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Efficient Steganography in JPEG Images by
Minimizing Performance of Optimal Detector

Rémi Cogranne, Member, IEEE, Quentin Giboulot and Patrick Bas, Senior Member, IEEE

Abstract—Since the introduction of adaptive steganography,
most of the recent research works seek at designing cost functions
that are evaluated against steganalysis methods. While those
approaches have been successful, they rely on intuitive principles
and ad-hoc costs associated with each pixel or Discrete Cosine
Transform (DCT) coefficient. Beyond the empirical assessments,
the insights one can get from such approaches are very limited.
On the opposite, this paper presents an original method for
steganography in JPEG images that exploits a statistical model
of the DCT coefficients. Within the framework of hypothesis
testing theory, we use a statistical model of covers to derive
the analytical expression of the most powerful detector. The
objective of the steganographer is to minimize the statistical
performance of this “omniscient detector” which represents a
“worst-case” scenario for security. This paper shows how this
method allows designing effective steganography, in terms of
both security and computational complexity, in the two main
use cases: when having only one single JPEG image and when
the uncompressed image is available, case also known as Side-
Informed (SI). A wide range of numerical comparisons shows
that the proposed method outperforms the current state-of-the-
art especially against the latest and most accurate steganalysis
approaches based on Deep Learning.

Index Terms—Steganography, Steganalysis, JPEG images, Hy-
pothesis testing, Statistical modeling.

I. INTRODUCTION

STEGANOGRAPHY and steganalysis form a cat-and-
mouse game: modern steganography aims at hiding infor-

mation within an innocuous cover object using a secret key.
The resulting stego-object should allow the intended receiver,
with the shared secret key, to extract hidden secret data.
Furthermore, the stego-object should remain indistinguishable
from the cover object so that it can be sent over an unsecured
channel while remaining undetected. On the other hand, an
eavesdropper may wiretap communication and try to reveal
if data are hidden into inspected objects using an arsenal
of detection techniques referred to as steganalysis. From this
setting, a cat-and-mouse game emerges naturally: steganog-
raphy seeks to design more and more advanced data hiding
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systems to pass through the steganalyst undetected while, on
the opposite side, the goal of steganalysis is to develop sharper
and sharper analysis techniques to detect weak signals left by
the steganographer with the highest accuracy possible [1].

While modern steganography may use a wide range of
covers, it has been mostly developed for digital media and es-
pecially in images. Indeed, digital images are massively shared
over the Internet making its use as a cover for steganography
unsuspicious. Images are also very often compressed using the
JPEG format which is simple enough to be easily manipulated
for hiding data while also offering enough room for payload
sizes of practical interest.
Steganography has also been largely improved thanks to the
use of linear error-correcting codes from information theory.
The first uses of Huffman codes [2] allowed reducing the num-
ber of changes, hence lowering detectability. A tremendous
improvement was brought with Syndrome-Trellis Codes [3]
that improved coding efficiency, closing up the gap with
Shannon theoretical bounds. The STC also allows taking into
account the cost associated with each element (either pixels or
DCT coefficients from JPEG images). This pioneering work
opened the doors for the so-called adaptive steganography that,
using this cost function, embeds more data in locations where
detection is expected to be harder.

Over the past two decades, steganalysis has largely benefited
from machine learning. Indeed, while first techniques for
hidden data detection were tailored to catch specific traces
of steganography [4], machine learning quickly helped to
design universal steganalysis method that is effective against
a wide range of steganographic algorithms. Larger and larger
handcrafted features sets [5], [6] associated with classifiers
specifically designed to handle such high-dimensional fea-
tures [7]–[9] have allowed to detect more and more subtle
traces of data hiding. Recently, deep learning techniques have
been used as an alternative that successfully managed to
jointly optimize the features extraction and the classification
tasks [10]–[12].

A. State-of-the-art

A vast majority of recent works in steganography has
attempted to design cost functions. For this purpose, the
most popular approach, by far, has been based on intuition
with a practical goal to defeat current steganalysis techniques
providing a post-hoc validation of the design. In the spatial
domain, the main representatives of this approach includes
S-UNIWARD [13] as well as HILL [14]. For JPEG images,
J-UNIWARD [13], EBS [15] and UERD [16] have been
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designed following this approach.
The aforementioned algorithms are successful examples of
this empirical approach and they have been widely adopted
among the community as the current state-of-the-art. However,
such design is very limited from a methodological point of
view because it does not provide accurate understanding,
explanation or insights which leaves researchers unable to
understand why a given cost functions works. The problem
is even more complex when considering that the results are
not consistent over different datasets [17], [18].

Recently, two alternative approaches have been developed
using an adversarial context. Those methods use feedback
from steganalysis in order to understand how to perform
steganography with the goal to defeat an “adversary”. The
first method along this approach is based on deep learning
and often on Generative Adversarial Networks (GANs) [19].
In this scenario, the embedder knows the detection method
used by the steganalyst and vice-versa such that each can
iteratively improve its scheme: the steganalayst, as usual, trains
a classifier for detecting hidden data while the steganographer
adjust its embedding to evade detection. This approach has
been shown to be efficient [20], [21]. In addition, jointly
training the adversarial CNN should prevent designing an
embedding scheme that is tailored for a particular detector, see
results in [21]. However, it is very computationally demanding
and it requires a whole dataset to learn how to perform the
embedding operation which may not be convenient in some
practical contexts.

The very last type of methods in steganography cast the
problem of security within a “worst-case attack” scenario. It
essentially assumes that one can face an omniscient steganalyst
who knows everything required to apply an optimal statistical
test. The very definition of such an optimal test is based upon
hypothesis testing theory and requires a statistical models of
cover and stego media. In this context, the steganographer
analyzes this “optimal test adversary” in order to establish
a closed-form expression of its statistical performance. This
analysis allows the design of a steganographic method that
aims at minimizing this statistical performance.
The first embedding scheme built from this approach [22]
was not very efficient due to the technique used for image
statistical parameters estimations. It was quickly followed
by MiPOD [23], [24] that improves the estimation of pix-
els variances allowing achieving state-of-the-art performance
which explains its broad adoption. While those prior works
has shown the efficiency of the method, it was also studied
as a promising approach toward the theoretical possibility to
provide guarantees on security of data hiding under a given
statistical model using the optimal test as an upper bound [24]–
[27]. As shown in [28] this methodology aims at solving
a fundamentally different problem. However the use of this
approach into the most practical case of JPEG images is yet
to be developed [29].

B. Contribution of Present Paper

The present paper proposes a steganographic method be-
longing to the last approach: it aims at filling the lack of

efficient data hiding method based on minimizing performance
of optimal detector for JPEG images. To this end, the present
paper proposes several contributions. First of all, it models
the impact of the Discrete Cosine Transform which leads to
an original heteroscedastic statistical model of DCT coeffi-
cients for JPEG images. Based on this statistical model, we
design a novel method for data hiding into JPEG compressed
images. Both the statistical model and embedding method are
sufficiently general and accurate to allow extension to the side-
informed case, i.e. when uncompressed version of the image
is available at the embedding.
The present paper is also provided with a reference source
code for Matlab and Python which allows reproducibility and
demonstrates that the proposed method can be implemented
with very low computational complexity.
In addition, we present a wide range of numerical results, using
different datasets, steganographic schemes and steganalysis
methods among which the most recent and efficient ones based
on Deep Learning. Those numerous comparisons show that
the proposed method achieves better overall performance than
current state of the art. From these results, we are also able to
infer several facts of interest to the steganalyst. In particular,
we confirm that several JPEG-image steganography schemes
have been designed to resist feature-based steganalysis meth-
ods; therefore those shall not be used alone anymore to assess
the practical steganography security thoroughly.

C. Novelty and Relation With Prior Works
This paper is closely related with several prior works,

including some of our works. To show better the originality
of the present work, we contrast below the contribution with
those prior works.
First of all, let us acknowledge that the method developed in
the present paper, considering the “worst-case” most powerful
detector to minimize its statistical performance finds its roots
in [22] and most clear in [23], [24]. Indeed, the former
formalize the problem of steganography as the minimization of
its Fisher Information while the later explicitly explained the
approach focusing on the “omniscient detector”. As explained
and detailed in Section V the method used in the present
paper for estimating pixels variance is based on the one
developed in [23], [24] with light yet important modifications
for achieving good performance.
Indeed, those modifications are required because it is impor-
tant to note that the extension to JPEG images is far from
being straightforward as already acknowledged in [29], [31].
While [29] constitutes the first extension of this method to
JPEG images: it works rather poorly with respect to prior
art and it is computationally very demanding. More funda-
mentally, the method presented in [29] fundamentally differs
because it focuses on modeling and taking into account the
quantization using an uncompressed pre-cover. In addition, it
does not rely on the same model for the steganalyst: this prior
work assumes that the warden knows the change probabilities
in each direction. On the opposite, we explain why this is
equivalent to knowledge of the side information and, hence,
we propose a different approach. In the specific case of Side-
informed steganography, using the uncompressed pre-cover,
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we slightly modified the statement of the problem assum-
ing that the “almost omniscient” detector cannot distinguish
the change direction (this constitutes the side-information
unknown to the detector) but knows the quantization, such
smaller modifications are less detectable.

