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Introduction

The well-known vehicle routing problem (VRP) aims at designing distribution routes so a set of customers can be visited by a fleet of vehicles, typically minimizing the costs or maximizing the profit of the delivery company [START_REF] Dantzig | The truck dispatching problem[END_REF]). The problem has been very relevant in the literature due to its many applications in the real world, not only for delivering goods but also offering services, or collecting different items to redistribute them. In today's society, companies understand the necessity of complementing provision of industrial goods with value-added services [START_REF] Legnani | Modelling and Measuring After-Sales Service Delivery Processes[END_REF]). Customers do not settle for the delivery of goods alone and instead, demand more services and quality of service. Therefore, the customers do not only decide if they want to pay for home delivery, but also they tend to have in mind a price they are willing to pay depending on the services the company offers, as for instance being able to fix a delivery date. One of the main factors involving the delivery fee is the geographical zone of the delivery address, being more expensive to deliver to further areas while keeping a low price for close-by zones. This aligns in general with customers' price expectation, as someone living close to the facility will not be satisfied paying a high price for delivery, whereas a customer living far might find it acceptable. Home delivery has the potential of integrating different socio-economic layers in an urban context. Providing service and being present in all zones contributes to the social well-being. Therefore, the delivery service provider should set the service prices in such a way that at least one customer per zone can afford the service. Hence the delivery service provider has to make two decisions: establishing a service price per geographical zone to increase revenue, and designing vehicles' routing to decrease operational costs.

Notice that these two decisions have an impact on each other. If the service price is too low, many customers will opt for the delivery and this will increase operational costs. On the other hand, if the service price is too high, much fewer deliveries would be planned, which keeps operational costs low but also reduces the overall profit. Therefore, the objective is to find an optimal trade-off in the sense that the overall profit is maximized.

Different variants of VRP have been tackled in the literature. For instance, different delivery policies have been considered. A delivery service policy is said to be mandatory when serving all customers is obligatory. Under this policy, the total revenue of the provider is fixed and therefore total operational cost is desired to be minimized. On the other hand, the delivery service is said to be selective when serving all customers is optional. In this case, it is possible to focus on serving only a subset of customers to maximize the total profit. [START_REF] Fischetti | The Generalized Traveling Salesman and Orienteering Problems[END_REF] underline that in several applications, only a subset of nodes (customers) need to be visited and define Simple Cycle Problem (SCP). They provide a list of such variant problems of SCP and exact solution methods based on branch-and-cut. According to Archetti et al. (2009), many articles in the literature of routing problems focus on mandatory service whereas the extent of papers that study profits is much more limited.

Regarding routing problems with profits, variants are divided into three categories by [START_REF] Feillet | Traveling salesman problems with profits[END_REF] depending on how the profits and travel distances/costs are managed. In prize collecting routing problems, a lower bound is set on the amount of prize to be collected while minimizing the total distance traveled (Balas, 1989). The orienteering problem defined by [START_REF] Golden | The orienteering problem[END_REF]; Tsiligirides (1984), targets at maximizing the total collected profit while respecting a fixed budget on the travel costs. This might be considered the most popular variant and it is also referred to as selective traveling salesman problem [START_REF] Laporte | The selective travelling salesman problem[END_REF]. For instance, the survey of Vansteenwegen et al. (2011) focuses on orienteering problems inspired by a competition where each node has a score, and the competitors should obtain a maximum total score within a time horizon. In their work, classical forms and extensions such as team orienteering and orienteering with time windows are tackled with popular solution methods. More recently, several variants of routing problems with profits, their mathematical models and solution approaches are presented in a tutorial in (Vansteenwegen and Gunawan, 2019).

The authors also mention several interesting applications such as athlete recruitment, mobile crowd sourcing problem and wildfire routing problem. In many variants, the profit to be collected at each customer is fixed beforehand and it has to be collected all at once. In some other cases, the collected profit depends on the time spent on the node [START_REF] Erdogan | The orienteering problem with variable profits[END_REF], travel time [START_REF] Afsar | Team orienteering problem with decreasing profits[END_REF] or the position of the visited node in the route (Reyes-Rubiano et al., 2020).

Lastly, the profitable tour problem (PTP) optimizes the combination of collected total profit and total traveling cost [START_REF] Dell'amico | On prize-collecting tours and the asymmetric travelling salesman problem[END_REF]. [START_REF] Jepsen | A branchand-cut algorithm for the capacitated profitable tour problem[END_REF] recognize the capacitated version of PTP as the sub-problem in Dantzig-Wolfe decomposition of many routing problems and propose a branch-and-cut framework. [START_REF] Liu | A heuristic method for the inventory routing and pricing problem in a supply chain[END_REF] observe the impact of the pricing decisions on demand and study inventory routing and pricing in a supply chain. The authors consider a linear relation between price and demand and propose a heuristic strategy to maximize the total revenue in this scenario. This approach randomly chooses at each iteration to improve either inventory routing solution or pricing. [START_REF] Etebari | A hybrid heuristic for the inventory routing problem under dynamic regional pricing[END_REF] extend this work by setting the prices dynamically according to the period and designing a simulated annealing framework with five phases embedded. In this work, the relation between price and demand is also considered as linear. Furthermore, it is assumed that the willingness to pay for a service may be time dependent. It is argued that for a customer, the value of seasonal goods such as perishable food or liquefied gas, can change from season to season.

In a reverse supply chain context, Aras et al. (2011) work on a selective multi-depot vehicle routing problem in which a firm buying goods from dealers sets a price. The purchase is done if this price is above the dealer's threshold and the firm decides that the deal is profitable. The authors provide two linear model formulations and a tabu search heuristic to solve this problem.

Ahmadi-Javid and Ghandali (2014) study price-sensitive demands in a distribution network under both mandatory and selective service policies of all clients. In this work, a mixed integer linear programming model is solved by a Lagrangian Relaxation procedure. The location-allocation model is then expanded by location inventory and pricing decisions in (Ahmadi-Javid and Hoseinpour, 2015).

More recently, a branch-and-price algorithm was used by Ahmadi-Javid et al. (2018) to solve a location routing problem with pricing decisions where discrete price and corresponding demand levels are considered under a selective service policy. At first glance, this problem seems to be similar to ours, but there are structural differences that differentiate the models, even though a branch-and-price scheme is employed in both cases. Setting a price per customer, a demand depending on the price level and non-mandatory service conditions create serious dissimilarities in the solution of the sub-problem and branching schemes.

The main contributions of this work are cited below.

We present a novel, and more realistic, version of the Vehicle Routing Problem with price setting where the transporter sets a price for each geographical zone rather than each customer. We consider zone-pricing a realistic approach since most home-delivery service providers in city logistics context tend to divide the city into concentric zones where the depot is in the middle. It is also natural that each customer has a threshold or a maximum price they are willing to pay for the service.

If the price is lower than their threshold, they accept the delivery, and they opt for picking up the package themselves if it is higher. Note that if the customer accepts the price, the deal makes it compulsory for the transporter to deliver the goods. It is important to emphasize that for every set of zone-pricing decisions, there is a different set of customers to be served and hence a different VRP to solve. Since VRP is NP-hard, so is our problem.

We demonstrate that, although the price for each zone can take any value, considering only customer threshold values is dominant. This property is crucial for establishing the equivalence between the original formulation and the one with a linearized objective function.

We solve this problem optimally by a branch-and-price algorithm. Thanks to the previous property, visit variables are replaced with threshold setting variables. This leads us to separate price and cost calculations and simplify the sub-problem.

An adequate branching scheme is applied which takes into account fleet size, price setting and flows on arcs.

As a result of the price setting, we propose a graph reduction which accelerates the solution of the sub-problem.

The paper is organized as follows: the notation to be used and a formal definition of the problem are introduced in section 2. The set packing formulation, the sub-problem and the branching procedure for a branch-and-price algorithm are given in section 3. In section 4, a numerical analysis is presented. Concluding remarks and some future research directions are provided in section 5.

Problem Statement and Formulation

In this section we introduce a formal definition of the problem and a mathematical model along with the notation.

