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Abstract

The enabling technology of vehicular networks for Intelligent Transportation
Systems (ITS), smart cities and autonomous driving, offers promising on-board
services such as road-safety, easy navigation, comfort driving and infotainment.
These services can co-exist simultaneously in the system. One challenging is-
sue is to provide the different quality of service (QoS) requirements adequate
to each service. This may not be an easy task because of the constrained fac-
tors characterizing these networks (e.g., growing number of connected vehicular
devices, wireless communications, etc.). In this paper, we investigate the ra-
dio resources allocation problem to match different QoS requirements in terms
of data rate whilst reducing the interference ratio. We first proposed a radio
allocation model that aims to maximize the data rate and minimize the trans-
mission power for all users. However, since not all vehicles use services that
require high data rates, it will be more efficient to consider different required
data rate for each user. Hence, we develop an efficient model for transmission
power allocation that aims to reduce the interference ratio while providing the
data rate required by each user. The proposed model is based on Generalized
Nash Equilibrium (GNE) game where the users compete to acquire the radio
resources. We proposed also two water-filling algorithms to solve the spectrum
allocation game during Vehicle-to-Vehicle (V2V) communication over multiple
channels. The extensive simulations have shown that our model can satisfy the
users regarding different.

Keywords: Vehicular networks; radio resource allocation; spectrum sharing,
water-filling algorithms; Generalized Nash Equilibrium GNE; game theory

1. Introduction

The advent of vehicular technology will offer efficient services that ease the
life of road users. Vehicular networks have emerged as a key component of
intelligent transportation systems. These networks allow an efficient information
sharing and dissemination between vehicles and infrastructures for a wide range
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of applications. Some of these applications, such as road safety and driving
assistance, need high quality of service requirements for V2V communications
as well as ultra-low latency and high reliability. There are two major modes for
V2V communications: Dedicated Short Range Communications (DSRC), and
cellular based vehicular communications [1, 2]. DSRC is supported by some
standards including the IEEE 802.11p amendment for Wireless Access Vehicular
Environment (WAVE). Cellular based vehicular communications, called C-V2X,
allow vehicles to communicate with each other over cellular networks such as
Long Term Evolution (LTE) [3] and 5G new radio (5G NR).

Both of these V2V communication modes have their respective advantages
and limitations when they are adopted in vehicular environments. Thus, Het-
erogeneous Vehicular Networks (HVNs) have been proposed to combine the
benefits of the two communication modes and mitigate their drawbacks. In this
type of networks, using either DSRC or C-V2X mode depends on the application
requirements (e.g., latency, throughput, data rate, etc.). However, due to wire-
less communication nature, even HVNs suffer from a wide range of impairments
such as interferences, path loss, shadowing, fading, jamming, etc. To deal with
these issues, radio resources (e.g., frequency bands, transmission power, time
slot, . . . ) should be optimally allocated. Moreover, since V2V users have to
share the medium with cellular users, the resource allocation and transmission
scheduling strategies influence considerably the system performance. Using un-
derlay scheme, V2V users and regular cellular ones can exploit the same cellular
band at the same time. Hence, the spectrum utilization is improved. In the
overlay scheme, a portion of the cellular spectrum is allocated to V2V transmis-
sion, which means that both V2V and conventional cellular communications are
carried out in a separate frequency bands. Nevertheless, the resource allocation
faces serious challenges due to:

� High dynamic mobility of vehicles that needs different requirements in
terms of time-frequency resources to face the impairments.

� Wide range of services (e.g., multimedia entertaining, video conference,
safety applications, etc.) with different QoS requirements in terms of
reliability, latency, and data rates. Moreover, some of these requirements
may be contradictory and hence we need to find a tradeoff between them.

� Growing number of vehicle communication devices. These devices have
different hardware characteristics which affects their communication ca-
pabilities under different channel and network conditions.

