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Abstract:

This paper studies a condition-based predictive maintenance policy in the presence of imperfect

repairs for deteriorating systems. The effect of imperfect repairs is assumed to be random in the

sense that a maintenance action reduces the systems degradation level by a random proportion.

The associated distribution allows to characterize the repair efficiency. As an example, the beta

distribution is considered. It allows to define a wide range of repair efficiencies. A maintenance

policy with an aperiodic and predictive inspection planning is considered and a new decision

criterion is introduced to evaluate the extent to which a repair would be beneficial. The aim is to

find a proper balance between repair and replacement for preventive action which leads to optimal

maintenance cost. With this consideration, the cost model is developed from regenerative and

semi-regenerative properties. The expected cost is evaluated and the optimal policy is reached

as a function of repair efficiency. Finally, a numerical study is drawn up to demonstrate the

implementation and highlight the potential benefits of the proposed methods. A sensitivity analysis

on critical parameters is also performed.

Keywords: Condition-based maintenance, improvement factor model, imperfect maintenance, main-

tenance efficiency, inverse Gaussian process, optimization, Semi-Regenerative Process.
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1 Introduction

Maintenance is referred to all actions done for preserving or restoring a system to its functioning

mode. Among them, repairs play an essential role in bringing the system back from failure to a

working state at a more reasonable cost than replacements. However, repairs are usually imperfect,

which means they cannot restore the system to an “as good as new” state. Imperfect repairs can

be affected by two factors: a tactical factor related to the type of maintenance action and an

operational element that corresponds to the repairman’s expertise [15]. Different models have

been proposed to evaluate the impact of imperfect repairs in maintenance. The most usual are

virtual age models developed by Kijima [8], where repair is assumed to rejuvenate the system. The

Brown-Proschan (BP) model introduced by [5] assumes that repair is either perfect or minimal

with probabilities p and 1 − p, respectively. The Geometric Process (GP) model proposed by

Yeh [30] uses a non-increasing geometric process for consecutive repair times. The improvement

factor model suggested by Malik[14] is based on the idea that imperfect repairs have different

impacts, expressed by a coefficient multiplier. In this paper, we focus on the latter model; for

reviewing more papers with these models, we may refer to [1, 13, 19, 21, 24, 25, 28].

Malik [14] introduced the concept of improvement factor to describe the imperfect repair effect

in maintenance. In this model, an imperfect repair changes the hazard rate curve’s time to a more

recent time but not to zero. The improvement factor model is powerful in the sense that just by

adding one parameter it permits to have a variety of maintenance improvements, from none to full

renewal. An extension of this model can be found in Lin et al. [11]. They proposed that imperfect

maintenance has a more complicated effect, like changing both the time and the hazard rate slope.

Related to such models, Chan and Shaw [2] suggest that each imperfect repair results in a reduction

of failure rate, which depends on the system age and the number of preventive maintenance.

Zequeira and Bérenguer [31] considered the case that the improvement factor depends on the time

at which the preventive maintenance action are executed. Sheu and Chang [23] studied the case

that preventive maintenance reduces the effective age and hazard rate distribution by employing

two improvement factors. Zhou et al. [36] also introduced a hybrid model based on studies of

Malik [14], and Nakagawa [18]. More recently, Zhang and Xie [33] developed an ameliorated

improvement factor model for imperfect maintenance and its goodness of fit.
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The improvement factor model’s usage is not restricted to classical studies that deal with

the system’s lifetime and failure. It has been used to model the effect of imperfect repairs on

degradation-based research. The influence of such maintenance actions is considered on various

aspects, for example, on the critical threshold level, deterioration rate, and the amount of reduction

of degradation level after each repair. Wang and Pham [27] applied the improvement factor for

elevating the critical threshold level. They considered that imperfect preventive maintenance

would improve the system immunity level. On the opposite, Shen et al. [22], with the help of

the improvement factor model, considered the case that after each imperfect maintenance, the

failure threshold lessens. It returns to the fact that a system’s condition is not boosted as much as

in previous maintenance actions, and hence the system will fail sooner. To name more physically

meaningful studies in this concept, we may refer to Wang and Pham [26]. They considered a system

subject to competing risks of degradation and random shocks and employed the improvement

factor model to show the impact of imperfect repairs on the system’s total damage. Zhang et

al. [32] also proposed a model focused on changing the rate of deterioration of a system while

each maintenance action could have a different degree of impact on the rate of deterioration. On

the other hand, imperfect repairs usually recover the system to a better state. Zhao et al. [34]

employed the improvement factor model to show this reduction of degradation level. They assessed

the optimal imperfect repair policy by minimizing the expected warranty cost. Under the same

consideration, Zhao et al. [35] treated the improvement factor as a random variable; hence each

imperfect repair can affect diversely. Formulations other than the improvement factor are also

exploited in connection with degradation processes. For example, Xu et al. [29] consider a random

variable directly representing the degradation reduction.

Most of the efforts made in imperfect maintenance modeling aim at improving decision sup-

port systems. This paper focuses on degradation-based maintenance where perfect replacement

and imperfect repair are available for preventive action. The problem of optimal balance between

these two options is of particular importance for decision-making. The choice to be made depends

strongly on the effectiveness of the repair. As an example, consider the performance of gas tur-

bines. It always gradually decreases over time. The compressor has a significant impact on these

performance losses. In particular, compressor fouling is a major concern. Foreign matter can cause

pressure ratio drops that reduce power. Various maintenance actions can be considered to counter
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the effects of fouling. Off-line water washing can be used to clean fouled blades. It results in partial

cleaning with variable random effectiveness, which cannot be predicted precisely. It corresponds

to an imperfect repair. Full maintenance efficiency can be achieved by mechanically cleaning the

surfaces and possibly replacing damaged components. It requires opening the unit and corresponds

to perfect maintenance action, hereafter referred to as “replacement”.

This work aims to address the issue of perfect and imperfect maintenance optimal configuration.

A comprehensive modeling framework is proposed, including degradation modeling and imperfect

maintenance modeling with joint description of its efficiency. Closed-form derivations of the cost

are obtained, enabling efficient optimization of the decision variables. More specifically, this paper

studies aperiodic condition-based predictive maintenance of a single unit system which is subject

to degradation, when the system degradation evolution follows an inverse Gaussian (IG) process.

Both replacement and repair are possible. To dynamically answer the crucial question of which one

must be taken on-line, we introduce a criterion based on the probability of whether a repair could

be proper. Adopting the same idea as [34, 35], the reduction of degradation level after an imperfect

repair is modeled by an improvement factor, which is considered to have a beta distribution. The

underlying stochastic processes are studied. Their properties are exploited to derive the long-term

cost rate expression. The behavior of the proposed policy is studied numerically.