The present paper also goes along several of our recent prior
works: we developed a similar method based on minimizing
the performance of the most powerful detector for data hiding
in JPEG images based on the complete and exact knowledge of
the acquisition and processing pipeline in [26], [30]. However,
those works focus on developing the most accurate possible
statistical model of images. This especially leads us to study
the covariance of pixels [26] and DCT coefficients [25] and
to take this aspect carefully into account when hiding data
into JPEG images. Those works essentially show that such an
accurate model is beneficial for steganography. However, be-
cause it is almost impossible to estimate correlations between
each and every pixels from a single image, those works are
can hardly be applied in practice.
On the opposite the present paper focuses on the broad context
in which the steganographer has no side-information on the
source : it is only given a digital image already compressed
(typically out-of-camera picture). It is a follow-up of the
conference paper [31] from which we have (1) improved the
parameter model estimation for reaching higher performance
in terms of security, (2) extended the numerical evaluation
in order to assess the performance with respect to current-
art steganalysis method based on deep learning, (3) extended
the proposed method for Side-Informed steganography when
unquantized values of DCT coefficients are available and (4)
detailed the implementation (and provide source codes) and
acknowledge the limitations of the statistical model we exploit.

D. Organization of the Paper

The present paper is organized as follows. Section II
provides primers on JPEG compression and presents the
proposed statistical model of DCT coefficients from JPEG
images. Then Section III recalls the general methodology of
the MiPOD family embedding schemes that minimizes the
statistical performance of most powerful test for hidden data
detection in the ideal case when all parameters are known
to the “omniscient detector”. The natural extension of the
method to the problem of Side-Informed steganography, with
knowledge of unquantized DCT coefficients is presented in
Section IV. Section V details the practical implementation
and especially the estimation method from a given image.
Section VI assesses the practical efficiency of the proposed
method throughout comprehensive comparisons with prior art
and using recent steganalysis methods based on deep learning.
Eventually, Section VII discusses possible future works and
conclude the present paper.

II. STATISTICAL MODELS OF JPEG IMAGES

As briefly explained in Section I, the present paper proposes
a novel method for data hiding by minimizing the performance
of optimal detector in JPEG images. To do so, we will use

hypothesis testing theory which requires a statistical model of
both cover and stego images.

Usual model of DCT coefficients gather all coefficients
which are represented altogether with the same unique sta-
tistical distribution model. The Laplacian distribution [32]
certainly remains the most popular due to fair accuracy despite
highest simplicity and because it was justified in [33]. Other
statistical models have been proposed such as the Generalized
Gaussian model [34]. Some attempts have been made to
carry out steganalysis using Cauchy models [35] and a more
accurate and advanced models in [36].

The fundamental limitation of these models for steganogra-
phy is that they only provide a model of the modes and not
of individuals DCT coefficients. Consequently, the steganogra-
pher cannot use such models without also assuming all DCT
coefficients from a given mode are independent and identically
distributed. This not only goes against the idea of adaptive
steganography but has also been disproved by many recent
models of DCT coefficient for steganography which model
DCT coefficients individually [25], [30]. However taking
into account correlations between DCT coefficients leads to
computational difficulties both in the embedding – within the
methodology presented in this paper, minimizing the statistical
detectability while taking into account samples correlations
leads to a non-additive scheme [37] – and in the estimation of
the covariance matrix for practical implementation.

These more recent models show that, blocks of DCT
coefficients can be modeled as multivariate Gaussians. A
natural simplification to the multivariate model is to use a het-
eroscedastic model of the DCT coefficients – i.e to model DCT
coefficients as independent but not identically distributed. This
is justified by the fact that correlations between DCT coeffi-
cients have usually been found to be small [38]. Furthermore
this simplification solves both the problem of non-additivity
and of the difficulty of estimation – see Section V. Finally, we
note that this model has been successfully used in MiPOD [24]
and in various denoising algorithms [39]–[41] pointing to the
fact that this simplification strikes a good balance between
accuracy and simplicity.

A. Cover Image Model

The statistical model of DCT coefficient lies at the heart of
the steganographic method proposed in the present paper. In
addition, the practical implementation requires understanding
of the foundation of such model. Therefore we will briefly
recall that, in spatial domains, the pixels xk,l are generally
modeled as independent Gaussian random variable with pa-
rameters:

xk,l ∼ N (θk,l, ς
2
k,l) (1)

where µk,l and σ2
k,l represent the expectation and the variance

of the pixel xk,l with coordinates (k, l).
It is important to note that in this widely used heteroscedastic
model, the variance is not the same over all pixels, mainly
because of the shot noise generated by photo-counting [42],
[43].
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Let us recall that the JPEG compression is essentially based
on Discrete Cosine Transform (DCT) applied on small blocks
of 8 × 8 pixels. In order to simplify the notations, we will
represent such a block of 8 × 8 pixels as a vector x of the
64 components arranged lexicographically. The corresponding
DCT coefficient from JPEG image will be denoted as a vector
c. As explained in Appendix A the DCT can be represented
as a single linear operation :

c = Dx (2)

where the matrix D of size 64 × 64 represents the linear
transform of the DCT applied block-wise (see detail in Ap-
pendix A).

As already explained, within the method adopted in the
present paper that uses the statistical performance of optimal
detector, taking into account the correction between DCT
coefficients makes the embedding much more complex as it
would become non-additive [37]. However, it should be noted
that our approach is restrictive on this aspect because the
“optimal detector” is assumed to know the expectation and
variance of DCT coefficients. We acknowledge that it has been
shown, for instance in [44]–[46], that some existing techniques
of changes synchronization help improving the empirical se-
curity significantly. This is mainly because those techniques
exploit in an empirical manner the inherent correlation of
DCT coefficients. On the opposite, in the present paper, we
kept the model simple and assumed that DCT coefficients are
independent and follow non-identical Gaussian distributions:

cm,n ∼ N (θm,n, σ
2
m,n) (3)

where θm,n and σ2
m,n are respectively the mean value and

variance of the m,n-th DCT coefficients (2).
These coefficients are quantized with a different quantiza-

tion factor ∆m,n, depending on their position in each 8 × 8
block:

c̄m,n = round (cm,n/∆m,n) . (4)

The second assumption we make is that the quantization is
negligible compared to the noise variance. We acknowledge
that this assumption is not always accurate in practice. How-
ever, establishing the closed-form expression of the optimal
test for steganalysis taking into account exactly the effect of
quantization is extremely difficult, see for instance [47]. In
addition, adaptive embedding naturally favors coefficients with
the highest variance for which this assumption is acceptable.
This assumption allows us to simplify the probability mass
function (pmf) of quantized DCT coefficients as follows – see
the Appendix A for details:

p0(k) = P [c̄m,n = k]
.
=

∆m,n

σm,n
φ

(
k∆m,n−θm,n

σm,n

)
, (5)

where φ(·) represents the standard Gaussian probability
density function (pdf).

B. Stego Image Model

In order to derive the optimal test, in Section III that
follows, one needs to model the statistical distribution of
DCT coefficients after data hiding. In the present paper we
propose to use a ternary embedding also referred to as ±1. In
brief, whenever a bit to be hidden does not match the least
significant bit (LSB) of the selected coefficient, this latter can
be changed by ±1. In practice, the message is not directly
hidden bit by bit ; instead a coding method is used, usually
based on linear error correcting codes such as STC [3]. The
close to optimal properties of STC can be used to simulate
embedding [48] when assigning each DCT coefficient cm,n
a different probability βm,n of modification. Note that in the
present paper we will denote βm,n the change-rate.
In terms of information theory the maximal payload R that
can be embedded in this framework is given by:

R(β) =
∑
n,m

H3(βm,n), (6)

where the ternary entropy H3(x) is given by:

H3(x) = −2x log2 x− (1− 2x) log2(1− 2x). (7)

It follows from the description of the embedding process
above that the distribution of stego-coefficients sm,n is given
by:

P [s̄m,n = c̄m,n] = (1− 2βm,n) , (8)
P [s̄m,n = c̄m,n+1] = P [s̄m,n = c̄m,n−1] = βm,n.

which yields the following pmf of stego quentized DCT
coefficients:

pβm,n(k) = (1−2βm,n)p0(k)+βm,n (p0(k + 1) + p0(k − 1)) .
(9)

III. STEGANOGRAPHY BY MIMINIZING PERFORMANCE OF
THE MOST POWERFUL TEST

In the framework of the present paper, the embedder seeks
to defend against the most powerful test. It is difficult in
practice to model the information available to the detector.
In a conservative approach, we propose to use the most
stringent potential scenario that targets the omniscient detector,
as defined in [24], which perfectly knows all distribution
parameters of all DCT coefficients under both hypotheses ;
namely the expectations θm,n, the variances σm,n and the
probabilities βm,n. For the sake of clarity, let us denote c̄m,n
the quantized DCT coefficients from cover images, s̄m,n the
corresponding samples after data hiding and z̄m,n is used
when the nature (cover or stego) of inspected coefficients is
unknown.
In this case, the problem of hidden data detection in JPEG
images is reduced to a test between simple binary hypotheses:{

