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The enabling technology of vehicular networks for Intelligent Transportation Systems (ITS), smart cities and autonomous driving, offers promising on-board services such as road-safety, easy navigation, comfort driving and infotainment. These services can co-exist simultaneously in the system. One challenging issue is to provide the different quality of service (QoS) requirements adequate to each service. This may not be an easy task because of the constrained factors characterizing these networks (e.g., growing number of connected vehicular devices, wireless communications, etc.). In this paper, we investigate the radio resources allocation problem to match different QoS requirements in terms of data rate whilst reducing the interference ratio. We first proposed a radio allocation model that aims to maximize the data rate and minimize the transmission power for all users. However, since not all vehicles use services that require high data rates, it will be more efficient to consider different required data rate for each user. Hence, we develop an efficient model for transmission power allocation that aims to reduce the interference ratio while providing the data rate required by each user. The proposed model is based on Generalized Nash Equilibrium (GNE) game where the users compete to acquire the radio resources. We proposed also two water-filling algorithms to solve the spectrum allocation game during Vehicle-to-Vehicle (V2V) communication over multiple channels. The extensive simulations have shown that our model can satisfy the users regarding different.

Introduction

The advent of vehicular technology will offer efficient services that ease the life of road users. Vehicular networks have emerged as a key component of intelligent transportation systems. These networks allow an efficient information sharing and dissemination between vehicles and infrastructures for a wide range and control. Unlike many other non-cooperative games where players behave independently, the GNE model is more suited for power control in a spectrum sharing context since the feasible strategies' set of each player depends on all other players' strategies.

The rest of this paper is organized as follows: Section 2 overviews the existing approaches for radio resource allocation in vehicular networks. In Section 3, we describe the system model, and formulate the problem as a constrained optimization problem. A Generalized Nash Equilibrium model as well as two water-filling algorithms for transmission power control are proposed in Section 4. Section 5 is dedicated to the performance evaluation and simulation results, and finally Section 6 concludes the paper.

Related Work

In literature, there are many interesting works dedicated to resource allocation in vehicular networks. In [START_REF] Zhang | Interference graph-based resource-sharing schemes for vehicular networks[END_REF][START_REF] Meng | An interference-aware resource allocation scheme for connectivity improvement in vehicular networks[END_REF], graph interference aware resource allocation algorithms have been proposed. The optimization objective of the model proposed in [START_REF] Zhang | Interference graph-based resource-sharing schemes for vehicular networks[END_REF] is the maximization of the sum rate with low computational complexity; while in [START_REF] Meng | An interference-aware resource allocation scheme for connectivity improvement in vehicular networks[END_REF], the authors aim to improve the connectivity of vehicular communications using a connectivity index. In [START_REF] Liang | Resource allocation for D2D-enabled Figure 6: Convergence speed of IWFA and SWFA vehicular communication[END_REF], the authors exploit geographical information to propose a joint resource allocation and power control for reliable D2D enabled vehicular communication while considering fading channel information. To meet different QoS requirements, queuing dynamics are also presented. Mei et al. [START_REF] Mei | A latency and reliability guaranteed resource allocation scheme for LTE V2Vcommunication systems[END_REF] investigated dynamic Minimal Cut Sequences (MCS) while allocating the radio bands and the transmit power to guarantee reliability and latency. In [START_REF] Guo | Robust resource allocation with imperfect channel estimation in NOMA-based heterogeneous vehicular net-works[END_REF], the authors presented a resource allocation scheme that supports V2X communications in a D2D-enabled cellular system. The main objective is to maximize the sum of ergodic capacity of V2I links while respecting the delay requirements of V2V links. A bipartite matching algorithm is combined with effective capacity theory to solve the problem. The work in [START_REF] Lin | Resource allocation in vehicular cloud computing systems with heterogeneous vehicles and roadside units[END_REF] proposes a resource allocation scheme based on a semi-Markov decision process for a vehicular cloud computing system. Lin et al. [START_REF] Lin | Optimization-oriented resource allocation management for vehicular fog computing[END_REF] aims to minimize the serving latency by optimally allocating the available bandwidth to four types of services in a vehicular fog computing system. A Lagrangian algorithm is proposed to solve the problem and give the sub-optimal solutions. Then, a second algorithm for an optimal solution selection is presented and analyzed. In [START_REF] Xiao | Spectrum resource sharing in heterogeneous vehicular networks: a noncooperative game-theoretic approach with correlated equilibrium[END_REF], the authors modeled the resource sharing in heterogeneous vehicular networks as a non-cooperative game with correlated equilibrium. They first proposed an incentive mechanism for encouraging macrocells to share spectrum resource with vehicle users. Then, they presented a game theoretical strategy optimization algorithm based on regret-matching and derived the correlated equilibrium solution. Finally, they proposed a power control heuristic for further mitigating the inter road side units' interferences in the non-cooperative game based resource allocation.

Liu et al. [START_REF] Liu | Dynamic Virtual Resource Allocation in 5G Vehicular Communication Networks with Mixed[END_REF] proposed dynamic virtual resource allocation in 5G vehicular communication networks with mixed SCMA/OFDMA. They used SCMA (Sparse Code Multiple Access) and full-duplex to reduce the transmission latency and improve the spectrum efficiency for V2V communications. For vehicularto-infrastructure (V2I) communications, OFDMA and half-duplex technologies are adopted for traffic efficiency information transmission and entertainment content transmission. A virtual resource allocation approach is proposed. It applies a priority mechanism to ensure the successful transmission of road safety information. In [START_REF] Guo | Resource Allocation for High-Reliability Low-Latency Vehicular Communications With Packet Retransmission[END_REF], a spectrum and power allocation scheme is presented with the aim to maximize the sum ergodic capacity of V2I links, while guaranteeing reliability and latency requirements of V2V links. The optimization of the spectrum reusing pattern is achieved by addressing a polynomial time solvable bipartite matching problem. Based on slowly varying large-scale fading channel information, the approach proposed in [START_REF] Guo | Resource Allocation for Vehicular Communications With Low Latency and High Reliability[END_REF] introduces a reliability and latency aware resource allocation that maximizes the throughput of vehicularto-network (V2N) links. A deep reinforcement learning based resource allocation for V2V communications applied to both unicast and broadcast scenarios is proposed in [START_REF] Ye | Deep reinforcement learning based resource allocation for V2V communications[END_REF]. The simulation showed that the proposed approach satisfies the latency constraints on V2V links while minimizing the interference to V2I communications.