In this context, we study the problem of power control and channel allo-
cation for V2V communication through cellular C-V2X technology. The V2V
mode permits vehicles to communicate directly, bypassing the eNodeB, using a
licensed frequency band. C-V2X communication is proven to achieve large cov-
erage, high data rates, high capacity, superior QoS, and multi-cast/broadcast
support [4]. We investigate the use of Game Theory [5], in particular General-
ized Nash Equilibrium (GNE) game, for efficient transmission power allocation
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and control. Unlike many other non-cooperative games where players behave
independently, the GNE model is more suited for power control in a spectrum
sharing context since the feasible strategies’ set of each player depends on all
other players’ strategies.

The rest of this paper is organized as follows: Section 2 overviews the existing
approaches for radio resource allocation in vehicular networks. In Section 3,
we describe the system model, and formulate the problem as a constrained
optimization problem. A Generalized Nash Equilibrium model as well as two
water-filling algorithms for transmission power control are proposed in Section 4.
Section 5 is dedicated to the performance evaluation and simulation results, and
finally Section 6 concludes the paper.

2. Related Work

In literature, there are many interesting works dedicated to resource alloca-
tion in vehicular networks. In [6, 7], graph interference aware resource alloca-
tion algorithms have been proposed. The optimization objective of the model
proposed in [6] is the maximization of the sum rate with low computational
complexity; while in [7], the authors aim to improve the connectivity of ve-
hicular communications using a connectivity index. In [8], the authors exploit
geographical information to propose a joint resource allocation and power con-
trol for reliable D2D enabled vehicular communication while considering fading
channel information. To meet different QoS requirements, queuing dynamics
are also presented. Mei et al. [9] investigated dynamic Minimal Cut Sequences
(MCS) while allocating the radio bands and the transmit power to guarantee re-
liability and latency. In [10], the authors presented a resource allocation scheme
that supports V2X communications in a D2D-enabled cellular system. The
main objective is to maximize the sum of ergodic capacity of V2I links while re-
specting the delay requirements of V2V links. A bipartite matching algorithm is
combined with effective capacity theory to solve the problem. The work in [11]
proposes a resource allocation scheme based on a semi-Markov decision process
for a vehicular cloud computing system. Lin et al. [12] aims to minimize the
serving latency by optimally allocating the available bandwidth to four types of
services in a vehicular fog computing system. A Lagrangian algorithm is pro-
posed to solve the problem and give the sub-optimal solutions. Then, a second
algorithm for an optimal solution selection is presented and analyzed. In [13],
the authors modeled the resource sharing in heterogeneous vehicular networks
as a non-cooperative game with correlated equilibrium. They first proposed
an incentive mechanism for encouraging macrocells to share spectrum resource
with vehicle users. Then, they presented a game theoretical strategy optimiza-
tion algorithm based on regret-matching and derived the correlated equilibrium
solution. Finally, they proposed a power control heuristic for further mitigat-
ing the inter road side units’ interferences in the non-cooperative game based
resource allocation.

Liu et al. [14] proposed dynamic virtual resource allocation in 5G vehic-
ular communication networks with mixed SCMA/OFDMA. They used SCMA
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(Sparse Code Multiple Access) and full-duplex to reduce the transmission la-
tency and improve the spectrum efficiency for V2V communications. For vehicular-
to-infrastructure (V2I) communications, OFDMA and half- duplex technologies
are adopted for traffic efficiency information transmission and entertainment
content transmission. A virtual resource allocation approach is proposed. It
applies a priority mechanism to ensure the successful transmission of road safety
information. In [15], a spectrum and power allocation scheme is presented with
the aim to maximize the sum ergodic capacity of V2I links, while guarantee-
ing reliability and latency requirements of V2V links. The optimization of the
spectrum reusing pattern is achieved by addressing a polynomial time solv-
able bipartite matching problem. Based on slowly varying large-scale fading
channel information, the approach proposed in [16] introduces a reliability and
latency aware resource allocation that maximizes the throughput of vehicular-
to-network (V2N) links. A deep reinforcement learning based resource alloca-
tion for V2V communications applied to both unicast and broadcast scenarios
is proposed in [17]. The simulation showed that the proposed approach satisfies
the latency constraints on V2V links while minimizing the interference to V2I
communications.

