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Abstract

Monitoring the thermal comfort of building occupants is crucial for ensuring
sustainable and efficient energy consumption in residential buildings. FEx-
isting studies have addressed the monitoring of thermal comfort through
questionnaires and activities involving occupants. However, few studies have
considered disabled people in the monitoring of thermal comfort, despite the
potential for impairments to present thermal requirements that are signifi-
cantly different from those of an occupant without a disability. Additionally,
people with disabilities can experience difficulties in expressing their thermal
comfort, which further complicates assessment and monitoring. To overcome
this, we propose the development of a new learning model using a deep neu-
ral network. Our model can predict the indoor thermal comfort of differently
abled people in real time to facilitate remote monitoring. We generated our
real dataset using a new Internet of Things (IoT) architecture. Our architec-
ture also includes a data collection scheme to ensure an efficient collection
process, enabling the collection of targeted data before transferring them to
cloud servers for further data analysis. Experimental results illustrate the re-
liability of our data collection scheme in gathering useful and targeted data,
as well as the efficiency of our deep learning-based model, which achieved an
accuracy of 94% and a precision and recall of 98% and 97%, respectively.

Keywords: Building sustainability, Disabled people, Indoor thermal
comfort prediction and monitoring, Deep learning, Internet of Things (IoT).
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1. Introduction

People spend approximately 90% of their time indoors, and almost 70%
of that time is spent at home [1]. In addition, there were an estimated
50,100 excess winter deaths during the 2017 to 2018 winter season, according
to the Office of National Statistics of the United Kingdom [2|. Thus, well-
being is strongly affected by indoor comfort. Therefore, real-time assessment
of thermal comfort is essential for improving indoor climates for building
occupants.

Recently, monitoring indoor thermal comfort has emerged as a promising
solution for building sustainability by improving both the comfort of occu-
pants and the energy consumption of buildings [3] [4] [5]. In this context, sev-
eral models have been designed for measuring indoor thermal comfort [6][7].
For instance, predicted mean vote (PMV) and predicted percentage dissat-
isfied (PPD) models have been proposed by Fanger [6]. PMV and PPD
have become the basis of many standards, including ISO 7730 and ASHRAE
55 [8][9]. The PMV estimates the indoor thermal comfort of a group of peo-
ple on a seven-point thermal sensation scale (see Table 1).

Table 1: The seven point of Thermal Sensation.

-3 Cold

-2 Cool

-1 Slightly cool
0 Neutral

+1 Slightly warm

+2 Warm

+3 Hot

The PMV index is based on six main parameters in two categories. Hu-
man activity and clothing insulation are categorized as the two human param-
eters, whereas air relative humidity, air temperature, mean radiant tempera-
ture, and air velocity are categorized as the four environmental parameters.
On the other hand, PPD measures the percentage of thermally dissatisfied
people who feel too cool or warm (Figure. 1). However, PMV is based on
a very complex mathematical expression because it depends on both human
and environmental parameters, which makes it difficult to measure. Hence,



building a prediction model of PMV values is necessary for enabling real-
time PMV monitoring. In this context, several studies have addressed PMV
value prediction using traditional machine learning algorithms, such as clas-
sification trees, logistic regression, and the Naive Bayes classifier [10][11][12].
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Figure 1: Thermally dissatisfied occupants (PPD) based on PMV values.

Furthermore, another class of studies has addressed the thermal comfort
monitoring of people who are either sleeping [13][14][15] or engaged in an
activity [16][17][18]. However, few studies have addressed the thermal com-
fort of disabled people [19][20][21]. Parsons and Webb [20] studied feedback
provided by 16 disabled people (eight females and eight males) in a living
room over a 3h period. A significant variation in response sensations was
noticed, especially between slightly cool, cool, and neutral sensations. More-
over, the same authors studied the requirements of 32 people with different
sclerosis [21]. These people were exposed to three conditions: 29°C (slightly
warm to warm); 23°C (neutral); and 18.5°C (slightly cool to cool). They
noticed that these specific populations had a wide range of responses under
the three experimental conditions. In addition, the measured percentage of
dissatisfied people was much higher than that predicted by Fanger’s PPD.
Therefore, disabled people have specific requirements which are different from
those of people without disabilities. This is mainly because of anthropomet-
ric and postural differences as well as mobility. Moreover, the disability itself
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may also affect thermoregulatory responses such as sweating, shivering, and
changes in blood flow. Therefore, the thermal comfort requirements for dis-
abled people must be studied specifically.

