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Technologie de Compiègne
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60203 Compiègne, France
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Abstract

At Université de Technologie de Compiègne (UTC), complete course timeta-
bles are made available to students for the forthcoming semester, then students
select their courses. A student cannot attend two events at the same time
without violating a hard conflict constraint. Ideally, a conflict-free individual
timetable will be created for each student, but it may be the case that there is
no feasible solution for all students simultaneously. With thousands of students
and hundreds of courses, UTC’s Student Scheduling Problem (SSP) cannot be
processed manually. A heuristic designed decades ago can no longer be used,
because too many students are left non-assigned and because the heuristic was
not designed to deal with the current requirements. In this study we propose
a preprocessing that reduces the size of instances, together with lower bounds
that allow the quality of computed solutions to be assessed. Where most of
the graphs relating to students’ hard conflict constraints are interval graphs, we
show that a clique formulation of the hard conflict constraints may substantially
reduce the number of equations in relation to other formulations. We propose
integer linear programming (ILP) formulations to address the current require-
ments. We test an ILP with a global objective function and other ILPs within
a lexicographic scheme. We investigate valid inequalities for reducing computa-
tion times. We report our computational experiments and results obtained on
real instances from UTC. The solution method has proved its effectiveness and
is now the tool used for student scheduling at UTC.

keyword: University timetabling, Preprocessing, Integer Programming, Valid
inequalities, Lexicographical optimization

1. Introduction

For decades, course and examination timetabling problems in schools and
academic institutions have been the subject of intensive research. This is be-
cause of the wide variety of problems of practical interest, given institutions’
differing organizational requirements, and because usually these are hard opti-
mization problems that can be addressed using a wide range of methods.

In our university (UTC), course timetables are first drawn up, and students
can consult these when choosing the courses for which they wish to enroll. Once
students’ choices are known, in order to provide each student with an individual
timetable a Student Scheduling Problem (SSP) with multiple objective criteria
relating to our institution’s requirements needs to be addressed.

At UTC, a course is known as a Unité de Valeur (UV) and corresponds to
a total volume of working hours over a semester. The work to be undertaken
by the student will involve a variety of learning activities (activity) including
attending lectures, taking part in tutorials and meetings, and doing labs (i.e.,
practical sessions). For the purposes of these learning activities the students
enrolled on a UV will be assigned to a section for each activity. Lectures usually
have a single section, while for other activities students will usually be assigned
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among different sections (smaller groups scheduled to do the activity at different
times). Each section has at least one event scheduled either weekly or fortnightly
and with a set duration (between one and four hours). Most events take place
in a room with a limited capacity. As an example, there are UVs that have one
weekly lecture section (2-hour event, 144 students), six weekly tutorial sections
(2-hour event, 24 students) and twelve fortnightly lab sections (4-hour event, 12
students). The sections’ sizes are determined according to the type of activity
and the available resources (number of seats, computers, lab benches, etc.).
The timetables made available to students at the time of enrollment include
the rooms and the time slots for the events scheduled for the different sections.
Thus, students are able to take this information into account in their choice of
UVs. Today, there are on average 2500 students to be assigned to 1400 sections.
Instances are therefore too large to be processed manually, and the number of
students is also expected to rise in the coming years.

A student must be assigned to one section for each of the learning activities
that constitute his/her chosen courses. Our university does not allow a student
to be assigned to more than one event at the same time. This is a strict institu-
tional constraint (hard conflict constraint). Moreover, as long as a student has
not been assigned to a section for all the learning activities in which he/she is
required to participate, that student is deemed non-assigned and is not allowed
to undertake the UV. This is also a strict constraint.

Even when a there is a possible assignment to sections that for each student
taken individually is compatible with the different course timetables, there might
not be a feasible solution for all students simultaneously (for example, because
of the capacities of rooms). A heuristic created decades ago was, for many
years, used to assign students to sections, but tens of students were left non-
assigned every semester, and it was simply not known whether an alternative
more complete assignment might exist. This heuristic has now been abandoned
because of its deficiency in this respect and because of new requirements by the
university that the heuristic failed to address.

Until recently, all students had to be assigned to a section for every activity
included in their chosen set of UVs. Now, in a drive to reduce operating costs,
the university will sometimes exempt students who retake a UV from having to
do all of the activities a second time. For example, when a student retakes a UV
that includes labs, provided that grades for the labs were deemed acceptable the
first time around, the student may be given an exemption for labs and not be
required to be assigned to a lab section a second time (which saves consumables).

Moreover, the university is attempting to provide a more flexible curriculum
in order to respond better, for example, to the needs of students with disabilities
and the needs of industrial sandwich students.

Given the changing context, our university has defined new requirements.
The first requirement is a more successful minimizing of the number of non-
assigned students, on the basis of sets of activities rather than sets of UVs.
The second and third requirements are minimizing the number of hurried moves
(i.e., moves for which little time is available) between sites and between buildings
on the same site for students with reduced mobility. The fourth requirement is
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minimizing the number of sections into which particular populations of students
are assigned. The objective, in some activities, of assigning certain subsets of
students to as few separate sections as possible has arisen from a changing cur-
riculum and from the needs of students with disabilities. The fifth requirement
is minimizing the number of hurried moves between sites for students in general.
UTC has placed these new requirements in the order of priority given above,
and this order is reflected in our SSP criteria.

In this study, we report our works and experiments related to the Student
Scheduling Problem (SSP) that we face every semester. Given that tens of stu-
dents are non-assigned using a heuristic approach, we have chosen to investigate
an exact approach. However, the more criteria there are, the larger the instance
to be solved becomes and computation times can be in some cases too large. We
also consider ways of reducing the size of the instances, different formulations
designed to reduce the number of constraints, and valid inequalities to reduce
computation times.

The contributions of this work can be summarized as follows:

• We tackle the practical SSP at UTC that requires a specific combination
of hard and soft constraints.

• We propose a preprocessing that proved to be effective in reducing the
size of instances.

• We derive lower bounds for the minimum number of moves and the mini-
mum number of sections to be used for grouping students together, against
which the solutions that we obtain can be compared.

• We introduce a new clique-based formulation for the hard conflict con-
straints. This formulation substantially reduces the number of equations
in relation to other formulations where most of the graphs relating to
students’ hard conflict constraints are interval graphs.

• We propose an ILP formulation seeking to minimize a global objective
function, and ILP formulations within a lexicographic optimization scheme
to address a series of criteria in turn.

• We investigate valid inequalities with the aim to speed up computation
times and to help to attain optimal solutions in cases where there are
larger numbers of students that cannot be assigned.

• Using fifteen real-world problem instances, we show how the lexicographic
optimization scheme can be used to overcome the difficulty of solving
the UTC’s SSP considering all the terms of the objective function while
attaining optimal solutions.

The entire process can be adapted to solve other real-world standalone SSP.
Structure of the paper: Section 2 is a review of the literature relating to

student scheduling problems. Section 3 outlines the supported process and

4



the heuristic used thus far, and details the current institutional requirements
together with data and parameters. Section 4 presents our proposed preprocess-
ing for reducing the size of instances, and the lower bounds that we established
for criteria related to moving and grouping. We discuss the conflict graph for
a student and the condition that gives us a reasonable number of clique-based
equations for enforcing conflict constraints. Section 5 details the ILP model
with a global objective function, our lexicographic optimization, and the valid
inequalities that we used in our experiments. Section 6 reports our computa-
tional experiments with our university’s real-world data and discusses the results
we obtained. Conclusions and future work are given in Section 7.

2. Literature review

University timetabling problems have been extensively studied to provide in-
stitutions with efficient solving approaches. Institutions organize their teaching
in different ways and have different hard constraints. Various soft constraints
are used to assess solutions. Surveys and annotated bibliographies by Schaerf
(1999), Burke and Petrovic (2002), Lewis (2008) Qu et al. (2009), Pillay (2014)
and Babaei et al. (2015) give a good overall picture of how university timetabling
problems have been addressed and they review different solving methods.

To solve timetabling problems, different types of approaches have been used.
Approximate approaches such as heuristics (Abdullah, 2006), metaheuristics
(Kaur and Saini, 2020) and hyperheuristics (Pillay, 2016), among others, are
widely used. They provide a good trade-off between the quality of the solution
and the computation time. Exact approaches have also been used for modelling
purposes (McCollum et al., 2010), to provide lower bounds (Arbaoui et al.,
2013, 2019) or to address certain problems (Arbaoui et al., 2015; Woumans
et al., 2016). Exact approaches have sometimes been incorporated into approx-
imate solution approaches such as matheuristics (Méndez-Dı́az et al., 2016).
Constraint-based approaches have also been used for university timetabling
problems (Müller and Murray, 2010; Hoshino and Fabris, 2020).

The Student Scheduling Problems (also denoted as Student Sectioning Prob-
lems) that we consider here are timetabling problems that involve building in-
dividual timetables for every student by assigning students to sections for the
different learning activities that constitute courses.