Problem Definition

The vehicle routing problem with zone-based pricing (VRP-ZP) can be defined on a directed complete graph G(V, A) where V represents the depot node (0) and the potential customers (V + ) considering the home delivery service, and A the arcs connecting every pair of nodes. The set

V + is divided in p subsets representing distinct zones (V + = V 1 ∪ V 2 ∪ ... ∪ V p such that V k ∩ V k = ∅ ∀k = k and k, k ∈ {1, ..., p} 2 ). Each customer i ∈ V + has a
demand q i to be satisfied and a threshold value th i .

A fleet of identical vehicles with a capacity of Q is located at the depot (0) in the beginning of a working day. At the end of the working day, all vehicles must return to the depot. Every time a vehicle travels through an arc a i,j ∈ A, a cost c i,j is incurred. In addition, the total amount of goods delivered by each vehicle cannot exceed its capacity.

The transporter can define only one price p k ∈ R for each zone k, but to ensure that no geographical zone is left without service, at least one customer per zone has to be served so that the zone price is set. Each customer i (i ∈ V k ) can be visited at most once and p k can be collected.

We define a function z(i) that gives the geographical zone of customer i.

z(i) = k ⇐⇒ i ∈ V k , ∀i ∈ V +
For the sake of simplicity, the customers in each zone are sorted in an increasing order of their threshold values (i < j ⇐⇒ th i < th j and z(i) = z(j)

). We define another function l(i) which returns the number of customers in the same zone having a threshold greater than or equal to th i . l(i) = |{j : th j ≥ th i and z(i) = z(j)}| If the price p k proposed by the transporter for the zone that the customer i is in exceeds threshold value of this customer, the customer refuses the home delivery.

The objective is to maximize the total profit which is the difference between the total price paid by the customers who accept to be served and the travel costs induced by the delivery of their goods.

In the following we show that, even if the transporter is free to choose any value for the price p k for a zone k, in the optimal solution, that value should be equal to the threshold value of one of the customers of this zone.

Proposition 1. In the optimal solution, ∀k, p k ∈ {th i : i ∈ V k }.

Proof. Let us assume that, there exists a geographical zone k where the optimal price p * k = pk is such that th i < pk < th i+1 . As the transporter should serve all the customers having a greater threshold value than the price proposed, and the customers of each zone are sorted in an increasing order of their threshold values, the total price to be collected from this zone is Pk = pk × l(i + 1). However, if we take p k = th i+1 , total price of this zone would be Pk = th i+1 × l(i + 1). It is trivial that Pk > Pk and the set of customers to be served remains the same, therefore the travel costs are the same as well. So, in the second case, total profit obtained is strictly greater than the first one, which contradicts with the initial statement.

Mathematical Model

We define a binary variable x i,j taking value 1 if the arc (i, j) is traversed by a vehicle. A real-valued variable f i corresponding to the total load delivered by the vehicle leaving the node i. The binary variable w i is set to 1 if the customer i accepts the service price proposed by the service provider.

In that case, the customer should be visited by a vehicle. Let us remember that p k is the price proposed to the geographical zone k.

max Θ = i∈V + w i • p z(i) - i∈V j∈V c i,j • x i,j (1) 
Subject to

w i • p z(i) ≤th i ∀i ∈ V + (2) i∈V k w i ≥1 ∀k ∈ {1, ..., p} (3) 
i∈V x i,j =w j ∀j ∈ V + (4) i∈V x i,j - i∈V x j,i =0 ∀j ∈ V (5) f i -f j + q j + Q • x i,j ≤ Q ∀i ∈ V, ∀j ∈ V + (6) 
f i ≤w i • Q ∀i ∈ V + (7) f 0 =0 (8) p k ∈R + ∀k ∈ {1, ..., p} (9) 
f i ≥0 ∀i ∈ V ( 10 
)
w i ∈{0, 1} ∀i ∈ V + (11) x i,j ∈{0, 1} ∀(i, j) ∈ A (12) 
The objective function (1) maximizes the difference between the total collected price and travel costs. According to the constraints (2), the customers accept to be served if the price proposed for their zone is less than or equal to their threshold value. Constraints (3) force the transporter not to abandon entirely a geographical zone and to serve at least one customer. If a customer agrees to be served, then a vehicle should visit him, following constraints (4). Constraints (5) conserve the flow. Constraints (6) eliminate the subtours. If customer j is served right after customer i (by the same vehicle) the flow should change accordingly. Otherwise,

f j ≥ f i + q j -Q where Q is Q + max v∈V + q v .
As f i is bounded by Q, and q j by max v∈V + q v , this constraint states that f i is greater than a negative value, which is always true. The total quantity delivered on a vehicle's route is limited by its capacity in constraints (7). Note that constraints (6) always hold for any pair of customers i, j even when they are not served consecutively by the same vehicle (i.e. x ij = 0) due to constraints (7). Finally, constraint (8) ensures that the total distributed quantity is zero at the beginning of any route, and constraints (9 -12) define the variables' domains.

Notice that that this mathematical model is not linear since two variables are multiplied in the objective function and also in constraints (2). However, proposition 1 can be exploited to linearize the model. By defining a binary variable y i that takes value 1 iff p z(i) = th i , the objective function can be reformulated as:

max Θ = i∈V + y i • th i • l(i) - i∈V j∈V c i,j • x i,j (13) 
If the price of a zone k is set to the threshold value of a customer i, then the transporter can collect th i as the price from each of the l(i) customers of this zone. To ensure that one price is set per zone, an additional constraint has to be added:

i∈V k y i = 1 ∀k ∈ {1, ..., p} (14) 
This constraint also ensures that at least one customer per zone is served, thus constraint (3) is now redundant and can be removed. Finally, constraints

(2) can be redefined by replacing w i as follows:

w i = j∈V z(i) : th j ≤th i y j ∀i ∈ V + (15) 
This constraint verifies that if the price for the zone k of customer i

(k = z(i))
is set to the threshold th j of a customer such that th j < th i , then customer i has to be visited.

Since the objective function ( 1) and the constraints (2) are replaced, the variable p k is dropped as well. Despite the resulting model being linear, it is still too complex to solve, and even small instances cannot be solved by a commercial solver in a reasonable amount of time, which is explained further in section 4. Therefore, we present a Set Packing formulation for this problem in the following section.

Branch-and-Price Algorithm

To be able to solve the VRP-ZP, we propose a Dantzig-Wolfe decomposition with an exponential number of variables [START_REF] Dantzig | Decomposition principle for linear programs[END_REF]).

There are several applications in the literature of Dantzig-Wolfe decomposition and its solution by Column Generation. Among others, it is applied in 

Master Problem

The Dantzig-Wolfe decomposition of the VRP-ZP allows us to reformulate the previous model by a route-based presentation. Let λ r be a binary variable taking value 1 if the feasible route r ∈ Ω is in the optimal solution, where Ω is the set of all feasible routes. Notice that the size of Ω would be too large to be able to solve any practical instance. To overcome this, we shall start with a restricted set Ω such that |Ω | << |Ω| and dynamically add feasible routes, and their corresponding variables, with a column generation schema. Let C r denote the total travel cost of a route r, and let γ i r count the number of visits paid to customer i by the route r. A linear relaxation of the restricted master problem (LRMP in short) is formulated as follows:

max Θ = i∈V + y i • th i • l(i)- r∈Ω C r • λ r (16) Subject to i∈V k y i =1 ∀k ∈ {1, ..., p} (17) 
r∈Ω γ i r • λ r - j∈V z(i) : th j ≤th i y j =0 ∀i ∈ V + (18) λ r ≥0 ∀r ∈ Ω (19) y i ≥0 ∀i ∈ V + (20)
The objective function ( 16) of the LRMP maximizes the total profit in the same way as the expression (13). The constraints (17) ensure that the transporter proposes an acceptable price for at least one customer per zone in the same way as the expression ( 14). According to the constraints (18), if the price of the zone of customer i is set to a value lower than threshold of this customer, then customer i should be served. The binary variables y i and λ r are linearly relaxed to accommodate the column generation mechanism.

Pricing Problem

Let α k and Π i be the dual variables associated with the constraints ( 17) and ( 18), respectively.

The reduced cost of a route r is:

Cr = - i∈V + γ i r • Π i - (i,j)∈r c i,j
Notice that there are exponentially many λ r variables, one for each feasible route to be precise. However, there are only |V + | many y i variables.

