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Mean Residual Life (MRL), Conditional Reliability (CRe), future degradation level/production rate, etc., can be estimated from the condition monitoring data (e.g. vibration, acoustic emission, temperature data,. . . ) by use of industrial prognostic techniques. If the estimation is reliable and the PdM is properly implemented, it can help to significantly reduce the maintenance cost and improve the system availability [START_REF] Sakib | Challenges and opportunities of condition-based predictive maintenance: a review[END_REF].

Given many advantages, the PdM has been extensively developed by several authors. The existing works on PdM may be categorized into the two following topics : (a) data acquisition and processing; (b) maintenance decision-making [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. In the first topic, different techniques and algorithms have been proposed to collect the monitoring data and to predict the system health evolution based on the collected data. Among them, the Internet of Things (IoT) sensors and machine learning algorithms have achieved great success and received widespread attention, especially in the industry 4.0 context [START_REF] Hashemian | State-of-the-art predictive maintenance techniques[END_REF][START_REF] Zhang | Data-driven methods for predictive main-tenance of industrial equipment: a survey[END_REF][START_REF] Carvalho | A systematic literature review of machine learning methods applied to predictive maintenance[END_REF][START_REF] Cheng | Data-driven predictive maintenance planning framework for mep components based on BIM and IoT using machine learning algorithms[END_REF]. Meanwhile, for the second topic, the main aim is to develop PdM policies to optimize the predictive maintenance decision-making. Interested in the second topic, we consider hereinafter two kinds of PdM policies: control-limit and cost-balancing. According to the control-limit-based policies, the system is maintained at an inspection time if the predicted system heath state at this time reaches a critical threshold. Huynh et al. [START_REF] Huynh | On the use of mean residual life as a condition index for condition-based maintenance decisionmaking[END_REF] proposed a PdM policy in which the system is inspected regularly. At an inspection time, the MRL is predicted and used as an index for the maintenance decision making. The system is replaced if the predicted MRL is smaller than a specific limit. The authors underlined that the decision making based on the MRL is more efficient than that based on the degradation level because the MRL indicator contains more information on the system state compared to the degradation level. Vu et al. [START_REF] Vu | A stationary grouping maintenance strategy using mean residual life and the birnbaum importance measure for complex structures[END_REF] developed an adapted MRL-based model for multi-component systems with redundancy and economic dependence between their components (the joint maintenance of several components reduces the maintenance cost). According to the proposed policy, the replacement decision of a component is made in terms of its MRL as well as its important role in the system functioning represented by the Birnbaum importance measure.

The conditional reliability (CRe), the probability that a functioning system can survive a certain amount of time, was also used as a PdM decision indicator in literature. Huynh et al. [START_REF] Huynh | Multi-level decision-making for the predictive maintenance of k-out-of-n: F deteriorating systems[END_REF] developed a CRe-based model for k-out-of-n systems. Nguyen et al. [START_REF] Nguyen | Multi-level predictive maintenance for multicomponent systems[END_REF][START_REF] Nguyen | Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum's structural importance[END_REF] proposed an adapted CRe-based model with taking into account the economic dependence and spare part provisioning. In addition to the MRL and CRe, the RUL has been largely and recently used for PdM decision-making. For more detail, Chen et al. [START_REF] Chen | Hidden markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy[END_REF] and Nguyen et al. [START_REF] Nguyen | A new dynamic predictive maintenance framework using deep learning for failure prognostics[END_REF] proposed to replace the system whenever its RUL (remaining time before system failure) at an inspection is smaller than a specific limit. Do et al. [START_REF] Do | A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions[END_REF] and Chen et al. [START_REF] Chen | Optimal maintenance decision based on remaining useful lifetime prediction for the equipment subject to imperfect maintenance[END_REF] developed the same RUL-based policy with consideration of the imperfect maintenance (the system is somewhere between "as bad as old" state and "as good as new" state after imperfect maintenance). Omshi et al.

[17] used the RUL-based limit to decide the next inspection time.

The second kind of PdM policies (cost-balancing-based policies) is more complicated than the first one. Indeed, according to this kind, the maintenance decisions are done by comparing the expected costs of particular maintenance options. In [START_REF] Lu | Predictive condition-based maintenance for continuously deteriorating systems[END_REF], the maintenance decision is made based on the comparison be-tween the expected cost for "preventive maintenance" (PM) and "no pre-ventive maintenance" at each inspection time. The authors considered the risk of system failure in the next operational period and productivity loss due to system degradation. Shi et al. [START_REF] Shi | Real-time prediction of remaining useful life and preventive opportunistic maintenance strategy for multi-component systems considering stochastic dependence[END_REF] considered the same options (PM and no PM) for multi-component systems with stochastic dependence (the failure of a component influences the degradation of the others). Lei et al. [START_REF] Lei | Maintenance scheduling based on remaining useful life predictions for wind farms managed using power purchase agreements[END_REF] developed a PdM policy for wind farms. The decision is made by balancing between the risk of system failure and the portion of the RUL thrown away. Finally, the authors in [START_REF] Camci | System maintenance scheduling with prognostics information using genetic algorithm[END_REF][START_REF] Van Horenbeek | A dynamic predictive maintenance policy for complex multi-component systems[END_REF][START_REF] Chang | A service-oriented dynamic multi-level maintenance grouping strategy based on prediction information of multi-component systems[END_REF][START_REF] Liang | Predictive group maintenance for multi-system multi-component networks[END_REF] developed grouping PdM policies for multi-component systems with economic dependence. The PM is planned for a short-term interval instead of only at inspection time. The best groups of PM activities are found by maximizing the grouping economic profit in the interval. Finally, with the development of Industry 4.0, the perspective maintenance approach using machine learning, semantic reasoning, and simulation methods has been recently developed [START_REF] Matyas | A procedural approach for realizing prescriptive maintenance planning in manufacturing industries[END_REF][START_REF] Ansari | Prima: a prescriptive maintenance model for cyber-physical production systems[END_REF][START_REF] Ansari | Prescriptive maintenance of CPPS by integrating multimodal data with dynamic bayesian networks[END_REF]. According to this approach, the maintenance decision is made by balancing many factors including not only the maintenance costs but also the production planning, the spare part logistic. In addition, the maintenance knowledge-base is also integrated in the decision-making.

