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Abstract—In this paper, we propose a multidimensional trust 

model for vehicular networks. Our model evaluates the 

trustworthiness of each vehicle using two main modes: 1) Direct 

Trust Computation DTC related to a direct connection between 

source and target nodes, 2) Indirect Trust Computation ITC 

related to indirectly communication between source and target 

nodes. The principal characteristics of this model are flexibility 

and high fault tolerance, thanks to an automatic trust scores 

assessment. In our extensive simulations, we use Total Cost Rate 

to affirm the performance of the proposed trust model.  

Keywords—VANET, Malicious Nodes, Security, Trust, 

Vehicular Ad-Hoc Network 

INTRODUCTION 

Vehicular communication technology provides two types of 
communications: 1) Vehicle to Vehicle (V2V) to offer a secure 
network and safe exchange of information between nodes (i.e., 
vehicles), and 2) Vehicle to Infrastructure (V2I) in which 
vehicles exchange messages with road infrastructures [1, 2]. As 
illustrated in Fig. 1, the main two components of the vehicular 
network are On-Board Units (OBUs) and Road Side Units 
(RSUs) [3], which are deployed along the road. The main 
purpose of vehicular technology is to prevent accidents, improve 
traffic control systems and enable safer driving [4]. However, 
the vehicular network is prone to critical risks, threats, and 
attacks due to its unique characteristics and dynamic topology.  

Several trust models have recently been suggested to 
improve the security in vehicular networks. However, most of 
them do not consider a variety of behavioral conditions and 
uncertain situations. There are two types of trust models: 
centralized trust management mechanisms and decentralized 
trust management mechanisms. The most crucial difference 
between these two mechanisms is “determining the 
responsibility for providing trust data”. In a centralized 
mechanism, the nodes request trusted data from a centralized 
trust manager, but the nodes are responsible for providing the 
trusted data in a decentralized mechanism. These strategies are 
based on pseudonyms, reputation systems, clustering (i.e., 
header cluster and member cluster), blockchain, etc. However, 
under different conditions, there are no ways to compare how 
they would behave effectively in practice. Each of these models 
has advantages and disadvantages [5 - 9]. We decided to take the 
benefits of each to design our model. 

 

Fig. 1. The global architecture of Vehicular Ad-Hoc Network 

To improve trust in the vehicular networks, we propose a 
robust multidimensional trust model that evaluates trust using 
two main modes. 1) Direct Trust Computation (DTC) in this 
part, we use the advantages of the decentralized model. In DTC, 
the source node has a direct connection with the target node so 
that the source node can evaluate the trust of the target node by 
the watchdog technique and Bayes’ theorem [10]. The score that 
is obtained from direct connection has more impact than indirect 
connection. 2) Indirect Trust Computation (ITC) in this part, we 
use the advantage of the centralized trust model. ITC can 
observe the behavior of the target node with its neighbors by 
RSUs. In other words, the source node will use the 
recommendations of the neighbors’ target node, which receive 
direct connection from the neighbors’ target node with the target 
node 

 The final trust score is a combination of DTC and ITC trust 
computations modes. We carried out extensive simulations to 
demonstrate the performance of our model by calculating the 
Total Cost Rate, which is based on both accuracy and error 
parameters. 

The rest of the paper is organized as follows. The proposed 
multidimensional trust model is explained in next section. We 
will describe the validity and simulation of the proposed model 
and finally our conclusion in the last section. 

 



A MULTIDIMENSIONAL TRUST MODEL 

The main focus of this paper is to present a secure model to 
evaluate the trust of each node and mitigate malicious behavior 
of vehicular nodes. We propose a robust multidimensional trust 
model that evaluates the node’s trust score. Our model considers 
three types of messages usually employed in vehicular 
environments: 1) periodic messages; 2) urgent event messages, 
and 3) traffic messages. To calculate the vehicle’s trust, we use 
the Bayesian filter and the watchdog technique to measure the 
trust scores of vehicles accurately. The architecture of our 
proposed model is illustrated in Fig. 2. This trust score is a 
combination of Direct DTC and Indirect ITC trust computation 
modes.  