H0 : z̄m,n ∼ P(θm,n, σm,n ; 0),

H1 : z̄m,n ∼ Q(θm,n, σm,n ; βm,n),
(10)

where P is the statistical distribution of DCT coefficients
whose pmf is defined in (9) and parametrized by θm,n, σm,n,
∆m,n and βm,n : obviously the distribution of cover with
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βm,n = 0 yields to the pmf defined in (5).
In this case, the Neyman–Pearson Lemma [49, Theorem 3.2.1]
states that for testing simple binary hypotheses the most
powerful (MP) test is the Likelihood Ratio Test (LRT) defined
by:

log Λ(Z)=
∑
m,n

log Λ (z̄m,n)=
∑
m,n

log

(
pβm,n

(z̄m,n)

p0(z̄m,n)

)
H1

≷
H0

τ,

(11)
where the decision threshold τ is set in order to ensure that
the false alarm is upper bounded by α0:

P [Λ(Z) > τ ] = α0. (12)

Note also that in (11) we used the log-LR which simplifies as a
sum over all coefficients thanks to independence assumption.
Note also that even is β’s are unknown it has been shown
that the above test remains optimal ; more precisely is it
asymptotically uniformly most powerful see [66].

Using the aforementioned statistical models for the distri-
bution of cover and stego DCT coefficients, it is shown in
the appendix A that the log-LR asymptotically converges in
distribution to:

log Λ?(Z) 

{
N (0, 1) under H0

N (
√

2%, 1) under H1

(13)

where Λ?(Z) is the normalized log-LR:

log Λ?(Z) =

∑
m,n log Λ(z̄m,n)− EH0 [log Λ(z̄m,n)]√∑

m,n VarH0 [log Λ(z̄m,n)]
, (14)

with EH0 [x] and VarH0 [x] the expectation and the variance
of random variable x under hypothesis H0.
Note that the in the previous equations (11)-(12) the decision
threshold τ is only related with the level of significance α0

this is why none of those appear in the statistical analysis of
the LR (13). Therefore, regardless of the desired steganalayst
significance level α0, the statistical performance of the most
powerful LR test is entirely determined by the so-called
“deflection coefficient” [24] defined by:

% =
∑
m,n

βm,n
2

(
∆m,n

σm,n

)4

. (15)

The method proposed in the present paper consists in embed-
ding in JPEG while Minimizing the Performance of Optimal
Detector, hence the name J-MiPOD for the ensuing algorithm.
It follows from the results (15) that the goal of the embedder
is to minimize % under payload constraint (6):

βm,n = arg min
∑
m,n

βm,n
2

(
∆m,n

σm,n

)4

,

subject to: R =
∑
n,m

H3(βm,n), (16)

which is a constrained optimization problem whose resolution
is explained in more details in Section V. Before detailing the
implementation, we first describe how the proposed method
can be extended for steganography in JPEG images with Side-
Information (SI).

One can note that the proposed method allows finding the
change probabilities directly βm,n while other traditional ap-
proaches in steganography, such as [13]–[16], usually defines
ad-hoc costs functions.
As noted in [28] this difference in the very optimization goal
has an important consequence: while the proposed method
minimizes the sum of the squared embedding probabili-
ties (16), additive distortion, on the opposite, seeks at min-
imizing the sum a weighted sum of embedding probabilities.

IV. SIDE-INFORMED J-MIPOD
Without loss of generality, Side-Informed (SI) steganogra-

phy essentially consists in leveraging an additional information
that is available only at embedding, hence unknown by the
detector. One can note that the framework of the methodology
proposed in the present paper assumes a “worst-case” in which
the “omniscient detector” knows all information of interest for
steganalysis. This seems fundamentally again the very concept
of “side-informed” steganography. However we do not see a
fundamental contradiction between designing a steganographic
method assuming that the detector has access to information
and a practical evaluation in which the empirical detector does
not know this information. Besides, for the problem of side
informed steganography we will state the problem assuming
that the detector cannot know the change directions.

In the present paper we will focus on the most widely
studied aspect of SI-steganography: when the embedder has
access to an uncompressed version of the image [3], [13], [15].
This way, the embedder knows the unquantized values of DCT
coefficients cm,n while, in practice, an empirical detector can
only use their quantized values c̄m,n (4).
In order to present clearly why the knowledge of the un-
quantized value of DCT coefficient is crucial, let us denote
quantization error em,n ∈ [−1/2; 1/2[ as follow:

em,n = cm,n/∆m,n − c̄m,n. (17)

Indeed, without this information, the embedder only knows
c̄m,n and, hence, minimizing the statistical performance of
optimal detector leads to change coefficients value by ±1
with the same probability. On the opposite, the embedder who
knows the unquantized value cm,n can choose on purpose
to modify this value either by +∆m,n(1/2 − em,n) or by
−∆m,n(1/2 + em,n) to shift the quantized value by +1 or
−1 respectively.

While it seems intuitively a good choice to favor the
smallest modification it is not clear yet how to do so, especially
in the context of an adaptive embedding with ad hoc costs.
In [29] it has been proposed to assume that the “omniscient
detector” knows the change probabilities in each direction
β+
m,n, β

−
m,n as well as the quantization error em,n. While in the

present paper, we adopted the “fine quantization” assumption
(which supposes that noise variance is much larger than
the quantization step), the work presented in [29] lifted the
assumption of focuses on the impact of the rounding. While
extremely interesting, this approach does not work well in
practice.
On the opposite, in the present we assume that in the Side-
Informed case the “imperfect knowledge” of the detector must
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be taken into account. Therefore we stated the very problem
of SI steganography differently: we assumed that the detector
cannot know the modification direction (hence each changes
have the same probability β+

m,n = β−m,n = βm,n) but that the
quantization error is known.
In order to maintain the advantage of Side-Information for all
coefficients, we propose to force the modification direction as
follows:{

β+
m,n = 0 if em,n < 0⇔ sign(em,n) = −1,

β−m,n = 0 if em,n > 0⇔ sign(em,n) = 1
(18)

where sign : R → {−1; 1} represents the sign indicative
function defined by sign(x) = −1 is x < 0 and sign(x) = −1
is x > 0.
However, this constraint prevent ternary embedding ; therefore,
when using the constraints (18) the problem of Side-Informed
MiPOD becomes:

βm,n = arg min
∑
m,n

βm,n
2

(
∆m,n(2em,n−sign(em,n))

σm,n

)4

,

subject to: R =
∑
n,m

H2(βm,n), (19)

where the binary entropy H2(x) is defined as:

H2(x) = −x log(x)− (1− x) log(1− x). (20)

One can note that the expression of the detectability (19)
corresponds exactly to the one established for the non-SI
case (16) multiplied by the factor (2em,n−sign(em,n)) that
represents the amount of change. This can be related to the
well-known property in testing theory that the probability of
detecting a change of magnitude (2em,n−sign(em,n)) depends
on the change-to-noise ratio:

2em,n−sign(em,n)

σm,n
,

which can be found in the expression (19) of the detectability.
Last but not least, we would like to provide explanation

about the proposed SI steganography problem statement. Of
course, we have tried to assume that the “omniscient detector”
knows the probability of change directions. However, this
approach works rather very poorly. We explain these results
by the fact that, on a practical point of view, as discussed
in the Section V, accurate estimation of pixels or DCT
coefficient variance is hardly possible and we include in the es-
timated variance a contribution that represents modeling error
by empirical detectors (or “local content complexity”). This
leads to an overestimation of the variance where the change
probabilities are the highest. However for those coefficients
with high estimated variance, the ratio em,n/σm,n becomes
negligible and both modification directions become equally
likely when minimizing the detectability.

V. PRACTICAL ASPECTS OF IMPLEMENTATION

In practice, the implementation of the method proposed
in Sections III-IV is far from being straightforward. There-
fore, the present paper is provided with a reference source-
code available under DOI: 10.24433/CO.2423893.v2 and the

present section discusses the most important aspects of the
implementation.

A. Estimating Parameters from a Single Image

The proposed method has been built upon the assumption
that the steganalyzer knows the variance and quantization steps
of all DCT-coefficients. In practice, the steganographer is given
a JPEG image from which those variances must be estimated
(quantization steps are needed for decompression and, hence,
available from file header).
Let us acknowledge that the exact variance estimation does
matter significantly on the ensuing practical performance. We
have noticed that the most accurate estimation of expecta-
tion and variance does not imply the highest efficiency for
steganography. We explain this observation by the fact that
a complex content of the image may prevent the steganalyze
accuracy. Hence, as noted in [24], [27] the steganographer
must find a tradeoff between accurate estimation of variance
relying, using the most efficient denoising method, and pre-
serving part of the textured content into the residuals to take
it into account in the embedding. Therefore, what we will
describe as an estimation of the variance of DCT coefficients
also contains a significant amount of image modeling error.