In other words, in the dual of non-restricted Master Problem, there are |Ω| many dual constraints associated with variable λ r , whereas there are |V + | many constraints that correspond to primal variable For any given value of (Π i ) i∈V + , if there exists a route r with a reduced cost Cr > Π 0 , it should be added into Ω . Initially Π 0 is set to zero. During the branching phase, fleet size constraints will be added to LRMP, and Π 0 will aggregate the values of dual variables associated with these constraints.

y i (α z(i) -Π i • l(i) ≥ th i • l(i) ∀i ∈ V + ). Therefore,
If no routes with a reduced cost strictly greater than Π 0 are found, the column generation stops and the optimal solution of the LRMP is retrieved. To be sure no such route exists, the cost of a particular elementary longest path with resource constraints should be less than or equal to Π 0 .

To find such a route, the elementary longest path problem with resource constraints is defined on a directed graph G = (V, A ) where the cost of any

arc (i, j) ∈ A is c i,j = - (Π i +Π j ) 2
-c i,j and the total load of the route should be less than or equal to Q.

At first, this problem is solved heuristically. If this strategy fails, then an ng-relaxation is solved (Baldacci et al., 2011). In an ng-relaxation, each partial route r ending at node i has a forbidden set of nodes (F (r, i)), such that the path can be extended to a node j if, and only if, j / ∈ F (r, i). To define the set F (r, i), let s represent a position in route r, so r(s) is the node in position s, s ∈ {1, ..., |r|}, then:

F (r, i) = {r(u) : r(u) ∈ |r| s=u+1 N r(s) } ∪ {i}
where N r (s) is the set of the closest "neighbors" of node r(s), including itself. Due to this relation, multiple visits to a node i are allowed if there is at least one node j such that i / ∈ N j , that is visited between the last |N i | successive visits [START_REF] Pecin | Improved branch-cut-andprice for capacitated vehicle routing[END_REF]. Notice that since ng-relaxation will return an upper bound to the pricing problem, a node can be potentially visited several times and the resulting route is not necessarily elementary.

Nevertheless these routes are added to Ω . The non-elementary routes are eliminated during the branching and any integral solution will be feasible, therefore composed of elementary routes.

Each partial path r ending at a node i is represented by a label L(r, i) = (C(r, i), load(r, i), F (r, i)) where C(r, i) is the reduced cost, load(r, i) is the total load, and F (r, i) is the forbidden set of nodes. A label L(r, i) is said to dominate another label L(r , i) if the following conditions are satisfied :

1. C(r, i) ≥ C(r , i) 2. load(r, i) ≤ load(r , i) 3. F (r, i) ⊆ F (r , i)
Therefore, any extension from the node i to the depot that is feasible for r is feasible for r, and the reduced cost of the subsequent route will be higher.

While solving the pricing problem heuristically, only elementary routes are generated and on each node, only a limited number of best labels in terms of reduced cost are kept. A relaxed dominance rule where the last condition is replaced by |r| ≤ |r | is employed.

Branching Strategy

In the branch-and-price tree, the leaf with the greatest upper bound is found. If the optimal solution it found for the LRMP is not integer, three types of branching decisions are made.

1. If the total number of vehicles α = r∈Ω λ r is not integer, two branches are created by adding these respective constraints:

r∈Ω λ r ≤ α (21) r∈Ω λ r ≥ α (22)
It is important to remark that there may be several fleet size constraints at any leaf of the branch-and-price tree. Π 0 aggregates the dual values of all of them for the pricing problem. These constraints have no effect on the pricing problem, other than the value of Π 0 . However, in practice, when the fleet size is bounded by the constraints ( 21), Π 0 becomes greater and pricing problem takes longer to converge.

2. If there are any non-binary price-threshold variables, we branch on the most fractional one y i by adding these constraints:

y i ≥ 1 ( 23 
)
y i ≤ 0 (24)
On the branch created by constraint (23), no customer j in the same geographical area as i such that th j < th i will be visited. Thus the graph can be reduced and for all i ∈ V , all arcs (i, j) and (j, i) ∈ A : z(j) = z(i ) and th j < th i can be removed from the graph. As the routing variables λ r do not intervene in these constraints, the structure of the reduced cost therefore the structure of the pricing problem does not change. Since the subsequent graph becomes smaller, the pricing problem converges faster.

3. If the fleet size and all price-threshold variables are integer but the final solution remains fractional, the arcs with fractional flow are sought.

The arc (i, j) with the maximum value of total flow ( r∈Ω :(i,j)∈r λ r ) is chosen to be branched on. In the two created branches, either the arc (i, j) is forbidden and simply removed, or it is forced by removing all outgoing arcs from i and all incoming arcs to j from A , except (i, j).

This branching schema is a version of the branching rule proposed by (Ryan and Foster, 1981) and it is based on two basic observations:

In the sub-graph supported by a solution where the flow on every arc is either 0 or 1, the degree of each node is equal to 2 (with one incoming and one outgoing arc). In our problem, this subgraph does not necessarily contain every node, since some of the customers reject the price therefore they are not visited. This sub-graph can be partitioned into a set of disjoint routes [START_REF] Feillet | A tutorial on column generation and branch-and-price for vehicle routing problems[END_REF].

No identical columns can exist simultaneously in the simplex tableau of the set partitioning problem (Sarac et al., 2006).

Therefore, if all the arcs are removed or forced by this rule, in the final solution all λ r , ∀r ∈ Ω should take the value either 0 or 1.

As no constraints are added to or modified in LRMP, neither the dual nor the reduced cost of a route are affected. Therefore, the general structure of the pricing problem is intact. On the other hand, as a result of successive branching, the subsequent graph becomes smaller and less dense, and the convergence of the pricing accelerates.

At the end of this stage, if no more arcs with a fractional value are found, the base solution contains only elementary routes. A nonelementary route would contain at least one sub-tour, and at least one customer would be visited several times. Let j be the first customer of the sub-tour. Then j would have at least two different incoming arcs (i, j) and (i , j). The value of these two arcs would be fractional since the value of a non-elementary route should be strictly less than 1 due the constraints ( 18). This would be a contradiction with the initial hypothesis that there are no more arcs with fractional values.

Experimental Study

The above-mentioned method is implemented in C++ and the commercial solver CPLEX 12.9 is used to solve the LRMP and the mathematical model presented in section 2.2. All the tests are run on a PC with Intel Xeon

Gold 6132 processor at 2.6 GHz and 128 GB RAM with Linux (CentOS v.6.10).

Data generation

Since the VRP-ZP is defined for the first time in this work, no instances are available. For this study, we create a group of data sets derived from 14 classical CVRP instances of Christofides et al. (1979) with no route length restriction, which are available in the repository section at .

In each data set, p geographical zones are considered and the customers are assigned to the zones depending on their relative distance from the depot.

All i ∈ V + are assigned to a zone V k where k ∈ {1, ..., p} as follows:

c 0,i ≤ c max p =⇒ i ∈ V 1 (k -1)c max p < c 0,i ≤ k × c max p =⇒ i ∈ V k , ∀k ∈ {2, ..., p -1} (p -1) × c max p < c 0,i =⇒ i ∈ V p where c max = max i∈V + {c o,i }
Three main sets are designed. For the first data set, we take three random samples of 35 customers from each of the CVRP instances and assign them in p = 3 zones, which yields 42 instances. Similarly, we generate larger instances by taking 3 random samples of 50 customers from each CVRP instance, with the exception of instances CMT1 and CMT6, which already have 50 customers. Therefore, we obtain 38 larger instances. For the last data set, we repeat the same process with 50 customers but assigning them to p = 5 zones instead of 3.

Table 1 presents average number of customers in each zone as well as the standard deviation per data set. In addition, four different variants are created out of each of the previous instances by assigning different threshold profiles: low, medium, high and random. For each customer, the threshold is expressed as a function of distance of this customer from the depot (th i = β i × c 0,i ) that depends on the threshold profile:

Low threshold corresponds to the case where customers are not willing to pay much for a home delivery (

β i ∈ [0.8, 1.0], ∀i ∈ V + )
Medium threshold corresponds to the case where the customers are willing to pay a price slightly above the cost of a direct trajectory

(β i ∈ [1.0, 1.4], ∀i ∈ V + ).
High threshold corresponds to the case where the customers can pay significantly more for a home delivery (β i ∈ [1.6, 2.0], ∀i ∈ V + ).