In [22], we proposed a new framework to deploy sensors and collect data
related to people’s thermal comfort. In this study, we extend our previous
work by collecting a real dataset over a period of six months, which is re-
quired to determine the PMV index. Our data are related to the thermal
comfort of disabled people and were collected from a residential building
(A.P.E.I'). The dataset was then used to train a thermal comfort classifier
using a deep learning algorithm called the ’artificial neural classifier (ANC)’.
Deep learning is emerging as an advanced machine-learning algorithm which
outperforms traditional machine learning schemes [23][24]. Deep learning
is based on a neural network which consists of three layers: input, hidden,
and output. The input layer contains the inputs, the hidden layer processes
the inputs, and the output layer produces the result. Essentially, each layer
attempts to learn certain weights. Typically, machine learning neural net-
works comprise 1 or 2 hidden layers [25], whereas deep learning networks can
have up to 150 hidden layers. Hence, deep learning can efficiently model com-
plex non-linear relationships between data, including related thermal comfort
data. Thus, we chose to implement a deep ANC network to model thermal
comfort prediction. To the best of our knowledge, our work is the first to
use the deep learning concept to deal with the thermal comfort of disabled
people using a corresponding real dataset. Thus, our trained classifier can be
utilized to predict PMV values online. Furthermore, the predicted comfort
can be exploited by building managers to make suitable decisions in order
to improve indoor thermal comfort, such as opening doors and windows for
ventilation, changing occupants’ clothing, and turning on/off air conditioner
(AC). Therefore, our prediction model can help to efficiently manage HVAC
systems according to the predicted comfort of disabled people. We have pre-
viously conducted another study [26] on predicting indoor thermal comfort
using the multiple linear regression (MLR) algorithm [27]. However, such
previous work focuses on people without physical disabilities and is based
on a publicly available dataset and a traditional machine learning algorithm.

L'A.P.E.I is an association of parents of people with physical disabilities, in Troyes city,
situated in east of France.



The main contributions of this study are as follows.

e A new IoT architecture is designed to enable remote access to informa-
tion regarding the thermal comfort of disabled people.

e We provide an optimisation scheme which is implemented alongside the
[oT-based architecture to improve the reliability and efficiency of the
data collection process [22].

e We collected a dataset containing the thermal comfort information
of the disabled residents of a residential building, recorded over six
months. We focused on information related to the PMV index mea-
surement, such as temperature, humidity, clothing level, and metabolic
rate.

e Using our collected data, we built a prediction model of thermal com-
fort for differently abled people using a deep learning algorithm. Our
classifier model can predict PMV values remotely. Hence, it helps in
making adequate decisions when detecting a lack of indoor thermal
comfort.

The rest of this article is organized as follows. Related work is introduced in
Section 2. Section 3 details our proposed schemes for collecting, predicting,
and monitoring occupants’ thermal comfort. We discuss experimental results
obtained through the simulation in section 4. Finally, we conclude the paper
in Section 5.

2. Related Work

Several studies have been conducted on indoor thermal comfort. These
studies have focused on measuring indoor thermal comfort based on data col-
lected to monitor and control the thermal comfort of occupants [16][17][15][28].
We classify these studies into two categories: (i) those aimed at people with
physical disabilities [29][30][31] and (ii) those aimed at people without phys-
ical disabilities who are either sleeping [13][14][15] or awake [16][17][18].



2.1. Thermal Comfort of Disabled People

Jan et al. [29] analysed patients’ thermal comfort by considering sub-
jective measurements via questionnaires and objective measurements, such
as personal and environmental measurements. They focused on 99 patients
from different wards, including oncology, maternity, neurology, and abdomi-
nal surgery. In this study, both PPD and PMV indices were derived from ISO
7730 [8]. The authors deduced that no significant difference between PMV
and actual mean vote (AMV) was obtained from either measurement or for
targeted wards except neurology. Similarly, a literature review on the ther-
mal comfort of hospital occupants, including patients and hospital personnel,
was proposed by Jamal et al. in [30]. They deduced that it is important to
initiate new studies addressing the relationship between the productivity of
hospital staff and indoor thermal comfort conditions.

A questionnaire was used by Hill et al. to review the experience of 38
caregivers about the thermal requirements of disabled people [31]. The ques-
tionnaire focused on issues related to specific disabilities, environmental con-
ditions, and human responses. A total of 76% of the response suggest that
disabled people have different thermal comfort needs.