These SSPs can be considered as intrinsic to course timetabling problems
or as standalone problems to be solved independently after timetabling. This
reflects two different ways of organizing teaching. In the first, students choose
their courses, and then given the students’ choices, learning activities of courses
are scheduled and students simultaneously assigned. SSP is therefore an implicit
part of the scheduling operation. In the second, course timetables are first built
according to historical data (previous semester’s timetables are usually used and
modified). Students then choose their courses, taking into account these pro-
posed timetables. Once their choices have been made, students are assigned to
the corresponding learning activities. In this case, SSP is a standalone problem.
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When SSP is implicit in a university course timetabling problem, we face a
type of problem usually denoted as Post Enrollment Course Timetabling (PE-
CTT) as presented in International Timetabling Competitions (McCollum et al.,
2007; Müller et al., 2018). This type of organization, in which students are as-
signed as timetables are created can also be encountered in high schools. A
number of works that tackle PE-CTT-like problems can be found in the lit-
erature. Song et al. (2018) solved PE-CTT using an Iterated Local Search
(ILS) approach. Akkan and Gülcü (2018) proposed a bi-criteria hybrid genetic
algorithm with a robustness objective. In Hossain et al. (2019), the authors
also considered the robustness for course timetabling problems. They proposed
a PSO-based approach including swap sequences, selective search and forceful
mechanisms for velocity operations. Müller and Murray (2010) also used an It-
erative Local Search approach (ILS) to solve the problem at Purdue University.
Thepphakorn and Pongcharoen (2020) proposed a hybrid cuckoo search ap-
proach to solve the course timetabling at the Faculty of Engineering, Naresuan
University. Hoshino and Fabris (2020) used an ILP-based model to solve the
PE-CTT at a Canadian high school. All these works consider SSP as a subprob-
lem with variants depending on the institution’s requirements. The most widely
encountered requirement in student assignment is that a student should have
a conflict-free timetable, but this is generally a secondary criterion (soft con-
straint) alongside the primary criteria that relate to the course/room/timeslot
allocation that must be respected (hard constraints).

When SSP is solved as a standalone problem, the objective is to provide ev-
ery student with an individual timetable, while also considering various require-
ments related to students and the institution. Laporte and Desroches (1986)
provided a mathematical formulation to model their student scheduling prob-
lem, together with a heuristic for tackling the problem. Respecting student
choices is the only hard constraint while time slot conflicts, room capacity and
minimizing the number of moves between the sites are soft constraints. Sabin
and Winter (1986) looked at the impact of a greedy approach to help reduce the
cost of rising enrollment numbers. Miyaji et al. (1988) applied a goal program-
ming approach to partition students into groups, taking into account orders of
preference expressed by students and constraints relating to laboratories. Feld-
man and Golumbic (1990) proposed a Constraint-Satisfaction-Problem based
approach, with the system being made available to students to draw up their
timetables during the registration period. Tripathy (1992) proposed an Integer
Linear Programming (ILP) approach to design a computer-aided system using
students’ choices of elective courses. Cheng et al. (2003) considered the SSP in
North American high schools and proposed a multi-commodity flow formulation
to satisfy students’ choices. Van den Broek et al. (2009) considered the SSP of
TU Eindhoven with additional constraints to be satisfied: a minimum number
of students for each course, urgent courses and student workload. The au-
thors solved TU Eindhoven’s SSP using an ILP approach. Dostert et al. (2016)
investigated the complexity analysis related to SSP, the authors explored the
boundaries between easy and difficult cases.
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Existing works on SSP addressed real-world problems and complexity anal-
yses. We report here the constraints that have been considered in these works:

C1: Conflict-free, a student cannot attend two courses are the same time.
C2: Preferences, students’ preferences should be satisfied.
C3: Capacity, a course/section capacity cannot be exceeded.
C4: Minimum number of students should be assigned to a course/section.
C5: Maximum student workload should not be exceeded per student.
C6: Course pre-assignment, students should be assigned to selected courses.
C7: Fixed/Non-fixed time slots, students have preferences for time slots.
C8: Course balancing, the sizes of course sections should be balanced.
C9: Moves between sites, certain moves between sites should be avoided.

C10: Urgent courses, some courses should be priority assigned to students.
C11: Spreading, courses should be spread over day (or week) for students.
C12: Breaks, students should have breaks between courses.
C13: Unavailability, students are unavailable for some time slots.
C14: Grouping of students, certain populations of students should be grouped.

Type C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14
Laporte and Desroches (1986) R S H S S S S S S
Sabin and Winter (1986) R H
Miyaji et al. (1988) R H S H
Feldman and Golumbic (1989) R H H H S
Tripathy (1992) R H H H
Cheng et al. (2003) R/C H H H
Van den Broek et al. (2009) R/C H H H S H H S
Müller and Murray (2010) R S H H
Dostert et al. (2016) C H H H H
Our study R H H H S S

Table 1: A comparison between the studied problem and existing works.

In Table 1 we show the sets of constraints considered. In column “Type”, R
stands for “Real-world” problem and C stands for “Complexity analysis”. The
other columns refer to the constraints C1 to C14, ‘H’ stands for “Hard” and ‘S’
stands for “Soft”, this refers to whether the constraint has been considered as a
hard or a soft constraint. As it can be seen, the constraints are considered either
as hard or soft ones according to the university’s requirement. The constraints
C1 to C3 are widely encountered since they reflect usual requirements of many
universities. The others are different since they reflect specific requirements.
Comparisons, if any, are solely conducted with the systems used thus far by
universities. The instances used for the experiments are not publicly available.
To the best of our knowledge, no benchmarks on standalone SSP are available
for comparison purposes.
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Here, we consider a standalone SSP that is an NP-complete problem even
when trying to find a schedule for one student as presented by (Cheng et al.,
2003) in relation to their problem. Van den Broek et al. (2009) and Dostert et al.
(2016) showed that the student scheduling problem becomes an NP-complete
problem when sections have multiple events in the timetable and when no times-
lot conflicts are allowed for students. These subproblems can also be identified
for the UTC problem thus making the problem we face NP-hard.

The last line on Table 1 shows the constraints we consider in this study. The
first three are considered in most works. In contrast to Laporte and Desroches
(1986), we take into account the time needed for the moves by students. This
permits to pay particular attention to students with reduced mobility. Moreover,
we consider here the new constraint C14, the grouping of particular populations
of students, with a twofold objective: i) furthering UTC’s inclusion strategy
for disabled students by pairing a student who needs particular assistance with
students that can help, and ii) reducing our operating costs via an adapted
sharing of existing UVs.

The practical SSP at UTC requires a specific combination of hard and soft
constraints that has no been considered in the literature. The university’s cur-
rent requirements are detailled in the problem description section.

3. Problem description

We now outline the supported process and the heuristic used so far by our
university. We first describe the student scheduling problem that our institution
faces today. We then discuss data and parameters.
Overview of the supported process

Teaching at Université de Technologie de Compiègne (UTC) is provided by
different academic departments. Every semester, each department chooses the
UVs that will be offered to students. Sets of UVs that can be chosen by students
enrolled in the department’s program are identified. Timetables are then drawn
up and made available to students through a web page that remains open for a
few weeks.

Students select their UVs via an interactive web page, which prevents them
selecting any set of UVs for which there is no feasible timetable. Typically a
student will enroll on between five and seven different courses per semester.
A student’s choice of UVs for the current semester also needs to be checked
against UVs taken in previous semesters, to ensure that current choices are
consistent with previous choices within a long-term program of study. At the
end of the registration period, the various heads of department monitor the
students’ choices. If a student’s choice of UVs is deemed problematic, the head
of department managing the curriculum urges the student to make changes.

Once enrollments have been finalized, there remains a large student schedul-
ing problem to be solved in order to provide every student with an individual
timetable. With thousands of students to be assigned to sections, manual as-
signment is out of the question.
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The heuristic used so far
A greedy heuristic, denoted here as H, was created some decades ago to

assign students to sections for every activity of their selected UVs (Vayssade
(1978)). This heuristic (1) determines an order in which students are to be
processed and (2) fills up sections progressively. The rule used to assign students
is first fit.

For a student, a rough estimate of the number of possible individual timeta-
bles is made, corresponding to the product of the number of available sections
in the different activities constituting the student’s chosen UVs. Students are
then sorted in ascending order of this estimate, to be assigned to sections in
turn. The reasoning behind the heuristic is that students with fewer potential
individual timetables need to be assigned first, because these students are a
priori more difficult to assign.

Assigning students is then done in several stages, during each of which a
given percentage of any section’s maximum capacity may not be exceeded. For
instance, a three-stage assignment process could use the following percentages:
50%, then 70%, then 100%. At each stage students are processed in the es-
tablished order, and are considered assigned once they have been assigned to a
section for each activity of all their chosen UVs. Non-assigned students remain
candidates at the following step, when additional capacity will be available.
Sections are always considered in the same order. The progressive expansion
of available capacity is intended to prevent sections that are examined earlier
from filling up too quickly, given that the first fit rule will assign a student to
the first feasible section.