A. Direct Trust Computation 

To evaluate a node’s trust based on a DTC mode, the source 
node must be connected directly to the target node so that the 
source node can assess the target node’s trust. The score that is 
obtained from the direct trust is called Primary score (𝑃𝑠). To 
evaluate Ps, we use the watchdog technique and Bayes’ theorem. 
𝑃𝑠 is calculated as follow: 

𝑃𝑠 (𝑖. 𝑗) = 𝛽 𝑃𝑠𝑡(𝑖. 𝑗) + (1 − 𝛽) 𝑃𝑠𝑡−1(𝑖. 𝑗)   

We denote the Primary score of node ‘𝑖’ on node ‘𝑗’by 
𝑃𝑠 (𝑖. 𝑗) and 𝑃𝑠 (𝑖, 𝑗) ∈ [0,1]. Also, 𝑃𝑠𝑡−1(𝑖. 𝑗) represents the 
last primary score and 𝑃𝑠𝑡(𝑖. 𝑗) represents the current primary 
score of node ‘𝑖’ on node ‘𝑗’. In this equation, we use 𝛽 to give 
more importance to the current primary score than the previous 
primary score. Although in some cases, the previous Primary 
score may not be available, so we have set 𝛽 to address this issue 
as follows: 

 𝛽 = {
0.70,        𝑖𝑓 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑜𝑟 𝑃𝑠𝑡−1(𝑖. 𝑗)

1,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          
     

 

B. Indirect Trust Computation 

To evaluate a node’s trust based on ITC mode, we need 
recommendations from adjacent nodes. We consider that the 
source node has no direct connection with the target node. 
Therefore, the source node is not able to observe the behavior of 
the target node with its neighbors. In this case, we use RSUs. In 
other words, the source node will use recommendations of 
neighbors’ target node, which it obtains from direct connection 
between neighbors’ target node with the target node.  

We use RSUs to calculate indirect trust scores, where RSUs 
store all scores that are based on direct connections between 
vehicles (Direct trust). When a source node 𝑖 needs 
recommendations about target node 𝑗, node 𝑖 demands the 
recommendations 𝑅(𝑗) from a RSU, in other words, all Primary 
scores of node 𝑗. 

𝑅(𝑗) = 𝑃𝑠(𝑙, 𝑗) | 𝑙 = {1,2, … , 𝑛}  

𝑅(𝑗) ∈  𝑃𝑅 (𝑙, 𝑗), 𝑁𝑅 (𝑙, 𝑗) | 𝑙 = {1,2, … , 𝑛} 

This score obtained from Indirect Trust Computation, called 
Secondary score 𝑆𝑠(𝑖. 𝑗) of node ‘𝑖’ on node ‘𝑗’ and 𝑆𝑠 (𝑖, 𝑗) ∈
[0,1]. 𝑆𝑠(𝑖. 𝑗) is calculated as follows: 

𝑆𝑠(𝑖. 𝑗)  = ∑
𝑃𝑅 (𝑙,𝑗)

𝑃𝑅 (𝑙,𝑗)+𝑁𝑅 (𝑙,𝑗)

𝑛
𝑙=1                        

 

Fig 2. The architecture of our Trust Model  

Where 𝑃𝑅 (𝑙, 𝑗) is the positive recommendation of node 𝑙 on 
node 𝑗 and 𝑁𝑅 (𝑙, 𝑗) is the negative recommendation of node 𝑙 
on node 𝑗. 

C. Evaluation of Final Trust Score 

In our model, 𝐹𝑇𝑠 (𝑖, 𝑗) denotes the Final Trust score between 

node ‘𝑖’ and node ‘𝑗’. This score is a combination of the Primary 

score and Secondary score. However, the Primary score has 

more impact than the Secondary score on Final Trust Score. The 
calculation expression of the Final Trust score is: 

𝐹𝑇𝑠 (𝑖, 𝑗) = 𝛼 𝑆𝑠(𝑖, 𝑗) + (1 − 𝛼) 𝑃𝑠(𝑖, 𝑗)               

To calculate 𝐹𝑇𝑠, we need both the Primary and Secondary 
scores. However, in some cases, the Primary score may not be 
available because direct contact is not always possible between 
the source node and the target node. In addition, the Secondary 
score is not always available because the target node may not 
have a neighbor. To tackle these issues, we use 𝛼 to give weight 
to the Secondary score and Primary score. We have set 𝛼 as 
follows: 

 𝛼 = {
0.4,         𝑖𝑓 𝑃𝑠 > 0 𝑎𝑛𝑑 𝑆𝑠 > 0
1,             𝑖𝑓 𝑃𝑠 = 0 𝑎𝑛𝑑 𝑆𝑠 > 0
0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

                         