2.2. Thermal Comfort of Awake People

To save energy in buildings in Singapore, Chaudhuri et al. [16] studied
the occupants’ thermal comfort by predicting the individual thermal comfort
level of 817 occupants in an air-conditioned building. The aforementioned
study was conducted using a publicly available database comprising several
parameters, such as Fanger’s six parameters, age, gender, and outdoor tem-
perature. To predict the thermal comfort of occupants, the authors used six
machine learning algorithms. Prediction accuracies between 73% and 81%
were achieved using the proposed approach.

Farhan et al. [17] introduced a new SVM classifier-based approach to pre-
dict human thermal comfort and suggested corresponding actions to improve
overall thermal comfort, especially for senior citizens. The learned classifier
takes a vector of features as input, including Fanger’s features, outdoor tem-
perature, and age, outputs the corresponding thermal sensation level ("neu-
tral”, ”feeling warm”, and ”feeling cold”), and achieves a prediction accuracy
of up to 76.7%. Similarly, another SVM classifier has been implemented to
predict human thermal comfort [32]. Different information was used, while
also including Fanger’s features. The results show an acceptable correlation



between the predicted values and those obtained through existing models,
such as the “2-Node” model and the Fanger Model [33].

Nian and Wang [18] aimed to ensure comfortable indoor thermal environ-
ment while reducing energy consumption. As input parameters, the authors
used two new parameters in addition to Fanger’s six parameters—the num-
ber of people in the room and the indoor CO2 concentration. They then
used a back propagation (BP) neural network algorithm to predict the PMV
value.

Hu et al. [34] introduced a thermal comfort management system (iTCM)
based on a sensor network to collect data related to thermal comfort. Then,
they implemented a neural network to predict thermal comfort. The obtained
results show that this model outperforms the PMV model by up to 17.8%,
with an average of 13.1%.

Irshad et al. [35] studied the real behaviour of occupants inside a test
room equipped with a thermoelectric air duct (TE-AD) cooling system. They
first collected real data from this room for two months. Subsequently, they
implemented three artificial neural network (ANN) models to predict the
occupants’ thermal comfort, taking the following parameters: air and globe
temperatures, relative humidity, clothing value, metabolic rate, and wind
speed. The obtained results show that the first model is more accurate in
predicting the PMV value, while M3 provides the best accuracy in predicting
the PPD value.

Javed and al. [36] developed an Android application that enables occu-
pants to communicate their thermal comfort sensation. The collected data
are then used to train the thermal comfort model using the support vector
classification (SVC) algorithm. The accuracy of the SVC algorithm (95.80%)
was compared with that of other algorithms, such as KNN (90.40%) and de-
cision tree (85.80%).

2.3. Thermal Comfort of Sleeping People

A theoretical study on indoor thermal comfort of occupants sleeping
in buildings, bedrooms, residences, or hotels was conducted by Lin and
Deng [13]. The authors derived a comfort equation that suits the sleeping
thermal environment by modifying Fanger’s model. To solve the equation,
the authors defined comfort charts which can also be used to determine ther-
mally neutral conditions in a bedding system.

Pan and al. [14] aimed to determine gender differences in sleep comfort.
The authors used various temperatures from 17 °C to between 20 °C and

7



23 °C and measured the finger and mean skin temperatures in addition to
finger blood flow, through questionnaires. They deduced that men prefer a
lower indoor temperature during sleep than women. In addition, both finger
skin temperature and finger blood flow were lower for females than for males,
while the mean skin temperature of males was lower than that of females.

Shen et al. [15] studied the impact of both cyclic position change dur-
ing sleep and mattress design on sleep thermal comfort, and hence on sleep
quality. They deduced the relationship between variables related to appraise-
ment and mattress design. Similarly, Tan et al. in [28] observed variations
in sleeping posture in order to design a comfortable mattress according to
body position distributions. Ten people participated in the sleep control
experiment, which was conducted to observe all features impacting sleeping
postures. Moreover, the subjective feelings of the participants were analysed
via a questionnaire to designed the mattress suitably.

2.4. Discussion

Table 2 compares the above-mentioned studies according to many criteria:
the state of people (awake or sleeping people), the algorithm and parameters
used to study the indoor thermal comfort, prediction accuracy for works that
are based on a machine learning algorithm to predict thermal comfort, and
the population based on each study. We notice that most of the above works
address awake people without physical disabilities. They studied the indoor
thermal comfort through either machine learning algorithms to measure and
predict the thermal comfort of awake occupants, or theoretical studies to
assess both the thermal comfort during sleeping states and the sleeping qual-
ity under different conditions. We also observe that most of the studies are
based on Fanger’s parameters, in addition to other variables, such as age,
gender, and outdoor temperature. It is worth noting that studies focused
on disabled people are limited to reviews of thermal comfort requirements.
These studies have concluded that special attention should be paid to peo-
ple with disabilities, especially under uncomfortable conditions. Therefore,
to the best of our knowledge, no work has addressed the thermal comfort
prediction of disabled people. These conclusions bring us to generate a pre-
diction model that leverages the recent deep learning concept, and hence
provides real-time monitoring of indoor thermal comfort. Moreover, our pre-
diction model is based on real data related to disabled people which were
also generated for our study.