The rest of the paper is structured as follows. Section 2 provides general assumptions of the

system, degradation modeling and improvement factor model for imperfect repair. Sections 3

and 4 respectively deal with maintenance policy description and analytical derivations for cost

assessment. Sections 5 and 6 are devoted to the numerical study of the proposed policy. Finally,

Section 7 concludes the paper with directions for further researches.

2 Terminology and assumptions

2.1 General assumptions

Consider a single unit system subjected to wear or deterioration. The degradation of the system

is monotonically increasing over time. Continuous monitoring is not possible and the system

condition can be observed only by inspection. It is assumed that inspections are instantaneous,

non-destructive, and reveal the exact system state.
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As the system’s degradation level crosses a pre-specified threshold level L, failure happens and

a corrective replacement must be carried out. Such replacements are perfect; i.e., the system’s

degradation will be restored to zero. A failure is not self-announced and can only be detected by

inspection. Then, if the system fails between two inspections, it remains failed or unable to fulfill

its requirements until the next inspection. This duration that results in an undesirable cost burden

is referred to as downtime.

To avoid such unexpected occurrence of system failure, preventive maintenance is considered.

It is associated with a threshold level on the degradation range, denotes as M . The preventive

maintenance can be either repair or replacement. To be more realistic, repairs are assumed to

be imperfect and should not reduce the degradation level to zero. As with corrective actions,

preventive maintenance can only take place at inspection times. The cost of maintenance downtime

due to such actions is included in the corresponding maintenance unit cost.

2.2 Degradation modeling

Without any repair or replacement actions, the system deterioration has an increasing continuous

evolution. Let X(t), with initial condition of X(0) = 0, stand for the system deterioration level at

time t ≥ 0.

Stochastic processes can be understandably used to model degradation data due to their time

dependency structure. Here we assume that the underlying degradation follows an inverse Gaussian

(IG) process. That means for t ≥ 0 and h > 0, the increment Xt+h −Xt is an inverse Gaussian

distributed random variable with positive parameters µh and λh2. The pdf and cdf of such an

increment are respectively:

fh(x) =

√
λh2

2πx3
exp{−λ(x− µh)2

2µ2x
}, x > 0, µ > 0, λ > 0,

and

Fh(x) = Φ

(√
λ

x
(
x

µ
− h)

)
+ exp

(
2λh

µ

)
Φ

(
−
√

λ

x
(
x

µ
+ h)

)
,

where Φ is the cdf of the standard normal distribution, and the subscript h indicates the length of

interval (t, t+ h) associated with the increment.
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2.3 Imperfect repair modeling

To describe the effect of imperfect repair, a random improvement factor model is adopted. That

means the degradation level of the system after an imperfect preventive action at time Tn is:

XTn
= δ.XT−

n
,

where 0 < δ < 1 and XT−
n

is the degradation level of the system just before the maintenance action.

We assume that δ is a random variable to characterize the randomness in the effect of improvement.

For this purpose, the beta distribution with shape parameters α and β is considered. Its pdf (resp.

cdf) is denoted q (resp. Q). As a consequence:

q(δ) =
δα−1(1− δ)β−1

B(α, β)
and Q(δ) =

B(δ;α, β)

B(α, β)
= Iδ(α, β)

where B(δ;α, β) is the incomplete beta function and Iδ(α, β) is the regularized incomplete beta

function. The possible shapes of beta distributions are decreasing, increasing, U curved, inverted U

curved, or even constant. The main reason for the choice of the beta distribution as the distribution

of improvement factor is its ability to take this great diversity of shapes using only two parameters.

Depending on the values of the two parameters, the density function can be symmetric (α = β),

left-skewed (α > β), and right-skewed (α < β). Figure 1 depicts pdf of beta distribution for some

values of α and β along with their cdf and quantile function.

With this consideration, the mean and variance of the random improvement factor δ are:

E(δ) =
α

α+ β
, and V(δ) =

αβ

(α+ β)2(α+ β + 1)
.

These values can fully represent the efficiency characteristics of imperfect repairs. As the param-

eters α and β are such that E(δ) is near to zero, imperfect maintenance can be regarded as an

efficient repair in sense that the degradation level after repair will be very low. Similarly, higher

amount of E(δ) is associated with a poor or an inefficient repair. The value of V(δ) is related to

consistency of repair actions.

3 Maintenance policy

When a system fails, replacing it is the inevitable corrective action. But when the system is still

running, and its degradation level is higher than M , choosing rationally between replacement and
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Figure 1: Various shapes of pdf, cdf and quantile function of beta distribution
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repair is one of the major concerns. Repair is cheaper, but the effect produced by a repair cannot be

predicted with certainty. Unlike a replacement, the degradation level and, therefore, the expected

time to failure of a newly repaired unit cannot be guaranteed. As the maintenance cost is high,

we are looking for a trade-off between repairs and replacements.

To decide what should be done at each inspection, first we introduce φ which is the probability

to leave the preventive zone after an repair. It is defined as the function x 7→ φ(x) = P
(
δ.x ≥ M

)
for x ∈ [M,L]. Knowing the distribution of δ, It can be rewritten as:

φ(x) = 1−Q
(M
x

)
.

It is worthy to note that φ(·) is an increasing function on its domain and then it is invertible.

3.1 Inspection times

It is essential to choose a specific structure to determine inspection times. This time scheduling

may be periodic or aperiodic. Although, the former is practically easier, the latter helps us to

reduce the cost by preventing unnecessary frequent inspections. Moreover, by choosing aperiodic

inspection planning which considers the current situation of the system, the risk of system failure

reduces. Here, we adopt the RUL-based inspection planning.

The RUL is defined as the remaining duration for which a system will work before it fails given

its current state. If the current degradation level of the system at time t is x, then the remaining

useful life of the system, Υx, is defined as:

Υx = inf{r > 0 : Xt+r ≥ L|Xt = x}.

Considering the IG process as the underlying process, the cdf of RUL is:

GΥ(r|x) = Φ

(√
λ

L− x
(r − L− x

µ
)

)
− exp

(
2λr

µ

)
Φ

(
−
√

λ

L− x
(r +

L− x

µ
)

)
,

where Φ is the cdf of the standard normal distribution.

Then, denoting the sequence of inspection times by {Tn}n∈N with the initial value of T0 = 0,

the RUL-based inspection scheduling is derived by:

Tn+1 = Tn + τp(XTn
),

where τp(XTn) is the p-quantile of the RUL distribution; i.e:

τp(XTn) = {△t : GΥ(△t|XTn) = p} (3.1)
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3.2 Decision rule

In case of maintenance at time Tn, let denote T−
n the time just before the maintenance. As a

consequence XT−
n

is the degradation level at time Tn just before the maintenance action and XTn

the degradation level after maintenance. The policy is as follows:

• If XT−
n

≥ L, a corrective replacement is taken which restore system to ”as good as new”

state. That means after maintenance XTn = 0;

• If M ≤ XT−
n

< L, a preventive maintenance must be performed. In order to choose between

perfect or imperfect maintenance, we employ the function φ(·) as follows:

– if φ(XT−
n
) ≥ s, then the effectiveness of repair would not be sufficient, and perfect

preventive maintenance is taken. The system is replaced and the its degradation level

will be restored to zero; i.e. XTn = 0;

– if φ(XT−
n
) < s, then a repair is chosen. The maintenance is imperfect and XTn

=

δ.XT−
n
. If after imperfect maintenance XTn ≥ M then a perfect action is performed

immediately such that XTn
= 0. It happens when, contrary to what was expected,

the reparation effect has been insufficient. As the degradation level after the repair is

required, an inspection has to be performed. In the following, this inspection is part

of the maintenance action, i.e., a degradation level measurement systematically follows

the repair. Its cost is included in the unitary repair cost.