As explained in Section II-A we propose in this paper to
estimate the variance of DCT coefficient use pixels values in
spatial, this is carried out into four steps: (1) decompression
of the image back into the spatial domain (2) estimation of the
expectation of pixels (3) local estimation of pixels variances,
and (4) leverage the linearity of the DCT to obtain the variance
of DCT-coefficients, see Appendix A.
We would like to clearly state that steps (2) and (3) are
based on the method developed in [24] and reused in [31].
The method for variance estimation is mostly modified in
the three main direction (1) we have adjusted the parameters
value for improving empirical performance against current art
steganalysis (2) due to quantization of DCT coefficient we
dramatically limit the clipping, from below, of the estimated
variance and (3) we replaced the moving average over a 7×7
window by a, average over DCT coefficients from the same
mode over the neighboring blocks. In [31] only (2) has been
implemented.

In order to ensure that the paper is self-contained we
describe below the whole method for expectation and variance
of pixels. First, the estimation of pixels expectation, denoted
µ̃, is obtained, as in [24], using a simple Wiener Filter over
blocks of pixels of size 2× 2 which we denote as

µ̃ = F (X) (21)

with X the image in spatial domain. One can subtract the
estimated expectation to obtain the so-called residuals as
follows:

R = X− µ̃ = X− F (X). (22)

Because the estimation of pixels expectation is far from being
perfect, the residuals contain a non-negligible contribution
from content. In order to estimate the variance of pixels, we
modeled the non-zero expectation of residuals can be modeled
using a with a trigonometric 2D polynomial of degree d.

https://doi.org/10.24433/CO.2423893.v2
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TABLE I: Evolution of minimal probability of error P E
measured with EfficientNet-b3 for proposed J-MiPOD scheme
for different values of the noise estimation parameters, block
size q and trigonometric polynomial degree d (top, QF=95
and R=0.2, bottom QF=75 and R = 0.2).

q=3 q=5 q=7 q=9 q=11 q=13 q=15 q=17

d=3 0.412 – – – – – – –

d=5 0.409 0.420 – – – – – –

d=7 0.396 0.405 0.398 – – – – –

d=9 0.392 0.397 0.393 0.387 – – – –

d=11 0.398 0.395 0.390 0.396 0.384 – – –

d=13 0.387 0.398 0.392 0.387 0.394 0.391 – –

d=15 0.383 0.380 0.392 0.396 0.392 0.387 0.383

d=17 0.380 0.384 0.383 0.398 0.397 0.390 0.387 0.373

q=3 q=5 q=7 q=9 q=11 q=13 q=15 q=17

d=3 0.199 – – – – – – –

d=5 0.161 0.195 – – – – – –

d=7 0.143 0.157 0.166 – – – – –

d=9 0.134 0.143 0.144 0.163 – – – –

d=11 0.136 0.127 0.135 0.140 0.142 – – –

d=13 0.138 0.131 0.137 0.123 0.130 0.132 – –

d=15 0.111 0.129 0.141 0.131 0.129 0.132 0.127 –

d=17 0.108 0.135 0.121 0.119 0.126 0.129 0.133 0.135

To this end, we arrange the residuals centered at pixel (k, l)
as a column vector rk,l which is modeled as

rk,l ∼ N
(
Hξk,l, σ

2
k,lI
)
, (23)

where matrix H represents the trigonometric polynomial and
ξk,l the associated coefficients.
Note that the variance does not change abruptly between
neighboring pixels ; hence, we assumed in (23) that the small
block the residuals rk,l share the same variance σ2

k,l.
From (23), it is straightforward that the maximum Likelihood
estimation of the variance is given by

σ̃2
k,l =

∥∥H⊥rk,l
∥∥2

2

q2 −Nd
=

∥∥∥(H>H
)−1

H>rk,l

∥∥∥2

2

q2 −Nd
(24)

where P⊥H =
(
H>H

)−1
H> geometrically corresponds to the

orthogonal complement to the subspace spanned by the matrix
H (the left null space of matrix H). In (24) Nd = d(d+ 1)/2
is the total number of monomials, hence, q2 −Nd represents
the “number of degree of freedom”.

It is important to explain briefly two important remarks.
First, within the proposed method it is proposed to estimate the
variance in the spatial domain σ̃2

k,l and then, using the linearity
of DCT (2) and statistical properties of Gaussian distribution,
to calculated the estimated variance of the (unquantized) DCT
coefficients σ̃2

m,n blockwise as follows:

Σ̃
2

m,n = D>Σ̃
2

k,lD,

where Σ̃
2

m,n and Σ̃
2

k,l are the estimated variance of 8 × 8
blocks of DCT coefficients and pixels respectively and the

matrix D is the matrix that represents the linear transform of
the DCT. Second, for the purpose of numerical stability, one
must prevent the estimated variance from being close to 0 since
σ̃−4
m,n is used in equations (16) and (19). To this end, it was

proposed in [24] to lower-bound the variance to 0.01. However
it has been observed that this lower bound is much too high
for DCT coefficients because, due to their quantization, their
estimated is very often much smaller. Hence, the threshold on
minimal variance value shall be set as small as possible: we
set this the lower-bound to 10−10:

σ̃2
m,n = max

(
σ̃2
m,n; 10−10

)
. (25)

Note that this thresholding of variances, from below, is applied
for estimated variance of DCT coefficient while the above
procedure for variance estimation is applied in spatial domain
hence the indices (k, l) for spatial domain and (m,n) for JPEG
domain.

We have noted in some of our prior works [26], [30] that
taking into account pixels correlation can largely improve the
practical security against empirical detectors. To this end we
have tried to impose a fixed “covariance structure” that we
scale with the variance of pixels. While this improved the
method, the computation complexity increases significantly,
especially because one must take into account pixels from
neighboring 8× 8 blocks.
In practice, we noted that taking into account correlation
between pixels have one notable effect: the embedding prob-
abilities are smoothed, low-pass filtered in a conservative
manner where a small embedding change propagates along the
neighboring coefficients, see Fig. 1. This observation confirms
those that have been presented in [14], [24], filtering the
“costs” prevents the embedding algorithm from being “overly
adaptive” and eventually increases its security. Driven by those
observation, we implemented in the present paper a filtering
of the Fisher Information FIm,n = ∆4

m,n/σ
4
m,n by a simple

averaging over the 9 DCT coefficients corresponding to the
same “modes” from the neighboring 8× 8 blocks:

F̃ Im,n = σ̃−4
m+8i,n+8j =

1∑
i=−1

1∑
j=−1

wi,j σ̃
−4
m+8i,n+8j . (26)

with
∑1
i=−1

∑1
j=−1 wi,j = 1.

This last step constitutes one of the main difference with prior
work [31] in terms of variance estimation.
The second main difference lies in the parameters we have for
variance estimation ; indeed, in the present paper we have used
a pragmatic approach of trials and evaluation against empirical
detectors in order to instantiate the method. For instance,
Table I shows the evolution of PE , the minimal probability
of error under equal prior, when changing the block size q
and the 2D polynomial degree d with respect to state-of-the-art
empirical detector based on EfficientNet-b3 over BOSS [50] +
BOWS [51] databases. As opposed to what has been observed
for spatial domain MiPOD [24], it seems that small block
size and low degree results lead to a more secured adaptive
steganography. Such results allow the setting of the variance
estimator with block size q = 3, degree d = 3.
The same practical approach has been applied to determine the
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values of the averaging kernel filter (26); few experimentations
with trials and evaluations lead us to consider the following
weights:

w =
1

20

1 3 1
3 4 3
1 3 1

 . (27)

B. Simulated and Actual Data Hiding

Once the variances of each and every DCT-coefficients have
been estimated σ̃m,n, the embedding requires solving the con-
strained optimization problem (16) and (19) for determining
the change probabilities βm,n.
To this end, we used the method, originally proposed in [22],
that is based Lagrange multipliers for constraint optimization.
From (16), the Lagrange function is given by:

L =
∑
m,n

βm,n
2

(
∆m,n

σ̃m,n

)4

−

(
λ
∑
m,n

H3(βm,n)−R

)
. (28)

Differentiating the previous relation (28) and finding the
change probabilities βm,n for which the differentiate equals
0 leads to the following equation:

βm,n log2(βm,n − 2) = f(βm,n) = λ
σ̃4
m,n

∆4
m,n

, (29)

⇔ βm,n = f−1

(
λ
σ̃4
m,n

∆4
m,n

)
, ∀(m,n) (30)

The second part of the previous equation (30) allows straight-
forwardly computing the change probabilities βm,n using the
estimated variance σ̃m,n. However, the Lagrange multiplier
must be determined in order to satisfy the payload constraint:

R =

N∑
n=1

H3(βm,n). (31)

To this end, we replace in the payload constraint (31) the
change probabilities by their expressions given in (30):

R =
∑
m,n

H3

(
f−1

(
λ
σ̃4
m,n

∆4
m,n

))
, (32)

Thank to this last equation (32), we can now find –using
binary search or bisection method– the value of the Lagrange
multiplier λ that allows ensuring the payload constraint ;
plugging this value back into (30) allows computing the
change probabilities βm,n.
Note that to speed up the implementation we have tabulated
the value of function f(x) = x log2(x−2) such that computing
the inverse f−1(·) is reduced to a simple lookup table.