Table 2: Comparative study between indoor thermal comfort works.

People state . Used Prediction Disabilities
Awake | Sleepin Used algorithm arameters accurac
ping P Y | With | Without
people | people
Chaudhuri X SVM, ANN, LR, | Fanger’s parameters, | Between 73% X
et al. [16] LDA, KNN, CT age and gender and 81%
Farhan “
et al. [17] X SVM Fanger’s parameters 76, 7% X
Nian and X Neural network Fanger’s @.mamgmﬂoamv - X
Wang [18] people in room
Javed ,
and al. [36] X SVC Fanger’s parameters 95, 8% X
Lin and : ,
Deng [13] X Theoretical study | Fanger’s parameters — X
. Indoor temperature,
Pan Online survey .
al. [14] X study skin temperature, — X
. blood flow.
Shen et : Cycle position change,
al. [15] X Theoretical study mattress design X
Tan et X Theoretical study Changes of sleeping - o X
al. [28] posture
Jan et X Theoretical study | Fanger’s parameters — X X
al. [29]
Jamal et X X Literature review | Fanger’s parameters — X
al. [30]
Hill et : ,
al. [31] X Theoretical study | Fanger’s parameters — X
Hu et ,
al. [34] X ANN Fanger’s parameters — X
Megri et ,
al. [32] X SVM Fanger’s parameters X
Irshad et )
al. [35] X ANN Fanger’s parameters — X




3. Thermal Comfort Prediction of People with Physical Disabili-
ties: An IoT-Based Architecture

In this section, we present our Deep learning based scheme for remote
thermal comfort measurement. Subsection 3.1 provides an overview of our
Internet of Things (IoT) architecture.The adopted data collection process
is introduced in subsection 3.2, and finally we present our real dataset and
deep learning algorithm to measure and predict the indoor thermal comfort
in subsection 3.3.

3.1. Remote Availability: Providing targeted data remotely and in real- time

Our thermal comfort prediction process involves three main steps: (i)
data collection from A.P.E.I. buildings; (ii) data transfer to a remote cloud,;
and (iii) data storage and processing using a deep learning algorithm for
effective decision-making.

Thus, we first used a set of sensors in the A.P.E.I. building to record
thermal comfort data. These data were then transferred to the remote cloud
through gateways and routers for further processing. Figure 2 shows our
designed 3-layer architecture, which comprises the following:

1. Perception layer: We utilized three different types of sensors to col-
lect information related to indoor humidity, temperature, and air ve-
locity . As in several studies [37], we assumed that the air temperature
is equal to the mean radiant temperature, because the latter is difficult
to measure and requires multiple sensors. In addition, the clothing in-
sulation and metabolic rate of disabled people were recorded through
daily online surveys. Moreover, we used HD32:3 ice WBGT equipment,
which enables measurement of both the PMV and PPD [38].

2. Network layer: Data is routed from the perception layer to the cloud
layer through the gateway and router devices. In [39], we proposed a
scheme that adjust the data throughput of sensors when sending their
data. In addition, in our practical experiment, Wi-Fi was used as the
radio access technology (RAT).

3. Cloud layer: This is the most important layer, as it is in charge of
aggregating, storing, and processing received data. The feedback of this
layer will then help end users in A.P.E.L. buildings to make adequate
decisions toward improving the indoor thermal comfort. Thus, this
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layer provides a set of network services to end-users, including real-
time monitoring, statistical analytics, and graphical visualisation.
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Figure 2: Our 3-layers Internet of Things architecture.

3.2. Collection Process: how to collect indoor thermal comfort variables?

The proposed architecture incorporates two main schemes. The first in-
volves sensor installation in the building, while the second addresses the data
collection challenge. In fact, sensor nodes are placed in the building in such a
manner that all rooms are covered. The sensors are maintained periodically
(once per month) by people working in the building.