We will assign a state to each vehicle in the vehicular 
network based on 𝐹𝑇𝑠 (𝑖, 𝑗). The value of the Final Trust score 
is always between zero and one. We defined four possible states 
for each vehicle (i.e. Malicious (MA), Heavily Suspicious (HS), 
Lightly Suspicious (LS), and Normal (NO)) as follows: 



State = {

𝑀𝐴                    𝑖𝑓 𝐹𝑉𝑠𝑖𝑑 > 0.7 
𝐻𝑆          𝑖𝑓 0.5 < 𝐹𝑉𝑠𝑖𝑑 ≤ 0.7
𝐿𝑆           𝑖𝑓 0.3 ≤ 𝐹𝑉𝑠𝑖𝑑 ≤ 0.5
𝑁𝑂                      𝑖𝑓 𝐹𝑉𝑠𝑖𝑑 < 0.3

                          

VALIDATION 

To evaluate the performance of our proposed model, we 
decided to use Total Cost Rate (TCR), in terms of accuracy and 
error rate. We must compare these factors with a baseline 
approach. These two parameters, 1) Accuracy (𝐴𝑐) and 2) Error 
(𝐸𝑟), are respectively defined as: 

𝐴𝑐 =
∑ 𝑛𝑖→𝑖 𝑖∈𝑠  

𝑁𝑀𝐴+𝑁𝐻𝑆+𝑁𝐿𝑆+𝑁𝑁𝑂
 

 

𝐸𝑟 = 1 − 𝐴𝑐                                         

Where: 

 𝑖 , 𝑗 ∈ 𝑠 , 𝑠 = {𝑀𝐴, 𝐻𝑆, 𝐿𝑆, 𝑁𝑂} 

 𝑛𝑖→𝑗  denotes the number of nodes in the state 𝑖 which 

change their states to state 𝑗. 

 𝑁𝑖 denotes the total number of nodes in the state 𝑖. 
 

The two parameters introduced above do not take into 
consideration the concept of classification cost. In our model, 

we consider classification cost, which is denoted ∁. For each 
incorrect classification, below, we introduce different values of 
∁ depending on the situation. 

1. ∁= 0: A node stays in the same state (e.g., 𝑁𝑂 →
𝑁𝑂, 𝐿𝑆 → LS). 

2. ∁= 1: The transition to one-hop range (e.g., 𝑁𝑂 →
𝐿𝑆, 𝐿𝑆 → 𝐻𝑆). 

3. ∁= ∁: The transition to two-hop ranges (e.g., 𝑁𝑂 →
𝐻𝑆, 𝑀𝐴 → 𝐿𝑆). 

4. ∁= 2∁: The transition to three-hop ranges (e.g., 𝑁𝑂 →
𝑀𝐴, 𝑀𝐴 → 𝑁𝑂), is 2∁ times more costly than 1. 

 

This leads us to define ∁_𝐴𝑐 and ∁_𝐸𝑟 as follow: 

  

∁_𝐴𝑐 = 1 −  ∁_𝐸𝑟                                 

 

∁_𝐸𝑟 =
𝜇

2∁𝑁𝑀𝐴+∁𝑁𝐻𝑆+𝑁𝐿𝑆+𝑁𝑁𝑂
                         

Where: 
 𝜇 is equal to 2∁ ∗ (𝑛𝑁𝑂→𝑀𝐴 + 𝑛𝑀𝐴→𝑁𝑂 ) +

 ∁(𝑛𝑁𝑂→𝐻𝑆 + 𝑛𝐿𝑆→𝑀𝐴 +𝑛𝐻𝑆→𝑁𝑂+𝑛𝑀𝐴→𝐿𝑆 ) +
𝑛𝑁𝑂→𝐿𝑆 + 𝑛𝐿𝑆→𝑁𝑂 + 𝑛𝐿𝑆→𝐻𝑆 +𝑛𝑀𝐴→𝐻𝑆+𝑛𝐻𝑆→𝑀𝐴 +
𝑛𝐻𝑆→𝐿𝑆 . 