Eventually, as stated in Section III- IV, determining the
change probability for each and every pixels allows simulating
embedding at the information theoretical efficiency bounds.
In order to carry out actual embedding one can use the
STCs [3]. However the STCs requires a cost ρm,n from
which it determines the change probabilities βm,n in order
to minimize a distortion function which corresponds to the
average cost also referred to as the “distortion”:

Distortion =
∑
m,n

ρm,nβm,n. (33)

Note that formulations (33) and (15) may seem contradictory
as the objective it is aimed at minimizing are different.
Therefore, to allow using the STC, which minimizes the
distortion (33), while applying the method proposed is the
present paper that minimizes (15), one has to set the cost ρm,n
such that the change probabilities βm,n match in both case (up
to STC coding loss). To this end, the embedding probabilities
βm,n and the costs ρm,n can be bound by the relation [3]:

βm,n =
e−λρm,n

1 + 2e−λρm,n
⇔ ρm,n =

1

λ
ln(1/βm,n − 2), (34)

where λ is a Lagrange multiplier used to satisfy the payload
constraint. To perform actual embedding one can use the
right side of Equation (34) in order to find costs ρm,n from
the embedding probabilities βm,n computed from (15) then
use those costs with the STCs.

VI. NUMERICAL RESULTS

A. Common core of all experiments

In order to assess the efficiency and the security of the
proposed method we carried out a large set of numerical exper-
iments. For a meaningful comparison with prior arts, we com-
pare the proposed method with UERD [16], UNIWARD [13]
with and without side-information and SI-EBS [15]. For the
sake of clarity we also included model-based method proposed
in [29] as well as our prior work [31] that the present paper
extends. In addition, we have included results obtained with
the proposed method without the smoothing of variances of
DCT coefficients (26) so that the reader can assess the impor-
tance of this step. Eventually we also included results from
the spatial domain MiPOD [24] when this algorithm is used
“as it” with transformation of variance to DCT-domain (2) in
order to show the impact of lower-bounding the variance (25).
We have used two datasets ; for the same reason of comparison
with prior works, we have used BOSS [50] and BOWS [51]
bases together both made of 10, 000 grayscale images of size
512 × 512. As explained in [18], [52] this dataset is very
specific since all images have been processed in the same
way and especially largely resized. To compare the security of
embedding schemes under more realistic conditions we have
also used the recent ALASKA base [52], [53]. The version we

TABLE II: Comparison of average change rates (ratio of
expected number of hidden bits divided by the total number
of AC coefficients) over all images from BOSSbase [50] for
various embedding algorithms and payloads.

R = 0.2 R = 0.4 R = 0.6
QF = 100

Prior work [31] 0.0200 0.0487 0.0843
J-MiPOD (our proposal) 0.0205 0.0502 0.0868
J-UNIWARD 0.0256 0.0569 0.0919
UERD 0.0241 0.0553 0.0912

QF = 75
Prior work [31] 0.0047 0.0113 0.0192
J-MiPOD (our proposal) 0.0050 0.0121 0.0205
J-UNIWARD 0.0061 0.0135 0.0216
UERD 0.0056 0.0125 0.0201
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a) Image #50774, QF=75 b) Image #00076, QF=95 c) Image #29206, QF=100

d) βm,n for UERD [16] e) βm,n for UERD [16] f) βm,n for UERD [16]

g) βm,n prior work [31] h) βm,n prior work [31] i) βm,n prior work [31]

j) βm,n, proposed JMiPOD k) βm,n, proposed JMiPOD l) βm,n, proposed JMiPOD

m) βm,n for J-UNIWARD [13] n) βm,n for J-UNIWARD [13] o) βm,n for J-UNIWARD [13]

Fig. 1: Comparison JPEG images steganographic algorithms in terms of payload distribution among DCT coefficients.
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TABLE III: Security comparison of state-of-the-art embedding
method via P E over BOSS + BOWS datasets with fast linear
classifier [9] trained using SCA-GFR features [55], [56].

P E R=0.1 R=0.2 R=0.3 R=0.4 R=0.5 R=0.6
QF = 100

Model-based [29] 0.4286 0.3345 0.2575 0.1979 0.1504 0.1165
MiPOD-DCT [24] 0.4682 0.4259 0.3764 0.3305 0.2876 0.2509
Prior work [31] 0.4697 0.4279 0.3765 0.3315 0.2895 0.2518
w/o smoothing 0.4636 0.4155 0.3617 0.3135 0.2723 0.2350
J-MiPOD 0.4766 0.4449 0.4041 0.3637 0.3237 0.2863
J-UNIWARD 0.4395 0.3762 0.3173 0.2707 0.2303 0.1970
UERD 0.3895 0.3213 0.2714 0.2315 0.2011 0.1744

QF = 95
Model-based [29] 0.4062 0.2812 0.1698 0.0912 0.0414 0.0166
MiPOD-DCT [24] 0.4619 0.4057 0.3349 0.2684 0.2015 0.1469
Prior work [31] 0.4643 0.4088 0.3431 0.2737 0.2057 0.1499
w/o smoothing 0.4581 0.3969 0.3308 0.2611 0.1959 0.1426
J-MiPOD 0.4644 0.4143 0.3550 0.2856 0.2201 0.1617
J-UNIWARD 0.4677 0.4148 0.3482 0.2832 0.2141 0.1519
UERD 0.4167 0.3393 0.2660 0.2035 0.1520 0.1082

QF = 75
Model-based [29] 0.2359 0.0973 0.0322 0.0084 0.0023 0.0008
MiPOD-DCT [24] 0.2141 0.1478 0.0945 0.0576 0.0316 0.0166
Prior work [31] 0.3886 0.2659 0.1624 0.0951 0.0523 0.0262
w/o smoothing 0.3669 0.2335 0.1395 0.0771 0.0420 0.0211
J-MiPOD 0.3889 0.2644 0.1649 0.0959 0.0527 0.0271
J-UNIWARD 0.3657 0.2382 0.1415 0.0791 0.0418 0.0207
UERD 0.3091 0.1904 0.1128 0.0664 0.0372 0.0195

used is made of 80, 000 grayscale images of size 512× 512.
Each and every images from this dataset have been processed
differently using a randomized process. All those datasets
have been compressed using the convert command from
imagemagick.
Eventually, we have used two main steganalysis method to
assess the security of various embedding scheme. For back-
ward compatibility we used the well-known features based
method using DCTR [54] and GFR [55] features, as well as
their Selection Channel Aware (SCA) versions [56], with the
fast-linear classifier [9]. We have also included results from
steganalysis based on deep learning because they constitute
now the state-of-the-art. In this domain we have mostly
used the recent and already well-established EfficientNet [57]
because it has been shown to be extremely efficient for
steganalysis in ALASKA Steganalysis Challenge [53], even
slightly more than SRNet [11]. We would like to point out
that we have also tried several other Deep Learning models
such as the Simple JPEG stegnalaysis Net [12] the well-
established SRnet [11], MixNet-S [58], NFNet [59] and the
latest EfficientNet v2s [60] ; they all generally show the
same conclusion especially in terms of embedding algorithm
raking. Due to the space limitation those additional results are
provided in “complementary material” along this paper.

Before presenting numerical comparisons with the state-of-
the-art algorithms on efficiency, we would like to provide a vi-
sual comparison showing how different algorithms adaptively
embed into JPEG images. To this end, Figure 1 shows an
example of three different images from ALASKA along with
the probability of change βm,n for the four main considered
steganographic algorithms. Note that to enhance the visual
difference we have used quite large payloads, measured in
bpnzAC everywhere in this paper. Note also that the first
column corresponds to QF = 75, the second column is

TABLE IV: Security comparison of state-of-the-art embed-
ding method via P E over BOWS + BOSS datasets with
EfficientNet-b0 [57].