In our architecture, sensor nodes periodically transfer sensed data, such as
humidity, indoor temperature, and air velocity, to the remote cloud data
centres for further processing (Figure. 3-(A)). However, some issues must be
addressed during data collection. For example, redundant data may be col-
lected by the same sensor, such as similar air quality or temperature readings,
which would result in redundant information being transferred to the cloud
data centres. This would in turn lead to a higher probability of network con-
gestion and technical problems. In this context, the transferred information
(data packets) can be aggregated to minimise network overhead while ensur-
ing high data accuracy. Data aggregation aims to delete data redundancy
and hence reduce the number of data packets delivered to the cloud. The
idea is to measure the similarity between sensed sample data using existing

11



techniques, including Mahalanobis and Euclidean distances [40].

In this study, we are based on the same data collection scheme that we
proposed in [22]. The basic idea of our data collection scheme is to measure
the dissimilarity degree between the gathered data as a data quality metric
by applying the average Euclidean distance technique. More specifically, the
cloud data centre calculates the degree of dissimilarity between the received
data from the same sensor. It then sets the sleeping time interval of the
sensor accordingly (Figure. 3-(A) and (B)). In other words, the higher the
data quality, the more frequently the data are sent from sensors to the cloud

server, and vice versa.

[~ Sensor state: Active
Yes
It sends data to It starts timer during ¢
the data center Sensor state: Sleep
Yes
(A)

Receiving data
from sensor i?

It measures the
dissimilarity degree

It determines the time
interval ¢ of sensor i

\

It sends a control packet to
the building of sensor i

I
(B)

Figure 3: The data collection process: (A) by a sensor i, (B) by the remote data center.

3.8. Thermal Comfort Prediction: how to measure the indoor thermal com-

fort?

In this section, we present our prediction model that we create using deep
neural network and our real dataset related to disabled people.

12



3.3.1. Our Deep Learning Model

We use artificial neural networks (ANNs) to build our prediction model,
which is based on a multi-layer perceptron (MLP) model. MLP is a class
of multi-layer feed-forward ANNs and is composed of at least three layers of
neurons: input layer, hidden layer, and output layer [41].

In our study, we used supervised deep learning. With supervised learning,
a training dataset was fed to the neural network as input. Each input obser-
vation was labeled with an output value. thus, a neural network learns the
output corresponding to each input. For example, we consider our dataset
observations, which can be classified into seven different PMV categories.
Thus, we have a sequence of pairs, (z1,y1), (T2,%2), - .., (Tn, Yn), as the train-
ing set. Where z; is the input observations and y; is the PMV class output.
The training is performed in such a manner that the cost function is min-
imized. The latter represents the distance between the predicted and real
PMV classes.

Moreover, supervised learning can be further categorized as classification
or regression learning based on the output variable values. The output vari-
able is numerical for regression and categorical for classification. In our case,
because y; is categorical data (seven classes of PMV), we used supervised
classification learning. We implemented an artificial neural classifier (ANC)
to build a prediction model for PMV classes.

3.3.2. Offline thermal comfort prediction

Our ANC algorithm aims to learn a function that represents the relation-
ship between both input features in terms of thermal comfort conditions and
the output thermal sensation scales (PMV classes). This training step was
performed offline, as illustrated in Figure. 4. We also focus on three types of
disability: physical, learning, intellectual, and neurological disabilities.

1. Longitudinal Data Collection Step: Our study is based on longitudi-
nal data of 10 occupants, 3 females and 7 males, between 18 and 25
years of age. Our data were collected over six months, from July to
December 2017, at the A.P.E.L. building in Troyes city, France. We
note that Troyes city is characterised by intense cold or excessive heat,
representing a “humid oceanic temperate” climate. Troyes is 112 m
above sea level and is a city with high rainfall ( average annual rainfall
of 827 mm). Troyes has an average annual temperature of 11.5°C.
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Figure 4: Our Offline training module.

Among these 10 occupants, 3 persons have a physical disability, 3 per-
sons have a learning disability, and 4 persons have a neurological dis-
ability. These data were collected every 15 min through both sensor
measurements and online daily surveys of indoor thermal comfort. Ta-
ble 3 describes our dataset in terms of location study, time frame, and
different features. It comprises eight features (f = 8) as input data: the
six Fanger’s features, absolute time, disability type, thermal sensation
of occupants, and PMV values as output data. The total number of
observations was d = 10 x 96 x 180 = 172800 observations.

Besides, we have measured the indoor PMV value in two different
ways: (i) We used HD32.3 WBGT hardware, which is a data logger
for WBGT, PMV, and PPD measurements [42]; (ii) we designed a new
tool in the form of a vertical ruler (plastic, A5 format) to perform daily
surveys. This tool represents a thermometer ranging from very cold to
very hot. Five drawings of a more or less dressed man are associated
with the different temperatures (Figure 5). Thus, the task of people
with disabilities is to indicate (orally or by pointing to an image corre-
sponding to their opinion) how they feel in terms of heat /cold. This tool
is easy to use by people with physical disabilities and depends only on
their ability to communicate (orally or by pointing); hence, it does not
pose major concerns for these people. In addition, Raspberry Pi-based
sensors were used to measure the indoor environmental parameters,
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Table 3: Description of our collected dataset.