• If 0 ≤ XT−
n

< M , the system is properly working and no maintenance is needed. Maintenance

decision-making is postponed to the next inspection time.

4 Stationary law and cost

This section deals with the evaluation of the long-run average cost per time unit without simulation

and with the help of semi-regenerative properties. By elementary renewal theory, it is known that

the long-run average cost per time unit is equal to the ratio of the expected cost on the first

renewal cycle, over the expected length of that cycle for almost any realization of the process.

However, expectations over a renewal cycle are tricky in case of aperiodic inspections. To assess

the cost function, we will follow the results developed in Cocozza-Thivent [3]. It is shown that the
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long-run average cost rate can be changed into a ratio of expectations on one semi-renewal cycle.

Considering a shorter semi-renewal cycle instead of a whole renewal cycle, as applied in [4, 7, 17], is

more favorable. This method first requires characterizing the stationary behavior of the maintained

system at the inspection times and then calculating the cost by integration with respect to the

stationary law.

For this aim, let {Yn = XTn
}n∈N be the discrete-time random process describing the system

state at each inspection time, after the possible maintenance action has been carried out. The

properties of the process {Xt}t≥0 and the embedded chain {Yn}n∈N, when {Xt}t≥0 is monotone

increasing stochastic process is listed in [17] for both case of known and unknown model parameters.

In the following subsections, we first derive the expression of stationary law, and then present the

cost function.

4.1 Expression of stationary law

Primarily, we derive the transition probability distribution function of {Yn} given the current

state. It is worthy to note that it is a mixture distribution since, given its value at time Tn, the

system’s state Yn+1 at time Tn+1 is a random variable which should be exactly 0 in case of perfect

maintenance or any value y ∈ (0,M) otherwise. The former case is the result of a corrective

replacement after failure, or the result of a preventive replacement when the system degradation

level increases to a value between M and L during the time interval [Tn, Tn+1). The latter case is

the outcome of an imperfect repair, or it means that the system is still in good condition at time

Tn+1. Due to replacements, the system degradation level can be restored to the value 0 with a non-

zero probability, which is not the case for other degradation values. Consequently, the transition

probability of the Markov chain {Yn, n ∈ N} given the current state involves mixed variables. To

assess this transition probability distribution, we evaluate the two différent probabilities:

• In case of a replacement at time Tn+1 (discrete part):

P(Yn+1 = 0|Yn = x)

= P
({

Y −
n+1 ≥ L

}
or
{
(M ≤ Y −

n+1 < L) and
(
φ(Y −

n+1) ≥ s
)}

or{
(M ≤ Y −

n+1 < L) and
(
φ(Y −

n+1) < s
)
and (δ.Y −

n+1 ≥ M)
}
|Yn = x

)
,

with Y −
n+1 = XT−

n+1
the degradation level at time Tn+1 just before maintenance action.



11 4.1 Expression of stationary law

By defining Z = Y −
n+1−Yn which has the distribution IG(µ.τp(x), λ.τ

2
p (x)) and ω = φ−1(s) ∈

[M,L], it can be rewritten as:

P(Yn+1 = 0|Yn = x)

= P
({

Z ≥ L− x
}
or
{
(M − x ≤ Z < L− x) and

(
φ(x+ Z) ≥ s

)}
or{

(M − x ≤ Z < L− x) and
(
φ(x+ Z) < s

)
and (δ.(x+ Z) ≥ M)

})
= P

(
Z ≥ L− x

)
+ P

(
(M − x ≤ Z < L− x) and

(
Z ≥ ω − x

))
+ P

(
(M − x ≤ Z < L− x) and

(
Z < ω − x

)
and (δ.(x+ Z) ≥ M)

)
=P (Z ≥ L− x) + P (max(M,ω)− x ≤ Z < L− x)

+ P
(
(M − x ≤ Z < min(L, ω)− x

)
and (δ ≥ M

x+ Z
)

)
=F τp(x)(ω − x) +

∫ ω−x

M−x

Q(
M

x+ z
)fτp(x)(z)dz, (4.1)

where, F τp(x) and Q are survival functions of IG distribution with parameters µ.τp(x) and

λ.τ2p (x) and beta distribution with shape parameters α and β.

• In case of a repair or without any maintenance action at time Tn+1 (continuous part):

P(Yn+1 ≤ y|Yn = x)

=P
(
(M ≤ Y −

n+1 < L) and
(
φ(Y −

n+1) < s
)
and (δ.Y −

n+1 ≤ y)|Yn = x

)
.I{y<M}

+P
(
Y −
n+1 ≤ y|Yn = x

)
.I{x≤y<M}

=P
(
(M − x ≤ Z < L− x) and

(
φ(x+ Z) < s

)
and (δ.(x+ Z) ≤ y)

)
.I{y<M}

+ P
(
Z ≤ y − x

)
.I{x≤y<M}

=P
(
(M − x ≤ Z < L− x) and

(
Z < ω − x

)
and (δ ≤ y

x+ Z
)

)
.I{y<M}

+ P
(
Z ≤ y − x

)
.I{x≤y<M}

=

∫ ω−x

M−x

Q(
y

x+ z
)fτp(x)(z)dz.I{y<M} + Fτp(x)(y − x).I{x≤y<M}. (4.2)

From the transition probabilities, i.e. from equation (4.1) and by derivation of equation (4.2),

the probability distribution is written as the sum of a discrete part with the Dirac delta function
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and a density part:

p(y|x) = A1(x)δ0(y) +
(
A2(x, y)I{y<M} + fτp(x)(y − x)I{x≤y<M}

)
, (4.3)

where A1(x) and A2(x) are respectively given by:

A1(x) = F τp(x)(ω − x) +

∫ ω−x

M−x

Q(
M

x+ z
)fτp(x)(z)dz,

A2(x, y) =
∂

∂y

(∫ ω−x

M−x

Q(
y

x+ z
)fτp(x)(z)dz

)
=

∫ ω−x

M−x

1

x+ z
fτp(x)(z) q

( y

x+ z

)
dz,

and the Dirac delta function δ0 is such that δ0(x) = 0 for x ̸= 0 and
∫
f(x)δ0(x)dx = f(0) (see

[10] for more properties of this function).