Random threshold corresponds to the case where the customers have a mixed profile in terms of willingness to pay for home delivery (

β i ∈ [0.8, 2.0], ∀i ∈ V + ).
In total we have 168 small sized instances and 304 larger sized ones. As mentioned before, the customers of each geographical zone are sorted in an increasing order of their threshold values.

Numerical Results

The Mixed Integer Linear Model presented in section 2.2 is tested on the smallest instances: the data set with 3 zones and 35 customers, using CPLEX. The average results per threshold profile are presented in Table 2. Column nb OPT gives the number of optimally solved instances out of 42 in each threshold profile. In a total of 168 instances, only 19 optimal solutions could be found for the MIP in less than 10000 seconds. Column GAP contains the average gap between the best integer solutions and upper bounds of the instances for which no optimal solution is found within the time limit. Finally, column Time reports the average run time elapsed on the instances for which the optimum was found. That is, the instances for which the time limit is reached are not taken into account in the average run time. These results clearly indicate the difficulty of solving VRP-ZP with a Mixed Integer Linear Program.

In the following, we provide numerical results obtained by the branch-andprice algorithm with the instances introduced above. The algorithm is left to run until the optimal solution is found or a specific time limit restriction is met: at each leaf of the branch-and-price tree, if the total time elapsed is more than 10000 seconds, the algorithm stops. Otherwise, it continues branching as explained in the previous section.

Table 3 reports the results obtained on the instances with 35 customers grouped by threshold profile: low, medium, high and random (except one of the CMT2 instances with random threshold profile that could not be solved within the time limit). For each group, the average values of the optimal profit are shown. The gap column contains the average gap between the optimal solution and the upper bound of the total profit found on the root

( Θ U B -Θ * Θ U B
× 100). It measures the tightness of the linear relaxation of the Master Problem. The average of the total revenue of the optimal solution, number of visited customers and number of vehicles used are also presented.

Finally, the branch-and-price tree size and the elapsed CPU time in seconds are shown as performance indicators. The main difference on these data sets is the location of the depot. In all data sets but these two, the depot is approximately in the center of the map, while on these two instances the depot is situated at the far left side. Their average results are presented in Table 4, with the exception of one of the CMT11 instances with low threshold value and one of the CMT11 instances with random threshold values, which could not be solved within the time limit.

The results in Table 3 show that as the threshold values increase from low to high, total profit, number of visited customers and fleet size increase 23 as well. This is very clear in the case of total profit, which almost doubles every time that the thresholds increase. It is interesting however, that the increase in the number of served customers and fleet size is not as obvious as the increase in profit, especially when the threshold profile changes from low to medium. This is no surprise if we take into account that even if the number of visited customers remains constant, higher thresholds allow for higher prices and therefore higher profit. Regarding the routing costs, that is, the difference between the revenue and the profit, they also increase with the threshold value which is consistent with the increase in the number of visited customers. In the case of random thresholds, although the revenue is similar to the medium case, the overall profit is higher since fewer customers are visited using fewer vehicles. In other words, when the threshold values have a large spread, it is possible to focus on visiting customers with higher thresholds and thus reducing cost and increasing profit. Finally, we can observe that the gap between the upper bound computed at the root node and the optimal solution is below 5% for all threshold profiles, which shows that the relaxation at the root node provides a good starting point. In Table 4, the total profit and the number of visited customers increase significantly in comparison with Table 3. Since in CMT11 and CMT13, the depot is located at far left side, the customers are situated in a half circle and somewhat more clustered, hence the increase in the number of visited customers. The fleet size is the same for all threshold profiles, whereas the number of visited customers increase with the threshold value as it happened in the previous table. In the case of random threshold, once again the number of visited customers is lower than the others. It is important to underline that, these solutions are obtained at the end of the time limit and therefore sub-optimal. The gaps between the best feasible solution and the upper bound are provided. The results for the instances with 50 customers are reported in Table 5. As in Table 3, the instances derived from CMT11 and CMT13 are not included. Since the instance size is larger, the branch-and-price tree size and the average execution time increase as expected. However, the gap between upper bound found at the root and the optimal solution is still under 5% for all threshold values, illustrating that the relaxation at the root node provides a good starting point independently on the instance size.

Contrary to what happened in Table 3, in the case of 3 zones, the routing cost and the number of visited customers are now higher in the low threshold instances than in the medium threshold ones. Although one may consider that the rise in customer thresholds would imply visiting more customers, it might not be always the case. A customer that has the highest threshold value in their zone in the low threshold profile instance may have the lowest value in the medium threshold case and hence, may not be visited in the optimal solution. In other words, the set of visited nodes on the optimal solution of a low threshold instance is not a subset of the set of visited nodes on the optimal solution of the medium threshold profile. What remains a fact in Table 5 is that increasing the thresholds increases the total profit, as expected. Regarding the random threshold profile, there are no significant changes with respect to Table 3. That is, the revenue is similar to the medium threshold profile but visiting fewer customers and therefore reducing costs.

This happens as well when considering 5 zones. In that case, the profit, revenue, number of vehicles and visited customers are larger than in the 3zone case. Comparing the tree size, run time and gap values of 3 and 5 zones, we can observe that increasing the number of zones does not necessarily make the problem more difficult to solve.

Table 6 contains the results of the instances derived from CMT11 and CMT13 with 50 customers. As before, one instance with 3 zones and a low threshold profile is omitted due to the column generation procedure not finalizing at the root node within the time limit of 10000 seconds. When 5 zones are considered, one of the instances derived from CMT13 is also omitted for low, medium, and high thresholds because of the same reason.

The profit, routing cost and revenue values are higher compared to the rest of the instances with 50 customers. The much higher average run times and smaller average number of explored branch-and-price tree nodes reflect the difficulty of these instances. However, the average gap values between the best feasible solution found at the end of the time limit and the upper bound found at the root node are still less than 5% in all profiles.

Conclusion and Perspectives

In this paper we introduced the Vehicle Routing Problem with Zone-Based Pricing. The key feature being that customers decide whether or not they accept to pay the proposed price with respect to a given personal threshold value. Once the price is accepted, the transporter has the obligation of serving them. This problem integrates the very complex task of setting zone prices into the transportation problem. In fact, the results show that even when thresholds are high and the customers are willing to pay more, the best pricing strategy is not to meet the threshold of all customers.

We have formalized the problem and proposed an exact solution approach based on branch-and-price method. To test it, we have designed data sets with different number of customers and threshold profiles. The results have

shown that the method is particularly efficient when the depot is located at the central region of the map, producing optimal solutions for all these instances in relatively short amount of time for all sizes and thresholds.

In accordance with the few recent articles addressing the pricing and routing problems jointly, we assume the relation between the price and demand behavior to be known in advance. In our case, customers accept to be served if the price proposed by the transporter is less than their threshold values.

We are aware that it may not be realistic to know the exact threshold val- 

Appendix A. Detailed numerical results

In Tables A.7 to A.10 the results of all instances with 35 customers and low/medium/high/random threshold profiles are presented respectively. Column "Revenue" shows the total collected price of the optimal solution, while column "Opt." shows the optimal profit. The gap between the optimal solution and the upper bound at the root is also reported. Columns "#Cust" and "#Veh" contain the number of visited customers in the optimal solution and the fleet size, respectively. Finally, the branch-and-price tree size is reported together with the CPU time in seconds used by the solving method. The column generation procedure does not finalize at the root node in less than 10000 seconds when the thresholds are low for instance vrpnc11 2, and when they are random for instances vrpnc02 3 and vrpnc11 3, thus these instances are not reported in the corresponding table. 
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Table 1 :

 1 Average number of customers and standard deviations per data set

	Data sets	Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
	Mean	4.45	12.20	15.39	11.74	6.21
	5 zones 50 cust.					
	Standard Dev.	4.40	6.39	4.61	3.03	4.45
	Mean	11.87	25.28	12.85		
	3 zones 50 cust.					
	Standard Dev.	3.85	7.25	5.38		
	Mean	7.87	17.40	9.73		
	3 zones 35 cust.					
	Standard Dev.	2.59	5.13	3.94		

Table 2 :

 2 Average results of instances with 35 customers

	Threshold nb OPT GAP(%) Time(s)
	Low	4	28.69	944.2
	Medium	3	14.41	1378.7
	High	2	7.31	2325.1
	Random	10	8.59	3721.7

Table 3 :

 3 Average results of instances with 35 customers

	Threshold Profit GAP(%) Revenue #Cust. #Veh. Tree size Time(s)
	Low	198.05	4.23	569.52	28.22	2.89	86.22 1767.78
	Medium	382.21	2.47	761.30	28.92	2.92	107.61 1698.69
	High	779.84	1.51	1174.23	30.64	3.22	59.83 1604.04
	Random	436.29	1.35	787.28	26.00	2.60	34.89	449.07
	Instances derived from the classical instances CMT11 and CMT13 present

a very different behavior, and therefore, they are not included in the table.

