readers might point out that we are not talking about 

dynamic graphs. Indeed, we consider these graphs as evolutions 

of the different classes that we have presented, and not as a class. 

For example, a property graph can support a temporal graph with 

temporal property at different clock time, but at the end it remains 

a property graph.  

3.3 Graph analytics 
In the same way as the graph classes, there are multiple 

techniques to get a deeper understanding on the graph and the 

phenomena it tries to represent. Here, we present a non-exhaustive 

list of metrics, functions and methods to give an overview of 

existing techniques. 

3.3.1 Metrics 
Many metrics allow to analyze the structural properties of graphs. 

For example we can measure its length, that is its number of 

nodes or links; its density, that is the ratio between nodes and 

relations; the similarity between vertices; or the degree of the 

nodes, that is the number of relations that are connected to it [41]. 

This last metric leads to the concept of centrality, which aims to 

determine the importance of central nodes in a graph. It can be 

seen as the simplest centrality measure and is sometimes called 

“degree centrality”. However, many other centrality measures 

exist, such as the eigenvector centrality (which takes into account 

the importance of the nodes that are connected to the node); 

betweenness centrality, that indicates if a vertex belongs to many 

or few paths between other vertices; or the PageRank, which is a 

centrality measure of a node that takes into account the 

importance of the nodes connected to it, counterbalanced by the 

number of connections of the important nodes [41]. Specific 

centrality measures can be computed for directed graphs: the 

authority centrality (centrality of nodes that contain useful 

information on a topic) and the hub centrality (ability of a node to 

“know” where to find information on a topic of interest) [41]. 

Other techniques consider the graph topology and how groups or 

communities can be detected. The identification of cliques in 

undirected graphs, which are maximal subsets of vertices where 

each two vertices are adjacent, gives insights on the existence of a 

cohesive subgroup and is widely used to analyze social networks 

and how people form groups [41]. The level of transitivity 

(implying that if vertex 𝑣1  is connected to vertex 𝑣2 , and 𝑣2  is 

connected to 𝑣3, then 𝑣1 is connected to 𝑣3) leads to the clustering 

coefficient, that measures the probability that two nodes are 

connected if they have a node in common [41]. The modularity is 

a measure to quantify the quality of a clustering for a given node 

[41].  

These measures give information about the graph and its structure. 

For a more extensive review on topology metrics in graphs, please 

refer to [19]. 

With the increasingly growing size of graphs—such as online 

social networks, which can have billion nodes—applying 

algorithms becomes challenging in terms of computational 

memory. Graph embedding techniques allow to overcome this 

problem by converting a large graph into a lower dimensional 

space, where graph information such as structural properties or 

attributes are preserved [20], [25], [39]. 

3.3.2 Functions 
To go deeper in graph analytics, multiple functions have been 

developed. While there exists metrics to give insights on how 

nodes can group together, there is also much deeper methods. 



The clustering consists in finding how nodes are grouping 

together in the graph – or forming communities [41]. A group is 

characterized by a set of nodes tightly connected, with fewer 

edges connecting nodes outside the group. Generally, one 

distinguishes between graph partitioning and community 

detections. In the first case the number and size of the groups are 

specified whereas, in the second case, the groups are detected in 

the network itself. Examples of heuristic methods for graph 

partitioning are the Kernighan-Lin algorithm and the spectral 

partitioning. Regarding community detection, some algorithms are 

based on the modularity metric [18], [41], [42] or in finding 

cliques [18]. Other method consists in using the Louvain method 

[17] or in finding the strongly connected components (see for 

example the Tarjan’s algorithm [49]). 

Other functions consist in finding the shortest path between two 

nodes [41]. It can consider some constraints or condition, such as 

the weights of links; one famous algorithm for this task is the 

Dijkstra’s algorithm [23]. 

Tasks such as prediction can also be performed. At the graph 

structure’s level, links prediction consists in predicting if a link 

exists between two nodes in a graph [40]. Regarding nodes, they 

can be classified (that is, a given label can be allocated to a node) 

according to the graph topology and the information contained in 

the nodes (labels or attributes) [14]. 

3.3.3 Methodologies 
Other methods or frameworks can be used to analyze graphs. 

Carley [21] developed DyNet, a tool to study inter-linked and 

dynamic networks to represent cellular organizations. The inter-

link aspect is studied with a meta-matrix made up of the networks 

considered in the problem. 