Some of the previous research works (i.e., from [6] to [17]), have not thor-
oughly considered QoS requirements of each V2V user. Generally, these works
aims to improve the spectrum allocation of vehicular system as a unit without
considering each user individually. For instance, the maximization of the sum
data rate may lead to inefficient and unfair rate distributions among the V2V
users even if the global sum rate is maximized. It would be more interesting
to focus on the satisfaction of each user as well as the whole system in such a
competitive environment.

In this paper, we focus on efficient control and allocation of transmission
power that ensure a desired data rate for each V2V pair with an optimal trans-
mission power. Hence, we propose a transmission power allocation model using
game theory for V2V communication in C-V2X based vehicular network. A gen-
eralized Nash equilibrium game model is introduced to distribute and control
the transmit power of V2V pairs over dedicated channels. The presented game
aims to determine an efficient power distribution that guarantees the required
data rate and minimize transmit power for each user.

3. System Model and Problem Formulation

We consider a vehicular network with multiple vehicular users as depicted
in Fig. 1. We consider an urban environment where vehicles move with low
speed. The velocity limitation is guaranteed by low in countries. For instance,
in France, the vehicles speed cannot exceed the threshold of 50 km/h in urban
zones, and this threshold is reduced to 30 km/h in some zones such as residential
and school neighborhoods. The V2V users are considered by pairs, each consist-
ing of a transmitter and a receiver. We denote byN and K (N = |N |> K = |K|)
the sets of V2V pairs and channels, respectively. In this model, each vehicle
communicates with its corresponding receiver over the K channels. The radio
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resource allocation is performed at the beginning of each Transmission Time
Interval (TTI).

Figure 1: The system model of the vehicular network.

Our objective is to maximize the information rate of each V2V pair n ∈
N . Notice that for each transmitter, increasing its power at any frequency
increases its own data rate. However, this increases this user’s interference
into other users’ communications and is, therefore, detrimental to other users’
transmissions. Thus, the system design must consider the tradeoff among the
data rates of all users. For example, it is not enough to consider just the
maximization of the sum rate, because it does not guarantee a minimal data
rate for any one user.

Let pn = [p1n, . . . , p
K
n ] denotes the transmit power vector of n over channel

k, the received SINR of n over k-th channel is expressed as:

γkn =
pkng

k
nn∑

m6=n∈N p
k
mg

k
nm + σk

, (1)

where gknn, gknm and σkn denote the power channel gains, and the variance of
Gaussian noise over channel k, respectively. The SINR is considered as the
most critical parameter for the QoS as it directly affects the throughput and
the bit error rate. The maximum data rate of n is obtained by:

Rn(pn, p−n) =
K∑
k=1

log2(1 + γkn) (2)

where p−n = [p1, . . . , pn−1, pn+1, . . . , pN ] represents the transmit power vector
of all the users except for user n.

The sum-rate optimal power allocation is often the one that assigns high
data rates to some users and low data rates to other users, creating inherent
unfairness. Thus, our model must reflect the trade-off between the benefit (i.e.,
the data rate) and the cost (i.e., the total power over K channels) as well as
fairness. Therefore, the optimization problem for each V2V pair n is defined as:

P1 : max
pn

Rn∑K
k=1 p

k
n

(3)
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s.t.
K∑
k=1

pkn ≤ pmax,∀k ∈ K,∀n ∈ N (4)

γkn ≥ γmin (5)

The utility function is quasi-concave, therefore, the optimal solution p∗n =
{pk∗n }Kk=1, for any fixed and non-negative p−n, exists and is unique as shown in
[19].