Let π denote the stationary law of the Markov chain {Yn}. As for the transition probability

distribution of {Yn}, the stationary law π is a convex combination of a Dirac delta function and a

density function. It comes, with 0 < a < 1:

π(x) = aδ0(x) + (1− a)b(x). (4.4)

By definition, the stationary law is the solution of stationary equation:

π(y) =

∫ M

0

p(y|x)π(x)dx. (4.5)

By substituting (4.3) and (4.4) in (4.5), it comes respectively from the Dirac part and from the

density part:

a = aA1(0) + (1− a)

∫ M

0

A1(x)b(x)dx, (4.6)

and

b(y) =
a

1− a

[
A2(0, y) + fτp(0)(y)

]
+

∫ M

0

A2(x, y)b(x)dx+

∫ y

0

fτp(x)(y − x)b(x)dx. (4.7)

The stationary law can be assessed by a numerical integration as follows. First, equation (4.7) can

be multiplied by
1− a

a
and can be written:

B(y) = A2(0, y) + fτp(0)(y) +

∫ M

0

A2(x, y)B(x)dx+

∫ y

0

fτp(x)(y − x)B(x)dx (4.8)

with B(y) =
1− a

a
b(y).
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As a solution of the previous integral equation, the function B(y) can be evaluated numerically

through the method introduced in Appendix A.

Then, from
∫
π(x)dx = 1 and substituting π from (4.4), the value of a is obtained with

a =
1

1 +
∫M

0
B(x)dx

. (4.9)

Finally, from a and B(y) it comes:

b(y) =
a

1− a
B(y). (4.10)

Fig. 2 shows the stationary law for two examples. A simulation study is also conducted to insure

the accuracy of the method.

Stationary law - Perfect maintenance Stationary law - Imperfect maintenance

Figure 2: The Markov chain’s stationary law: comparison of numerical solution of integral equation

and histogram from Monte Carlo simulation. The two examples with perfect maintenance (s = 0)

on the left and imperfect maintenance (s = φ(L)) on the right. The degradation parameters are

µ = 1, λ = 1, shape parameters of the beta distribution are α = 2, β = 5, and the failure level is

L = 9. Decision variables are fixed as M = 7 and p = 0.05. The black dot is the value of a in (4.9).

4.2 Maintenance cost

Each action incurs a unitary cost. We consider that Ci, Cr, Ccr, and Cpr are respectively the

inspection cost, the repair cost, the cost of corrective replacement, and the cost of preventive

replacement. Let Cr+denote the unit cost in case that a perfect maintenance action is inevitable
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after an imperfect maintenance action. It is obtained from an additional preventive cost Cadd such

that Cr+ = Cr + Cadd. It is reasonable to suppose that:

Ci < Cr < Cpr ≤ Ccr ≤ Cr+·

The cost rate in case of unavailability is also assumed to be Cd. With this consideration, the

cumulative cost function on [0, t] is:

C(t) = CiNi(t) + CrNr(t) + CprNpr(t) + CcrNcr(t) + Cr+Nr+(t) + Cdd(t),

where Ni(t), Ncr(t), Npr(t), and Nr(t) are the number of inspections, the number of corrective

replacements, the number of preventive replacements, and the number of repairs, respectively.

The number of repairs followed by a replacement is showed by Nr+(t). The duration that the

system passed in downtime until t is denoted by d(t).

The aim is optimizing the long-run average cost per unit of time, i.e. finding the values of

decision variables p, s and M which minimizes

EC = lim
t→∞

C(t)

t
.

As mentioned in [3], the semi regenerative properties of the degradation process help us to assess

this limit as follows

EC =
Eπ(C(T1))

Eπ(T1)
,

where the Eπ(·) refers to expectation with respect to the stationary law π. Therefore,

EC =
1

Eπ(T1)

{
CiEπ

(
Ni(T1)

)
+ CrEπ

(
Nr(T1)

)
+ CprEπ

(
Npr(T1)

)
+

CcrEπ

(
Ncr(T1)

)
+ Cr+Eπ

(
Nr+(T1)

)
+ CdEπ

(
d(T1)

)}
. (4.11)

The expectations can be assessed as follows:

Eπ(Ni(T1)) = 1,

Eπ(Ncr(T1)) = Pπ(XT−
1

> L) =

∫ M

0

F τp(x)(L− x)π(x)dx,

Eπ(T1) =

∫ M

0

τp(x)π(x)dx.

where, as introduced in section 4.1, F s(z) = P
(
Xs ≥ z

)
is the survival functions of IG distribution

with parameters µ.s and λ.s2, which corresponds to the degradation increment over a time interval

of width s.
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Moreover, the expectation for number of perfect preventive actions is:

Eπ

(
Npr(T1)

)
= Pπ(M ≤ XT−

1
≤ L and φ(XT−

1
) ≥ s)

=

∫ M

0

Px

(
M < x+ Z ≤ L;x+ Z ≥ ω

)
π(x)dx

=

∫ M

0

[
Fτp(x)(L− x)− Fτp(x)(ω − x)

]
π(x)dx,

the expectation for number of imperfect preventive actions is:

Eπ

(
Nr(T1)

)
= Pπ(M ≤ XT−

1
≤ L, and δ.XT−

1
< M and φ(XT−

1
) < s)

=

∫ M

0

P
(
M − x ≤ Z < L− x;Z <

M

δ
− x;Z < ω − x

)
π(x)dx

=

∫ M

0

P
(
M − x ≤ Z < min(ω,

M

δ
)− x

)
π(x)dx

=

∫ M

0

{∫ 1

0

∫ min(ω,Mδ )−x

M−x

fτp(x)(z)q(δ) dz da

}
π(x)dx

=

∫ M

0

(∫ ω−x

M−x

Q
( M

x+ z

)
fτp(x)(z) dz

)
π(x)dx,

and the expectation for imperfect preventive action followed by a perfect one can be calculated as:

Eπ

(
Nr+(T1)

)
= Pπ(M ≤ XT−

1
≤ L, and δ.XT−

1
≥ M and φ(XT−

1
) < s)

=

∫ M

0

P
(
M − x ≤ Z < L− x;Z ≥ M

δ
− x;Z < ω − x

)
π(x)dx

=

∫ M

0

P
(
M − x ≤ Z < L− x; δ ≥ M

x+ Z
;Z < ω − x

)
π(x)dx

=

∫ M

0

(∫ ω−x

M−x

Q
( M

x+ z

)
fτp(x)(z) dz

)
π(x)dx.

Let finally express the expected unavailability duration over a single semi-renewal cycle. It is

defined as

Eπ(d(T1)) =

∫ M

0

Ex(d1)π(x)dx

where Ex(d1) is the mean unavailability time knowing the degradation level is x at the beginning

of the cycle. The next inspection time is τp(x) time units later. As a consequence,

Ex(d1) = E

(∫ τp(x)

0

I{Xs≥L−x}ds

)

=

∫ τp(x)

0

Ex

(
I{Xs≥L−x}

)
ds =

∫ τp(x)

0

P
(
Xs ≥ L− x

)
ds

and

Eπ(d(T1)) =

∫ M

0

[∫ τp(x)

0

F s(L− x)ds

]
π(x)dx.