All these above PdM policies were developed by assuming that the maintenance costs such as the price of spare parts (used for replacement of degraded/failed system) are constants. Van der Weide et al. [START_REF] Van Der Weide | Discounted cost model for condition-based maintenance optimization[END_REF] proposed a maintenance cost model which takes into account the discounted cash flow. In this work, the price of spare parts and maintenance cost in general are considered to be discounted over time with an exponential discounting factor, i.e.

c(t k ) = c(t k-1 )•e -∆t•r
, where r is the constant discount rate and ∆t = t k -t k-1 .

Nguyen et al. [START_REF] Nguyen | Optimal maintenance and replacement decisions under technological change with consideration of spare parts inventories[END_REF] developed a maintenance model under technological change.

The authors assumed that the price of spare parts is decreasing over time after appearance and normally increasing over technological generation. However, in reality, the market price is naturally dynamic and uncertain due to many factors such as product cost, utility and demand, the extent of competition, government and legal regulations, or even unexpected events such as natural disasters, etc.

The maintenance/spare part cost may be therefore randomly fluctuating over time. The maintenance cost models proposed in the previous works therefore do not fully capture the dynamism and uncertainty of the market price. In addition, the consideration of the price volatility/fluctuation is only limited to the maintenance modeling level.

The price volatility and its impacts have been extensively studied in oil and gas industries [START_REF] Campbell | Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty[END_REF], food industry [START_REF] Gilbert | Food price volatility[END_REF], electricity market [START_REF] Li | Determinants of price fluctuations in the electricity market: a study with pca and nardl models[END_REF], etc; however, according to our best knowledge, they have not been considered yet in the maintenance decision-making. In addition, no specific maintenance decision rule has been proposed for this situation in literature. The aims of this paper are threefold :

• Identify an indicator that allows to represent the price volatility; introduce the identified indicator to the PdM modeling;

• Develop an adapted PdM policy that allows to reduce the negative impacts of the price volatility on the PdM decision-making;

• Propose analytical methods to estimate the PdM performance based on semi-regenerative property of the maintained system.

The remainder of this paper is organized as follows: Section 2 presents some general assumptions and the PdM modeling; an adapted PdM policy is proposed in Section 3; the stochastic characteristics of the maintained system as well as the performance of the proposed policy are analyzed in Sections 4 and 5; the effectiveness of our policy is verified by numerical examples in Section 6; finally, Section 7 reports some conclusions drawn from this work. 
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PdM modeling under the market price volatility

This section is devoted to some general assumptions and describes how maintenance cost and system deterioration can be modeled by using stochastic models.

General description

Consider a new system put into operation at time t 0 = 0. As a result of thermal and mechanical stresses, impurities, chemical corrosion, etc., the system deteriorates over time. The deterioration process is complex and depends on many uncertain factors such as temperature, humidity, or workload. It is then risky to describe the degradation level of the system at instant t by a deterministic variable. For this reason, the degradation level at a given time is usually considered as a random variable that follows a specific probability distribution [START_REF] Gorjian | A review on degradation models in reliability analysis[END_REF]. The intrinsic degradation evolution can be then presented by a continuous stochastic process, denoted by (X t ) t∈R + with X 0 = 0. Moreover, it should be positive and strictly increasing with time to represent the fact that the system worsens due to aging and accumulated wear or damage [START_REF] Nguyen | Model selection for degradation modeling and prognosis with health monitoring data[END_REF].

The assessment of the degradation level can be done continuously in real time by a continuous monitoring system or occasionally at specific instants by inspections. For example, the vibration level of a machine can be monitored continuously by vibration sensors; otherwise, it is hard to monitor the crack size that appears inside the mechanical components or concretes continuously.

In reality, the crack size is measured by an inspection team at specific instants [START_REF] Rosenblatt | A comparative study of continuous and pe-39 riodic inspection policies in deteriorating production systems[END_REF]. In this paper, the second option is considered. As such, the degradation level of the system X t k is assessed only at inspection times t k , k ∈ N. The inspection is considered to be: periodic (the inspection is done at every ∆T time units, i.e., t k = t k-1 + ∆T ); perfect (the inspection can detect the exact degradation level); non-destructive (the inspection does not affect the system state and its degradation level). An inspection incurs a constant cost c i .

Without any maintenance action, the system degradation level will increase over time. The system is considered to be failed when its degradation level reaches a critical threshold, which is defined according to some economic or safety specifications. The system failures are not seft-announcing. They are therefore detected only at inspection times. In case of failure between two consecutive inspection times, the system is then unavailable from its failure time to the next inspection time. During the system failure, a downtime cost rate c d has to be paid every time unit. We assume that the system does not deteriorate when it does not work.

At an inspection time t k , two following types of maintenance actions are considered: Corrective Replacement (CR) and Preventive Replacement (PR).

The CR is carried out to restore the system in operation if it failed, i.e., X t k ≥ L;

Otherwise, the PR is planned when the degradation level X t k has not yet reached its critical limit to prevent the system from failures. After either a CR or PR, the degradation level of the system is reset to zero. The CR and PR durations are neglected when compared to the duration of the planning horizon. We also assume that the maintenance support (spare part, repair team) is sufficient and always available to guarantee that these replacement actions can be done at any time.

As mentioned in the introduction section, under the market price volatility, the spare part cost, which is an important part of any replacement project, fluctuates over time. In the next subsections, we will present in more detail the stochastic models that are selected to model the degradation and replacement cost processes.