Proposition 1. Given the power vector p−n, the user n’s optimal solution for
problem P1 is given by

pkn =

{
pk∗n , if k = k

0 otherwise
(6)

with k = argmin
k
pk∗n , where pk∗n denotes the transmission power of user n to

achieve the optimal SINR γ∗ over channel k, or pmax if γ∗ is not achievable.
γ∗ is the unique positive solution of

γ
∂Rn
∂γ

= Rn (7)

If in addition to the two constraints of P1, we add the following constraint:∑
n∈N

pkn ≤ PMAX ,∀k ∈ K (8)

which means that the sum of the power allocated to all the users cannot ex-
ceed a predefined threshold. Then, the unique optimal solution can be obtained
using the geometric Water-Filling algorithm proposed in [20].

It is worthy to mention that the objective function is particularly suitable for
wireless systems with energy constraints as minimizing the transmission power
means minimizing the energy consumed by the transmission process.

Although problem P1 guarantees a tradeoff between the maximization of the
data rate and the minimization of transmission power (reduction of interference
ratio), it may not be the best spectrum allocation strategy for all users since
some of them does not require high data rates. It will be better for these users
to use lower transmission power to achieve desired data rates than maximize
the data rate in the cost of using more power. In the next section, we propose
a second model that aim to minimize the transmission power whilst achieving
the desired data rate of each user. We opt for the game theory to propose an
efficient solution for competitive spectrum allocation. Hence, we reformulate the
channel allocation and power control problem as a generalized Nash equilibrium
game, where the strategy of each player depends on the other players’ strategies
since the SINR of a user depends on the other users’ transmit powers.
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4. Power Control Game

In this section, we describe the Generalized Nash Equilibrium Problem
(GNEP) model for radio resource allocation and power control problem.

4.1. Generalized Nash Equilibrium Game Formulation

In the standard non-cooperative game, it is usually assumed that the feasible
set of the game is composed of full Cartesian product of the individual strategy
sets; it is assumed that players can only affect the utilities of other players
but not their feasible sets. However, in many real-world problems, such as
those of radio resources allocation, each player’s strategy set may depend on
the strategies of other players. This leads to the introduction of the generalized
Nash game, or the generalized Nash equilibrium problem (GNEP for short)
defined as a n-person non-cooperative game with non-disjoint strategy sets.

Using the concepts of GNEP, we introduce the power control game as G ={
N ,Pn(p−n)n∈N , un(.)n∈N

}
, where Pn(p−n) and un(.) represent the set of

player n’s feasible strategies and the payoff function, respectively. The play-
ers are the V2V pairs Unlike P1, where each user tries to maximize the data
ratio whilst minimize the transmission power; in this game, each player compete
against other players by choosing the strategy that minimizes his transmission
power whilst ensuring a minimum desired achievable data rate. This data rate is
chosen by the user itself among the achievable data rates in the system. Hence,
the strategy set is defined as:

Pn(x−n) , {pn ∈ RN+ |Rn(pn, p−n) ≥ R∗n} (9)

where R∗n denotes the minimum information rate desired by user n. In the
following, we consider the vector R∗ = R∗n

N
n=1 as the rate profile.

Observe that, because of rate constraints, the set of feasible strategies Pn(p−n)
and utility function un of each player depend on all players’ strategies, which
are collectively denoted by the vector p−n.

Player n’s strategy is denoted by pn and his utility function un depend on all
players’ strategies, which are collectively denoted by the vector p = [p1, . . . , pN ].
Player n’s strategy set Pn(p−n) is dependent of the other players’ strategies,
which are denoted by p−n := (p1, . . . , pn−1, pn+1, . . . , pN ). For every fixed but
arbitrary vector (I.,e., strategy) p−n, player n solves the following optimization
problem for his own decision vector pn:

min
pn

un(pn, p−n) =

K∑
k=1

pkn (10)

subject to
pn ∈ Pn(p−n) (11)

Let P(p) := P1(p−1) × . . . × PN (p−N ) denotes the Cartesian product of
the strategy sets of all players. The corresponding equilibrium for the GNEP
G =

{
N ,Pn(p−n)n∈N , un(.)n∈N

}
can be defined as follows:
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Definition 1. A tuple of strategies p∗ := (p∗n)Nn=1 ∈ P(p∗) is called a generalized
Nash equilibrium of the GNEP if

un(p∗n, p
∗
−n) ≤ un(xn, p

∗
−n),∀pn ∈ Pn(−n) (12)

hold simultaneously for all players n = 1, . . . , N .