Tuning the number of stages and the percentages of capacity to be used inH,
with the objective of reducing the number of students who remain non-assigned
after the final stage, is a challenging task. Whatever the tuning, in practice there
are always students who remain non-assigned, and it is not known whether a
feasible solution exists that might potentially have avoided this situation.

Another limitation of this heuristic is that it cannot deal with learning activ-
ities considered as separate entities, but only with the complete set of learning
activities for a given UV. To enable the heuristic to deal with students who
are given exemptions from certain activities, administrative staff have had to
devise workarounds, creating additional dummy UVs including only a subset
of the learning activities of the original UV. This extra work is unwelcome,
time-consuming and frequently a source of errors.
The university’s current requirements

When students retake a UV, it is not always necessary to have them redo a
learning activity that they previously did satisfactorily. The university is thus
able to save money by reducing the number of lab sections and expenditure on
costly consumables. The lecturer in charge of the UV decides on exemptions
when students retake. The problem we face today is to assign every student to
a set of learning activities, rather than to a set of UVs.

A student must be assigned to a section in all of his/her learning activities
for the current semester. Where a complete assignment of the student fails,

9



he/she is said to be non-assigned. The assignment of a student to only a subset
of his/her desired activities is not tolerated. This is a strict institutional require-
ment, showing why we need to compute better solutions than those provided
by the heuristic H. Our first criterion is therefore to minimize the number of
non-assigned students.

Sections have events held on different sites, but moves between sites are
undesirable where there is little time available to travel from one site to another.

Students with reduced mobility face additional difficulties, not only when
moving from one site to another, but also when moving between buildings on
the same site. For these students we seek to minimize moves that cannot be
made comfortably because of the short time available. As part of our university’s
strategy for inclusion, our second and third criteria are therefore to minimize,
for students with reduced mobility, the number of moves between buildings on
the same site and the number of moves between sites when there is little time
available (hurried moves).

A new requirement of our university is to group some populations of stu-
dents, for certain learning activities, into as few sections as possible. Some
students with disabilities are accompanied by other student volunteers who as-
sist them in taking notes and/or in handling equipment and materials. There is
consequently a need to specify sets of students, with the objective of assigning
them to the same section. To meet the growing demand for engineering degrees,
UTC allows some students to pursue their studies while simultaneously being on
a long-term contract with a company. Tripartite apprenticeship agreements are
drawn up between the student, the company and the university. Apprenticeship
students alternate between periods of work inside the company and periods of
study at UTC. The duration of periods is between 4 and 6 weeks. Today, be-
cause of the constraints of their particular timetables, apprenticeship students
have specific apprenticeship learning activities, but many of these activities are
indistinguishable from those undertaken by students who are at UTC full-time.
If apprenticeship students are able to take part in standard learning activities
rather than having their own special learning activities, teaching costs can be
reduced. But to facilitate this, the apprenticeship students need to be assigned
to the same sections. Grouping apprenticeship students into as few sections
as possible of learning activities makes it easier to monitor their progress and
to provide them with specific support (mini-group work), while they undertake
the same activities as full-time students. Our fourth criterion is therefore to
minimize the number of sections used in assigning certain sets of students to
certain activities. This is a key element in allowing apprenticeship students and
full-time students to have a shared curriculum.

UTC has recently decided that travel between sites by students when little
time is available is undesirable for any student, irrespective of whether he/she
has reduced mobility. Our fifth criterion is therefore to minimize the number of
moves between sites where little time is available (hurried moves) for students
in general.

Given the changing context, the order of priority on the criteria to be ad-
dressed is dictated by our university:
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1. Minimizing the number of non-assigned students.
2. Minimizing the number of hurried moves for students with reduced mo-

bility (sites, buildings).
3. Minimizing the number of sections used in assigning certain sets of stu-

dents to certain activities.
4. Minimizing the number of hurried moves for students in general.

Data and parameters
The data and parameters are the following:
S : set of students, size nS

Ssrm : set of students with reduced mobility who have to move between sites
and buildings, size nSsrm

Sal : sets of students to be grouped into the minimum number of sections of
an activity a, size nSal

Sosm : set of other students who have to move between sites, size nSosm

A : set of learning activities, size nA
Sa : set of students to be assigned into activity a, size nSa

K : set of sections, size nK
Ka : set of sections of activity a, size nKa

pk : seating capacity of section k

As : set of learning activities of student s, size nAs

Ks : set of sections (∪a∈AsKsa) where student s can be assigned to, size nKs

Ksa : set of sections of activity a where student s can be assigned to, size nKsa

M : conflict matrix between sections, size nK × nK
Gs(Ks, Es) : conflict graph of student s, one conflict graph for every student

∆t : parameters, times to move, different values for Ssrm and Sosm students
M∆t

: matrices, used to check moves between sections with time to move ≤ ∆t

Ds,Bs : for a student s ∈ Ssrm, sets of quadruplets {a, k, a′, k′}, used for checking
hurried moves

Ws : for a student s ∈ Sosm, set of quadruplets {a, k, a′, k′}, used for checking
hurried moves

The set of students S to be assigned is given. The set of available sections
for every student is known, and within these sections, the site and the building
are known for every event where a room has been scheduled. We can compute
Ssrm and Sosm, the set of students with reduced mobility and the set of other
students who may need to move between sites (osm stands for other students’
moves). The sets Sal are given, corresponding to the sets of students to be
grouped. The index l is required, since there may be more than one set of
students to be grouped for a given activity.

The set of learning activities is A, and the set of students to be assigned into
activity a is Sa. The set of sections planned in the timetables is K, and every
section k has a seating capacity pk.

For a student s, Ks is the set of sections to be considered and Ksa is the set
of sections into which this student can be assigned for an activity a.

11



M is the conflict matrix between sections, with mkk′ = 1 if sections k and k′

conflict, 0 otherwise. Students cannot be assigned to two sections whose events
overlap in time; sections of different activities with overlapping events are in
conflict. For a student s, the conflict graph is denoted as Gs(Ks, Es), where the
nodes are sections k ∈ Ks, and where there is an edge [k, k′] ∈ Es if mkk′ = 1.

The parameters ∆t are used to set the time available for travel from one event
to another. When timetables are drawn up, where possible a fifteen-minute
break is scheduled between back-to-back events. This is often not enough to
allow students with reduced mobility to move from one building to another on
the same site or to move to a different site. For students in general, fifteen
minutes may not be enough to move comfortably between sites. For students
with reduced mobility, our university has stipulated that the ∆t sufficient for
moves between buildings on the same site should be 30 minutes, the ∆t for
moves between sites 60 minutes. For other students, the ∆t for moves between
sites is 45 minutes.

The M∆t
matrices are to be used to detect whether there is enough time

to move between events belonging to two non-conflicting sections. For two
non-conflicting sections k, k′ we update the time slots of their events, bringing
forward the start and delaying the end by a value ∆t in each case. Events
may be selected that are planned on different sites or in different buildings on
the same site. By checking intersections of updated events we build the M∆t

matrices. An entry is set to zero if there is strictly more than ∆t time to move
between the events of sections k and k′, one otherwise.

For every student s ∈ Ssrm we compute two sets of quadruplets Ds and Bs

using the M∆t
matrices, and the sets As and Ksa. If section k of activity a and

section k′ of activity a′ are such that their events do not respect a given time
∆t we set up a quadruplet {a, k, a′, k′}. If student s is assigned to section k and
section k′, he/she does not have enough time to move comfortably. The first
set Ds is for moves between sites and the second set Bs is for moves between
buildings on the same site. For every student s ∈ Sosm we similarly compute a
set Ws of quadruplets {a, k, a′, k′} for moves between sites.

4. rss preprocessing, lower bounds and conflict graph

To reduce the size of instances, we propose a procedure for reducing the
sets of sections to be considered for assigning students. We propose a proce-
dure for computing lower bounds for hurried moves (i.e., moves that cannot be
accomplished in ∆t time), and a lower bound on the number of sections used
for grouping students together. Thus, the solutions that we obtain can be com-
pared against the lower bound values. We look at the Gs(Ks, Es) graphs and
we highlight the importance of interval graphs for the clique formulation of the
conflict constraints that we propose.

Preprocessing for reducing the set of sections for activities
We propose a preprocessing that may reduce the number of sections that can

be used to assign a student s. Since a student cannot be assigned to more than
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one section at the same time, the idea is to remove the sections that cannot be
used from the initial set of sections Ks among which student s could be assigned.