Location study | Troyes (France)
. July 2017-
Time Frame December 2017
DATASET
COLUMN CATEGORY NAME SOURCE UNITS
1 GENERAL Time — Absolute
Time
2 PERSONNEL Disability Type — String
3 ENVIRONMENT INDOOR Ambient Temperature Sensor | °C
Temperature
4 ENVIRONMENT | NDOOR Relative |y, ity Sensor | %
Humidity
5 ENVIRONMENT INDO.OR Alr Air Velocity Sensor | m/s
Velocity
6 ENVIRONMENT IND.OOR Mean Temperature Sensor | °C
Radiant Temp
Metabolic Rate .
7 PERSONNEL (last 30 min)) Daily Surveys MET
8 PERSONNEL Clothing Level Daily Surveys CLO
Predicted Mean HD32:3 WBGT + Limited
) MODEL Vote (PMV) Daily Surveys to [-3, 3]

including temperature, humidity, and air velocity. The Raspberry Pi
used has a 700 MHz ARM11 processor. It includes 1, 2, or 4 USB
ports, an RJ45 port, and 256 MB of RAM for the original model (1
GB on the latest versions). Furthermore, both metabolic and clothing
levels are set by the persons who manage the building based on tasks
performed by disabled people as well as their clothing, respectively.

. Data Cleaning and Splitting Step: Improving the quality of data di-
rectly improves the accuracy of the learning model, as the latter learns
from them. Thus, this step consists of eliminating duplicated data and
normalising them in terms of format and scale. We used the Min/Max
scaling method to place the data values in the same range and scale
(between 0 and 1). In addition, these data must be divided into two
parts: training and testing sub-sets, for training and validation of the
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Figure 5: Our Vertical Ruler for Thermal Feeling Measurement.

prediction model, respectively. In our case, we used 75% of the data for
model training, while 25% of the data were used for the validation/test
step.

. Supervised Learning Classifier: We utilize an artificial neural classi-
fier algorithm (ANC) to build the prediction model for seven scales
of the PMV. Our ANC comprises mainly (Figure 6): (i) input layer
of eight neurons that correspond to our eight input features; (ii) three
hidden layers of six neurons each that map the inputs to an output; and
(iii) an output layer corresponding to the predicted PMV value. Bias-
corrected input data values are passed through the ReLU activation
function to obtain an output [23]. We note that we have implemented
many configurations regarding the number of hidden layers and neu-
rons in each layer. We then chose the configuration that gave us the
best performance in terms of prediction accuracy while reducing the
time complexity.

To build the prediction model, the training set is passed several times
(training epochs) to the hidden layers of the neural network. For im-
proving accuracy, the parameters of the neural layers are updated at
each epoch using the stochastic gradient descent (SGD) algorithm [43].
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Figure 6: Implemented Neural Network Architecture.

4. Performance Evaluation

This section presents an experimental study to validate our data collection
and thermal comfort prediction schemes.

4.1. Simulation Setup and Parameters

To validate our data collection scheme, we focused on one A.P.E.I. build-
ing, while varying data collection parameters, such as the number of covered
rooms and the number of times the sensors send their data to the cloud (it-
erations).

We aim to validate the performance of our scheme at: 1) avoiding the col-
lection of undesired, redundant, and expired data, while also addressing the
message overhead for the data collection process, and 2) improving the pre-
diction accuracy of indoor thermal comfort, thus helping to make the most
adequate decisions. We compared our collection scheme with two other
schemes in which we fixed the sensors’ sleeping time interval (small and
large sleeping time interval). In addition, our ANC learning algorithm is
compared with three algorithms: multinomial Logistic Regression Classifier
(LRC) [44], Decision Tree Classifier (DTC) [45], and Gaussian Naive Bayes
Classifier (NBC) [46].

We implemented our ANC algorithm using the Keras framework, which pro-
vides a set of high-level neural network APIs. Table 4 summarises the main
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parameters used to create the prediction model. Thus, we considered the
following evaluation metrics:

Table 4: Learning Settings.