Degradation model

In our work, the gamma process is selected to model the system deterioration. This process is strongly recommended for the modeling of monotonic and gradual deterioration [START_REF] Van Noortwijk | A survey of the application of gamma processes in maintenance[END_REF]. It has been successfully applied to many applications with real degradation data such as creep of concrete data [START_REF] Cinlar | Stochastic process for extrapolating concrete creep[END_REF], fatigue crack growth data [START_REF] Lawless | Covariates and random effects in a gamma process model with application to degradation and failure[END_REF], thinning due to corrosion data [START_REF] Kallen | Optimal maintenance decisions under imperfect inspection[END_REF].

The degradation process (X t ) t∈R + is assumed to be described by a homogeneous gamma stochastic process. For more detail, degradation increments between non-overlapping intervals are mutually and stochastically independent.

The degradation increment X = X ω -X t between t and ω (t ≤ ω) follows a gamma distribution with probability density function (p.d.f):

f α•(w-t),β (x) = 1 Γ(α • (w -t)) • β α•(w-t) • x α•(w-t)-1 • e -βx • 1 {x>0} (1) 
where, Γ(y) = Thanks to equation 1, some following properties of the deterioration modeled by gamma process can be deduced: (P1) the increment distribution depends only on the length of the considered interval (w -t). It does not depend on the historical degradation levels before ω; (P2) the increments between periodic inspection periods are then i.i.d (independent and identically distributed); (P3)

given that the increments are positive, the degradation process is then positive and strictly increasing with time. While property P3 is verified for most of the real applications such as crack size propagation and energy consumption, the validation of P1 and P2 is not always guaranteed in reality since the future degradation speed may depend on the current/historical degradation levels.

Stochastic replacement cost model

Stochastic interest rate. To integrate the market price volatility into the CR and PR costs processes, we model first the interest rate, one of the key variables in the economy, driving the asset, bond price evolution. For this purpose, the Cox-Ingersoll-Ross (CIR) process, a diffusion process introduced by [START_REF] Cox | A theory of the term structure of interest rates[END_REF], is selected. This is one of the most employed interest rate models in literature thanks to its interesting features such as the non-negativity, the mean reversion 1 , and the relative tractability. The CIR process, denoted by (r t ) t∈R + , is the solution of the following stochastic differential equation:

dr t = a (b -r t ) dt + c √ r t dW t (2)
where, a, b, c are positive constant parameters representing the mean reversion 190 speed, the long-run mean, and the volatility rate respectively; (W t ) t∈R + is a standard Brownian Motion. It has the following properties: (P1) W 0 = 0; (P2) stationary and independent increments:

W t -W s ∼ N (0, t -s) for 0 < s < t.
By using the decomposition of Bessel bridges, [START_REF] Pitman | A decomposition of bessel bridges[END_REF] shown that the solution of equation 2 is a process with the following transition density function:

f rt|rs (u | v) = Ae -(B+C) C B Q 2 I Q (2 √ BC); t > s ≥ 0 (3) 
where,

A = 2a c 2 1 -e -a(t-s) ; B = A • v • e -a(t-s) ; C = A • u; Q = 2ab c 2 -1; (4)
and I Q (•) is the modified Bessel function of the first kind of order Q:

I Q (x) = ∞ j=0 x 2 2j+Q 1 j!Γ(j + Q + 1) (5) 
The mean and variance of r t given r s = v are

E [r t | r s ] = v • e -a(t-s) + b • 1 -e -a(t-s) ; lim t→+∞ E [r t | r s ] = b (6) 
1 Mean reversion in finance suggests that asset prices and historical returns eventually revert to their long-term mean or average level (https://www.investopedia.com).

and

Var [r t | r s ] = v• c 2 a e -a(t-s) -e -2a(t-s) + bc 2 2a • 1 -e -a(t-s) 2 ; lim t→+∞ Var [r t | r s ] = bc 2 2a . (7) 
If d = 4ab c 2 is an integer, f rt|rs (u | v) can be linked to the p.d.f of the non-central chi-square distribution. Indeed, by replacing B = λ

2 ; U = 2Au → C = Au = U 2 ; and Q = d
2 -1 into equation 3 [START_REF] Malham | Chi-square simulation of the CIR process and the heston model[END_REF], we have

f rt|rs (u | v) = 2A • 1 2 e -λ+U 2 U λ d 4 -1 2 I d 2 -1 ( √ λU ) = 2A • g(U, d, λ) (8) 
where, g(U, d, λ) is the p.d.f of the non-central chi-square distribution with the degrees of freedom d and non-centrality parameter λ (see Appendix A).
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When compared to the system deterioration modeled by gamma process, the interest rate modeled by the diffusion CIR process is not increasing in time. In addition, equation 3 shows that the interest rate at time t depends not only on the length t-s, but also its value at time t. 

Stochastic replacement costs.

Based on the stochastic interest rate model, the PR and CR costs can be modeled. In the paper, the most simple model, named log-diffusion (LD) process, is adapted as follows [START_REF] Kariya | Asset Pricing:-Discrete Time Approach[END_REF]:

     C p t = p • e rt C c t = c p • C p t ( 9 
)
where, p > 0 and c > 0 are PR and CR constants. When compared to the PR, the CR can not be planned and its cost may be composed of the different costs associated with failures such as system damages, negative environmental models such as double-diffusion process [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF] or auto-regressive process (ARCH, GARCH) [START_REF] Wiley | the use of arch/garch models in applied econometrics[END_REF] may be considered in the future research.

Description of the proposed PdM policy

Since the replacement costs vary over time, it is important to plan the replacement project at the right time (in low-cost periods). For this reason, in our paper, the replacement decisions are made based on not only the predictive information about the system health state but also about the interest rate/replacement costs. In this section, we will present first the two maintenance decision basis before going into more detail on the description of our PdM pol-icy. Finally, to evaluate the performance of the proposed model, a cost-based criterion is introduced.