For a student s and a learning activity a, any section in Ka may potentially
be used when assigning s to a section k. Thus, initially Ksa = Ka. However, let
a, a′ be two activities for a student s, and let us suppose that activity a has just
one section k. If there exists a section k′ ∈ Ksa′ such that mkk′ = 1, section k′

cannot be used. We therefore have Ksa′ ← Ksa′−{k′}, because section k′ cannot
be used in assigning student s to activity a′, since student s must be assigned to
the uniquely available section k of activity a. We may have nKsa

≤ nKa
. In that

case, Ksa′ is reduced, possibly now comprising in its turn just one section. The
reduction continues to be applied until all uniquely available sections (whether
they were single sections at the start or revealed subsequently) have been used.

We denote this preprocessing as rss (reducing set of sections). For a section
k, checking whether or not mkk′ = 1 for all k′ ∈ (Ks − {k}) costs O(nKs

)
considering the initial set Ks, so the overall complexity of rss for a student
s is O((nKs

)2). It can also reduce the size of the Gs(Ks, Es) conflict graph
corresponding to student s.

Applying rss for every student s can reduce the overall size of an instance.

1 Procedure: MinMovesStudent(M ,M∆t
,nAs

,VKsa
,VT ,nmoves)

Input: M ,M∆t
,nAs

,VKsa
,VT

Output: nmoves

2 if nmoves 6= 0 then
3 Ksa ← VKsa [1 + sizeof(VT )]
4 forall k ∈ Ksa do
5 if NoConflict(M ,VT ,k) = true then
6 push back(VT , k)
7 if nAs

6= sizeof(VT ) then
8 MinMovesStudent(M ,M∆t

,nAs ,VKsa ,VT ,nmoves)
9 else

10 nmoves ← Min(CountHurriedMoves(M∆t
,VT ),nmoves)

11 end
12 end

Lower bounds for hurried moves
Given a M∆t

matrix, the MinMovesStudent procedure computes the smallest
number of moves with an insufficient ∆t for a student s to travel between two
sites (or two buildings). It is a recursive tree search that builds all the individual
timetables for a student s (without considering the other students) and assesses
each of them in relation to a ∆t time value and a geographic criterion (building
or site). By summing these numbers for a set of students, we obtain a lower
bound that can be used in assessing the quality of computed solutions.

The minimum number of moves is the global variable nmoves, set initially to
+∞. The M∆t

matrix is provided relative to the chosen criterion.
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Vector VKsa contains the sets Ksa (sections belonging to activity a that can
be considered in assigning student s), sorted in increasing order of size nKsa .
Vector VT is a timetable under construction (conflict-free sections), initially
empty.

We select the next set of sections to be considered for the next activity (line
3). Sections in the set Ksa are examined in turn (line 4). Given a node in the
tree structure, we have one branch for every possible way of choosing a sec-
tion k for activity a. Function NoConflict(M ,VT ,k) checks whether section k is
conflict-free with a timetable under construction VT (line 5). If k is conflict-free
it is added to VT (line 6). For incomplete timetables (line 7, nAs

6= sizeof(VT )),
the next activity is to be considered (line 8, recursive call). When a feasible
timetable is encountered (line 9, nAs = sizeof(VT )), function CountHurried-
Moves(M∆t

,VT ) counts the number of moves, and nmoves is updated (line 10).
Note that the procedure terminates as soon as a feasible timetable is found
in which all moves comply with the stipulated ∆t (line 2, 0 6= nmoves). The
complexity of the MinMovesStudent procedure is O(Πa∈As

nKsa
).

By applying this procedure for every student in a given population (Ssrm

or Sosm) we obtain an overall lower bound by totalling the computed nmoves.
For students with reduced mobility, we denote as LBSi(srm) and LBBu(srm)
the lower bounds for moves between sites and buildings respectively. For other
students’ moves, we denote as LBSi(osm) the lower bound for moves between
sites.
Lower bound on numbers of sections for grouping sets of students

together
Let Sal be a set (with size nSal) of students to be assigned into the smallest

number of sections for an activity a. Consider all the sections k ∈ Ka for an
activity a and their various capacities pk. Given a set of students Sal for an
activity a, the smallest number of sections that can be used is:

LBal =
⌈

nSal

Maxk∈Ka
pk

⌉
since capacities pk may differ between sections. We obtain an overall lower

bound LBgss (gss standing for grouping sets of students) by totalling the LBal

values.
Gs(Ks, Es) graphs

For a student s, let us consider the set of maximal cliques Cs that are com-
puted on the Gs graph. The set of maximal cliques covers all edges of the Gs

graph. For every clique, conflicts between related sections can be prevented
using a clique inequality. For every student, all conflicts can be prevented using
clique inequalities. Moon and Moser (1965) proved that a graph may have an
exponential number of cliques, and an ILP model with an exponential number
of equations poses substantial problems.

However, some classes of graph have a linear number of maximal cliques as
the number of nodes. This is the case for interval graphs (see Golumbic (2004)).
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Unfortunately, although the Gs graphs are built using time intervals, they
are not necessarily interval graphs, because in our problem a section may have
more than one event.
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Figure 1: The section conflict graph built using time intervals is a C-4.

Figure 1 provides an illustrative example with four sections {k1, k2, k3, k4}
of different activities. Sections k1 and k2 each have two events. A student
assigned to section k1 must attend the two events (e1, e2) and a student assigned
to section k2 must attend the two events (e3, e4). Sections k3 and k4 have one
event each. The graph built using time intervals is a C-4 and not an interval
graph, as shown in Figure 1 (see Gilmore and Hoffman (2003) and Golumbic
(2004)). This case may be embedded in any Gs(Ks, Es).

Assuming that the case depicted in Figure 1 occurs only rarely, almost all
Gs graphs will be interval graphs, since most sections have one event. If a
Gs(Ks, Es) graph is an interval graph there will be at most nKs

= |Ks| maximal
cliques with equality if and only if the Gs graph has no edges (see Lekkeikerker
and Boland (1962) and Shaohan and Wallis (1988)). So, assuming that almost
all Gs graphs are interval graphs, using clique inequalities may give us fewer
equations for preventing conflicts. If a Gs graph is not an interval graph, we
likely have a reasonable number of maximal cliques, since the graph is small. We
observed on our instances that Gs graphs had on average 46.4 nodes (sections
per student).

A clique-based formulation with a reasonable number of equations can be
used to impose the hard conflict constraints in a student assignment problem,
provided that the number of non-interval graphs is small relative to the num-
ber of interval graphs. To ensure that this condition is met, we need to check
whether Gs graphs are interval graphs. An interval graph has a perfect elimina-
tion ordering of its nodes (for each node k, k and the neighbors of k that occur
after k in the order form a clique). In our experiments we check whether a per-
fect elimination ordering exists using the straightforward algorithm presented
in Rose et al. (1976). The algorithm is based on a breadth-first search and finds
a perfect elimination ordering, if any exists, in O(|Ks|+ [Es|) time.

5. Integer linear programming formulations

In this section we present our models for minimizing the five criteria detailed
in Section 3. The instances that we are dealing with are sizeable. We investigate
two formulations for the conflict constraints together with the clique formulation
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that we propose. We first present our decision variables, before introducing an
initial model that has a global objective function with weighted terms. We then
present our lexicographic scheme for addressing the criteria to be optimized. We
also present valid inequalities that may prove helpful in reducing computation
time.

Decision variables
All data and parameters were introduced in Section 3 above. The primary

boolean decision variables governing the assignment are the following:

Ts

{
1 if student s ∈ S is assigned to a section for every activity a ∈ As,

0 otherwise,

Ysa

{
1 if student s ∈ S is assigned to a section for activity a,

0 otherwise,

Zsak

{
1 if student s ∈ S is assigned to the section k of activity a,

0 otherwise.

The secondary boolean decision variables used to count the soft constraint
violations are the following:

Dsaka′k′


1 if student s ∈ Ssrm is assigned to section k of activity a

and to section k′ of activity a′, such that {a, k, a′, k′} ∈ Ds

0 otherwise,

Bsaka′k′


1 if student s ∈ Ssrm is assigned to section k of activity a

and to section k′ of activity a′, such that {a, k, a′, k′} ∈ Bs

0 otherwise,

Vk(al)

{
1 if at least one student s ∈ Sal is assigned to section k of activity a

0 otherwise,

Wsaka′k′


1 if student s ∈ Sosm is assigned to section k of activity a

and to section k′ of activity a′, such that {a, k, a′, k′} ∈ Ws

0 otherwise,
For each student s ∈ Ssrm, for every quadruplet {a, k, a′, k′} ∈ Ds we in-

troduce a boolean variable Dsaka′k′ and for every quadruplet {a, k, a′, k′} ∈ Bs

we introduce a boolean variable Bsaka′k′ . These variables are used to detect
moves by students with reduced mobility where not enough time is available
(hurried moves). M1 corresponds to the number of Dsaka′k′ variables, and M2
the number of Bsaka′k′ variables.

For each set Sal relating to activity a and for each k ∈ Ka we introduce a
boolean variable Vk(al). M3 is the number of Vk(al) variables.