Table 4 :

 4 Average results of instances derived from CMT11 and CMT13 with 35 customers

	Threshold	Profit GAP(%) Revenue #Cust. #Veh. Tree size	Time(s)
	Low	966.79	3.78	1439.29	31.00	2.00	2.60 37895.18
	Medium	1373.56	1.37	1831.27	32.00	2.00	1.80 18742.74
	High	2435.53	1.34	2909.89	32.60	2.00	2.20 14965.79
	Random	1231.70	1.93	1671.69	28.25	2.00	2.50 11514.87

Table 5 :

 5 Average results of instances with 50 customers

	Thres. Zone	Profit GAP(%) Revenue #Cust #Veh Tree size Time(s)
	Low	3	344.51	4.28	820.18	42.56	4.09	120.94 3854.04
	Med.	3	599.04	2.49	1063.98	41.09	3.97	74.88 2597.93
	High	3	1164.08	1.48	1652.98	43.75	4.38	35.63 2171.16
	Rand.	3	681.00	2.15	1110.26	36.44	3.56	74.38 2519.21
	Low	5	421.44	3.43	908.51	43.91	4.34	86.19 2796.63
	Med.	5	690.62	2.02	1182.84	44.61	4.48	87.52 2844.09
	High	5	1358.51	1.27	1866.24	46.63	4.75	36.19 3114.76
	Rand.	5	757.28	1.73	1195.78	38.32	3.84	73.77 2747.18

Table 6 :

 6 Average results of instances derived from CMT11 and CMT13 with 50 customers

	Thres. Zone	Profit GAP(%) Revenue #Cust #Veh Tree size	Time(s)
	Low	3	1185.07	4.37	1759.91	39.20	2.80	1.40 35456.18
	Med.	3	1769.20	3.01	2364.33	43.67	3.33	1.67 39677.93
	High	3	3124.39	1.70	3725.14	43.67	3.17	1.00 46331.87
	Rand.	3	1829.52	1.29	2351.71	38.50	2.67	1.67 18586.40
	Low	5	1389.41	2.36	1980.48	43.60	3.00	1.40 40359.14
	Med.	5	1918.32	1.80	2511.04	43.20	3.00	1.40 42395.38
	High	5	3.380.83	0.82	3972.74	44.20	3.00	1.00 45703.92
	Rand.	5	1950.92	1.08	2443.03	38.00	2.67	1.00 30720.72

Table A .