Maintenance decision indicators 220

System conditional reliability. The system conditional reliability is used to represent the system health state in our study. It is a popular maintenance decision indicator. The reliability is defined as the probability that the system does not fail before time t given that it is functioning at time s and X s = x. To calculate the system conditional reliability, let t f denote the system failure time,

t f = inf t ∈ R + | X t ≥ L (10) 
The probability that the system fails before time t is calculated as [START_REF] Van Noortwijk | A survey of the application of gamma processes in maintenance[END_REF] 

F t f |Xs (t | x) = P (t f ≤ t | X t = x) = P (X t ≥ L | X s = x) = P (X t -X s ≥ L -x) = Γ(α(t-s),β(L-x))
Γ(α(t-s))

•

1 {x<L} + 1 {x≥L} (11) 
where Γ(α, x) = +∞ x u α-1 e -u du is the upper incomplete gamma function. The system conditional reliability, denoted by R t f |Xs (t | x), is then

R t f |Xs (t | x) = 1-F t f |Xs (t | x) = 1- Γ(α(t -s), β(L -x)) Γ(α(t -s)) = γ(α(t -s), β(L -x)) Γ(α(t -s)) (12) 
where γ(α, x) =

x 0 u α-1 e -u du is the lower incomplete gamma function, and γ(α, x) + Γ(α, x) = Γ(α). Thanks to the above equation, given that the system degradation is x at inspection time t k , the reliability of the system at the next inspection time t k+1 = t k + ∆T can be calculated as

R t f |Xt k (t k+1 | x) = γ(α∆T, β(L -x)) Γ(α∆T ) (13) 
A low value of R t f |Xt k (t k+1 | x) means that the probability that the system fails during the next operation period is high. From a reliability point of view, the PR at t k is necessary to avoid the system failures.

PR cost-saving probability. The PR cost-saving probability P C p t k+1

|C p t k (z | z) is
defined as the probability that the PR cost at time t k+1 is cheaper than that at t k .

P C p t k+1 | C p t k (z | z) = P C p t k+1 < z | C p t k = z = P ( p e rt k+1 < z | p e rt k = z) = P r t k+1 < Z | r t k = Z = Z 0 f rt k+1 |rt k (u | Z)du (14) 
where, Z = ln (z/ p ) ; and

f rt k+1 |rr k (u | Z) is calculated by equation 3. If d is an integer, P C p t k+1
| C p t k (z | z) can be rewritten as

P C p t k+1 | C p t k (z | z) = Z 0 2A • g(U, d, λ)du = 1 - +∞ 2AZ g(U, d, λ)dU = 1 - +∞ 2AZ 1 2 e -λ+U 2 U λ d 4 -1 2 I d 2 -1 ( √ λU )dU (15) 
By replacing t = √ U ; p = √ λ; m = d 2 ; and q = √ 2AZ, we finally obtain

P C p t k+1 | C p t k (z | z) = 1 -Q d 2 ( √ λ, √ 2AZ) = 1 -Q 2ab c 2 √ 2AZ • e -a∆T 2 , √ 2AZ (16) 
where, Q m (p, q) is the Marcum-Q-function, i.e.

Q m (p, q) = 1 p m-1 +∞ q t m e -t 2 +p 2 2 I m-1 (pt)dt (17) 
It is important to note that equation [START_REF] Chen | Optimal maintenance decision based on remaining useful lifetime prediction for the equipment subject to imperfect maintenance[END_REF] (z | z) is high, the replacement at t k+1 is probably cheaper than that at t k . From an economic point of view, it is preferred to do the PR at t k+1 than at t k . Finally, CR is directly triggered by system failures. The CR is therefore can not be planned. CR cost-saving probability is then not interesting for maintenance decision-making, and not considered here.

PdM decision rules

In our maintenance model, a PR decision at each inspection time is done regarding both the system health state (system conditional reliability) and the price volatility level (PR-cost saving probability). For more detail, assume that the degradation level and the interest level at inspection time t k are X t k = x and r t k = z respectively. The following maintenance rules are adopted:

• If x ≥ L, i.e. the system failed at t k , a CR activity should be carried out immediately to restore it to the new state; 

• If x < L and R t f |Xt k (t k+1 | x) ≤ R 0 , a
-if x < L, R t f |Xt k (t k+1 | x) ≤ R 0 , P C p t k+1 |C P t k (z | z) ≤ P 0 , a PR activity is carried out at t k ; -if x < L, R t f |Xt k (t k+1 | x) ≤ R 0 , P C p t k+1 |C p t k (z | z) > P 0 , the system is left unchanged at t k • If x < L and R t f |Xt k (t k+1 | x) > R 0 ,, the system is left unchanged at t k .
The inspection cycle ∆T , R 0 , and P 0 are the parameters of our maintenance policy. They will be optimized with respect to the priority goal of the maintenance program (see the next section for more details). Figure 2 shows the evolution of the system degradation (figure 2a), system conditional reliability (figure 2b) and PR cost-saving probability (figure 2c) in 255 interval [0, 80] when the proposed policy is applied with the following parameters: ∆T = 10, R 0 = 0.6, and P 0 = 0.5. At t 1 = 10, the system is left as it is because (z | z) > P 0 ), PR is then not planned at t 7 . CR activity is carried out at t 4 = 40 and at t 6 = 60 because X t4 > L and X t6 > L.