For each student s ∈ Sosm, for every quadruplet {a, k, a′, k′} ∈ Ws we in-
troduce a boolean variable Wsaka′k′ . These variables are used to detect hurried
moves by other students. M4 is the number of Wsaka′k′ variables.
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Integer linear programming model using weighted terms
We now present the ILP model for solving our assignment problems using a

global objective function with weighted terms. We face sizeable instances, and
here we look at three formulations for the hard conflict constraints, the idea
being to retain the most compact formulation.

The objective function using weighted terms to address our assignment prob-
lems is the following:
Min

M1 M2 M3 M4

(
nS −

∑
s∈S

Ts

)
︸ ︷︷ ︸

Nnas

+M2 M3 M4
∑

s∈Ssrm

∑
a,k,a′,k′∈Ds

Dsaka′k′

︸ ︷︷ ︸
NSi(srm)

+ M3 M4
∑

s∈Ssrm

∑
a,k,a′,k′∈Bs

Bsaka′k′

︸ ︷︷ ︸
NBu(srm)

+ M4

(∑
Sal

∑
k∈Ka

Vk(al)

)
︸ ︷︷ ︸

Ngss

+

 ∑
s∈Sosm

∑
{a,k,a′,k′}∈Ws

Wsaka′k′


︸ ︷︷ ︸

NSi(osm)

(1)

subject to one conflict constraint formulation from among the following three:

Zsak + Zsa′k′ ≤ 1


∀s ∈ S ∀a, a′ ∈ As

∀k ∈ Ksa ∀k′ ∈ Ksa′

such that mkk′ = 1
(2a)

∑
a′∈As

k′∈Ksa′
k′ 6=k

mkk′Zsa′k′ +


∑

a′∈As

k′∈Ksa′
k′ 6=k

mkk′

Zsak ≤
∑

a′∈As

k′∈Ksa′
k′ 6=k

mkk′


∀s ∈ S
∀a ∈ As

∀k ∈ Ksa

(2b)

∑
k∈c

Zsak ≤ 1 ∀s ∈ S ∀c ∈ Cs (2c)

and subject to:

Ts ≤ Ysa ∀s ∈ S, ∀a ∈ As (3)

∑
k∈Ksa

Zsak = Ysa ∀s ∈ S, ∀a ∈ As (4)
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∑
s∈S

Zsak ≤ pk ∀a ∈ A, ∀k ∈ Ka (5)

Zsak + Zsa′k′ ≤ 1 + Dsaka′k′ ∀s ∈ Ssrm ∀ {a, k, a′, k′} ∈ Ds (6)

Zsak + Zsa′k′ ≤ 1 + Bsaka′k′ ∀s ∈ Ssrm ∀ {a, k, a′, k′} ∈ Bs (7)

∑
s∈Sal

Zsak ≤ min (pk, nSal
) Vk(al) ∀a ∈ A ∀Sal ∀k ∈ Ka (8)

Zsak + Zsa′k′ ≤ 1 + Wsaka′k′ ∀s ∈ Sosm ∀ {a, k, a′, k′} ∈ Ws (9)

Ts, Ysa, Zsak, Dsaka′k′ , Bsaka′k′ , Vk(al), Wsaka′k′ ∈ {0, 1} (10)

The weights used in the different terms of the objective function (1) are
related to the order of priority dictated by our university. They were determined
with a view to satisfying this order. The first term of the objective function is
intended to minimize the Number of non-assigned students Nnas. This term
is weighted by M1 M2 M3 M4 since our university wants first to minimize Nnas.
The same rationale applies to the other terms included for the purposes of
satisfying institutional priorities. The second term seeks to minimize NSi(srm),
the number of hurried moves by students with reduced mobility between sites,
while the third term concerns NBu(srm), their hurried moves between buildings.
The fourth term seeks to minimize Ngss, the number of sections used in the
assignment of certain sets of students to certain activities (grouping sets of
students). The fifth term seeks to minimize NSi(osm), the number of hurried
moves between sites for other students (other students’ moves).

Equations (2a), (2b) and (2c) ensure that, at each time slot, students are
assigned to one section only. One formulation among these three is required to
enforce the conflict constraints.

Equation (2a) ensures that no two conflicting sections (mkk′ = 1) are used
at the same time for assigning student s. For a student s, there are as many
equations as edges Es. We refer to Equation (2a) as the edge formulation.

Equation (2b) ensures that a student s can be assigned to section k if not
assigned to any sections that are in conflict with k. For a student s, the value∑

mkk′ where a′ ∈ As, k′ ∈ Ksa′ , k′ 6= k, is the number of sections in conflict
with section k of activity a. This represents the number of neighbors of section
k in the Gs(Ks, Es) graph. For a student s, there are as many equations as
nodes Ks. We refer to Equation (2b) as the node formulation.

Equation (2c) is a clique inequality. For a student s, we compute the set of
maximal cliques Cs in Gs(Ks, Es). The size of this set is nCs

. For a student s,
the set of maximal cliques Cs covers all the edges of the graph, and there are as
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many equations as maximal cliques in Gs(Ks, Es). The conflict constraints are
enforced by Equation (2c). We refer to Equation (2c) as the clique formulation.

Equation (3) links variables Ts and Ysa. Equation (4) links variables Ysa and
Zsak and ensures that a student is assigned to at most one section of activity a.
Sections’ capacity constraints are enforced by Equation (5).

Equations (6) and (7) set Dsaka′k′ = 1 or Bsaka′k′ = 1 if students with
reduced mobility have hurried moves between sites or between buildings on the
same site. Equation (8) sets Vk(al) = 1 if a student s ∈ Sal is assigned to section
k of activity a. There are at most min (pk, nSal

) students s ∈ Sal assigned to
section k. Equation (9) sets Wsaka′k′ = 1 if there is a hurried move between
sites for a student s ∈ Sosm (other students).

The ILP model using weighted terms is denoted asM and consists of Equa-
tion (1), Equation (2a) or (2b) or (2c), and, Equations (3)-(10).

Lexicographic scheme
The ILP model with a global objective function and weighted terms using

large M values may face difficulty to solve sizeable instances. The order of
priority dictated by our institution can be advantageously enforced through a
lexicographic optimization scheme. We look at a scheme with four stages.

At each stage, the best objective function value from the previous stage
(obtained within a time limit) is maintained via a constraint, and the solution
from the previous stage is given as an initial solution. The four problems we
address in turn within the lexicographic scheme are the following:

1. Minimize the number of non-assigned students (Nnas).
2. Minimize the number of hurried moves between sites and between build-

ings for students with reduced mobility (NSi(srm) and NBu(srm)).
3. Minimize the number of sections used in assigning certain sets of students

to certain activities (Ngss).
4. Minimize the number of hurried moves between sites for other students

(NSi(osm)).

The model that only minimizes Nnas, the unweighted first term of the ob-
jective function (1), is denoted asMnas. It consists of Equation (2a) or (2b) or
(2c), Equations (3)-(5) and variables Ts, Ysa, Zsak.

The model that minimizes NSi(srm) and NBu(srm) uses as an objective func-
tion:

M2
∑

s∈Ssrm

∑
a,k,a′,k′∈Ds

Dsaka′k′ +
∑

s∈Ssrm

∑
a,k,a′,k′∈Bs

Bsaka′k′

The term
∑

s∈Ssrm

∑
a,k,a′,k′∈Ds

Dsaka′k′ is weighted by M2, because for stu-
dents with reduced mobility it is more important to minimize hurried moves
between sites than between buildings. This model is denoted as Msrm and
includes equations and variables relating to the two terms in addition to the
equations comprisingMnas, together with a constraint that maintains the Nnas

value.
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For the model that minimizes NSi(osm), the required additional equations
and variables are added to Msrm, together with two constraints that maintain
the NSi(srm) and NBu(srm) values. This formulation is denoted as Mgss.

The model that minimizes Nosm is denoted as Mosm and consists of Equa-
tion (2a) or (2b) or (2c), and Equations (3)-(10), together with constraints that
maintain the computed values at earlier stages.

Valid inequalities
The size of the problem increases with the number of criteria. We are

therefore dealing with large SSP problems. Valid inequalities can be helpful
in reducing computation time and improving results. We propose three valid
inequalities.

Students enrolled in the same activities are assigned
Let us consider students enrolled in two activities a and a′, who need to be

assigned to a section k ∈ Ka and a section k′ ∈ Ka′ . We propose the following
as valid inequalities:

∀a, a′ ∈ A
a 6= a′

Sa ∩ Sa′ 6= ∅


∑

s∈(Sa∩Sa′ )

∑
k∈Ka

Zsak =
∑

s∈(Sa∩Sa′ )

∑
k′∈Ka′

Zsa′k′ (11)

since students s ∈ Sa ∩ Sa′ have to be assigned into both activities a and a′.
Tightening maximum numbers of students to be assigned to an activity
The number of students enrolled in activity a is nSa (the size of set Sa). So

the number of students assigned is also bounded by nSa. We propose:

∀a ∈ A
∑

s∈Sa

∑
k∈Ka

Zsak ≤ nSa (12)

since the number of students assigned to sections k ∈ Ka cannot exceed nSa.
Student completely assigned or not
We recall that as long as there remains an activity for which a student has not

been assigned to a section, that student is considered an non-assigned student.
Partial assignments are precluded by a strict institutional constraint, which we
use in creating a valid inequality.