’ Parameters \ Values ‘
Dataset collection duration 6 months
Collection time period July 2017 to December 2017
Percentage of training set 75% of the dataset
Percentage of test set 25% of the dataset
Deep learning Tool TensorFlow
Weights optimizer Stochastic Gradient Descent
Activation function ReLU
Hidden Layers 3 Layers
Number of neurons 6 neurons
Number of epochs [20-100]
Batch size 20 samples
Learning rate 0.01
Deep learning algorithm Artificial Neural Classifier (ANC)

e Time complexity: This is the generated time complexity required to
build the learning model and make some predictions.

e Accuracy: This is mainly based on the confusion matrix and measures
the percentage of correctly predicted data against the total data. The
accuracy was determined by the following formula:

TP+TN (1)
TN+TP+ FN+ FP

Accuracy =

With TN, TP are, respectively, the true negative and positive, while
FN, and FP are false negative and positive, respectively.

e Recall: This reflects the percentage of true positives against the total
number of false negatives and true positives, as follows:

TP
- 2
Recall TP FN (2)
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e Precision: This represents the percentage of correct positive predictions
against the total number of positive predictions, as follows:

TP
Precision = W—_’_TP (3)

4.2. FEvaluation of Data Collection Scheme

Figure. 7 depicts a comparison between all schemes in terms of the data

aggregation ratio, as we increased both the number of rooms (Figure. 7-A)
and iterations (Figure. 7-B). We note that our scheme performs better than
the other schemes. This is mainly due to the dynamic sensors’ sleeping time,
which depends on the dissimilarity ratio between each sensor’s data.
In addition, we observe that the large-time interval-based scheme generates
the lowest data aggregation ratio. Indeed, this scheme sets a large sleep-
ing time interval which causes message overhead in terms of the number of
collected data packets, to decrease (Figure. 7-C and D). However, the ra-
tio of gathered useful data was also very low. Moreover, Figure. 7-B shows
that a stable ratio of data aggregation was achieved by all schemes. In fact,
increasing the number of iterations implies that more data will be sent to
the cloud. Thus, the aggregation ratio is greatly affected by the quantity of
gathered data, and not by the number of covered rooms. The performance
evaluation in terms of the introduced network overhead is shown in 7-(C)
and (D). Mostly, the large sleeping time-based scheme and our scheme gener-
ate the same overhead, outperforming the small sleeping-time-based scheme.
The latter maximises the network overhead because it transfers data more
frequently than the other schemes. Although our scheme has the same per-
formance with the large time interval scheme, our scheme enhances the data
aggregation ratio which is mainly due to the adaptive and dynamic sleeping
interval adopted in our scheme.

4.3. FEvaluation of Thermal Comfort Prediction

Table 5 compares the machine learning algorithms (LRC, NBC, DTC,
and ANC) in terms of the aforementioned metrics. Our ANC algorithm in-
troduces a high time complexity to build the prediction model and make new
predictions. This is mainly due to the neuronal architecture implemented by
the ANC algorithm. However, ANC maximises accuracy, precision, and re-
call evaluation metrics. Although the time complexity of the ANC algorithm
is slightly higher than those of the other algorithms, the ANC algorithm
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clearly improves the prediction accuracy when compared to the other al-

gorithms.

disabled people’s PMV sensations.

Predicting Average Relative Error

Prediction Accuracy

(©)

This makes ANC more suitable for predicting and monitoring

Table 5: Performance comparison between learning algorithms.

[ LRC [ NBC | ANC | DTC |

Modeling complexity time | 5.51s | 0.16s | 5.54 s | 3.03 s
Prediction complexity time | 0.04 s | 0.19s | 0.21 s | 0.04 s
Precision 0.75 0.68 0.98 0.58
Accuracy 0.555 | 0.49 0.94 0.46
Recall 0.76 | 0.722 | 0.97 0.51
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Figure 8: Performance evaluation of machine learning-based schemes.

Figure. 8 presents an evaluation of the prediction models on test subsets,
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that is, on data that have never been processed by the created learning mod-
els. We observe that the ANC algorithm outperforms all the others in terms
of the relative prediction error (Figure. 8-(A)), the predicted ground truth
(Figure. 8-(B)), and prediction accuracy (Figure. 8-(C)). In addition, the four
algorithms provided stable performance, even when we varied the number of
considered test observations. We also note that the LRC algorithm gener-
ates the worst performance compared to the other algorithms. Figure. 8-D
presents a comparison between the real and predicted PMV sensations corre-
sponding to ten test observations, without including the LRC algorithm. For
most of the ten observations, we infer that our ANC algorithm predicts the
same PMV values as the real ones, and as compared to the other algorithms.
Hence, these results confirm the results obtained in Table 5, illustrating the
efficiency of our ANC algorithm and its accuracy in predicting occupants’
PMV sensations.