X t1 < L = 20 and R t f |Xt 1 (t 2 | x) > R 0 . At time t 2 = 20, X t2 < L, R t f |Xt 1 (t 2 | x) < R 0 ,

Maintenance performance criteria

In the literature, the quantities such as RAMS (Reliability, Availability, Maintainability, Safety) or maintenance cost are usually used to assess the performance of a maintenance model [START_REF] De Almeida | A review of the use of multicriteria and multi-objective models in maintenance and reliability[END_REF]. The most appropriate criteria are selected regarding the specific system requirements. For example, the reliability and safety are the priority objectives of the maintenance program of safetycritical systems [START_REF] Fornlöf | Maintenance, prognostics and diagnostics approaches for aircraft engines[END_REF]; otherwise, for the production systems, the maintenance cost and/or system availability are usually considered as the maintenance objectives [START_REF] Xia | Production-driven opportunistic maintenance for batch production based on MAM-APB scheduling[END_REF]. In our paper, long-run expected maintenance cost rate, the most popular maintenance objective in the literature, is used to measure the performance of the proposed model. The long-run expected maintenance cost rate is defined as

C ∞ (∆T, R 0 , P 0 ) = lim t→∞ E 0 [C(t)] E 0 [τ (t)] (18) 
where, τ (t) is the cumulative operational time of the system until t; C(τ ) is the cumulative maintenance cost; and E 0 [•] is the expected values given that the degradation at time t = 0 is zero.

By the definition, C ∞ allows reflecting at the same time the maintenance cost C(t) and the system availability τ (t). The estimation of this cost criterion is a complicated problem and mostly done by stochastic simulation methods [START_REF] Marseguerra | Condition-based maintenance optimization by means of genetic algorithms and monte carlo simulation[END_REF]. The analytical methods are possible but limited to some classes of the maintenance models with some specific stochastic properties. For this reason, in the next section, we will discuss about the stochastic behaviors of the system when the proposed maintenance policy is applied.

Stochastic properties of the maintained system

The analytical calculation of C ∞ (∆T, R 0 , P 0 ) requires the derivation of stochastic characteristics of the maintained system. We analyze therefore the characteristics of the two following stochastic processes, which conduct the stochastic behavior of our model: (a) degradation process of the maintained system denoted by Xt t∈R +

; (b) interest rate process (r t ) t∈R + .

Degradation and interest rate joint process

According to our maintenance model, the PR decisions are made based on both the system conditional reliability and the PR cost (Subsection 3.2). The degradation process of the maintained system X t t∈R + therefore depends on the interest rate process (r t ) t∈R+ . It means that the two processes should be considered as a joint process, denoted by (Y t ) t∈R + = Xt , r t t∈R +

According to [START_REF] Cinlar | Exceptional paper-markov renewal theory: A survey[END_REF], (Y t ) t∈R + is a semi-regenerative process with the semiregenerative points equal the inspection times t k (k ∈ N). Indeed, the evolution of the joint process (Y t ) t∈R + between two consecutive inspection times t k and t k+1 depends only on its current values at the beginning of t k , and does not depend on their past values according to equations 3 and 11. In other words, conditional on the values of (Y t ) t∈R + at the beginning of t k , its evolution between t k and t k+1 can be completely determined. The discrete-time process Thanks to the semi-regenerative property, an analysis of the system behavior on a single semi-regenerative cycle delimited by two consecutive inspection times can be considered for the calculation of the long-run expected maintenance cost rate. The calculation is therefore simplified because the number of possible maintenance scenarios that have to be considered is strongly reduced. The price to pay for this simplified analysis is the derivation of the stationary law of Y k k∈N [START_REF] Castanier | A sequential condition-based repair/replacement policy with non-periodic inspections for a system subject to continuous wear[END_REF]. In the next subsection, we will focus on the calculation of this stationary distribution, which is the basis for the further analysis of the long-run expected maintenance cost rate.

Stationary distribution of Ŷk∈N

Invariant equation. The stationary law of Ŷk = Xk , rk , denoted by π, is defined as the solution of the following invariant equation:

π(x, u) = ∞ 0 ∞ 0 π(y, v) • p(x, u | y, v)dydv (19) 
where, p(x, u | y, v) is the transition probability density function from Ŷk = (y, v) at the current inspection time t k to Ŷk+1 = (x, u) at t k+1 . Moreover, according to the definition of conditional probability, we have

π(y, v) = π 1 (y | v) • π 2 (v) (20) 
where,

• π 1 is the stationary law of the single embedded MC X k k∈N given a 310 certain level of the interest rate;

• π 2 is the stationary law of the single embedded MC ( r k ) k∈N . Jin et al. [START_REF] Jin | Positive harris recurrence of the CIR process and its applications[END_REF] shown that π 2 is a gamma law of the following form:

π 2 (v) = 1 Γ (α r ) • β αr r • v αr-1 • e -βrv • 1 {v≥0} (21) 
where,

α r = 2ab c 2 = d 2 and β r = 2a c 2 = αr b .
Thanks to equations 20 and 21, π can be calculated if π 1 is known. π 1 is the solution of the following invariant equation:

π 1 (x | u) • π 2 (u) = ∞ 0 ∞ 0 π 1 (y | v) • π 2 (v) • p(x, u | y, v)dydv (22) 
This equation is deduced from equations 19 and 20.

Transition probability density function p(x, u | y, v). To solve equation 22, we

first calculate p(x, u | y, v) p(x, u | y, v) = p(x | u, y, v) • p(u | y, v) = p(x | y, v) • p(u | v) (23) 
we have

• p(u | y, v) = p(u | v)
due to the fact that the degradation level of the system has no impact on the evolution of the interest rate process.

p(u | v)
is equal to f rt|ra (u | v) and can be calculated by using equation 3;

• p(x | u, y, v) = p(x | y, v)
, since the degradation level of the maintained system at t k+1 does not depend on the value of the interest rate at this time.