P E R=0.1 R=0.2 R=0.3 R=0.4 R=0.5 R=0.6
QF = 100

Model-based [29] 0.1989 0.0934 0.0493 0.0275 0.0142 0.0085
MiPOD-DCT [24] 0.3280 0.2176 0.1474 0.1044 0.0754 0.0632
Prior work [31] 0.3253 0.1966 0.1349 0.0919 0.0699 0.0562
w/o smoothing 0.3118 0.1894 0.1301 0.0894 0.0639 0.0527
J-MiPOD 0.3635 0.2458 0.1786 0.1334 0.1039 0.0819
J-UNIWARD 0.2748 0.2038 0.1174 0.0814 0.0617 0.0452
UERD 0.1329 0.0662 0.0424 0.0294 0.0224 0.0147

QF = 95
Model-based [29] 0.3533 0.1836 0.0782 0.0272 0.0057 0.0020
MiPOD-DCT [24] 0.3945 0.3061 0.2211 0.1529 0.0962 0.0597
Prior work [31] 0.4285 0.3408 0.2386 0.1696 0.1044 0.0672
w/o smoothing 0.4340 0.3445 0.2543 0.1739 0.1089 0.0684
J-MiPOD 0.4490 0.3725 0.2876 0.1964 0.1466 0.0899
J-UNIWARD 0.4345 0.3610 0.2758 0.1889 0.1301 0.0774
UERD 0.2311 0.1396 0.0802 0.0487 0.0269 0.0224

QF = 75
Model-based [29] 0.1291 0.0264 0.0050 0.0007 0.0005 0.0002
MiPOD-DCT [24] 0.0527 0.0207 0.0082 0.0040 0.0025 0.0012
Prior work [31] 0.2396 0.1049 0.0507 0.0207 0.0107 0.0055
w/o smoothing 0.2553 0.1246 0.0512 0.0289 0.0109 0.0040
J-MiPOD 0.3193 0.1806 0.0959 0.0524 0.0249 0.0187
J-UNIWARD 0.2918 0.1599 0.0807 0.0342 0.0137 0.0087
UERD 0.1584 0.0684 0.0302 0.0162 0.0087 0.0037

an example for QF = 95 while the rightmost shows the
interesting case of QF = 100 for which all quantization
factors are 1.
Obviously, UERD adopts an “overly adaptive” strategy where
all the payload is concentrated in a rather small number of
blocks. On the opposite, our prior work [31] as well as J-
UNIWARD both spread the payload across a very large num-
ber of blocks. J-UNIWARD, however, seems to use more DCT
coefficients corresponding to mid-frequencies. The proposed
method is similar to our own prior work, yet, as discussed
in the Section V the changes in variance estimation leads to
a more conservative approach in which some large areas are
almost not used while the payload is spread more evenly in
the rest of the image.
Such observations are confirmed in Table II that shows the
average change rate overall BOSSbase [50] for a few payloads
and quality factors. Our prior work [31] achieves the lowest
average change rate because it spreads cost too much which
makes may cause embedding into areas where it can be
easily detected. J-UNIWARD, on the other hand, is always
the most adaptive, which reduces the efficiency of STCs
and hence increases the change rate. We can note that the
proposed algorithm is slightly less adaptive than our prior
work [31] because, as already discussed the changes in the
estimation of variance makes it more conservative and prevents
the embedding into large areas around coefficients which are
considered as the most risky.

B. Comparison with prior art in Terms of Detectability

We now move to the most important part of the numerical
evaluation, that is the comparison in terms of “detectability”
of current art. As already stated, we have carried out a very
large range of numerical results using BOSS + BOWS dataset
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TABLE V: Numerical comparison of security of state-of-the-
art embedding method via P E over ALASKA2 dataset with
EfficientNet-b0 [57].

P E R=0.1 R=0.2 R=0.3 R=0.4 R=0.5 R=0.6
QF = 100

Model-based [29] 0.3027 0.1913 0.1545 0.1339 0.1157 0.0911
MiPOD-DCT [24] 0.3855 0.2866 0.2315 0.2008 0.1740 0.1565
Prior work [31] 0.3878 0.2997 0.2369 0.2019 0.1727 0.1564
w/o smoothing 0.3539 0.2471 0.1984 0.1679 0.1485 0.1305
J-MiPOD 0.4463 0.3815 0.3157 0.2840 0.2390 0.2134
J-UNIWARD 0.3643 0.2995 0.2373 0.2109 0.1814 0.1613
UERD 0.2585 0.1851 0.1321 0.1367 0.1261 0.1153

QF = 95
Model-based [29] 0.4117 0.2933 0.2417 0.1605 0.1005 0.0639
MiPOD-DCT [24] 0.4070 0.3488 0.2928 0.2442 0.1973 0.1723
Prior work [31] 0.4450 0.3763 0.3225 0.2614 0.2294 0.1870
w/o smoothing 0.4478 0.3908 0.3259 0.2686 0.2121 0.1802
J-MiPOD 0.4601 0.4126 0.3562 0.3002 0.2563 0.2277
J-UNIWARD 0.4594 0.4048 0.3431 0.2830 0.2306 0.1769
UERD 0.4089 0.3319 0.2687 0.2239 0.1867 0.1193

QF = 75
Model-based [29] 0.2313 0.1107 0.0855 0.0398 0.0195 0.0030
MiPOD-DCT [24] 0.1273 0.0537 0.0400 0.0307 0.0228 0.0183
Prior work [31] 0.2427 0.1344 0.0773 0.0537 0.0401 0.0242
w/o smoothing 0.2765 0.1513 0.0891 0.0567 0.0358 0.0209
J-MiPOD 0.3116 0.2068 0.1404 0.1043 0.0676 0.0424
J-UNIWARD 0.3253 0.2040 0.1206 0.0727 0.0433 0.0268
UERD 0.2445 0.1388 0.0833 0.0511 0.0361 0.0279

and ALASKA images and using different JPEG quality factors
: {100, 95, 85, 75}. Due to space limitations, we only present
a few of them supporting the main conclusion that can be
drawn. For all those results, we have used the widely adopted
minimal probability of error under equal prior denoted PE .
First, Table III shows the PE obtained for all embedding
schemes again SCA-GFR features set with fast linear classifier
over BOWS + BOSS datasets. From this table it seems that,
the prior work [29] is by far the least secure algorithm while
UERD also performs generally significantly worse. We also
note that J-UNIWARD is more competitive but it is largely
subpar by J-MiPOD which seems just a little better than our
prior work [31]. We also note that the proposed algorithm
performs best for the highest quality factor QF = 100. On
the opposite J-UNIWARD performs, roughly peaking, as well
as the proposed J-MiPOD for QF = 95.
This last observation may be explained by the fact that J-
UNIWARD, as well as many prior works, were designed
using trials and evaluation with setting QF = 95 and payload
R = 0.4 bpnzAC.
One can also note that MiPOD [24] can hardly be used for low
QF while, interestingly, the smoothing of the variance does not
seem to improve significantly the performance of the proposed
method.

Let us now contrast Table IV that shows the very same
results except that the steganalysis is carried with EfficientNet-
b0. Interestingly, it seems that using Deep Learning detection
method, UERD is much more detectable as compared to its
competitors (up to almost −20% for QF95 and QF75). To
a lessed extend, the comparison is also worse for our prior
work [31], especially for QF75. The same observation for the
proposed method without smoothing of variances. Eventually,
the direct use of MiPOD [24] is extremely unsecure for low
QF. Together those two last results highligth how the variance

estimation is crutial for ensuring security of the proposed
method and the importance of the improvement we have
proposed.
Interestingly, J-UNIWARD seems extremely robust: it is
the onle comptitor that still performs slightly less well than
J-MiPOD with the notable exception of QF100 for which
the proposed method is by far outperforming. The difference
between those two embedding algorithms is significative for
QF75 but smaller for QF95.

Last, Table V offers a very similar comparison but using
images from the ALASKAv2 [53] dataset instead. This result
is very interesting because those images are more realistic
and much more diverse than those from BOSS and BOWS
datasets, in particular due to the much more complex, realistic
and randomized development processes as well as due to the
larger set of cameras (more than 50 different models). This
dataset is also made of way more images which allows training
complex deep net models with more accuracy. Table V shows
similar trends in the following aspects: (1) UERD [16] and
model-based [29] remain, by far, much more detectable, (2)
the proposed method generally outperforms its competitors,
(3) J-UNIWARD is very efficient for QF95 (4) across all those
results, the proposed J-MiPOD method seems comparatively
more efficient than its competitors for higher payload. In
addition the comparison between the proposed J-MiPOD with
and without the smoothing of variances and MiPOD [24]
transformed to JPEG domain confirms the importance in
practice of the improvements we have proposed for variance
estimation.

Last not least, we have noted will all deep learning mod-
els we have tested [11], [12], [57]–[60] that JPEG images
compressed with QF100 become more detectable than those
compressed with QF95 for the same payload in bpnzAC ; this
is in contradiction with what has always been observed with
features-based steganalysis, see for instance results reported
in [16], [54], [56]. This can be explained in part by the higher
actual payload in QF100 due to the much smaller number
of non-zeros AC coefficients (while the payload is measured
in bpnzAC; bits per non-zero AC coefficients). In addition
we would like to point out that this observation was already
studied in [64]. This prior work provides a thorough analysis
showing that, even for the same number of changes, the Fisher
information tends to increase with the QF for the highest
factors (typically from QF=97). While this analysis allows
explaining the results obtained with deep learning models,
one should note that the results obtained with features-based
approach car hardly be explained due to their handcraft designs
and partial adaptation with QF.