 A 13: Detailed results on instances with 50 nodes, 3 zones and high threshold

	vrpnc03 2 vrpnc13 3 vrpnc08 3 vrpnc03 3 vrpnc13 3 vrpnc09 1 vrpnc03 3 vrpnc14 3 vrpnc07 2 vrpnc03 1 vrpnc13 3	662.75 1577.33 1091.47 299.20 707.03 329.80 1037.34 704.30 3116.19 2626.87 794.10 452.30 812.91 332.93 830.46 347.92 1709.81 1140.44 1165.45 728.528 2151.52 1656.95	0.00% 6.87% 0.00% 0.84% 1.65% 0.98% 4.55% 4.21% 2.61% 2.59% 1.81%	30 28 29 25 33 26 42 44 42 39 36	2 2 2 2 2 2 4 4 6 3 2	1 3 59168.80 490.58 1 3082.78 3 8424.42 1 14726.90 5 1095.97 41 1968.22 17 4000.85 19 1349.21 17 4446.29 3 9133.40
	vrpnc03 3 vrpnc14 1 vrpnc09 1 vrpnc04 1 vrpnc14 1 vrpnc09 2 vrpnc04 1 Table A.11: Detailed results on instances with 50 nodes, 3 zones and low threshold 525.59 197.28 4.43% 27 2 117 3177.44 634.36 215.70 0.42% 29 3 41 930.06 746.32 382.38 3.76% 26 2 203 1483.91 1183.91 800.30 2.19% 32 3 481 3795.29 1322.64 905.87 1.49% 31 3 5 172.54 697.94 409.25 0.00% 25 2 1 49.36 827.19 350.89 3.87% 48 4 377 6263.46 vrpnc07 3 1573.66 996.59 4.30% 43 6 55 1723.48 vrpnc03 2 1335.17 859.319 1.80% 42 3 7 7962.48 vrpnc14 1 1249.54 759.891 1.27% 36 4 9 379.85
	vrpnc04 1 vrpnc14 2 vrpnc09 2 vrpnc04 2 vrpnc14 2 vrpnc09 3 vrpnc04 2 vrpnc08 1 vrpnc03 3 vrpnc14 2	525.61 628.30 648.18 1087.20 1403.76 673.55 757.51 1586.94 1118.71 204.21 275.36 305.86 729.22 941.62 328.24 298.13 1062.88 634.574 1293.92 818.754	5.54% 4.17% 0.99% 2.44% 1.55% 0.85% 6.45% 1.55% 2.24% 0.51%	25 28 25 30 35 25 45 45 36 42	2 3 2 3 4 2 4 4 3 4	373 361 5 39 5 13 219 3 17 3	3914.75 4920.69 155.15 3297.15 157.43 321.99 6379.79 2735.27 3788.78 212.70
	vrpnc04 2 vrpnc14 3 vrpnc09 3 vrpnc04 3 vrpnc14 3 vrpnc10 1 vrpnc04 3 vrpnc08 2 vrpnc04 1 vrpnc14 3	521.13 676.36 832.48 976.77 1419.14 711.24 733.55 1599.00 1147.94 215.69 281.25 446.27 666.60 943.35 356.50 323.57 1170.15 733.58 1284.94 809.24	1.40% 4.99% 3.73% 0.00% 2.67% 1.93% 4.43% 0.87% 1.00% 2.39%	23 25 30 26 34 29 38 45 39 39	2 3 3 2 4 3 3 4 3 4	7 71 45 1 55 3 373 3 5 27	1483.78 2309.23 1258.53 33.67 1242.47 170.03 4029.31 3102.02 6963.56 729.97
	vrpnc04 3 vrpnc05 1 Table A.7: Detailed results on instances with 35 customers and low threshold 502.77 190.24 0.31% 27 2 3 142.14 559.31 192.49 5.71% 30 3 203 2910.62 vrpnc10 1 722.32 432.09 3.39% 23 2 17 3584.57 vrpnc10 2 725.90 362.71 3.26% 33 3 397 2866.40 vrpnc05 1 1111.40 711.27 3.24% 33 4 171 1580.42 vrpnc05 2 1076.43 711.76 0.94% 33 3 3 1112.21 vrpnc10 2 833.35 474.33 1.69% 27 2 83 1177.25 vrpnc05 1 789.78 336.47 9.00% 40 4 165 5077.48 Instance Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s) vrpnc08 3 1620.77 1119.40 2.61% 46 4 11 2497.35 vrpnc04 2 881.527 568.391 4.38% 27 2 3 10582.12 Table A.9: Detailed results on instances with 35 customers and high threshold vrpnc10 3 709.89 409.28 0.00% 27 2 1 85.86 vrpnc05 2 768.64 356.64 3.32% 40 4 137 5102.58 vrpnc01 909.37 505.35 3.13% 31 3 105 2958.98 vrpnc09 1 1694.54 1252.77 1.36% 41 3 23 2872.91 vrpnc04 3 1003.68 593.537 0.69% 38 3 117 2154.21
	vrpnc05 2 vrpnc10 3 vrpnc05 3 vrpnc11 1 vrpnc05 3 vrpnc02 1 vrpnc09 2 vrpnc05 1	495.31 856.96 1171.00 1529.37 1120.73 167.75 466.87 781.19 803.61 423.64 1140.38 609.57 1743.62 1255.36 972.445 588.737	1.13% 2.32% 1.09% 0.36% 1.09% 0.12% 2.01% 1.32%	27 27 31 26 41 40 43 38	2 3 3 2 3 5 4 3	27 3 17 3 11 1 137 15	844.78 223.04 195.17 178.27 1664.83 60.38 3219.58 3560.11
	vrpnc05 3 Instance vrpnc11 1 vrpnc06 1 Instance vrpnc11 2 vrpnc06 vrpnc02 2 vrpnc09 3 vrpnc05 2	531.53 Revenue 1591.94 1169.26 164.07 Opt. GAP(%) #Cust #Veh Tree size 4.81% 29 3 257 0.58% 30 2 3 32057.90 2158.28 Time(s) 1213.55 800.76 2.02% 30 3 71 1842.19 Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s) 1926.66 1474.23 0.92% 31 2 1 21636.14 763.05 310.78 1.47% 39 4 91 1498.92 1050.98 514.68 2.26% 42 6 49 1697.17 1498.99 1095.59 0.00% 43 3 1 570.89 979.068 589.815 2.77% 35 3 187 6259.77
	vrpnc06 1 vrpnc01 1 vrpnc11 2 vrpnc06 2 vrpnc01 1 vrpnc12 1 vrpnc07 1 vrpnc02 3 vrpnc10 1 vrpnc05 3	654.70 746.45 1746.77 1283.02 233.99 393.48 1179.03 772.86 822.89 446.45 924.79 539.58 904.52 334.11 958.14 454.35 1403.62 977.14 1086.08 701.774	7.23% 2.55% 3.16% 1.70% 3.33% 0.4% 9.12% 5.82% 1.38% 1.63%	33 27 29 33 29 32 41 36 42 36	4 3 2 4 3 3 6 5 4 3	55 161 3 18476.00 2478.29 2843.01 21 187.65 171 1098.46 5 280.2 69 3024.01 19 1722.32 35 1117.29 37 1503.04
	vrpnc06 2 vrpnc01 2 vrpnc11 3 vrpnc06 3 vrpnc01 2 vrpnc12 2 vrpnc07 2 vrpnc03 1 vrpnc10 2 vrpnc06	496.50 733.61 1723.23 1288.19 196.00 341.75 1103.14 736.75 707.56 356.91 967.90 553.26 818.70 312.09 1054.22 613.74 1545.89 1081.87 989.306 532.401	1.48% 0.59% 0.20% 0.00% 0.91% 2.67% 6.31% 2.51% 0.99% 4.08%	22 30 31 30 25 30 40 49 45 40	2 3 2 3 3 3 5 4 4 4	5 3 1 10263.50 396.80 36.90 1 43.68 3 18.07 175 905.96 239 3974.87 35 3734.37 99 3371.52 51 760.00
	vrpnc06 3 vrpnc01 3 vrpnc12 1 vrpnc07 1 vrpnc01 3 vrpnc12 3 vrpnc07 3 vrpnc03 2 vrpnc10 3 vrpnc07 1	583.20 745.43 886.99 1101.96 767.64 828.67 783.85 1105.16 1626.56 1157.80 223.08 376.63 447.83 684.18 400.72 477.85 263.52 678.44 1168.73 692.927	3.68% 1.55% 3.56% 1.72% 1.52% 1.2% 5.83% 2.03% 0.97% 3.38%	28 29 33 29 26 24 38 36 43 38	3 3 4 5 3 2 5 3 4 5	49 117 201 31 7 15 25 29 3 57	615.99 1061.39 2846.99 1281.00 21.90 541.51 1556.57 4224.25 471.61 1705.48
	vrpnc07 1 vrpnc02 1 vrpnc12 2 vrpnc07 2 vrpnc02 1 vrpnc13 1 vrpnc08 1 vrpnc03 3 vrpnc11 1 vrpnc07 2	513.66 688.16 811.29 1202.44 759.73 1972.63 1545.80 110.27 285.39 408.25 746.84 428.56 782.44 357.13 1145.41 636.23 3865.12 3265.67 1041.26 579.74	4.33% 7.68% 1.93% 0.88% 1.01% 2.94% 0.19% 1.66% 1.06% 1.95%	26 30 30 30 23 28 39 47 42 34	4 4 3 4 3 2 3 4 3 5	71 25 17 19 7 1 12267.32 1924.13 2466.84 253.20 127.60 57.63 3 339.61 155 4158.66 1 17874.30 83 431.93
	vrpnc07 2 vrpnc02 2 vrpnc12 3 vrpnc07 3 vrpnc02 2 vrpnc13 2 vrpnc08 2 vrpnc04 1 vrpnc11 2 vrpnc07 3	611.01 681.97 860.22 1216.03 663.12 1408.74 772.16 1061.24 3485.87 2887.37 155.40 269.01 401.86 787.20 313.28 937.81 319.90 625.20 1054.89 614.465	7.91% 1.16% 2.93% 2.22% 1.85% 0.79% 2.15% 1.28% 1.21% 3.23%	30 30 31 31 22 31 47 41 45 32	4 4 3 4 3 2 4 3 3 5	115 31 105 45 3 5 3 31 1 81	2593.25 353.37 1807.97 841.32 15.46 1765.93 3111.04 3838.83 17350.40 1176.27
	vrpnc07 3 vrpnc02 3 vrpnc13 1 vrpnc08 1 vrpnc03 1 vrpnc13 3 vrpnc08 3 vrpnc04 2 vrpnc11 3 vrpnc08 1	611.01 718.46 1821.71 1352.09 183.41 323.47 1250.95 839.17 712.23 402.25 1776.02 1322.47 791.28 297.11 1068.40 608.60 3357.75 2720.49 1062.98 628.355	5.62% 3.92% 1.32% 1.44% 1.03% 3.64% 9.27% 2.57% 3.19% 3.61%	31 28 35 30 26 28 45 48 46 34	4 4 2 3 2 2 4 4 4 3	67 125 1 17925.60 2349.67 1647.83 11 1103.30 13 233.73 3 31848.32 59 2274.14 3 2986.48 1 16888.30 53 2421.42
	vrpnc08 1 vrpnc03 1 vrpnc13 2 vrpnc08 2 vrpnc03 2 vrpnc14 1 vrpnc09 1 vrpnc04 3 vrpnc12 1 vrpnc08 2	638.08 684.47 2036.72 1571.49 233.99 351.16 1093.07 760.44 828.94 507.99 928.24 534.05 864.60 406.57 984.36 595.53 1679.09 1183.01 1032.11 604.037	4.35% 3.74% 0.89% 2.38% 1.68% 1.75% 6.21% 2.03% 0.80% 2.41%	30 26 32 27 20 24 42 40 46 36	3 2 2 3 2 3 3 3 4 3	3 185 3 21032.80 611.11 3565.66 107 1085.31 31 513.95 19 128.34 9 3607.95 3 1211.45 13 1993.64 201 2451.24
	vrpnc08 2 vrpnc03 2 vrpnc13 3 vrpnc08 3 vrpnc03 3 vrpnc14 2 vrpnc09 2 vrpnc05 1 vrpnc12 2 vrpnc08 3	556.77 923.02 1982.76 1486.78 228.41 521.42 1108.32 687.66 737.32 380.94 907.15 583.30 868.51 376.57 988.60 516.86 1994.38 1459.55 1010.86 614.079	5.89% 3.05% 3.87% 1.19% 0.38% 0.45% 4.66% 5.39% 1.53% 1.51%	28 34 32 34 29 23 47 41 47 39	3 2 2 3 2 2 4 4 5 3	115 111 1 12433.90 4983.99 5968.63 21 398.31 3 37.64 3 27.91 59 6524.54 225 3741.39 45 3279.61 7 1099.81