In order to calculate p(x | y, v), all possible maintenance scenarios in a semiregenerative cycle (time interval between two consecutive inspections) should be analyzed to understand the transition of X k k∈N from X k = y at t k to

X k+1 = x at t k+1 given r k = v
Finally, it should be noted that R t f |Xt k (t k+1 | y) is a monotonically decreasing function of x; and P C p t k+1

|C p t k (v | v
) is a monotonically increasing function of v at the inspection time t k [START_REF] Sun | On the monotonicity, log-concavity, and tight bounds of the generalized marcum and nuttall q-functions[END_REF]. We have therefore

R t f |Xt k (t k+1 | x) < R 0 ⇔ y > x 0 with x 0 = R -1 (R 0 ) (24) 
and

P C k+1 |C k (z | z) > P 0 ⇔ v > r 0 with r 0 = P -1 (P 0 ) (25) 
The following scenarios may occur at t k :

• Scenario A: y ≥ L, corrective replacement is carried out at t k . The degradation level after the CR is 0. The system degradation increases from 0 at t + k (instant just after the CR) to x at t k+1 . In this case, p(x | y, v) is just equal to f α•∆T,β (x);

• Scenario B: y < L, y ≥ x 0 (equation 24), and v ≤ r 0 (equation 25), a 330 preventive replacement is carried out. As in the previous scenario, p(x | y, v) is equal to f α•∆T,β (x);

• Scenario C: y < L, y ≥ x 0 , and v > r 0 , the system is left as it is. The system degradation increases from y to x. p(x | y, v) is therefore equal to f α•∆T,β (x -y);
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• Scenario D: y < x 0 , the system is left as it is. The system degradation increases from y to x. The expression of p(x | y, v) is the same as that in the scenario C:

p(x | y, v) = f α•∆T,β (x -y).
From these above analysis, p(x | y, v) can be calculated as follows p(x | y, v) = I {y≥L or (y∈[x 0 ,L) and v≤r 0 )} • f α•∆T,β (x) + I {y<x 0 or (y∈[x 0 ,L) and v>r 0 )} • f α•∆T,β (x -y) [START_REF] Ansari | Prima: a prescriptive maintenance model for cyber-physical production systems[END_REF] where, I {x} is an indicator function defined as

I {x} =      1 if x is true 0 if x is false (27)
Stationary distribution. To determine the stationary law π 1 as well as π, equation 22 is rewritten as the following thanks to equations 23 and 26: 

π 1 (x | u) • π 2 (u) = f α•∆T,β (x) • ∞ 0 ∞ L π 1 (y | v)dy • π 2 (v) • f rt|rs (u | v)dv Scenario A +f α•∆T,β (x) • r 0 0 L x 0 π 1 (y | v)dy • π 2 (v) • f rt|rs (u | v)dv Scenario B + ∞ r 0 min(L,x) x 0 π 1 (y | v) • f α•∆T,β (x -y)dy • π 2 (v) • f rt|rs (u | v)dv Scenario C + ∞ 0 min(x 0 ,x) 0 π 1 (y | v) • f α•∆T,β (x -y)dy • π 2 (v) • f rt|rs (u | v)dv Scenario D ( 

Maintenance performance evaluation and optimization

Thanks to the semi-regenerative property of the (Y t ) t∈R + process, the calculation of the long-run expected maintenance cost rate can be simplified by considering only a single semi-regenerative cycle. Equation 18 can be rewritten as follows [START_REF] Grall | Continuous-time 650 predictive-maintenance scheduling for a deteriorating system[END_REF]: 

C ∞ (∆T, R 0 , P 0 ) = lim t→∞ E 0 [C(t)] E 0 [τ (t)] = lim t→∞ E0[C(t)] t E0[τ (t)] t = Eπ[C(∆T )] ∆T Eπ[τ (∆T )] ∆T = E π [C(∆T )] E π [τ (∆T )] = c i + E π [C p (∆T )] + E π [C c (∆T )] + c d • (∆T -E π [τ (∆T )]) E π [τ (∆T )] (29 
E π [C c (∆T )] = ∞ L ∞ 0 ( c • e v ) • π(y, v)dv dy = c • ∞ L ∞ 0 e v • π(y, v)dv dy (30) 
Similarity, the expected PR cost is equal to the product of the PR cost and the PR probability at t k-1 .

E π [C p (∆T )] = L x 0 r 0 0 ( c • e v ) • π(y, v)dv dy = p • L x 0 r 0 0 e v • π(y, v)dv dy (31) 
To calculate the expected operational time in [t k-1 , t k ), the two following cases are considered:

• The system is replaced at t k-1 (Scenarios A and B). Its degradation level is reset to zero after the replacement. The expected operational time of

the system in [t k-1 , t k ) is ∆T 0 R t f |Xt k-1 (t | 0)dt (32) 
• The system is left as it is at t k-1 (Scenarios C and D). Its degradation level remains unchanged and is equal to y. The expected operational time

of the system in [t k-1 , t k ) is ∆T 0 R t f |Xt k-1 (t | y)dt (33) 
According to the above analysis, the expected operational time can be calculated as C ∞ (∆T, R 0 , P 0 ) (35)

E π [τ (∆T )] = ∆T 0 R tf |Xt k-1 (t | 0)dt • ∞ 0 ∞ L π(y, v)dy dv Scenario A + ∆T 0 R t f |Xt k-1 (t | 0)dt • r 0 0 L x 0 π(y, v)dy dv Scenario B + ∞ r 0 L x 0 ∆T 0 R t f |Xt k-1 (t | y) • π(y, v)dt dy dv Scenario C + ∞ 0 x 0 0 ∆T 0 R t f |Xt k-1 (t | y) • π(y, v)dt dy dv Scenario D (34) 

Numerical examples

In this section, we first verify the necessity of taking into account the market price volatility in PdM decisions. The performance of the proposed PdM policy is then analyzed with respect to different volatility levels and cost configurations.