Finally, let us provide a few more details about the method
we have used to train the various deep learning models.
First of all, regarding EfficientNet we have removed the very
first pooling layer because this simple modification has been
shown to be a quite efficient during ALASKA2 steganalysis
Challenge [61], [62].
To simplify the training step we have used two important
tricks. First, it has been shown in ALASKA Steganalysis
Challenge [53] that, even though the classification task is very
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TABLE VI: Comparison of current art embedding algorithms in terms of computation time over ; results obtained using Matlab®
numerical computing environment and reference implement when available. Left, non-SI schemes ; right, SI schemes.

Embedding simulation without multithreading nor multi-processing
Model-based [29] Prior work [31] J-MiPOD UERD J-UNIWARD Model-based-SI [29] SI-MiPOD EBS SI-UNIWARD

QF =100 6.69 sec. 1.52 sec.. 0.35 sec. 0.54 sec. 3.32 sec. 6.78 sec. 0.77 sec. 0.56 sec. 4.54 sec.
QF =95 4.07 sec 2.00 sec. 0.34 sec. 0.48 sec. 3.34 sec. 4.49 sec. 0.67 sec. 0.56 sec. 4.56 sec.
QF =85 3.76 sec. 2.42 sec. 0.37 sec. 0.48 sec. 3.36 sec. 3.88 sec. 0.65 sec. 0.52 sec. 4.50 sec.
QF =75 3.75 sec 2.50 sec. 0.39 sec. 0.49 sec. 3.34 sec. 3.78 sec. 0.69 sec. 0.53 sec. 4.64 sec.

Embedding simulation with multithreading and multi-processing
Model-based [29] Prior work [31] J-MiPOD UERD J-UNIWARD Model-based-SI [29] SI-MiPOD EBS SI-UNIWARD

QF =100 27.52 sec. 4.87 sec.. 1.37 sec. 1.17 sec. 8.49 sec. 24.52 sec. 1.83 sec. 1.31 sec. 11.02 sec.
QF =95 13.60 sec 6.60 sec. 1.23 sec. 1.05 sec. 8.38 sec. 13.64 sec. 1.71 sec. 1.27 sec. 10.89 sec.
QF =85 12.75 sec. 7.78 sec. 1.27 sec. 1.08 sec. 8.29 sec. 11.41 sec. 1.67 sec. 1.26 sec. 10.88 sec.
QF =75 12.71 sec 8.28 sec. 1.35 sec. 1.09 sec. 8.24 sec. 11.02 sec. 1.70 sec. 1.23 sec. 10.90 sec.

different from steganalysis, using weights pre-trained from
imagenet dramatically speed up convergence. To this end, we
have used the timm Python package for pytorch. Second,
we have also adopted a curriculum learning very similar to
the one proposed [63] starting with the lowest quality factor,
QF75, and with non-adaptive LSBM steganography, reducing
the payload step by step. For all the embedding algorithms we
used the same process starting from scracted for 25 epochs
using the “reduced on plateau” strategy to set the Learning
Rate starting from 0.001. Then we used the weights obtained
as a starting point for the training with higher quality factor
iteratively using the same number of epochs. Once EfficientNet
have been trained for each QF, we use iteratively the weights
for lower payloads with only 8 epochs, starting with a much
lower LR (1e− 4 instead of 1e− 3).

Last but not least, Table VI compares the computational
complexity of the state-of-the-art data hiding scheme for JPEG
images. To this end we measured the average execution time
over using the same programming language (and in fact same
code for simulated embedding) all images from BOSS base
with size 512 × 512. Table VI compares show the results
obtained for two different payloads (R = 0.2 and R = 0.4)
and four different JPEG QF (100, 95, 85 and 75). We have
used Matlab® and we were warmed that this software uses
native parallelization for some built-in functions ; therefore, we
have used two different settings, one without multithreading
(using command maxNumCompThreads(1)) and one using
multithreading and parallelization (using commands parfor
and parpool(·)) with as many jobs as cores (12 in our case).
The computation time has been measured on Matlab®version
9.6 (R2019a), using a DELL Precision 7730 laptop equipped
with Intel®Xeon®E-2176M CPU @ 3.30GHz along with
32GB DDR4 memory @ 2667 MB/s.
One can note from Table VI that UERD, whose associated
costs are extremely simple to compute is the fastest. On the
opposite, J-UNIWARD that uses a wavelet decomposition and
compute the ratio of wavelet coefficients after and before
embedding for different direction is almost 8 times slower.
The proposed method lies within those two extremes : it is
slightly slower than UERD but more than four times faster than
J-UNIWARD. One can note that the implementation of the
proposed method uses built-in Matlab function multithreading
(especially matrix multiplication and Wiener filtering) which
makes it slightly less efficient when used in a parallelized
manner.

Note that we have worked to improve the reference implemen-
tation with the goal to make it very efficient by simplifying
many operations especially the three following (1) changing
the convergence criterion to reduce the number of iterations to
determine the Lagrange multiplier in (32) (2) using tabulated
values for inverse function with reduced sampling. This latter
simplification leads the proposed algorithm, in some case,
to associate to large number of coefficients the exact same
change probability. We have noted that this does not reduce
the security, at least not in a measurable manner. This shows
experimentally something that is generally acknowledged in
the community, the security of embedding scheme mostly
comes from the capability to select carefully pixels is which
data should be hidden more than assigning very accurately
change probabilities. As already mentioned we focus in the
present paper on “simulated embedding” at the Shannon
theoretical bound (6). However in practice one has to perform
“actual” data hiding using a coding method to get closer to
this bound such as the STC [3].It should be emphasized that in
such a case the proposed method is slower by about 0.8 1sec.
Indeed, the proposed method requires to compute the desired
change probabilities and then to turn them into costs usable
by STC.

C. Comparison of Side-Informed Schemes

To conclude with the numerical experimentation we provide
in Figure 2 a numerical comparison of state-of-the-art Side-
Informed (SI) steganography. In this experimentation, we
have included SI-UNIWARD [54] as well as SI-EBS [15] ;
the former is adopted as the most secured while the latter
is considered as the sole effective competitor. In addition,
we have added comparison with the model-based method
proposed in [29] due its methodology that is similar to the
one proposed in this paper.
Figure 2(a)-(c) show the average PE obtained over BOSS and
BOWS datasets using EfficientNet-b0 without the first pooling.
One can see that the Side-Informed version of the proposed
embedding scheme always outperforms SI-UNIWARD by up
to +1.5% for QF100, +1.2% for QF95 and more than +5%
for QF75. Contrast those results with those presented in
Figure 2(d) against features-based detector using DCTR and
GFR for QF75 : one can note that SI-UNIWARD seems more
detectable in this case ; similar results have been obtained for
the other QF. This confirms the previous results presented for
non-SI schemes, that UNIWARD is extremely robust against
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a) EfficientNet-b0 ; QF = 100.
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b) EfficientNet-b0 ; QF = 95.
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c) EfficientNet-b0 ; QF = 75.
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d) Features-based detector (GFR+DCTR) ; QF = 75.

Fig. 2: Comparison of Side-Informed schemes, SI-MiPOD and current state-of-the-art SI-UNIWARD, through plots showing
evolution of PE as a function of the embedding payload for BOSS [50] and BOWS [51] bases and for various JPEG quality
factors (100, 95 and 75). Contrast the difference between figures (a)-(c), whose results were obtained with EfficientNet-b0,
with the figure (d) that compares detection accuracy obtained using GFR and DCTR.

Deep Learning based steganalysis yet the method proposed in
this paper is still slightly better.
On the opposite, SI-EBS shows a similar trends as UERD for
non-SI case : both their security is substantially worse when
switching from features-based detection to Deep Learning
approaches. This may be explained by the fact that those two
embedding schemes have been tailored to be robust against
those features-based steganalysis. All those results show that it
is not possible anymore to assess the security of steganography
without Deep Learning based approaches.

VII. CONCLUSION

The present paper proposes a novel method for steganog-
raphy of JPEG images that significantly differ from prior art
that aims at designing, in a more or less ad-hoc manner, a cost
function. On the opposite, we propose to exploit hypothesis
testing theory in order to assess the statistical performance
of optimal most powerful test in the worst case where all
distribution parameters for each and every pixel are available at
the detector. Within this “worst-case scenario”, we leverage the
closed-form expression of this optimal statistical performance
to design a data hiding method that specifically aims at mini-
mizing this performance. While explicit solution of this min-
imization is not straightforward, we simplified the statistical
model in order to propose to find a tradeoff between accuracy
and application through into a practical implementation that
is efficient on a computational point of view. In addition, an
extension of the method is presented for the Side-Informed
case, when the embedder has the uncompressed image at it

disposal. In both cases, the method is shown to be more
efficient the current state-of-the-art as well as more secured
against most efficient steganalysis approaches including those
based on Deep Learning.