16

After developing the expression of the maintenance long-run cost rate, the next two sections are

devoted to a numerical study of the proposed maintenance policy hereafter referred to as “(p,M,s)-

policy”. The aim is to investigate the maintenance cost function, discuss its optimization, and

analyze the influence of unit maintenance costs.

5 Numerical optimization and performance assessment

Different numerical experiments are presented to illustrate some useful properties and characterize

optimal decision variables. From now and for the sake of the paper clarity, the efficiency of imperfect

maintenance, i.e, the behavior of the random improvement factor δ, is characterized only by the

first shape parameter α of the beta distribution and the second parameter β is fixed and equal to

5. Thus a low (resp. high) value of α means “efficient” (resp. “inefficient”) repair.

The effectiveness of a condition-based or predictive maintenance policy relies heavily on iden-

tifying relevant decision variables. To this end, the optimization of the evaluation criterion is

a crucial phase. According to the proposed maintenance policy, it consists of finding decision

variables (s∗, p∗,M∗) such that:

EC∗ = EC(s∗, p∗,M∗) ≤ EC(s, p,M), ∀(s, p,M) ∈ [0, φ(L)]× [0, 1]× [0, L].

The maintenance cost rate is a continuous function. The constraint set is closed and convex.

Then the optimization problem has a solution. The choice of the optimization algorithm may

depend on the shape of the cost function. It can be different in case of the existence of local

minima or not. The analysis of the cost shape is addressed first. The second part of this section

is related to the decision variable for preventive repair or replacement.

Numerous tests have been conducted to exhibit cost function behavior. The examples given

hereafter are representative of the results obtained. They present the general observed characteris-

tics. The degradation parameters are µ = 1 and λ = 1, and the failure level is L = 9. Throughout

this section, unless otherwise specified, the following unit costs are chosen:

Ci = 0.2, Cr = 4, Cpr = 7, Ccr = 10, Cr+ = 11 (or Cadd = 7), Cd = 4 (5.1)
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5.1 Cost shape and optimization

Due to the lack of tractable closed-form expression, it is difficult to obtain a general proof of unicity

of a cost minimum. However, such a property is of particular interest for numerical minimization

and practical search of optimal maintenance variables.

First, the maintenance cost rate’s convexity as a function of p and M is highlighted. To this

end, four illustrative examples of level curves are given with fixed values of decision variable s. The

examples are established as follows: two different beta distributions describe repair efficiency. The

two beta distributions represent successively the cases of a rather efficient repair with parameter

α = 2, i.e. E[δ] ≃ 0.286, and a less efficient repair with α = 5, i.e. E[δ] ≃ 0.5. For each case of

efficiency, two values of decision variable s are considered. The extreme values s = φ(M)(= 0)

and s = φ(L) are considered to illustrate. The former choice of s leads to the case that only

replacement is taken as preventive maintenance, while the latter choice is related to the case that

only repair is done for preventive actions.

Figure 3: Maintenance cost as a function of p and M for fixed values of s such that s = φ(M) = 0,

i.e., perfect maintenance actions (left) and s = φ(L), i.e., imperfect actions (right). Rather efficient

repairs, δ ∼ Beta(2, 5), is considered.

The cost functions are depicted in Figures 3 and 4 for the most efficient and the less efficient

repair cases, respectively. As highlighted in these figures, the level curves of maintenance cost are

convex functions for a fixed value of s. It can be seen that the optimal values of p and M are
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φ

Figure 4: Maintenance cost as a function of p and M for fixed values of s such that s = φ(M),

i.e., perfect maintenance actions (left) and s = φ(L), i.e., imperfect actions (right). Less efficient

repairs, δ ∼ Beta(5, 5), is considered.

different when s equals 0 or φ(L). For the high value of s, which means more repairs in preventive

actions, M∗ is lower, and p∗ is higher. Moreover, for a given repair efficiency, the magnitude of

the difference between the configurations corresponding to the two values of s strongly dependent

on the efficiency level α. That means the difference in optimal values is not significant as long as

α remains small i.e. when the repairs are efficient. It is related to the fact that efficient repairs

reduce the system’s degradation near to zero, almost the same as for replacements. Hence the

difference between configurations with repair and with preventive replacement is not significant.

Let secondly consider the maintenance cost as a function of s with fixed values of decision

variables p and M . Possible evolution of EC is depicted on Figure 5 for two configurations of beta

distribution. In this figure, s takes values between its bounds 0 and φ(L).

As previously, preventive repairs are respectively such that α is equal to 2 and 5. The fixed

decision variables p and M have been set to their corresponding optimal values p∗ and M∗. In

the first case, with α = 2, the optimal value s∗ is equal to φ(L), which corresponds to preventive

actions with only repair and no replacement. Conversely, in the second case s∗ = 0, which means

only replacements and no repair for preventive actions. Intermediate values of α lead to optimal

configurations with a balance between repairs and replacements.
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* *

Figure 5: Maintenance cost as a function of s for fixed values of p and M . The two cases are

associated with rather efficient repairs i.e., δ ∼ Beta(2, 5) (left) and less efficient repairs with

δ ∼ Beta(5, 5) (right). The values of p and M are the optimal values for each case i.e. respectively

(p,M) = (0.53, 7.25) and (0.57, 7.6).
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For all tested configurations, there is a unique global minimum and no local minima. Conse-

quently, proper algorithms developed for continuous non-linear optimization allow finding the set of

decision variables that minimize the maintenance cost rate. Quasi-Newton (BFGS) ot Nelder-Mead

methods can be used to obtain numerical results. As it does not require derivative calculation,

Nelder-Mead with the log-barrier method for constraints (see for example [6]) is considered to

obtain the results given in this paper. The algorithm for cost calculation is given in Appendix B.

5.2 Performance assessment in comparison to classical policies

The (p,M,s)-policy considers the decision variable s, which is a limit value on the probability that

the degradation level remains greater than M after repair. It is a specificity compared to other

policies. Without it, preventive maintenance actions are all of the same kind, should it be imperfect

repairs or perfect replacements. The classical decision rules can be considered as particular cases

of the proposed rule with s. For example, a perfect preventive policy corresponds to s = 0 and

an imperfect preventive policy to s = φ(L). Thus, the proposed policy is always better than a

classical imperfect or perfect preventive policy. It allows for finer decision making. This section

analyzes this strategy’s performance to find a balance between perfect and imperfect preventive

maintenance actions.

Figure 6 depicts comparisons of (p,M,s)-policy with fully perfect and imperfect ones. The

relative increase of classical policies costs compared to the proposed one are given. It shows that

the introduction of the new decision variable s can allow a significant gain.