  
(a) MA: 5%, HS: 5%, LS: 5%, NO: 85% (b) MA: 10%, HS: 5%, LS: 5%, NO: 80% 

  
(c) MA: 15%, HS: 5%, LS: 5%, NO: 75% (d) MA: 20%, HS: 5%, LS: 5%, NO: 70% 

Fig. 3. TCR vs. nodes scalability   



In order to calculate the model’s performance, we have to 

consider all nodes as honest, and define ∁_𝐸𝑟# as follows: 

∁_𝐸𝑟# =
𝑁𝑀𝐴

2∁𝑁𝑀𝐴+∁𝑁𝐻𝑆+𝑁𝐿𝑆+𝑁𝑁𝑂
                    

 

Also, the calculation of expression 𝑇𝐶𝑅 is:  

 

𝑇𝐶𝑅 =  
∁_𝐸𝑟

∁_𝐸𝑟#  =  
𝜇

𝑁𝑀𝐴
>  1 ⟺  ∁_𝐸𝑟#  <  ∁_𝐸𝑟      

From this equation, we conclude that the value of 𝑇𝐶𝑅 
reflects the model’s performance. If 𝑇𝐶𝑅 is greater than 1, it 
means the performance is considered acceptable. However, if 
the 𝑇𝐶𝑅 value is less than 1, it is better not to use the model, 
because the error in the model with filtering ∁_𝐸𝑟 is more than 

the baseline ∁_𝐸𝑟#. Therefore, the classification error by the 
filter ∁_𝐸𝑟 must be smaller than the error caused without filter 

∁_𝐸𝑟#. 

In our simulation, we consider a network with different 
configurations. Our network was composed of 20, 40, 60, 80, 
and 100 vehicles, and we considered four classifications of cost 
‘∁’ (0.25, 0.50, 0.75, and 1). Then, for each scenario, we varied 
the proportion of malicious nodes (0.05%, 0.10%, 0.15%, and 
0.20%). The purpose of this simulation was to find the best 𝑇𝐶𝑅 
and best configuration for our model in different situations. The 
result of our extensive simulation is shown in Fig. 3. 

In the first scenario, considering 5% malicious nodes, we 
can observe in Fig. 3 (a) the value of 𝑇𝐶𝑅 is more than 3.5 (A 
higher 𝑇𝐶𝑅 value implies better performance). However, with 
the increasing of the nodes number, the value of 𝑇𝐶𝑅 decreases, 
but it is always greater than 1. When the number of vehicles 
exceeds 80, TCR values are similar and constant. The best value 
in this case, is achieved by cost = 0.75. In Fig. 3 (b), we show 
the result of the second scenario with 10% of malicious nodes. 
In this case, the value of 𝑇𝐶𝑅 is between 2.6 and 4.5, which 
illustrates the performance of our model. When the node 
numbers increase to 80, the 𝑇𝐶𝑅 values are stable at all four 
cost levels. The best cost in the case with 10 percent of 
malicious nodes in the network is 0.25 and 0.50. For the third 
scenario Fig 3 (c), where we consider 15% malicious nodes, we 
can observe that the value of 𝑇𝐶𝑅 is between 2 and 4.5. In our 
simulation, when the vehicle number reaches 60, the value of 
𝑇𝐶𝑅 decreases. However, it is always greater than 1. The cost 
equal to 0.25 always has the best 𝑇𝐶𝑅 value in different node 
numbers, as illustrated in fig. 3 (c). In the last scenario Fig. 3 
(d) we increase the percentage of malicious nodes to 20 percent 
of the total nodes. We can observe that the curve with asterisk 
markers is substantially higher than the rest, which means cost 
= 0.25 is significant. In addition, the stability of TCR values is 
very important in our model. When the number of vehicles is 
between 60 and 100, the curves with diamond markers and 
circle markers show values between 2.04 and 2.19. 

In summary, we consider various configurations for our 
simulation. We obtained suitable values for 𝑇𝐶𝑅, even when 
the percentage of malicious nodes and nodes numbers 
increased. These results confirm that our model is accurate and 
offers great precision. The worst value of TCR is 1.57, although 

it is acceptable because we demonstrated in equation (13) that 
if 𝑇𝐶𝑅 value is more than one, it means our model is accurate 
and its use is appropriate. 

CONCLUSION 

Vehicular networks are one of the most fascinating wireless 
technologies and has attracted a great deal of attention. 
However, this technology is prone to attacks and threats due to 
its unique characteristics. In this paper, we presented a 
multidimensional trust model to make the security in the 
vehicular networks more robust. This model evaluates the trust 
of vehicles. To calculate the trust score, we consider two modes 
of computation: 1) a DTC computation mode based on Bayes 
theorem and the watchdog method; 2) an ITC computation 
mode in which RSUs are solicited. Extensive simulations using 
various network configurations have shown that our trust model 
is accurate and precise. As future work, we plan to design a 
punishment scheme in order to isolate rogue vehicles in 
vehicular environments. 
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