Let us consider a student s and two different activities a, a′ ∈ As. Since
student s has to be assigned into these two activities, we propose:

∀s ∈ S
∀a, a′ ∈ As

a 6= a′

 Ysa = Ysa′ (13)

as valid inequalities. Hence, student s is assigned either into all his/her activities
or (exclusive) into no activities.
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6. Experiments and results

In our experiments, our objectives were: (i) to demonstrate the effectiveness
of the rss preprocessing in reducing instance sizes and to compare the com-
pactness of the three formulations of the conflict constraints; (ii) to compare
performances between, on the one hand, the model with global objective func-
tion, and on the other, the models in our lexicographic scheme; (iii) to compare
numbers of non-assigned students obtained using the heuristic used in the past
by our university with those obtained using ILP models; (iv) to monitor the per-
formance of valid inequalities as the number of non-assigned students increases;
(v) to assess the quality of the solutions given by the different models in the
lexicographic scheme with respect to lower bounds and to show to what extent
initial solutions could be improved.

Tests were done using a CPLEX 12.10 IBM (2020) solver with a single thread
and the MipEmphasis parameter set to feasibility, using C++ compiled with
gcc version 7.5.0, on a machine with an Intel(R) Core(TM) i7-8700K CPU @
3.70GHz and 64 GB of RAM.

Instance characteristics
The characteristics of the fifteen problem instances obtained from Université

de Technologie de Compiègne (UTC) are shown in Table 2. Labels of instances
in the first column correspond to Fall and Spring semesters from spring 2013 to
spring 2020. Data for previous semesters (before spring 2013) are not available.
The COVID-19 pandemic has impacted the learning organisation of Fall 2020.
Some constraints were added and others removed and the problem solved is
different.

nUV nA nK nS nSsrm nSgss nSosm

S13 311 609 1,500 2,396 11 1,833
F13 310 608 1,479 2,344 68 1,816
S14 303 606 1,425 2,275 14 1,546
F14 294 572 1,351 2,308 40 1,381
S15 203 604 1,399 2,351 40 1,367
F15 283 547 1,346 2,303 50 26 1,337
S16 297 590 1,355 2,316 54 5 1,321
F16 322 582 1,355 2,490 48 1,457
S17 317 607 1,344 2,363 48 6 1,304
F17 317 581 1,334 2,603 68 1,459
S18 328 626 1,340 2,412 71 82 1,254
F18 329 596 1,356 2,673 68 1,383
S19 325 630 1,329 2,688 81 153 1,432
F19 330 603 1,351 2,610 81 1,588
S20 338 652 1,371 2,606 78 141 1,501

Avg 307 601 1,376 2,449 60 56 1,465

Table 2: Instance characteristics.

Columns nUV , nA, and nK correspond respectively to the number of UVs
(courses), the total number of different learning activities (lectures, labs, etc.),
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and the total number of sections for these learning activities.
Columns nS , nSsrm , nSgss , and nSosm concern numbers of students.
It can be seen that the number of enrolled students nS has increased over

the years. For reasons of confidentiality, the data that we were given for the
instances in relation to students with reduced mobility were anonymized lists
of students with disabilities, and contained no indication of the nature of the
disability. For this reason, for the purposes of our tests, all students with dis-
abilities were deemed to be students with reduced mobility. The column nSsrm

reports the number of disabled students, all considered to be students with
reduced mobility.

Real data for the students that needed to be grouped together were available
for the nine most recent instances. Some of these data correspond to disabled
students who required help for certain learning activities (including handling
equipment and note taking). When they were available, we also took into ac-
count data relating to apprenticeship students who could potentially be assigned
to the same learning activities as full-time students rather than to specific ac-
tivities for apprenticeship students. The column nSgss

reports the number of
students to be assigned into as few sections as possible for certain learning ac-
tivities. For these instances, there are on average 56 apprenticeship students,
but the more successful we are in grouping these students together into as few
sections as possible, the greater the potential for reducing costs, and the greater
the likelihood of hosting more apprenticeship students in the future.

The column nSosm
shows that more than half of the students can be faced

with moves between sites. This criterion is important, especially given that the
number of sites is likely to increase in the future.

The size of these instances shows that these SSP problems cannot be pro-
cessed manually. Moreover, the heuristic used in past years has become obsolete,
since it fails to address the new requirements of our university.

Impact of the rss preprocessing on Gs(Ks, Es) conflict graphs, and
on the numbers of constraints for Edge, Node and Clique formulations

The impact of the rss preprocessing that we presented in Section 4 is shown
in Table 3. The last row corresponds to the averages computed over all the
instances.

For each instance, the columns Ks show the average number of nodes in
Gs(Ks, Es) graphs, and the columns %IG show the percentage of these graphs
that are interval graphs, respectively without preprocessing and with rss pre-
processing.

It can be seen from Table 3 that the rss preprocessing reduces the number
of nodes. When there is no rss preprocessing the average number of nodes (last
row) is 46.4 and the average percentage of interval graphs is 97.7%. When rss
preprocessing is applied the average number of nodes is 37.8 and the average
percentage of interval graphs is 99.9%. The case illustrated in Figure (1) occurs
only rarely, since there are fewer activities for which sections have multiple
events than activities whose sections have one event only. By removing a section
which has multiple events from a Ksa set for a student s, we reduce the size
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Gs(Ks, Es) graphs Number of conflict constraints in thousands
no rss rss no rss rss

Ks %IG Ks %IG Edge Node Clique Edge Node Clique

S13 51.3 96.3 40.3 99.9 837 119 47 480 82 31
F13 53.9 97.3 43.9 99.9 763 122 51 490 90 36
S14 47.7 96.7 37.3 100.0 634 104 43 361 71 27
F14 52.5 97.6 42.7 99.9 679 117 52 434 85 36
S15 48.1 97.3 37.1 100.0 701 109 45 388 72 27
F15 50.7 97.3 40.9 99.9 620 112 49 384 80 34
S16 46.9 98.5 36.6 100.0 649 104 44 364 70 27
F16 49.2 79.1 39.3 100.0 691 118 52 411 83 35
S17 46.1 97.7 35.8 99.9 638 103 43 350 69 26
F17 36.0 97.6 44.8 100.0 616 112 47 370 79 32
S18 42.7 98.9 33.5 100.0 589 98 40 330 65 25
F18 44.3 97.5 35.2 99.9 616 112 49 359 78 32
S19 39.4 98.6 30.5 100.0 554 100 41 290 64 24
F19 46.6 78.5 37.2 98.8 630 116 49 379 81 33
S20 41.2 98.5 32.2 99.9 535 101 41 293 66 24

Avg 46.4 97.7 37.8 99.9 650 110 46 379 76 30

Table 3: Average size of nodes of Gs(Ks, Es) graphs and percentages of interval graphs,
without and with rss preprocessing. Number of conflict constraints (in thousands) for the
Edge, the Node and the Clique formulations, without and with rss preprocessing.

of Ks and are able to obtain an interval graph for Gs(Ks, Es), although it was
not an interval graph initially. The rss preprocessing also helps in reducing the
number of non-interval graphs.

The right-hand part of Table 3 shows the number of conflict constraints
for the Edge, Node and Clique formulations, first without, and then with rss
preprocessing. For the sake of compactness, the values shown are in thousands.

It can be seen that rss preprocessing reduces the number of conflict con-
straints, irrespective of the formulation used. Moreover, the number of conflict
constraints using the Clique formulation is consistently smaller than with the
two others – it is smaller by one order of magnitude than with the Edge formu-
lation (30 on average, as opposed to 379), and it is less than half of the number
occurring with the Node formulation (30 as opposed to 76).

The computation time for applying rss preprocessing to every student in
the set S is of the order of ten seconds per instance. Almost all Gs(Ks, Es) are
interval graphs, but a few are not. To compute sets of maximal cliques for all
students, we use the approach proposed by Österg̊ard (2002). This takes of the
order of ten seconds for an instance.

The rss preprocessing can advantageously be used to reduce the size of SSP
problem instances when a student cannot attend two events at the same time.
All of the tests reported below were done with rss preprocessing.
M model using Edge, Node, and Clique formulations
In this section, we report on our tests using theM model, which has a global

objective function with a weighted sum of terms. We tested the Edge, the Node,
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and the Clique formulations of the conflict constraints.