Algebraic topology can be used to study graphs, as a graph can be 

viewed as a 1-dimensional simplicial complex [27] (see Section 

3.2.1). Thus, some metrics or methods of algebraic topology can 

be applied to graphs such as the computation of the Betti numbers, 

which gives an insight on the number of topological holes in a 

graph [27], [28]. Following this, the Q-analysis [2], [4] is a 

method developed by Atkin to analyze the connectivity structure 

of simplicial complexes. The author applied this method to many 

application domains, such as social systems [4], chess [2] or road 

traffic systems [33].  

4. Limits of existing approaches 
While much work has been conducted to enhance the 

representation of graphs and to analyze them, there is still some 

limits to existing approaches.  

4.1 Representation 
There are several solutions to represent multidimensionality and 

heterogeneity in graphs. As mentioned in Section 2 and in Section 

3.2.1, some graph classes can handle and represent 

multidimensional relations (or n-ary relations) as opposed to 

binary relations. Table 1 shows what each class of graph can 

represent in terms of multidimensionality. The crosses indicate 

that the graph class supports a characteristic.  

Moreover, all graphs can support the heterogeneity of nodes and 

relations since it is a characteristic given to the graph structure 

(possibility to add labels). The heterogeneity can be given by the 

data, or by a function associated to the set of nodes and the set of 

relations. 

Table 1. Which graph structures can represent 

multidimensionality or n-ary relation? 

Representation Multidimensionality 

Simple graph  

Hypergraph  

Simplicial complex  

Multilayer network  

Multilayer hypergraph  

Hypernetwork  

 

However, some structures have limits which could encroach on 

the correct representation of multidimensionality and 

heterogeneity. 

Simplicial complexes have an orientation which can be positive or 

negative while it is possible to make more than two different 

combinations with the vertices as well as different topological 

representations. Looking at the aforementioned problems, 

simplicial complexes allow the issue of multidimensionality to be 

completely addressed but present a limitation regarding the 

heterogeneity of nodes and relations. Indeed, a simplicial complex 

makes it possible to represent two sets of distinct nodes. There is 

therefore a certain consideration of heterogeneity. Likewise for 

relations: two types of relations can be considered in a simplicial 

complex: the relation between the two defined sets, as well as the 

relation of connectivity between simplices. But the complexes do 

not allow to represent several different relations at the same time 

between more than two types of sets of nodes. In other words, it is 

possible to represent several relations simultaneously between two 

sets of nodes: the complex will represent the intersection of these 

relations; but it cannot represent several relations between more 

than two sets of nodes. 

Hypergraphs are a basic structure in a way that multilayer 

hypergraphs have a better power of representation since they have 

several layers. Multilayer hypergraphs can express a hierarchy 

whereas hypergraphs cannot. 

The main limitation of the graph representation is the 

visualization, especially when the size of the graph becomes 

larger, but this should be developed in another article. 

Finally, the existing representations allow to address the two 

paradigms presented in Section 3.1 (that either gives more 

importance to nodes or relations). However, much work has to be 

produced to build the graphs with the second paradigms. In 

particular, identify the relations before entities, and do not 

consider what are the characteristics of the entities beforehand. 

4.2 Analytics 
Regarding the graphs analytics, most of them consider 

homogeneous graphs [46] even though recent work have been 

conducted to address heterogeneous graphs [22], [46]. For 

example, multiple clustering methods have been developed for 

attributed graphs [18]. They are based on grouping nodes 

according to the similarity of their attributes and their position in 

the graph. Most of the time, these clusters do not overlap (one 



node belongs to only one cluster), which can be limiting 

according to the use case. Whereas nodes are taken into account in 

the analysis, there are few methods considering heterogeneous 

edges for clustering. One method presented by Bothorel to cluster 

edge-attributed graphs, which is the most common one, consists in 

reducing the heterogeneous types into single weighted edges [18]. 

This approach is also used for multilayer network, where the 

edges of the layers are flattened to build a single weighted graph, 

and where classical clustering algorithm can then be applied [18]. 

However, this method may cause a loss of information, such as 

the fact that some attributes (or edges types) may be more 

important than others for the cluster definition [18]. 

Considering Carley’s DyNet tool and, more specifically, the meta-

matrices, their aim is to analyze inter-linked network, represented 

in the same meta-matrix [21]. Heterogeneous nodes and edges can 

be represented in it, but they cannot be analyzed at the same time: 

the analysis can be conducted only by edge type, for two sets of 

nodes. 

Q-analysis and Atkin’s way to approach simplicial complexes [4] 

allow to represent a given type of relation (explicitly named) as 

well as an underlying relation, which is the connectivity relation 

between simplices. This representation also allows to represent 

two sets of distinct nodes and their multidimensional relations. 