More precisely, for different repair efficiency cases, the optimal cost of the (p,M,s)-policy is com-

pared on one side with the optimal cost of a perfect preventive policy and on the other side with

the optimal cost of an imperfect preventive policy. The evolution of imperfect maintenance effi-

ciency is described with parameter α of the beta distribution varying from 0.5 to 6, i.e., for E[δ]

increasing from 0.09 to 0.55. The results are given as a percentage of (p,M,s)-policy’s optimal

cost, which is always the lowest. In most efficient repairs, i.e., for α = 0.5, the proposed policy is

an imperfect preventive policy and is 30% more efficient than a perfect preventive policy. On the

opposite, in case of less efficient imperfect repairs, i.e., for α = 6, the proposed policy acts as a
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Comparison with classical policies

Repair policy
Replacement policy

Figure 6: Cost comparison of (p,M,s)-policy with pure preventive replacement (s = 0) and pure

repair policies (s = φ(L)). The efficiency of preventive actions decreases by increasing values of α

while β = 5 is fixed.

perfect preventive one. In this case, it is more than 15% more efficient than an imperfect preventive

policy. In between, an effective optimal balance is obtained. In conclusion, the introduction of a

new decision variable gives a powerful adaptive policy.

5.3 Decision variable for replacement or repair

Now let focus on the meaning of the decision variable s. At each inspection and for a current degra-

dation level M ≤ x < L, φ(x) is the probability that the degradation level after imperfect repair

would be still greater than M . The decision about replacement or repair is made by comparing

φ(x) and s. Consequently, the degradation level ω such that φ(ω) = s plays a specific role. As φ

is an increasing bijective function of x, φ(x) ≤ s (respectively φ(x) > s) is equivalent to x ≤ ω

(respectively x > ω), see Figure 7. The limit threshold s on probability φ(x) can be considered as

a limit threshold ω on degradation level x. Consequently, it is possible to consider either s or the

threshold on degradation level ω as the third decision variable.

Here is one reason why the decision variable s is chosen as a decision variable in this study

rather than ω. Consider a “nominal” configuration for the system, which is characterized by

efficient repair property. In the following, the tilde symbol will be used to indicate the parameters
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M L

s

replacement

repair

ω

Figure 7: Decision variable s and associated degradation level threshold.

and variables corresponding to the nominal configuration. The nominal shape parameter α is

taken equal to α̃ = 0.5 which means that E[δ] = 0.09. The decision variables are optimized for this

nominal configuration. The obtained values are p̃∗, M̃∗ and s̃∗. Additionally, ω̃∗ denotes the value

of φ̃−1(s̃∗) where φ̃ is the function φ with nominal beta distribution parameters. Now, suppose

that the repair efficiency decreases, i.e. α increases. Assume that it is not possible nor suitable

to perform new optimizations. In that case, only the function φ can be updated with the new

efficiency parameter. Two options can be considered:

• the first one is referred as “s constant” which means that s is fixed and remains equal to s̃∗.

As the efficiency changes, so do φ and the limit degradation level ω = φ−1(s̃∗);

• the second option is called “ω” constant”. In that case, ω remains equal to its initial value

ω̃∗ and the decision variable s = φ(ω̃∗) is updated with φ function.

The robustness of the maintenance policy in case of a decrease in repair efficiency is evaluated

for each option. We first assess the maintenance costs EC(p̃∗, M̃∗, s̃∗) and EC(p̃∗, M̃∗, φ(ω̃∗))

associated respectively to the cases “s constant” and “ω” constant”. The relative difference with the

cost value EC(p∗,M∗, s∗) which is optimized with the exact value of repair efficiency is calculated.

The results are depicted on Figure 8. Recall that in the example considered, the fixed decision

variables s̃∗ and ω̃∗ are optimal for efficient repair and lead to an imperfect preventive strategy.

As α increases, the optimal strategy remains first a repair (imperfect) strategy. Then it shifts

to a replacement (perfect) strategy as α becomes greater than 3. Figure 8 shows that after this

shift, the option “s constant” gives significantly better performance. Different similar tests lead
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Figure 8: Cost variations for fixed decision variables for a decreasing efficiency of imperfect actions.

Decision variables have been optimized for α = 0.5 and results are given as a percentage of the

corresponding optimal cost. Diamonds are for “s constant” and bullets for “ω constant”.

to the recommendation to keep the initial optimum of s rather than ω in case of a change in

repair efficiency if no new cost optimization is to be considered. This may result in slightly

lower performance if efficiency repair remains close to the nominal one. However, it is more

broadly beneficial when changes in efficiency lead to an evolution of the optimal strategy (e.g.,

from preventive repair to preventive replacement). Finally, considering s as a decision variable is

more robust than considering ω.

6 Sensitivity analysis

This section deals with the influence of some problem’s parameters on the optimal configurations

of the maintenance decision rule. Parameters with the main influence on the balance between

repair and corrective replacement are investigated.

6.1 Sensitivity to unit maintenance costs

Unit costs play an essential role in determining the optimal configuration. The evolution of the

optimal (p,M,s)-policy is studied in this section when there are modifications in repair and preven-
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Cr p∗ M∗ s∗ ω∗ EC∗

2.0 0.0528 7.25 1.4e-03 9 0.66

4.0 0.0528 7.25 1.4e-03 9 0.91

4.5 0.0626 7.25 1.1e-03 8.9 0.98

5.0 0.0697 7.25 9.0e-06 7.79 1.021

5.5 0.0604 7.68 6.0e-18 7.68 1.024

7.0 0.0607 7.69 5.0e-17 7.69 1.024

Table 1: Optimal configurations for different values of preventive repair unit cost. Imperfect

maintenance is such that α = 2 and β = 5. Unit costs are respectively Ci = 0.2, Cpr = 7,

Cadd = 7, Ccr = 10, Cd = 4.

tive replacement unit costs. As an illustration, the case with α = 2 and β = 5, i.e. E[δ] ≃ 0.286,

is proposed for repair efficiency. The cost configuration is also the same as in (5.1).

First, let address the influence of repair unit cost Cr. We consider it varies from 2 to 7. The

value Cr = 2 corresponds to a low cost for imperfect maintenance while the case Cr = 7 is a limit

case where repair is as costly as preventive replacement. As a consequence and given the value of

Cadd = 7, Cr+ increases from 9 to 14. Thus, the cost of inevitable replacement after an inefficient

repair, Cr+ can be almost the same as a corrective replacement or even more costly. Table 1 shows

the evolution of decision variables and optimal cost rate as Cr increases.

With the increase in Cr or, in other words, as corrective actions become economically less

disadvantageous, the value of p∗ increases. Decision variable M∗ remains almost constant for

smaller values of Cr and increases for higher values. The values of s∗ are such that ω∗ = φ−1(s∗)

decreases from L to M∗ as Cr increases. It means that the maintenance policy is prioritizing

imperfect preventive actions for low values of Cr and preventive replacements for high values of

Cr.