M model
Edge Node Clique

Status t (s) Status t (s) Status t (s)

S13 O 56.4 O 98.4 O 52.0
F13 NoSol - NoSol - NoSol -
S14 O 33.8 O 50.9 O 21.1
F14 NoSol - NoSol - NoSol -
S15 O 30.0 O 57.9 O 30.0
F15 NoSol - NoSol - NoSol -
S16 NoSol - NoSol - O 2289.4
F16 NoSol - NoSol - NoSol -
S17 O 1802.7 NoSol - O 768.8
F17 O 832.9 NoSol - O 1575.7
S18 O 1936.0 NoSol - O 2654.8
F18 F - NoSol - NoSol -
S19 NoSol - NoSol - O 2303.7
F19 O 834.4 NoSol - O 488.5
S20 F - NoSol - O 3303.3

Optimal 7/15 3/15 10/15
Feasible 2/15 0/15 0/15

No Solution 6/15 12/15 5/15

Table 4: Status of solutions obtained with the M model using Edge, Node, and Clique for-
mulations. Time limit 3600s.

A summary of the different solutions obtained within a time limit of 3600s
is given in Table 4. For each instance the column Status contains either O for
Optimal, F for Feasible (but not optimal), or NoSol for No Solution. Column t
gives the computation time in seconds (“-” where the time limit was exceeded).

It will be remarked that for several of the instances,M fails to give a solution
within the one-hour time limit, whatever formulation is used for the conflict
constraints model. When optimality is attained using theMmodel with a global
objective function, we obtain the same values for Nnas, NSi(srm), NBu(srm),
Ngss, NSi(osm) as those computed within the lexicographic scheme (see below).
The Edge formulation attains optimality in seven out fifteen instances, the Node
formulation attains optimality in three out fifteen instances, and the Clique
formulation attains optimality in ten out fifteen instances.

TheM model with the Clique formulation of conflict constraints is the most
successful at providing optimal solutions. Table 3 shows that there are fewer
equations with the Clique formulation, and this is the formulation of conflict
constraints that we chose for the four models in our lexicographic scheme.

Comparison of the previously used heuristic and the Mnas model
Table 5 shows results given by the previously used heuristic H and shows

results obtained by the first model Mnas in the lexicographic scheme. The
columns Nnas and t show the number of non-assigned students and computation
time t obtained using the heuristic H (the best results that university personnel
were able to obtain), and using the Mnas model.
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H Mnas

nS Nnas t (s) Nnas t (s)
S13 2,396 11 1.32 0 4.44
F13 2,344 21 2.76 11 15.89
S14 2,275 16 0.99 0 8.45
F14 2,308 23 5.30 5 4.89
S15 2,351 20 0.86 0 7.23
F15 2,303 13 1.05 0 9.32
S16 2,316 19 1.52 4 8.80
F16 2,490 25 1.90 0 12.39
S17 2,363 21 2.82 0 5.24
F17 2,603 20 2.49 0 4.82
S18 2,412 28 1.84 0 2.87
F18 2,673 48 4.65 2 14.71
S19 2,688 35 1.51 0 3.34
F19 2,610 62 4.26 0 7.41
S20 2,606 41 1.64 0 3.23
Avg 2,449 26.8 2.3 1.5 7.54

Table 5: Comparison of heuristic H and Mnas model.

Using the Mnas model, optimal results were obtained for all instances. In
every case the computation time was less than twenty seconds. Computation
times were shorter using the H heuristic, but solutions are not optimal. With
theMnas model all students were assigned in eleven out of the fifteen instances,
and in the remaining four instances the number of non-assigned students was
considerably reduced. The heuristicH systematically failed to achieve Nnas = 0.

In the past, every case of a non-assigned student had to be processed individ-
ually by hand, and attempting find an alternative feasible individual timetable
was unwelcome and time-consuming. Staff performing this task were working
“in the dark”, not knowing whether a complete assignment into all of a stu-
dent’s activities was even possible. The analysis of results is possible only when
optimality is attained, and it cannot be done in relation to the results obtained
by the H heuristic.

The Mnas model not only achieved better results, but it also completely
eliminated the extra work of managing dummy UVs, made necessary by the
heuristic’s inability to satisfy the current requirement of assigning students to
a set of learning activities rather than to a set of UVs.

Effectiveness of valid inequalities
The number of students has increased over the years and will continue to

grow, and the size of the problem increases with the number of criteria. We
expect to have to address more difficult instances in the future. In Section 5
above we proposed valid inequalities that may be helpful in addressing harder
instances. To test the valid inequalities, we decided to derive harder instances
by reducing the capacity of all labs sections by one, in order to increase the
number of non-assigned students.

Table 6 has two columns for each of the tests done on different derived
instances. The first column is the number of non-assigned students Nnas, and
the second is for the computation time t (shown as “-” where a time limit of
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Derived Mnas Mnas+(11) Mnas+(12) Mnas+(13)
instance Nnas t (s) Nnas t (s) Nnas t (s) Nnas t (s)

S13 52 - 2389 - 52 - 51 -
F13 91 - 2341 - 2274 - 71 -
S14 35 190.3 2266 - 35 - 35 30.8
F14 2227 - 2305 - 2227 - 63 -
S15 52 - 2341 - 52 - 51 111.8
F15 63 36.6 2289 - 63 44.3 63 15.4
S16 48 - 2313 - 48 - 48 -
F16 2389 - 2487 - 2308 - 60 -
S17 50 11.3 2313 - 50 13.2 50 5.1
F17 53 18.6 2595 - 53 17.3 53 7.0
S18 49 12.7 2397 - 49 15.0 49 4.4
F18 2409 - 2550 - 2409 - 58 -
S19 54 - 2526 - 54 29.2 54 6.9
F19 56 45.4 2588 - 56 50.8 56 10.1
S20 55 15.7 2599 - 55 18.3 55 5.6

Best Result 9/15 0/15 9/15 15/15
Optimal 7/15 0/15 7/15 9/15
Best Time 0/15 0/15 0/15 9/15

Table 6: Formulation Mnas: impact of valid inequalities on derived instances, time limit 300s.

300s was exceeded).
The headingMnas corresponds to results without valid inequalities. In nine

out of the fifteen instances the best results were obtained, and in seven of them
optimality was proved within the time limit.

The heading “Mnas + (11)” corresponds to results for the “students enrolled
in the same activities are assigned” valid inequality. Clearly this valid inequality
is not satisfactory: the time limit was exceeded in all cases because of the large
number of equations added, and no feasible solution was obtained.

The heading “Mnas + (12)”, corresponds to results for the “tightening max-
imum numbers of students to be assigned to an activity” valid inequality. In
nine out of the fifteen instances the best results were obtained, and in seven of
them optimality was proved. This valid inequality does not appear to have a
clear advantage over the Mnas model.

Best results were obtained for all instances using the “student completely
assigned or not” valid inequality (the heading “Mnas + (13)”). Optimality
was proved for nine out of the fifteen instances. Moreover, this valid inequality
achieved the best computing time in nine out of the fifteen instances. This valid
inequality is useful when used in conjunction with the Mnas model in order
to address harder instances with greater numbers of students that cannot be
assigned to all their learning activities.

Below, unless otherwise specified, the “student completely assigned or not”
valid inequality is used.

Minimizing hurried moves for students with reduced mobility
In Section 5, we presented theMsrm model, which we propose as the second

step in the lexicographic scheme for minimizing hurried moves (between sites
and buildings) for students with reduced mobility. In Section 4, we presented the
MinMovesStudent procedure that we use to compute LBSi(srm) and LBBu(srm),
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the lower bounds for undesired moves between sites and buildings.
Table 7 shows results obtained using the Msrm model for the twelve in-

stances for which data are available regarding students with disabilities, all
considered as having reduced mobility. For the purposes of comparison, these
results are shown alongside the lower bounds LBSi(srm) and LBBu(srm) and the
initial values NSi(srm) and NBu(srm) from the Mnas model.

Lower Bounds Initial Solution Msrm

nSsrm LBSi(srm) LBBu(srm) NSi(srm) NBu(srm) NSi(srm) NBu(srm) t (s)

F14 40 2 11 17 33 2 8 15.7
S15 40 3 1 9 21 3 1 6.2
F15 50 11 7 35 40 11 11 24.6
S16 54 12 7 26 43 12 12 4.2
F16 48 9 5 28 35 9 6 11.6
S17 48 10 8 28 30 10 10 3.7
F17 68 12 13 35 45 12 13 5.4
S18 71 32 15 71 61 33 20 2.6
F18 68 11 8 48 51 11 12 17.3
S19 81 20 13 54 45 21 16 4.4
F19 81 17 17 50 58 17 17 6.5
S20 78 24 6 57 37 24 9 3.2

Table 7: Formulation Msrm minimizing undesired moves for students with reduced mobility.