Figure. 9-A evaluates the performance of our ANC learning algorithm
in terms of the average predicted PMV values against the real PMV values.
These real values were measured through online daily surveys over five weeks.
We observe that our ANC algorithm almost succeeds in predicting the same
average PMV values, as the real average measured values, except in the first
and fifth days. On the first day, our ANC algorithm predicts that the av-
erage indoor thermal comfort is cool, while the ten occupants’ sensation is
cold. Similarly, on the fifth day, our algorithm predicts cool thermal com-
fort, while the occupants’ PMV value is slightly cool. This can be explained
by the considerable variation in the response sensations among the ten oc-
cupants, especially between slightly cool, cool, and cold sensations, because
we considered people with three different disabilities (physical, learning, and
neurological). This result is mainly due to disability itself.

Furthermore, to further study the effect of disability on thermal comfort sen-
sations, Figure. 9-B-C-D compare the PMV values predicted using our ANC
algorithm, the PMV value for a person without disabilities, and the PMV
sensation in three people, each having a physical, learning, or neurological
disability. Figure. 9-B clearly illustrates the accuracy of our algorithm in
predicting the PMV values for a person with a physical disability. However,
we also observed that thermal comfort sensations may vary between peo-
ple with disabilities and those without disabilities, especially between cold
and cool sensations, as well as between hot and warm sensations. Similarly,
Figures. 9-C and D show that our ANC algorithm provides an accurate pre-
diction of the PMV value of disabled people, while there are variations in
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thermal sensations between the person without a disability and the persons
with learning and neurological disabilities. These variations occur mainly be-
tween cold and cool; slightly cool and slightly warm; slightly cool and cold;
and hot and slightly warm. These results confirm the considerable variations
between people with different disabilities, as well as between people with and
without disabilities; in the latter case, the variation is mainly due to disabil-
ity itself. However, our ANC algorithm cannot predict the PMV values for a
person without a disability, because our model was initially built considering
only data related to people with physical disabilities. Hence, this model is
more accurate at predicting the PMV values of such populations.
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Figure 9: Prediction Evaluation of our Learning Algorithm (ANC), over five days. (A)
Average daily survey of PMV value. (B) Physical Disability. (C) Learning Disability. and
(D) Neurological Disability.
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4.4. Discussion

Based on these results, our schemes outperformed the compared schemes
in terms of data collection efficiency and PMV prediction accuracy. We can
deduce that our data collection scheme provides an efficient and reliable data
collection process by avoiding the collection of non-required data and intro-
ducing an acceptable network overhead. In addition, it is obvious that our
ANC algorithm exhibits good performance as it significantly improves the
model prediction accuracy when compared to the other machine learning
algorithms. Moreover, the results of our study confirm that there signifi-
cant variations in thermal sensations exist between people with and without
disabilities, which also confirms the results obtained in[21]. As mentioned
before, these specific thermal sensations are mainly due to the disability it-
self and vary from one disability to another.
Therefore, our deep learning model can be employed not only to predict the
thermal comfort of disabled people but also to improve comfort during the
four seasons of the year.

5. Conclusion

This work investigates the development of a new prediction model for the
thermal comfort sensation of people with disabilities. This study is based on
the existing thermal PMV sensations and targets three main types of people
disability: physical, learning, intellectual, and neurological disabilities. To
do so, we first proposed a complete Internet of Things-based architecture
that supports the collection of people’s thermal comfort-related data. Thus,
we collected real data related to the thermal comfort of ten disabled people
over a six-month period. Then, we built a new prediction model for disabled
people’s PMV sensations. The study led to the following conclusions:

e Variations exist among the response sensations of disabled people, es-
pecially among the PMVs for slightly cool, cool, and cold sensations;
this is mainly due to the disability itself.

e There are variations in thermal sensations between people without a
disability and people with learning and neurological disabilities. These
variations occur mainly between the PMVs for cold and cool; slightly
cool and slightly warm; slightly cool and cold; and hot and slightly
warm conditions. Therefore, the thermal comfort of disabled people
should be considered separately from that of people without disabilities.
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e The new prediction model can predict the thermal sensation of disabled
people with an accuracy of 94% and precision and recall of 98% and
97%, respectively.

e The developed model can be used to predict indoor thermal comfort
in any residential building that houses disabled people. Therefore, our
model can help building managers take suitable actions when observing
a discomfort situation in a building.

In future work, we will extend our real dataset by considering more people

with other disabilities. In addition, we apply deep learning schemes in a
distributed manner to ensure the privacy of people’s thermal comfort data.
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