Figure 9a illustrates the evolution of the probabilities related to preventive actions. Three curves

are plotted. The one with triangles highlights the probability that a cycle ends with preventive

action. It decreases as Cr increases. The two other curves are related to the probabilities of having

a repair (resp. a replacement) given that the cycle ends with a preventive maintenance action. A
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sudden switching is clearly visible between Cr = 4 and Cr = 6.5. It traduces a high sensitivity to

repair unit cost in this area.

(a) Cpr is fixed and equal 7 while Cr is changing (b) Cr is fixed and equal 4 while Cpr is changing

Figure 9: Evolution of probabilities of repair and preventive replacement knowing maintenance

action is preventive as functions of unit costs, for α = 2 and β = 5 with µ = λ = 1, L = 9,

Ci = 0.2, Cadd = 7, Ccr = 10 and Cd = 4.

Let now consider the influence of preventive replacement unit cost Cpr. Let consider Cpr takes

values in the range of 4, which is the value of Cr up to 10, which is the value of Cc. Numerical results

are given on Table 2 and Figure 9b. Note that p∗ varies slightly whereas M∗ remains constant.

The value of s∗ also increases due to the fact that preventive actions are only replacements for low

values of Cpr and and only repairs for high values of Cpr.

As depicted with the evolution of Cr, the proposed curves represent the evolution of the prob-

ability that a cycle ends with preventive action and, respectively, probabilities of repair and pre-

ventive replacement knowing the maintenance action is a preventive one. In case of low cost for

preventive replacement, i.e., with Cpr close to Cr, repair is avoided. When Cpr becomes higher than

5, the choice for preventive actions switches from replacement to repair. The policy’s sensitivity

to variations of Cpr is very low for small or high values of perfect preventive cost. However, it
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Cpr p∗ M∗ s∗ ω∗ EC∗

4 0.038 7.30 4.4e-17 7.30 0.73

5 0.044 7.30 1.3e-12 7.33 0.83

5.5 0.045 7.30 2.6e-17 7.30 0.88

6 0.048 7.30 8.0e-05 8.20 0.91

6.5 0.054 7.30 1.2e-03 8.99 0.91

8 0.054 7.30 1.2e-03 9.00 0.91

10 0.054 7.30 1.2e-03 9.00 0.91

Table 2: Optimal configurations for different values of preventive replacement unit cost. Imperfect

maintenance is such that α = 2 and β = 5. Unit costs are respectively Ci = 0.2, Cr = 4, Cadd = 7,

Ccr = 10, Cd = 4.

increases suddenly between these two areas, i.e., between 5 and 7 for the considered example. In

the case of preventive maintenance, the balance between repair and replacement decisions must be

tuned accurately.

6.2 Sensitivity to maintenance efficiency

This section focuses on analyzing the optimal cost and its related decision variables as a function of

repair efficiency. To this end, Table 3 and Figure 10 show the evolution of the optimal maintenance

configuration as repair efficiency decreases. As in previous sections, the loss of repairs efficiency is

related to the increase of E(δ). The first shape parameter α varies from 0.5 to 6 while the second

shape parameter β is fixed equal to 5. The initial case is associated to the most “efficient” repair

actions, with E(δ) ≃ 0.09. The last one is related to the less efficient ones with E(δ) ≃ 0.55.

Density and quantile functions of corresponding beta distributions are depicted in Figure 1. The

unit costs are the same as in (5.1).

The results in Table 3 show that the optimal maintenance cost rate increases as the maintenance

efficiency decreases. This increase is due to the interaction of two effects. On one hand, the mean

degradation level increases with E(δ) in case of a repair. As a consequence, the mean of the time

before the next maintenance action decreases. On the other hand, low maintenance efficiency leads
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α 0.5 1 2 3 3.6 4 5 6

E(δ) 0.091 0.167 0.286 0.375 0.419 0.444 0.5 0.545

EC∗ 0.77 0.82 0.91 0.99 1.02 1.02 1.02 1.02

Table 3: Optimal maintenance cost rate for increasing value of α and fixed β = 5. The degradation

parameters are µ = λ = 1, and the failure level is L = 9.

to a preference for costly replacements. The switching between repair and replacement choice in

case of preventive maintenance actions is visible in Figure 10, when α is between 2 and 5. The

balances between unit cost strongly influence the values of optimal decision variables. For unit

costs considered in Figure 10a, the probability that a cycle will end with preventive action is

close to 0.8; see the line with triangles. The proportion of about 80% preventive actions and

20% corrective actions corresponds to the optimal balance for the given unit costs. It remains

stable, albeit slightly decreasing from 0.82 to 0.78. The probability of having a scenario with an

unsuccessful repair immediately followed by a replacement remains negligible. This specific case is

very costly and, therefore, must be avoided by the optimal policy.

Figure 10b shows the evolution of optimal decision variables. The value ω∗ = φ−1(s∗) is

provided instead of s∗ for a more intuitive interpretation of the impact of the optimal maintenance

decision variable s∗. When ω∗ is close to M∗, preventive maintenance is a replacement. When ω∗

is close to L, preventive actions are repairs, i.e., imperfect actions. The proposed (p,M,s)-policy

behaves as an imperfect preventive policy for small values of α, namely from 0.5 to 2. Then it

changes gradually to become a perfect preventive policy when α is greater than 5. In that case, an

increase of α does not have any influence anymore because the probability of repair action is null.

7 Conclusion

The problem of imperfect maintenance in the context of deteriorating systems has already been

addressed in different ways. However, this issue is still widely open. This paper aims to focus

on imperfect maintenance efficiency and propose an adapted maintenance modeling framework

under an aperiodic inspection and maintenance scheme. Inverse Gaussian process is considered for
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(a) Probability of preventive maintenance,

P(perfect | prev.) and P(imperfect | prev.).

p

p

(b) Decision variables p∗, M∗ and s∗ (s∗ is replaced

by ω∗ = φ−1(s∗) for better readability).

Figure 10: Evolution of optimal configuration as a function of maintenance efficiency for increasing

value of α and with fixed β = 5. The degradation parameters are µ = λ = 1, and the failure level

is L = 9.

degradation modeling, and a random improvement factor model describes the effect of imperfect

repair actions on the degradation level. To characterize the randomness in the effect of imperfect

repair, we assumed that the random improvement factor follows a beta distribution. Meanwhile,

the efficiency of maintenance actions is defined by parameters of beta distribution that provide a

wide range of configurations. A predictive condition-based maintenance strategy is developed and

assessed, allowing adaptation of maintenance decision-making to imperfect maintenance efficiency.