Necessity of taking into account the market price volatility in PdM decisions
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We consider herein two PdM policies:

• The proposed PdM policy, named (∆T, R 0 , P 0 )-policy. The PdM decisions are done based on both the system conditional reliability and the interest rate level (see subsection 3.2);

• (∆T, R 0 )-policy. The price volatility does not considered in the decisionmaking because P 0 was removed. At each inspection time, the system is

replaced correctively if x ≥ L and preventively if R t f |Xt k (t k+1 | x) < R 0 and x < L.
The two policies were applied to the same system. The system degradation is described by the gamma process with α = 0.1 and β = 0.1. The system is considered to be failed when its degradation level reaches the limit L = 15. The parameters of the maintenance cost model are given in table 1. Note that the above values were chosen arbitrarily to verify the effectiveness of the proposed maintenance policy.

Interest rate parameters

In order to find the optimal values of the two policies' parameters, the exhaustive search method was applied. This method is an exact one in which all possible solutions in the search space are examined. In our case, the search space is defined as follow : ∆T is between 1 to 10 with a step of 1 and P 0 and R 0 are between 0 to 1 with a step of 0.1. Note that we can choose the same intervals with smaller steps but the computational time will be significantly increased. the inspection cost, the downtime cost rate, and the ratio between the CR and CR costs. For more details, the data given in table 1 are remained unchanged, except the maintenance costs. The parameters used for the sensitivity analysis to the maintenance costs are reported in table 3. (∆T ; R 0 )-policy provide the same performance (figure 7a). Finally, it should be noted that the performance of our policy is always better than that of (∆T ; R 0 )-policy. It provides the same performance level as (∆T ; R 0 )-policy, but only in the worst cases when the inspection cost, the downtime cost rate or the CR cost are extremely high.

Sensitivity analysis to Figures Maintenance costs Inspection

Conclusions
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In this paper, we propose a PdM policy which allows to take into consideration market price volatility. An analytical method has been developed based on the semi-regenerative property of the maintained system to estimate the performance of the proposed policy. Different numerical studies show that taking 
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 0 y-1 e -u du denotes the complete gamma function; α and β are the shape and scale parameters respectively; the average and variance values of the increment are µ = α/β and σ = α/β 2 . The behavior of the degradation process then depends closely on the couple of parameters (α, β).

  Figure 1a sketches an example of the interest rate modeled by a CIR process with a = 0.4360; b = 0.0612; c = 0.1633; 200 and r 0 = 0.08 (interest rate level at time t = 0).

Figure 1 :

 1 Figure 1: (a) three interest rate paths modeled by the CIR model; (b) three PR cost paths modeled by the LD model

Figure 2 :

 2 Figure 2: Illustration of the maintenance decision-making when the proposed PdM policy is applied

  describing the state of Y t at the beginning of each inspection time is a couple embedded Markov Chain (MC), denoted Ŷk k∈N = X k , r k k∈N , with continuous state space in (R + × R + ) . X k k∈N and ( r k ) k∈N are the single embedded Markov Chain of Xt and r t at the beginning of each inspection time respectively.

28 )

 28 In the above equation, the expressions of f α•∆T,β (•), f rt|rs (• | •), and π 2 are well defined by equations 1, 3, and 21. Equation 28 can be rewritten in form 340 π 1 = g (π 1 ) . It can be therefore solved numerically based on the fixed point method. The numerical algorithm and its validation will be discussed in more detail in Appendix B.

Figure 3 :Figure 3

 33 Figure 3: Illustration of the stationary law π

  ) where, C p (∆T ), C c (∆T ), and τ (∆T ) are the cumulative PR cost, CR cost and operational time in a semi-regenerative cycle ∆T ; E π (•) is the expected values with respect to the stationary law π. 350 The expected quantities E π [C c (∆T )] , E π [C p (∆T )] , and E π [τ (∆T )] can be calculated thanks to the stationary law π. The expected CR cost is equal to the product of the CR cost and the CR probability at t k-1 .

Figure 4 :

 4 Figure 4: The convergence of C∞ obtained by Monte Carlo simulations

  a = 8; b = 0.40; c = √ 2ab; r 0 = 0.5; Maintenance costs p = 60.65; c = 75.82; c i = 10; c d = 35.

  The results show that by taking into account the market price volatility, the proposed maintenance policy helps to save around Saving = (11.36 -10.83) 11.36 • 100 ≈ 5% (36) Different shapes and iso-level curves presented in figure 5 confirm the existence 390 of the optimal values of the policy parameters. With respect to the given data, we have ∆T * = 4, R * 0 = 0.8, and P * 0 = 0.7.

Figure 5 : 395 Figure 6 :

 53956 Figure 5: Shapes & Iso-level curves of C∞ when (∆T, R 0 , P 0 )-policy is applied

cost figure 7 pTable 3 :

 73 Figure7ashows that the performance of the proposed policy decreases when

Figure 7 :

 7 Figure 7: Sensitivity of Saving and decision parameters to the inspection cost

Figure 8

 8 Figure 8 represents the results obtained from the sensitivity analysis of the

Figure 9 :

 9 Figure 9: Sensitivity of Saving and decision parameters to the ratio between CR and PR costs
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Figure 10 :

 10 Figure 10: Stationary laws by using the simulation and by the invariant equation solving

  