	vrpnc08 3 vrpnc03 3 vrpnc14 1 vrpnc09 1 vrpnc04 1 vrpnc14 3 vrpnc09 3 vrpnc05 2 vrpnc12 3 vrpnc09 1	500.04 692.78 890.41 1188.34 710.98 884.66 723.43 1075.00 1982.86 1445.96 150.62 343.83 459.70 788.42 389.77 477.27 322.36 639.74 1099.54 655.519	0.00% 0.35% 0.00% 1.54% 0.53% 1.53% 1.21% 1.24% 1.66% 3.09%	23 30 30 29 25 27 41 45 47 36	2 2 3 3 2 3 3 4 5 4	1 29 1 3 29 3 3 19 3 199	119.02 3723.46 93.65 406.78 1059.94 14.53 1748.82 1048.78 606.03 1945.26
	vrpnc09 1 vrpnc09 2 vrpnc04 1 vrpnc04 2 vrpnc14 2 vrpnc14 3 vrpnc09 2 vrpnc09 3 vrpnc04 2 vrpnc04 3 vrpnc10 1 vrpnc05 3 vrpnc13 1 vrpnc09 2 Table A.10: Detailed results on instances with 35 customers and random threshold 586.48 185.43 5.63% 30 3 13 407.87 510.53 170.47 0.00% 27 2 1 277.89 720.20 367.32 4.63% 30 3 367 3417.52 683.40 362.82 0.94% 26 2 3 60.43 947.19 560.59 2.62% 29 3 335 1701.43 914.92 479.26 4.74% 29 3 127 1786.71 1109.75 719.06 2.02% 33 3 87 5378.51 1203.12 829.52 3.03% 28 3 49 1271.45 869.51 495.52 0.00% 31 3 1 63.17 762.79 415.16 4.59% 27 3 145 1582.18 689.78 292.12 2.79% 36 3 257 4250.31 1033.28 661.34 0.59% 40 3 3 2909.70 4186.09 3588.82 1.84% 43 3 1 79960.00 1057.87 621.55 0.81% 42 3 49 3337.87 vrpnc10 2 785.86 332.69 2.53% 43 4 81 4608.67 vrpnc06 1020.54 556.60 2.32% 39 4 105 2898.48 vrpnc13 2 4130.05 3512.95 1.69% 43 3 1 133526.00 vrpnc09 3 1123.63 740.877 0.92% 33 3 5 208.42
	vrpnc09 3 vrpnc10 1 vrpnc04 3 vrpnc05 1 vrpnc10 1 vrpnc05 1 Tables A.11 to A.14 present results of the instances with 50 customers distributed in 598.56 212.66 6.60% 32 3 289 3259.81 575.98 268.95 0.82% 27 2 3 437.28 666.95 357.05 0.00% 27 2 1 124.02 774.39 388.63 4.82% 32 4 153 2767.80 1127.27 808.72 2.56% 27 2 49 1549.44 731.20 406.67 3.14% 23 2 153 1151.02 vrpnc10 3 793.27 312.39 1.59% 45 4 3 573.09 vrpnc07 1 1124.30 537.88 7.18% 42 6 35 1517.39 vrpnc13 3 3325.94 2771.02 1.21% 43 3 1 12392.20 vrpnc10 1 1062.66 683.73 2.09% 33 3 389 3527.59 Table A.8: Detailed results on instances with 35 customers and medium threshold vrpnc10 2 1084.01 721.97 1.53% 32 3 121 5127.01 vrpnc05 2 760.27 352.89 0.68% 28 3 11 336.34 3 zones and different threshold profiles. For instance vrpnc13 2, derived from CMT13, the vrpnc11 1 1796.41 1194.94 3.62% 39 3 3 31839.30 vrpnc07 2 1121.35 567.13 5.26% 44 6 73 1850.08 vrpnc14 1 1855.91 1316.67 1.86% 44 5 81 2837.83 vrpnc10 2 1077.9 736.744 1.74% 32 3 311 2228.45
	vrpnc10 2 vrpnc05 2 vrpnc10 3 vrpnc05 3 column generation procedure does not finalize at the root node in less than 10000 when 538.08 181.10 12.21% 29 3 171 3229.02 651.04 316.94 1.00% 28 2 69 2269.90 1234.51 833.03 0.00% 31 3 1 48.29 928.09 587.15 0.00% 26 2 1 11.85 vrpnc11 2 1603.59 1038.74 5.84% 35 3 1 18537.70 vrpnc07 3 954.00 477.40 4.05% 33 5 65 1890.62 vrpnc14 2 1793.51 1299.76 0.56% 45 4 3 283.41 vrpnc10 3 1157.41 722.116 1.95% 44 4 3 1199.47
	Instance vrpnc10 3 vrpnc05 3 Instance vrpnc11 1 vrpnc06 1 thresholds are low, thus this instance is not reported in the corresponding table. Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s) 619.78 218.30 2.58% 31 3 3 220.76 733.51 333.23 1.81% 34 3 441 3655.19 Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s) 2625.38 2166.70 1.07% 31 2 3 23351.20 742.83 394.18 3.83% 25 3 111 818.51 vrpnc11 3 1619.67 1029.81 5.84% 44 3 1 26369.10 vrpnc08 1 1007.83 563.82 2.83% 43 3 89 4078.95 vrpnc14 3 1750.08 1267.49 0.86% 43 4 31 2377.32 vrpnc11 1 2653.24 2179.62 0.22% 36 2 1 29310.93
	vrpnc01 1 vrpnc11 1 vrpnc06 1 vrpnc01 1 vrpnc11 2 vrpnc06 2 vrpnc12 1 vrpnc08 2 vrpnc11 2 vrpnc01 2 vrpnc11 3 vrpnc06 2 vrpnc01 2 vrpnc11 3 vrpnc06 3 Instance vrpnc12 2 vrpnc08 3 vrpnc11 3 vrpnc01 3 vrpnc12 1 vrpnc06 3 vrpnc01 3 vrpnc12 1 vrpnc07 1 vrpnc01 vrpnc12 3 vrpnc09 1 vrpnc12 1 vrpnc02 1 vrpnc12 2 vrpnc07 1 vrpnc02 1 vrpnc12 2 vrpnc07 2 vrpnc02 1 vrpnc13 1 vrpnc09 2 Instance vrpnc12 2 vrpnc02 2 vrpnc12 3 vrpnc07 2 vrpnc02 2 vrpnc12 3 vrpnc07 3 vrpnc02 2 vrpnc13 3 vrpnc09 3 vrpnc01 vrpnc12 3 vrpnc02 3 vrpnc13 1 vrpnc07 3 vrpnc02 3 vrpnc13 1 vrpnc08 1 vrpnc02 3 vrpnc14 1 vrpnc10 1 vrpnc02 1 vrpnc13 1 vrpnc03 1 vrpnc08 2 vrpnc03 2 vrpnc08 3 vrpnc03 2 vrpnc10 3 vrpnc02 3 vrpnc13 2 vrpnc08 1 vrpnc03 1 vrpnc13 2 vrpnc08 2 vrpnc03 1 vrpnc14 2 vrpnc10 2 vrpnc02 2 vrpnc13 2	548.26 1353.26 842.14 1099.82 2712.86 2218.43 204.08 884.58 441.31 740.54 816.75 476.19 824.93 329.31 1050.61 605.81 2043.45 1516.04 535.11 151.85 1388.34 928.88 753.39 385.67 1099.18 713.97 2997.39 2532.60 792.89 453.83 Revenue Opt. GAP(%) #Cust #Veh Tree size 1.64% 26 3 3 2.72% 33 2 3 52959.30 0.67% 31 3 121 897.07 0.28% 29 3 5 350.33 1.72% 35 3 3 17303.30 1.17% 27 3 5 151.34 7.46% 44 4 57 4252.01 1.10% 44 4 3 1970.91 2.27% 41 3 1 16912.23 189.86 3.50% 30 3 3 1.55% 32 2 3 38316.90 0.00% 30 3 1 30.82 0.53% 30 3 3 16.78 0.27% 35 2 3 8717.39 0.96% 26 3 45 312.22 Time(s) 1063.73 529.29 3.83% 47 5 143 6480.76 989.13 546.13 2.48% 39 3 55 2554.86 2649.43 2050.89 1.27% 44 3 1 26013.84 191.17 497.15 155.45 2.56% 26 3 7 651.98 207.69 8.85% 34 4 73 2413.55 734.64 368.80 0.73% 30 3 5 138.08 1120.66 722.60 0.00% 33 4 1 22.60 1328.77 884.48 2.01% 34 4 221 1425.32 851.08 472.76 0.78% 26 4 31 554.48 764.61 296.16 5.20% 41 4 101 2805.05 979.14 468.88 2.08% 45 4 437 8361.16 1145.75 647.37 4.39% 48 4 213 9042.35 1176.36 683.917 3.65% 38 4 141 1892.90 43.64 430.53 111.71 15.79% 22 3 91 615.07 195.15 5.62% 32 3 263 3356.50 634.61 255.06 6.55% 22 4 95 1020.41 1045.75 639.90 2.96% 31 4 19 1119.36 1286.26 878.24 0.69% 31 3 3 210.32 631.50 316.59 2.69% 21 3 15 369.95 858.35 328.55 1.65% 41 5 33 2569.61 2104.48 1494.17 4.82% 44 3 1 75485.30 1085.69 644.18 2.48% 38 3 497 6248.84 Revenue Opt. GAP(%) #Cust #Veh Tree size Time(s) 1417.08 940.666 0.00% 42 4 1 91.39 2556.84 577.78 153.31 3.33% 29 4 73 668.85 208.51 6.38% 32 3 75 2306.82 699.76 322.02 1.63% 23 3 13 43.82 1144.47 707.59 1.51% 31 4 27 202.97 1312.60 852.60 1.97% 32 3 395 2314.27 849.10 401.36 1.78% 30 4 107 1653.68 783.03 248.47 5.68% 38 5 117 2965.47 1675.38 1167.70 1.74% 34 2 1 25049.50 967.77 560.26 1.13% 43 3 17 2502.78 945.455 567.451 2.44% 31 3 15 904.13 1434.24 949.919 1.68% 39 4 121 2270.69 2538.74 598.12 196.67 0.48% 32 4 3 1387.20 905.75 4.88% 32 2 1 19351.30 805.87 369.07 2.01% 32 4 117 1453.24 1178.52 774.61 1.16% 31 4 31 171.40 2769.06 2281.62 2.40% 33 2 3 9593.58 802.51 472.71 0.88% 25 2 3 770.77 789.77 257.43 9.73% 39 5 51 1618.86 915.94 374.62 4.74% 47 5 481 5575.74 867.77 495.56 1.81% 30 3 15 633.95 1049.22 651.075 1.79% 31 4 49 1476.61 2296.98 1769.01 1.10% 39 3 1 16380.90 11.37 522.45 190.16 3.02% 26 2 95 757.86 410.15 3.59% 30 3 241 2305.97 1369.04 1005.49 0.40% 30 2 11 6968.16 699.50 399.50 0.34% 24 2 1 5.6 845.65 356.91 2.97% 46 4 87 8353.51 1003.77 553.35 1.29% 43 4 3 1273.37 1118.1 633.86 1.43% 39 5 73 1696.73 2844.43 1490.34 1023.27 2.89% 30 2 3 19679.60 784.33 391.72 2.81% 27 3 3 157.24 1082.31 742.28 0.90% 27 2 21 4241.47 3041.44 2569.87 1.31% 31 2 3 18439.90 744.81 403.60 0.00% 27 2 1 80.59 821.00 386.94 2.24% 49 4 21 4084.86 934.49 440.10 1.12% 44 4 103 4683.28 978.10 513.25 2.71% 44 4 25 2122.59 963.829 552.337 4.13% 26 4 47 1246.36 2315.66 1804.62 1.09% 35 3 3 13767.20