The optimal solution p∗n = {pk∗n }Kk=1, for any fixed and non-negative p−n,
exists and is unique. This solution is the well-known water-filling power alloca-
tion:

p∗n = WFn(p−n) (13)

where the water-filling operator WFn(.) is defined as:

[WFn(pn)]k ,

(
λn −

∑
m 6=n∈N p

k
mg

k
nm + σkn

gknn

)+

, k ∈ K (14)

with (x)+ , max(0, x) and the water level λn is a constant chosen so that the
rate constraint Rn(p∗n, p−n) = R∗n is met. The WFn(.) operator selects the
strategy that minimize the utility function un while achieving the minimum
data rate.

The solutions of the game G, if they exist, form the generalized Nash equi-
libria that satisfies the following condition: A feasible strategy p∗ = (p∗n)n∈N is
a GNE of the game G if and only if it satisfies the following nonlinear system:

p∗ = WFn((pn),∀n ∈ N (15)

Given the above system, the questions that we need to answer are: i) does
a solution exist for any rate profile?, ii) if it exists, is it unique?, and iii) how
can this solution be reached in a distributed way?

4.2. Existence and Uniqueness of GNE

We start by providing sufficient conditions for the existence of a nonempty
and bounded solution set of Nash equilibria. Then, we consider the uniqueness
of the GNE.

Given the rate profile R∗ = (R∗n)Nn=1 > 0, we define the Z -matrix (i.e., a
matrix where its off-diagonal entries are all non-positive) Zk(R∗) ∈ RN×N as
follows:

Zk(R∗) ,


gk11 −(eR

∗
1 − 1)gk12 . . . −(eR

∗
1 − 1)gk1N

−(eR
∗
2 − 1)gk21 gk22 . . . −(eR

∗
2 − 1)gk2N

...
...

. . .
...

−(eR
∗
N − 1)gkN1 −(eR

∗
N − 1)gkn2 . . . gkNN

 (16)

Referring to [21], the game G admits a nonempty and bounded solution set
if Zk(R∗) is a P -matrix ∀k ∈ K. A matrix is called P -matrix if every principal
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minor is positive. Moreover, any GNE p∗ is defined as:p
k∗
1
...
pk∗N

 ≤
p

k
1
...
pkN

 , (Zk(R∗))−1

 σk1 (eR
∗
1 − 1)
...

σkN (eR
∗
N − 1)

 , k ∈ K. (17)

As a proven in [22] and [23], sufficient conditions for Zk(R∗) to be P -matrices
are ∑

m6=n

gknm
gknn

dβnn

dβnm
<

1

eR
∗
n − 1

,∀m ∈ N ,∀k ∈ K (18)

where gknm = gknmd
β
nm denotes the normalized channel gain. dβnm represents the

distance between n and m; β is the path-loss exponent.
The interpretation of these conditions is as follows: Given the channels and

the data rates, the GNE exists if the interference ratio is small, which means
the vehicular pairs are sufficiently far apart and the distance between them is
beyond a minimum distance.

To provide the conditions of the uniqueness of the GNE, we define the matrix
Bk(R∗) ∈ RN×N as follows:

[Bk(R∗)]nm =

{
e−R

∗
n , if n = m

e−R
∗
n .αmaxnm , otherwise

(19)

where

αmaxnm = max
k∈K

(
gknm
gkmm

.

∑
m′ 6=m g

k
mm′

pk
m′

+ σkm

σkn

)
(20)

Assuming that the solution set is nonempty and bounded, if Bk(R∗) is a
P -matrix, then the GNE of the game G is unique as proven in [21]. However,
as for the existence of GNE, its uniqueness depends on the interference level.

4.3. Water-Filling algorithms

In this section, we introduce two distributed iterative water-filling algorithms
to solve the problem P2. In the distributed solving, each user chooses its optimal
strategy independently while perceiving the other users as interferences.