We are aware of the limitation of the statistical model
upon which the proposed embedding method is based, es-
pecially assuming independence between DCT coefficients.
We have detailed the method proposed for those estimation
and explained why estimation of covariance between DCT
coefficients within a single image in, to the best of our
knowledge, currently out-of-reach. While we acknowledge that
being able to use and estimate a more accurate statistical model
of JPEG would enlarge the application, for instance to measure
how many bits can be embedded “safely”, the present method
can be used “at it” to decide how to spread the payload into
several images [31], [65]. Using a more accurate statistical
model may also allow improving the efficiency of the present
method ; it constitutes a difficult research topic on its own [30].
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CodeOcean under DOI: 10.24433/CO.2423893.v2. The code
for evaluation using deep learning based steganalysis, as well
as models checkpoints, will be made available at alaska.utt.fr.
The code for all other steganographic methods, feature ex-
tractors, and classifiers used in this paper is available from
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APPENDIX

STUDY OF THE LIKELIHOOD RATIO

Using the expressions for p0(z̄m,n) (5) and pβm,n(z̄m,n) (9),
let us compute the expression of the LR (11) for one obser-
vation Λ (z̄m,n). For the sake of clarity, in this first part the
index (m,n) for the location will be omitted:

(1−2β) exp
(
−∆2z̄2

2σ2

)
+β
[
exp
(
−∆2(z̄+1)2

2σ2

)
+exp

(
−∆2(z̄−1)2

2σ2

)]
exp

(
−∆2z̄2

2σ2

)
(35)

which can be simplified as follows:

Λ(z̄) = 1−2β+β

[
exp

(
∆2

σ2
(z̄−1/2)

)
+exp

(
∆2

σ2
(−z̄−1/2)

)]
.

(36)
We can leverage the fine quantization assumption σ � ∆, we
to simplify the LR using its second-order Taylor expansion:

Λ(z̄) ≈ 1 + β

(
−∆2

σ2
+

∆4

σ4
(z̄2 + 1/4)

)
. (37)

We can use the same fine quantization in order to simplify the
log-LR log Λ(z̄) using its first-order Taylor approximation:

log Λ(z̄) = β

(
−∆2

σ2
+

∆4

σ4
(z̄2 + 1/4)

)
. (38)

Keeping only the term that depends on the observation z̄ the
log-LR can be further simplified to:

log Λ(z̄) = β

(
−∆2

σ2
+

∆4

σ4
z̄2

)
. (39)

which essentially depends on ∆4
/σ4z̄2. One can note that the

above calculus are very similar to those presented in [24], [66]
we the exception that σ is replaced by the ratio σ/∆. This is
perfectly understandable as the quantization is essentially a
division which scales the standard deviation accordingly.

In order to establish the statistical performance of the
most powerful LR test we will use Lindeberg’s Central Limit
Theorem [49, Theorem 11.2.5]. To this end, one needs to
establish the first two moment of the LR log Λ(z̄) under both
hypothesis H0 and H1 to characterize the asymptotic statis-
tical performance of the LRT. Some straightforward algebra,
see [24], [66], shows that:

EH0
[log Λ(z̄)] = 0, VarH0

[log Λ(z̄)] = 2β2∆4

σ4 . (40)

EH1 [log Λ(z̄)] =
2β2∆4

σ4
, VarH1 [log Λ(z̄)] ≈ 2β2∆4

σ4 . (41)

From the expression of those moments (40)–(41) and, again,
invoking Lindeberg’s CLT, it is straightforward to establish the
asymptotic distributions (13):

log Λ(Z)√
2%

= log Λ?(Z) 

{
N (0, 1) under H0

N (
√

2%, 1) under H1

(42)

with % =
∑
m,n

β2
m,n

∆4
m,n

σ4
m,n

. (43)

A. Extension to SI embedding
Let us state again that the most difficult problems is to clear

state the problem. More precisely, with the method proposed in
the present work, it is important to clarify what the detectors.
On the one hand, we assumed the “most powerful” test that
knows all required parameters and, on the other hand, side
informed steganography is based on partial ignorance of the
warden.
We assumed that the embedder knows the unquantized cover
cm,n and hence the quantization error em,n (17). On the
opposite, we assumed that the detector is not “fully omni-
scient” as it cannot distinguish the change probability in each
direction, hence assumes that βm,n = β+

m,n = β−m,n. However,
to formalize the advantage to minimize the modification, we
assumed that the detector knows the quantization error and
hence can determine the minimal additive modification one
should do to change the LSB value:

s̄m,n∆m,n − cm,n =

{
∆m,n(1/2− em,n) if em,n > 0,

−∆m,n(1/2 + em,n) if em,n < 0.

So that for the detector each stego DCT coefficients follow
the distribution defined by P [s̄m,n= c̄m,n] = 1 − 2βm,n
and P [s̄m,n∆m,n=cm,n + 1/2∆m,n(2em,n − sign(em,n))] =
βm,n = P [s̄m,n∆m,n=cm,n − 1/2∆m,n(2em,n − sign(em,n))].
It is obvious that this partial knowledge of the additive
steganographic modification (while not being able to
distinguish each direction) lead to the very same problem
as the one of non-SI steganography detection except that
the changes are weighted by 1/2∆m,n(2em,n − sign(em,n))
; hence, putting this distribution of stego element into (35)
does not modify significantly the rest of the calculus and,
hence, is omitted due to the space constraints.

APPENDIX

APPROXIMATION THE DCT COEFFICIENTS PMF

Let c be a vector of independent Gaussian random variables
such that:

cm,n ∼ N (θm,n, σ
2
m,n) (44)

Let each DCT coefficient cm,n be quantized with a different
quantization factor ∆m,n, depending on their position in each
8× 8 block of the DCT grid:

c̄m,n = round (cm,n/∆m,n) . (45)

The probability mass function (pmf) of quantized DCT
coefficients can then be expressed as follows:

P [c̄m,n = k] =
1

σm,n

∫ ∆m,n(k+1/2)

∆m,n(k−1/2)

φ

(
x− θm,n
σm,n

)
dx (46)
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where φ(·) represents the standard Gaussian probability den-
sity function (pdf).

Assuming the quantization step is not too large compared
to σm,n, we can use the well-known Taylor expansion of the
function φ [67, p.931] around the value ∆m,n, the midpoint
of the quantization step. A short calculation shows that:

P [c̄m,n = k] =
∆m,n

σm,n
φ

(
k∆m,n−θm,n

σm,n

)
+ ε

(
∆m,n

σm,n

)
,

(47)
where the exact analytic expression of the corrective term is:

ε

(
∆m,n

σm,n

)
=

∞∑
i=1

2(−1)i

22i(2i+1)!

∆2i
m,n

σ2i
m,n

H2i

(
∆m,n−θm,n

σm,n

)
,

(48)
with Hi the Hermite polynomial of order i [67, p.1350]. It is
obvious that (47)-(48) yields the simplification:

P [c̄m,n = k] =
∆m,n

σm,n
φ

(
k∆m,n−θm,n

σm,n

)
+ o

(
∆m,n

σm,n

)2

(49)
where o(g(x)) is the Landau notation for asymptotic compar-
ison.

APPENDIX

DETAILS ON DISCRETE COSINE TRANSFORM
FORMULATION

Let us recall that, in brief, JPEG compression [68], [69]
operates into four main steps:

1) Colors represented using Red, Green and Blue (RGB)
channels in spatial domain are changed to YCbCr (lu-
minance/chrominance) channels through a linear trans-
formation.

2) The image is split into blocks of size 8× 8 pixels over
which the Discrete Cosine Transform is applied, which
corresponds to a change of basis vectors.

3) Then the ensuing DCT coefficients are quantized,
generally speaking, with a different step for each
mode/frequency (position in the 8× 8 matrix).

4) Eventually, non-destructive entropy compression is ap-
plied to encode the quantized DCT coefficients.

Steganography operates right after step 3, thus, the last step
is omitted. Besides, the present paper focuses on grayscale
images which are not subjected to color change. We will thus
only focus on DCT transformation and quantization and, for
the sake of simplicity we will focus on one single block xk,l
whose corresponding DCT coefficients are denoted cm,n with
indices between 0 and 7.
Formally, the DCT coefficients are given by:

cm,n=

7∑
m,n=0

wkwl cos

(
kπ

8

(
m+

1

2

))
cos

(
lπ

8

(
n+

1

2

))
xk,l.

(50)
with wk = 1 if k > 0 and wk = 2−1/2 if k = 0.

that when arranging matrices into vectors, one can write the
DCT coefficients as follows:

c = Dx, (51)

where the components of the orthonormal matrix D =
{di,j} , (i, j) ∈ {0, . . . , 63}2 are defined:

di,j = wi cos

[
π

8

(
bj/8c+

1

2

)
bi/8c

]
(52)

× cos

[
π

8

(
j%8 +

1

2

)
i%8

]
. (53)

where wi = 2−1 if i = 0, wi = 2−1/2 if i%8 = 0 , i > 0 and
wi = 1 otherwise.

If follows from the Gaussian model (1) of non-uniformly
distributed pixels and from its stability with respect to linear
transformation that the DCT coefficients can be modeled as:

c ∼ N
(
Dµ′ , DΣ′D>

)
. (54)

where µ′ = Tµ represents the expectation of rendered pixels
and Σ′ = TΣT> their covariance matrix.
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