Table A .

 A 14: Detailed results on instances with 50 nodes, 3 zones and random threshold Tables A.15 to A.18 present results of the instances with 50 customers distributed in 5 zones and different threshold profiles. For the instance vrpnc13 1, derived from CMT13, the column generation procedure does not finalize at the root node in less than 10000 when thresholds are low, medium or high, thus this instance is not reported in the corresponding table. It is also the case of instance vrpnc03 3 with average threshold profile.

	vrpnc12 2	2154.93 1632.98	0.94%	48	5	3	308.21
	vrpnc12 3	2203.42 1666.79	1.58%	47	5	231	2193.98
	vrpnc13 2	4051.38 3455.40	0.90%	45	3	1 72349.30
	vrpnc13 3	3974.08 3391.20	0.96%	45	3	1 29265.20
	vrpnc14 1	2026.76 1539.98	0.77%	46	4	3	1654.68
	vrpnc14 2	2144.53 1612.91	0.77%	48	5	3	471.55
	vrpnc14 3	2084.19 1548.29	1.42%	48	5	9	821.62
	Instance	Revenue	Opt. GAP(%) #Cust #Veh Tree size	Time(s)
	vrpnc01	886.92	379.26	4.75%	45	5	39	2273.19
	vrpnc02 1	917.84	334.36	4.34%	46	6	17	1747.76
	vrpnc02 2	934.74	361.69	6.81%	44	6	15	1949.33
	vrpnc02 3	892.09	338.26	4.20%	46	6	21	1877.46
	vrpnc03 1	881.84	380.65	2.99%	48	4	87	3114.07
	vrpnc03 2	938.60	457.76	3.22%	46	3	23	6089.08
	vrpnc03 3	833.52	376.95	4.31%	44	4	141	3651.48
	vrpnc04 1	914.47	423.72	6.72%	43	4	31	5066.10
	vrpnc04 2	817.05	367.60	4.70%	45	4	21	2506.23
	vrpnc04 3	758.25	378.16	3.60%	39	3	237	5866.36
	vrpnc05 1	847.97	420.03	2.54%	43	4	77	2819.32
	vrpnc05 2	765.90	377.72	3.45%	37	3	81	2338.12
	vrpnc05 3	1000.50	506.91	3.82%	46	4	141	3044.63
	vrpnc06	875.09	403.65	2.18%	40	4	15	2069.36
	vrpnc07 1	822.79	279.41	1.98%	43	6	27	1940.11
	vrpnc07 2	872.63	307.30	2.01%	43	6	51	1684.87
	vrpnc07 3	798.54	262.68	7.54%	42	6	59	1850.35
	vrpnc08 1	931.53	458.84	2.19%	46	4	129	6142.59

Table A .

 A 17: Detailed results on instances with 50 nodes, 5 zones and high threshold

	Instance	Revenue	Opt. GAP(%) #Cust #Veh Tree size	Time(s)
	vrpnc01 v	1111.19	655.03	0.69%	40	4	113	980.19
	vrpnc02 1	1223.28	711.84	1.15%	42	6	23	2720.55
	vrpnc02 2	998.91	586.60	1.17%	34	5	77	934.35
	vrpnc02 3	1126.76	702.74	2.07%	37	5	39	2412.58
	vrpnc03 1	1283.90	828.78	3.74%	38	3	19	9243.06
	vrpnc03 2	1220.36	799.77	0.80%	39	3	33	5825.25
	vrpnc04 1	1081.00	693.27	1.36%	37	3	9	1683.72
	vrpnc04 2	1325.18	859.24	1.31%	42	4	461	5399.19
	vrpnc04 3	1050.22	673.76	0.92%	34	3	11	2576.94
	vrpnc05 1	971.95	601.28	5.95%	31	3	31	3756.26
	vrpnc05 2	1162.66	779.49	1.28%	38	3	3	689.62
	vrpnc05 3	1227.15	771.26	1.96%	40	4	311	2406.59
	vrpnc06 v	1045.94	612.53	1.84%	35	4	177	1206.72
	vrpnc07 1	1076.82	614.88	1.75%	35	5	37	2175.81
	vrpnc07 2	1174.65	657.87	1.14%	40	5	21	2590.32
	vrpnc07 3	1205.77	759.09	0.33%	36	5	3	37.63
	vrpnc08 1	1161.43	772.78	0.68%	35	3	3	3331.44
	vrpnc08 2	1199.81	745.56	1.04%	40	3	33	4813.20
	vrpnc08 3	1196.53	761.80	0.00%	39	3	1	69.98
	vrpnc09 1	1116.79	713.10	2.79%	38	3	365	5174.93
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