4.3.1. Sequential Water-Filling Algorithm

The proposed sequential iterative water-filling algorithm (IWFA) is an in-
stance of the Gauss-Seidel approach [24] by mapping solution (13). In this al-
gorithm, each user sequentially and locally measures the interference-plus-noise
power level over the K channels and water-fill based on this level as described
in Algorithm 1

When number iterations tends to∞, IWFA converges linearly to the unique
GNE of the game G, if the conditions of existence and uniqueness hold [21]. This
means that the convergence is guaranteed if the level of interferences level is not
too high. However, despite the fact that IWFA has low complexity, it may suffer
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Algorithm 1 Sequential iterative water-filling algorithm

p
(0)
n =random(non-negative);

for i = 0 to number iterations do

p(i+1)
n =

{
WFn(p

(i)
−n), if i+ 1 mod N = n

p
(i)
n , otherwise

∀n ∈ N ; (21)

end for

from high convergence delay when the number of users becomes large. Since
each user measures the SINR power level over the K channels and water-fill
using this level, the complexity is O(K ×N).

4.3.2. Simultaneous Water-Filling Algorithm

As an alternative of IWFA, we propose a simultaneous water-filling algorithm
(SWFA) to reduce the convergence delay. This algorithm is an instance of Jacobi
algorithm, where the users update their power strategies simultaneously using
the interference level of the previous iteration as described in Algorithm 2

Algorithm 2 Simultaneous water-filling algorithm

p
(0)
n =random(nonegative),∀n ∈ N ;

for i = 0 to number iterations do

p(i+1)
n = WFn(p

(i)
−n),∀n ∈ N ; (22)

end for

When number iterations tends to∞, SWFA converges linearly to the unique
GNE of the game G, if the conditions of existence and uniqueness hold [21].
Moreover, it converges faster than IWFA with the same low complexity even
with a large number of users.

5. Performance Evaluation

To evaluate the performance of the proposed scheme, we perform extensive
simulations. We consider an area with V2V users randomly distributed. Ta-
ble 1 shows the simulation parameters. We compare the proposed scheme to an
approach that aims to maximize the data rate of each user without considering
the minimization of the transmission power (Max data rate approach).

We first illustrate the impact of the number of V2V communications at the
same time on the power and data rate at the equilibrium. We compare the
transmit power of two users U1 and U2 with different QoS requirements. The
desired data rates of U1 and U2 equal 10 Mbps and 2 Mbps, respectively using
the proposed GNE approach and max data rate approach. As Fig. 2 shows, with
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Table 1: Simulation Parameters
Parameter Value

Area 1 km x 1 km
Number of V2V pairs [10..100]
Required data rate From 1 Mbps to 10

Mbps
Number of channels 16
Max V2V communi-
cation distance

200 m

Maximal transmit
power

30 dBm

Thermal noise power
density

-115 dBm/Hz

a small number of V2V users, the users can achieve the desired data rate with
a low power level as the interference ratio is small. When the network density
increases, the uses are obliged to increase their transmit powers to overcome the
interferences. However, although the data rate is multiplied by 5, the minimal
power to achieve 10 Mbps is less than the double of that to achieve 1 Mbps.

With the aim to maximize the data rate with the only constraint to not
exceed the allowed maximal power, the two users U1 and U2 achieve high data
rates, as depicted by Fig.3, by using high levels of power even that they need
lower rates. Unfortunately, not all the users need these high rates. This allo-
cation approach results that some users are allocated more resources than they
need while others are still starving and cannot achieve the required QoS. The
data rates as well as the transmission powers decrease as the number of V2V
pairs increases because of the interferences. It is obvious that the users need to
adjust their power to minimize the interference level and reach the maximum
possible data rates at the equilibrium. However, using max rate approach, the
two users U1 and U2 cannot achieve the required data rates since as all the
users try to maximize their data rates regardless their required rates. The loss
is heavier for U1 who needs 10 Mbps and obtain only 1.75 Mbps. In the proposed
approach, user U2 maintains the desired rate, while U2’s data rate decreases
slightly and is still above 7 Mbps even with 100 vehicular pairs.