  Joint process of ( X t ) t∈R + and (r t ) t∈R + E

	PdM	Predictive Maintenance	r k		Interest rate value at t k
	PR	Preventive replacement	r0		Interest rate value at t = 0
	CR	Corrective replacement	f rt|rs (u|v)	Transition density function of r t
	CIR	Cox-Ingersoll-Ross process	P C p t k+1	|C p t k	(z|z) PR cost-saving probability at t k
	LD	Log-Diffusion process	P 0		PR cost-saving threshold
	p.d.f	Probability Density Function	P * 0		Optimal PR cost-saving threshold
	w.r.t	With Respect To	I Q (•)		Modified Bessel function
	t k	Time of k th inspection	Q m (p, q)	Marcum-Q function
	∆T	Inspection cycle	a		Mean reversion speed
	∆T *	Optimal inspection cycle	b		Long-run mean
	(X t ) t∈R +	Degradation process	c		Volatility rate
	( X t ) t∈R +	Degradation of the maintained system (C p t ) t∈R +	PR cost process
	( X k ) k∈N	Markov chain embedded in ( X t ) t∈R +	(C c t ) t∈R +	CR cost process
	L	Failure threshold	p		PR constant
	α	Gamma shape parameter	c		CR constant
	β	Gamma scale parameter	π 2		Stationary law of r k
	f α,β (x)	p.d.f of gamma distribution	π 1		Conditional stationary law of X k
	R tf |Xt k (t|x) System conditional reliability at t k	π		Joint stationary law of Y k
	R 0	Reliability threshold	c i		Inspection cost
	R * 0	Optimal reliability threshold	c d		Downtime cost rate
	Γ(y)	Gamma function	C ∞		Long-term maintenance cost rate
	γ(α, y)	Lower incomplete gamma function	C p (T )		Cumulative PR cost
	(r t ) t∈R +	Interest rate process	C c (T )		Cumulative CR cost
	( r k ) k∈N	Markov chain embedded in (r t ) t∈R +	τ (T )		Cumulative operational time
	(Y t ) t∈R +				

π (•) Expected values w.r.t measure π ( Y k ) k∈N

Couple embedded Markov Chain

  and the probability that the PR cost at t 3 is cheaper than that at t 2 is small (P C p Otherwise, at time t 7 = 70, X t7 < L, R t f |Xt 7 (t 8 | x) < R 0 , but the probability that the PR cost at t 8 is cheaper than that at t 7 is high

		t 3	|C P t 2	(z | z) < P 0 ), a PR activity is then carried out imme-
	(P C p t 8	|C P t 7	
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diately at this time.

Table 1 :

 1 Parameters of the maintenance cost model

Table 2

 2 

	reports the optimal configurations of the two PdM policies obtained by
	the exhaustive search.		
	Policies	Optimal parameters	C ∞
	(∆T, R 0 )-policy	∆T * = 4, R * 0 = 0.7	11.36
	(∆T, R 0 , P 0 )-policy ∆T * = 4, R * 0 = 0.8, P * 0 = 0.7 10.83

Table 2 :

 2 Optimal parameters of (∆T, R 0 )-policy and (∆T, R 0 , P 0 )-policy

From these above analyses, we can conclude that taking into account the market price volatility is necessary to improve the PdM decision making. The sensitivity analysis will be carried out in the next subsections to reinforce this conclusion.

Sensitivity analysis to the price volatility characteristics

In this subsection, the saving, defined by equation 36, is analyzed with respect to various trends of the interest rate, representing factor of the market price volatility. To this end, two policies (∆T, R 0 , P 0 )-policy and (∆T, R 0 )policy were applied to the same system with data given in The obtained results are plotted and represented in figures 6a, 6b, 6c and 6d. Figures 6b and6c show that the long-run parameters c and b have strong impacts on the performance of the proposed policy. The higher the levels of the volatility rate and long-run mean are, the higher the fluctuation level of the maintenance costs is, and therefore the higher the saving is. This means that the proposed policy is especially suitable for the cases in which the price volatility level is high. Otherwise, the saving does not much depend on the short-term parameters a and r 0 (see figures 6a and 6d). This conclusion seems to be reasonable since our maintenance objective (the maintenance cost rate) is evaluated for long-run horizons. The impacts of temporary phenomena driven by the short-term parameters (a and r 0 ) are then less important when compared to that of permanent phenomena driven by the long-term parameters (b and c).

reduce the downtime (figure 8b). Given that the system has been already inspected frequently, R * 0 is high to avoid over-maintenance (figure 8c). Finally, proposed policy to the ratio between CR cost and PR cost. Figure 9a shows that the performance of our policy decreases when the ratio increases. The increase 445 of the ratio means that the CR cost increases. However, the increase of CR cost has less impacts on the inspection cycle (figure 9b) or R * 0 (figure 9c) when into account the price volatility in PdM decision-making can help to reduce significantly the maintenance cost. In addition, the effectiveness of the proposed policy is also verified. From a practical point of view, the proposed policy is suitable for the cases where the level of volatility is high and for the systems in which maintenance costs such as inspection cost, downtime cost rate, or CR cost are not extremely expensive. It is therefore applicable to most production systems. Our future research works will focus on the application of the proposed PdM model to the real systems with real data.

Appendices

Appendix A : Non-central chi-squared distribution

The p.d.f of the non-central chi-squared distribution is defined as

where, k is an integer number representing the number of degrees of freedom, and λ > 0 is the non-centrality parameter.

A random variable X follows the non-central chi-square distribution can be expressed as the sum of the squared of k independent, normally distributed random variables X i with means µ i , and unit variances [START_REF] András | Properties of the probability density function of the non-central chi-squared distribution[END_REF].

The non-centrality parameter λ is related to the mean of the random variables

Algorithm 1: Adapted fixed point method for solving equation 28

Step 1. Initialize π 1 (y | v) with any probability distribution function, e.g. p.d.f of the gamma distribution:

Step 2. Introduce π 1 (y | v) into the right-hand side (RHS) of equation 28. Calculate the RHS and set it as the value of π 1 (x | u).

Step 3. Stop the algorithm when the maximum number of iterations is reached or when the difference between π 1 (x | u) and

and return to step 2.

Step

To verify the accuracy of equation 28 as well as the above numerical method, Monte Carlo simulation is used. For more detail, Algorithm 1 and the Monte Finally, it should be noted that if the formation of π 2 (equation 21) is not available, the stationary laws can be determined by using Algorithm 1 to solve directly the equation 19. However, its convergence speed is low. Indeed, w.r.t the above parameters, the algorithm converges after 33 iterations when the formulation of π 2 is available; otherwise in case when the formulation of π 2 is unknown, the algorithm needs up to 54 iterations to reach its convergence.