The proposed decision rule involves entirely perfect and imperfect policies, which are particular

cases. The balance between imperfect repairs and preventive replacement is made by introducing

a new decision variable. With this definition, classical cases can be obtained for specific values

of decision variables. The closed-form of the cost function is assessed based on semi-regenerative

properties. Numerical experiments show the flexibility of the proposed maintenance modeling

framework and its ability to adapt to imperfect efficiency levels.



29

Several aspects warrant further investigation. A future point of interest is to consider sys-

tems with changing maintenance efficiency. In different real-world cases, maintenance efficiency

decreases with time or depending on the number of past repairs. Further study will be devoted

to deriving a dynamic maintenance policy that can adapt automatically to evolutions of repair

efficiency. In this context, we analyze the interest of a limit on the number of successive imperfect

maintenances before a replacement.

In our policy, we assume that inspections lead to the exact knowledge of the system degra-

dation level. This hypothesis is not compatible with all cases of application. Il will be more

complex to account for imperfect condition estimation because of consequences on the underlying

stochastic process. It needs to describe degradation phenomenon and noise measurement jointly, as

attempted, e.g., in [12] with two Wiener processes in case of deteriorating sensors. In this context,

the question of estimation of the repair efficiency has to be explicitly addressed. The Bayesian

framework should be of interest to take into account the information collected online.

In addition, other research may be useful to address other assumptions made in this work and

extend its applicability. For example, it is of interest to consider the case of non-homogeneous

degradation. Two specific issues arise in that case: (i) the use of the semi-regenerative technique

is not straightforward, and work is needed to derive the theoretical study for long-run cost rate

calculation, and (ii) modeling of repair efficiency must be modified. In this context, maintenance

efficiency can be described in terms of degradation reduction as well as age or time reduction, e.g.

see [9, 16]. Improvements factors on degradation level and time could be jointly considered.

Appendix A

Hybrid numerical method for integral equation

To assess the stationary law, we have to find B(y) which is the solution of the following integral

equation:

B(y) = K(y, 0) +

∫ M

0

K(y, x)B(x)dx, (A.1)

where function K(y, x) has the following structure:

K(y, x) = A2(x) + fτp(x)(y − x).I{x<y}.
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Due to the structure of K(y, x), equation A.1 is a mix between two kinds of integral equations of

the second kind: Fredholm equation (integration from 0 to M) and Volterra equation (integration

from 0 to y). Each of them has an associated numerical scheme, see [20]. To solve it numerically,

we use the numerical scheme described hereafter.

Let discretize the interval [0,M ] with N + 1 points. The step is h = M/N . Notations are as

follows for i = 1, . . . , N + 1:

xi = yi = (i− 1)h,

B(xi) = B(yi) = Bi,

Kij = K(yj , xi).

(x1 = y1 = 0 and xN+1 = yN+1 = M).

As for solving Volterra integral equation, Equation (A.1) is first rewritten as:

(
1−

∫ M

0

K(y, x)dx
)
B(y) = K(y, 0) +

∫ M

0

K(y, x)
(
B(x)−B(y)

)
dx. (A.2)

Then the integral on the right-hand side is approximated with a simple trapezoidal scheme:∫ M

0

K(y, x)
(
B(x)−B(y)

)
dx ≈ h

2
K(y, x1)

(
B(x1)−B(y)

)
+ h

N∑
j=2

K(y, xj)
(
B(xj)−B(y)

)
+

h

2
K(y, xN+1)

(
B(xN+1)−B(y)

)
.

From equation (A.2) and taking y = yi, i = 1, . . . , N + 1, it comes:

(
1−

∫ M

0

K̄(yi, x)dx
)
Bi =

K̄i1 +
h

2
K̄i1

(
B1 −Bi

)
+ h

N∑
j=2

K̄ij

(
Bj −Bi

)
+

h

2
K̄i,(N+1)

(
BN+1 −Bi

)
(A.3)

then

(
1−

∫ M

0

K̄(yi, x)dx− h
{1
2
K̄i1 +

N∑
j=2

K̄ij +
1

2
K̄i,(N+1)

})
Bi =

K̄i1 + h
{1
2
K̄i1B1 +

N∑
j=2

K̄ijBj +
1

2
K̄i,(N+1)BN+1

}
. (A.4)

Let now denote

• B the vector of Bj , j = 0, . . . , N + 1
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• K the matrix (Kij)1≤i,j≤N+1,

• K(j) the j-th column of K

• K(i) the i-th raw of K

• Vco the vector of length N + 1 such that Vco = (1/2, 1, · · · , 1, 1/2)T ,

• Mco the diagonal matrix of size N + 1 with diagonal Vco.

With this consideration, equations (A.4) for i = 1, . . . , N + 1 can be written as:(
1−

∫ M

0

K(yi, x)dx− hK(i)Vco

)
Bi = Ki1 + h(KMco)(i)B. (A.5)

Therefore, by considering the system of all the equations (A.5), B can be obtained as the

solution of the linear system

(
IN+1 −D − hKMco

)
B = K(1),

where

• IN+1 is the identity matrix of size N + 1,

• D is a diagonal matrix with
∫M

0
K(yi, x)dx− hK(i)Vco in i-th position of the diagonal,

• the values of integrals
∫M

0
K(yi, x)dx are obtained directly (i.e. with a classical integration

function from software library).

Appendix B

Cost calculation with log barrier for numerical optimization

In order to find the decision variables (s∗, p∗,M∗), the following nonlinear optimization problem

with inequality constraints must be solved numerically:

min
s,p,M

EC(s, p,M)

with 0 ≤ s ≤ φ(L)

0 ≤ p ≤ 1

0 ≤ M ≤ L
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An implementation of the Nelder-Mead algorithm with R language is considered for the nu-

merical optimization process. Equivalent functions are available in most common languages (e.g.

R, Python, Matlab, ...). Such an implementation requires providing a function that allows the

evaluation of the maintenance cost to be minimized for a given value of decision variables. To

take into account the inequality constraints, a penalization method with a logarithmic barrier is

used. The optimization problem with constraints is transformed into an unconstrained penalized

problem. Let ẼC denote the log barrier penalized function. It is defined by:

ẼC(s, p,M) = EC(s, p,M) + µ

(
ln
(
(−s)+

)
+ ln

(
(s− φ(L))+

)
+

ln
(
(−p)+

)
+ ln

(
(s− 1)+

)
+ ln

(
(−M)+

)
+ ln

(
(M − L)+

))
where µ is the barrier parameter and x+ is the positive part of x (i.e. x+ = x if x > 0 and x+ = 0

if x < 0). In this paper, the weight parameter µ is chosen equal to 106. The successive steps for

cost calculation are as follows:

For given values of decision variables s, p and M:

• evaluation of the stationary law (Eq. 4.8 to 4.10)

• evaluation of the maintenance cost EC(s, p,M) (expectation w.r.t. stationary law

as given in section 4.2)

• evaluation of the penalized function ẼC

Elementary trapezoidal algorithms like Simpson’s rule are considered for integrals calculation at

step 2.
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