To evaluate the efficiency of power control allocation, we define the efficiency

metric as min(required rate,achieved rate)
power (measured in Mbps/W). Fig. 4 depicts

how the number of communications influences the efficiency of the spectrum
allocation of the compared approaches. From the figure, it is clear that the
efficiency of all the approaches decreases with a larger number of users due
to the interference factor and the smaller set of feasible allocation strategies.
However, the proposed GNE approach outperforms the max rate approach and
is still way better than it even when the network becomes denser. This reflects
the importance of the allocation method that consider different desired data
rates that achieves different QoS requirements.

To show that the proposed GNE based allocation approach outperforms the
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Figure 2: Impact of the number of V2V communications on the transmit power.

allocation based on data rate maximization, we evaluate the packet delivery
ratio. Fig. 5 depicts that the Max data rate approach offers slightly better
results with small number of vehicles. When the network becomes denser, the
packet delivery ratio decreases quickly because of collisions and interferences.
With our proposed approach, the obtained results are close to those offered by
the first approach when the number of vehicles is small. Moreover, the gap
between the results of the two approaches becomes wider with the increasing
number of vehicles as shown by the figure. Even if the packet delivery ratio
decreases in the power minimization based approach, it is still above 80% with
100 users, which is much better than the ratio obtained by Max data rate
approach.

We then evaluate the convergence speed of the two water-filling alternatives.
We compare two scenarios: with 10 users and with 20 users. We consider a
desired data rate of 1 Mbps for the two scenarios. As shown by Fig. 6 and as
expected, the simultaneous algorithm SWFA converges quicker than the itera-
tive algorithm IWFA. When the number of vehicle pairs increases, the difference
between the convergence speeds becomes more important. This can be explained
by the fact that the users update their power allocation strategies sequentially
in IWFA, which means that each user must wait for all the strategies to be
updated.

In Fig. 7, we compare the power allocation process delay of the proposed
SWFA algorithm to an existing game- theoretic approach [13]. We can notice
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Figure 3: Impact of the number of V2V communications on the data rate.

that the SWFA delay increases slightly with the number of communications
contrarily to the other approach where the delay increases quickly. The gap
between the delays generated by the two approaches becomes wider and wider
with the number of users. The low delays generated by SWFA is the consequence
of the simultaneous execution of the water-filling by all the users.

Finally, Table 2 gives a comparison of the proposed GNE approach to some
of existing power allocation approaches in terms of main objective, used method,
and complexity.

6. Conclusion

The exploitation of C-V2X technology may improve the different QoS re-
quirements for V2V communication in vehicular networks. However, sharing
the spectrum between multiple interfering V2V users with different QoS re-
quirements may be very challenging. In this paper, we have investigated the
topic of radio resource and power allocation in vehicular networks. We first
have proposed a model that aims to find a tradeoff between the maximization
of data rate and minimization of transmission power for each user. However,
since vehicles use different services with different QoS requirements in terms of
data rate, it would be better to develop an optimization model adapted to differ-
ent data rate requirements. Hence, we have proposed of non-cooperative game
model where the users try to achieve their desired data rate with the minimum
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Figure 4: Energy efficiency vs. the number of V2V communications

transmission power while competing for radio resources. We have formulated
the power allocation problem as a Generalized Nash Equilibrium (GNE) game
where the transmit power distribution strategies’ set of each player depends on
the strategies of all the other players. Then, we have demonstrated the exis-
tence and uniqueness of Nash equilibrium under certain conditions. Moreover,
we have presented two distributed water-filling algorithms that solve the prob-
lem with low complexity in a totally distributed manner. These algorithms have
been proved to converge to the Nash equilibrium. The simulation results have
shown that the proposed scheme can satisfy the V2V users regarding their de-
sired data rate, while minimizing their transmit powers. As a future work, we
intend to investigate the impact of vehicles’ velocity on the QoS requirements
in C-V2X based vehicular networks.
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