Column nSsrm is the number of students, and columns LBSi(srm) and LBBu(srm)
are the lower bounds for moves between sites and buildings respectively that
need to be done in less than ∆t. “Initial Solution” shows the initial values
NSi(srm) (for sites) and NBu(srm) (for buildings) computed using the Mnas

model. “Msrm” shows the values obtained for NSi(srm) and NBu(srm), along
with the computation time in seconds.

Optimal results were obtained for all instances using theMsrm model while
maintaining the previous optimized values of Nnas. It will be remarked that
the initial solutions included considerably more hurried moves between sites
and buildings. With Msrm, in ten out of twelve instances we have NSi(srm) =
LBSi(srm), and in three out of the instances we also have NBu(srm) = LBBu(srm)
(shown in bold print in Table 7).

The Msrm model succeeded in minimizing hurried moves for students with
reduced mobility, the number of moves are close to lower bounds, these students
have less uncomfortable individual timetables. This feature of the lexicographic
scheme is a welcome addition to our university’s inclusion strategy.

Grouping sets of students
Institutions nowadays may seek to group some sets of students together. In

Section 3, we mentioned some specific examples (students with disabilities and
students on long-term placements in industry). In Section 5, we presented the
Mgss model that we propose as the third step of the lexicographic scheme for
minimizing the number of sections used to assign sets of students for activities.
In Section 4, we presented the lower bound LBal to be used for the purpose of
comparison.
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Initial Solution Mgss

nSgss LBgss Ngss Ngss t (s)

S13 11 1 5 1 4.8
F13 68 5 25 5 146.7
S14 14 2 5 2 3.9
F15 26 1 3 2 87.8
S16 5 1 2 1 4.2
S17 6 2 3 2 3.7
S18 82 6 21 6 6.7
S19 153 12 40 14 4.9
S20 141 12 47 12 6.6

Table 8: Results of model Mgss for grouping sets of students.

Table 8 shows results obtained using theMgss model for the nine instances
for which data can be retrieved. We compare the results with the values of the
LBgss lower bound and with the initial values of Ngss given by the preceding
model in the lexicographic scheme.

Column nSgss
is the total number of students concerned by groupings, and

column LBgss is the computed lower bound. The “Initial Solution” column
Ngss gives the number of sections used in assigning students. The two “Mgss”
columns are respectively the result given by ourMgss model and the computa-
tion time in seconds.

The Mgss model attains optimality for all instances while maintaining the
previous optimized values. It can be seen that the Ngss values are an improve-
ment on the initial values, with LBgss attained in seven out of nine instances
(in bold print in Table 8).

In the past, using the heuristic approach, administrators sought to manage
the grouping of students by trial and error, booking seating capacity in order
to assign students by hand to certain sections. It was tedious, time-consuming
work, but with the heuristic approach they had no other choice. The grouping
of sets of students was therefore discontinued except when strictly necessary for
disabled students.

As Table 8 shows, the grouping of certain sets of students is managed
painlessly using our proposed Mgss model. Students are successfully grouped
into the smallest possible numbers of sections. This is useful for managing the
individual assistance given to some disabled students in some learning activities.
It can also reduce costs, allowing teaching in some cases to be tailored to the
needs of particular subgroups within a shared overall curriculum.

Minimizing hurried moves by students in general
In Section 5, we presented the Mosm model that we propose as the fourth

step in our lexicographic scheme for minimizing the number of hurried moves
between sites. In Section 4, we presented the MinMovesStudent procedure to
compute a lower bound on the number of these hurried moves for students as a
whole, yielding the overall lower bound LBosm.
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Initial Mosm M Lexicographic
Solution no (13) with (13) scheme, total

nosm LBosm Nosm Nosm t (s) t (s) t (s) t (s)

S13 1833 703 1840 756 13.6 13.6 52.0 22.9
F13 1816 483 1526 526 2865.0 2845.4 NoSol 3007.9
S14 1546 552 1400 596 7.6 7.6 21.1 19.9
F14 1381 320 1059 320 51.2 50.8 NoSol 71.4
S15 1367 465 1124 490 8.4 8.4 30.0 21.8
F15 1337 298 1026 329 74.5 76.7 NoSol 198.4
S16 1321 409 1000 427 18.9 19.6 2289.4 36.8
F16 1457 378 1184 415 59.8 59.8 NoSol 83.8
S17 1304 467 1116 517 8.1 8.2 768.7 20.9
F17 1459 351 1162 384 13.0 12.9 1575.6 23.1
S18 1254 444 1070 497 5.6 5.6 2654.7 17.8
F18 1383 286 1046 346 1346.8 1355.8 NoSol 1387.8
S19 1432 461 1242 524 11.0 10.5 2303.7 23.2
F19 1588 378 1269 468 12.6 12.6 488.5 26.5
S20 1501 570 1359 628 10.7 10.4 3303.2 23.4

Avg 1465 438 1228 482 300.5 299.9

Table 9: Model Mosm minimizing hurried moves by students in general. Comparing the M
model with a global objective function and the lexicographic scheme.

Table 9 shows the results from theMosm model for the fifteen real instances
alongside the LBosm lower bound and the initial values given by the preceding
model in the lexicographic scheme. Best results are in bold print. The last row
gives the averages computed over all the instances.

Column nosm is the number of students liable to move between sites (more
than the half of all students – see column nS in Table 2). Column LBosm gives
lower bounds, the numbers of unavoidable moves between sites where ∆t is not
respected (see Section 4).

The “Initial Solution” column Nosm gives the number of hurried moves before
applying theMosm model assessed on initial solutions, and immediately to the
right of this, under the heading “Mosm”, we have the number of moves given
by Mosm.
Mosm is the final model in the lexicographic scheme and includes the whole

set of equations. As previously stated, there are a large number of students liable
to move between sites. We therefore tested the Mosm model both without and
with the valid inequality equation (13) in order to observe its impact. The
columns “no (13)” and “with (13)” give computation times t in seconds without
and with the valid inequality Equation (13).

Optimal results were obtained for all instances using theMosm model while
maintaining the previous optimized values. A comparison of the two Mosm

computation times shows that the valid inequality has no significant negative or
positive impact on computing time overall. The real instances encountered so
far have at most eleven students that cannot be assigned (see Table 5), which
is not enough for any improvement to be observed. However, the number of
students continues to rise and we will undoubtedly face instances with more
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students that cannot be assigned. Given that we observed a beneficial impact
using the valid inequality on a harder instance with around fifty non-assigned
students (see Table 6), we have chosen to embed it to be able to address future
harder instances.

It can be seen from Table 2 that initial solutions are substantially improved.
On average, the number of hurried moves assessed in the initial solution is almost
three times the lower bound, while optimal solutions given by theMosm model
are only ten percent above the lower bound.
M model versus lexicographic scheme (Mnas, Msrm, Mgss, Mosm)
The “M” column in Table 9 gives the computation time for the M model

with the global objective function that attains the greatest number of optimal
solutions within a one-hour time limit (see Table 3, column Clique). It can be
observed that an ILP approach addressing globally the objectives faces difficul-
ties in attaining solutions.

Fortunately, given the order of priority dictated by our university on the
criteria to be addressed, the objectives are not conflictual. We thus investigated
a lexicographic scheme using ILP models. The lexicographic scheme achieves
optimality at every stage for all instances and the obtained values are close to
lower bounds. The final column in Table 9 gives the total computation time for
the lexicographic scheme. As it can be seen, the optimality is attained in for
instances within good computation times.

It has now been incorporated into the university’s assignment process with
a view to providing students with more acceptable individual timetables.

7. Conclusion

In this paper we have proposed preprocessing, lower bounds, and integer
linear programming formulations, and we have investigated valid inequalities to
address the real-world student scheduling problems that we face at Université de
Technologie de Compiègne (UTC). The preprocessing that we use has proved to
be effective in reducing instance sizes. We have introduced a new clique-based
formulation that has proved to be more effective than other formulations in re-
ducing the number of constraints. We have paid particular attention to criteria
that help create friendlier individual timetables for students with reduced mo-
bility. The lexicographic scheme, i.e., optimizing criteria in turn, achieves better
results than minimizing a global objective function. Our successful approach is
able to group sets of students into as few sections as possible for given learning
activities, and to minimize moves that need to be made in a hurry by students
moving between sites. This helps ensure that students have equitable individ-
ual timetables. A valid inequality that we propose has proved to be effective in
helping to attain optimal solutions and in giving shorter computation times in
cases where there are larger numbers of students that cannot be assigned. We
obtained optimal solutions for all instances, and the numbers of non-assigned
student are far fewer than those obtained with the heuristic used so far at UTC.
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Solution values for the other criteria are equal or close to the lower bounds. Fu-
ture research directions may focus on extending our proposed models to provide
UTC administrators with a computer-aided tool for the timetable design stage,
which would make estimates of the number of student that may potentially be
assigned to a given set of activities.

Students and administrators alike have expressed their satisfaction with the
timetables generated using our approach. Administrators can generate and use
results directly, and the lexicographic solution approach has been incorporated
into UTC’s administrative procedures.
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