Those sets are built according to the considered relation. Atkin’s 

theory can also take into account the notion of hierarchy [2]. Thus, 

this approach allows to analyze several relations between two sets 

at the same time, if the study of these relations (or the intersection 

of these relations) make sense. However, it does not allow to 

study multiple types of relations between multiple nodes sets at 

the same time. 

To conclude, there are many studies to enrich graph’s 

representation and analytics techniques in order to study more 

complex problems. But it still seems difficult to take into account 

all the aspects (specially, the multidimensionality and the 

heterogeneity) in one single approach. It seems to be even more 

difficult to address the heterogeneity of relations in the analysis, 

and thus to address the second paradigm mentioned in Section 3.1. 

5. Potential solutions 
Based on previously discussed limits, some structures and 

analytics methods seem to be suitable to answer the problems of 

multidimensionality and heterogeneity. In term of structures, 

multilayer hypergraphs and hypernetworks are the candidates. 

Nevertheless, hypernetworks are above multilayer hypergraphs 

because Johnson developed hypernetworks to unify all the 

structures presented in Section 3.2.1 [32]. A multilayer 

hypergraph is only a set of hypergraphs with edges between them 

whereas a hypernetwork has a lot more to offer. 

Theoretically, hypernetworks make it possible to improve 

simplices by adding an explicit relation to the simplex in order to 

obtain a relational simplex (hypersimplex). This notation makes it 

possible to describe two simplexes having the same orientation 

but a different representation according to the relations 

considered. In addition, Q-analysis can be used on a hypernetwork 

and allows to compute information on a heterogeneous dataset in 

terms of nodes or relationships. Indeed, the vertices of a simplex 

can be heterogeneous regarding their substance (i.e., what the 

things actually are): heterogeneous entities could compose a 

simplex according to the relation. For example, “flowers”, “smell 

of freshly baked bread” and “board games” can be associated 

together in the same simplex called “Annie” if the relation 

considered is “—likes—“.  

Hypernetworks can model dynamic phenomena thanks to traffic. 

The negative point that remains to be resolved is the 

representation of a hypernetwork when the dataset is large. The 

other negative point is to find the dataset which can fully use the 

Q-analysis methodology, especially in term of traffic. 

So, hypernetwork theory seems to be the best solution as far as we 

know but there are several gray areas to fill in the theory. For 

example, can a level N support heterogenous relations? Moreover, 

Atkin and Johnson focused their work on small examples: 

defining two sets and a known relation. However, in everyday 

life, it is never the case. Communication use cases based on a 

directed graph could highlight the hypernetwork theory while 

avoiding people to define sets and relations like Atkin and 

Johnson did. Johnson explained a procedure to obtain a 

hypernetwork from a network, but there is still the need to find the 

right example and try its procedure [35]. 

6. Conclusion 
To conclude, this paper expose limitations and solutions to 

represent and analyze multidimensional and heterogenous data 

through a graph. From social graphs to biological networks, there 

are multiple examples of the wide use of graphs these lasts 

decades, and of proposed solution to enrich the simple graphs. 

Section 3 presents two philosophical paradigms to tackle graphs, 

an overview of different kinds of graph classes, from simple ones 

(simple graphs) to more sophisticated ones (for example, 

hypernetworks); and some metrics and analytics developed to be 

able to address more complex problems. From our research and as 

far as we know, currently there is no working solutions that could 

address multidimensionality and nodes and edges heterogeneity at 

the same time (see Section 4 and 5). While hypergraphs can 

represent those three characteristics, the available analytics 

methods have difficulties to take into account these three aspects 

all at once. 

The hypernetwork seems to be a step in the right direction for the 

representation as a graph and the Q-analysis is a relevant 

methodology for the analysis of complex systems. Hypernetworks 

could, in theory [34], address the aforesaid issues. 

However, there are still a lot of shadows to clear up: 

• Find a multidimensional, heterogenous and hierarchical 

dataset to highlight the representational power of the 

hypernetwork and analysis quality of Q-analysis 

methodology. 

• Can a simplicial complex support heterogeneous 

relation? Mathematically, there is restrictions but is 

there a meaning?  

Further work will consist in working on hypernetworks, such as 

developing an application to manage hypernetworks, find the right 

visualization for larger hyper networks and consider heterogenous 

relations in a simplicial complex. On the other side, some research 

work must be done to build graphs with the second paradigms. 

This means identifying relations before entities. 
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