Some of the previous research works (i.e., from [START_REF] Zhang | Interference graph-based resource-sharing schemes for vehicular networks[END_REF] to [START_REF] Ye | Deep reinforcement learning based resource allocation for V2V communications[END_REF]), have not thoroughly considered QoS requirements of each V2V user. Generally, these works aims to improve the spectrum allocation of vehicular system as a unit without considering each user individually. For instance, the maximization of the sum data rate may lead to inefficient and unfair rate distributions among the V2V users even if the global sum rate is maximized. It would be more interesting to focus on the satisfaction of each user as well as the whole system in such a competitive environment.

In this paper, we focus on efficient control and allocation of transmission power that ensure a desired data rate for each V2V pair with an optimal transmission power. Hence, we propose a transmission power allocation model using game theory for V2V communication in C-V2X based vehicular network. A generalized Nash equilibrium game model is introduced to distribute and control the transmit power of V2V pairs over dedicated channels. The presented game aims to determine an efficient power distribution that guarantees the required data rate and minimize transmit power for each user.

System Model and Problem Formulation

We consider a vehicular network with multiple vehicular users as depicted in Fig. 1. We consider an urban environment where vehicles move with low speed. The velocity limitation is guaranteed by low in countries. For instance, in France, the vehicles speed cannot exceed the threshold of 50 km/h in urban zones, and this threshold is reduced to 30 km/h in some zones such as residential and school neighborhoods. The V2V users are considered by pairs, each consisting of a transmitter and a receiver. We denote by N and K (N = |N |> K = |K|) the sets of V2V pairs and channels, respectively. In this model, each vehicle communicates with its corresponding receiver over the K channels. The radio resource allocation is performed at the beginning of each Transmission Time Interval (TTI). Our objective is to maximize the information rate of each V2V pair n ∈ N . Notice that for each transmitter, increasing its power at any frequency increases its own data rate. However, this increases this user's interference into other users' communications and is, therefore, detrimental to other users' transmissions. Thus, the system design must consider the tradeoff among the data rates of all users. For example, it is not enough to consider just the maximization of the sum rate, because it does not guarantee a minimal data rate for any one user.

Let p n = [p 1 n , . . . , p K n ] denotes the transmit power vector of n over channel k, the received SINR of n over k-th channel is expressed as:

γ k n = p k n g k nn m =n∈N p k m g k nm + σ k , (1) 
where g k nn , g k nm and σ k n denote the power channel gains, and the variance of Gaussian noise over channel k, respectively. The SINR is considered as the most critical parameter for the QoS as it directly affects the throughput and the bit error rate. The maximum data rate of n is obtained by:

R n (p n , p -n ) = K k=1 log 2 (1 + γ k n ) (2) 
where p -n = [p 1 , . . . , p n-1 , p n+1 , . . . , p N ] represents the transmit power vector of all the users except for user n.

The sum-rate optimal power allocation is often the one that assigns high data rates to some users and low data rates to other users, creating inherent unfairness. Thus, our model must reflect the trade-off between the benefit (i.e., the data rate) and the cost (i.e., the total power over K channels) as well as fairness. Therefore, the optimization problem for each V2V pair n is defined as:

P 1 : max pn R n K k=1 p k n (3) s.t. K k=1 p k n ≤ p max , ∀k ∈ K, ∀n ∈ N (4) γ k n ≥ γ min (5) 
The utility function is quasi-concave, therefore, the optimal solution p * n = {p k * n } K k=1 , for any fixed and non-negative p -n , exists and is unique as shown in [START_REF] Rodriguez | An Analytical Foundation for Resource Management in Wireless Communication[END_REF].

Proposition 1. Given the power vector p -n , the user n's optimal solution for problem P1 is given by

p k n = p k * n , if k = k 0 otherwise (6) 
with k = arg min k p k * n , where p k * n denotes the transmission power of user n to achieve the optimal SINR γ * over channel k, or p max if γ * is not achievable. γ * is the unique positive solution of

γ ∂R n ∂γ = R n (7) 
If in addition to the two constraints of P1, we add the following constraint:

n∈N p k n ≤ P M AX , ∀k ∈ K (8)
which means that the sum of the power allocated to all the users cannot exceed a predefined threshold. Then, the unique optimal solution can be obtained using the geometric Water-Filling algorithm proposed in [START_REF] He | Multichannel Power Allocation for MaximizingEnergy Efficiency in Wireless Networks[END_REF].

It is worthy to mention that the objective function is particularly suitable for wireless systems with energy constraints as minimizing the transmission power means minimizing the energy consumed by the transmission process.

Although problem P1 guarantees a tradeoff between the maximization of the data rate and the minimization of transmission power (reduction of interference ratio), it may not be the best spectrum allocation strategy for all users since some of them does not require high data rates. It will be better for these users to use lower transmission power to achieve desired data rates than maximize the data rate in the cost of using more power. In the next section, we propose a second model that aim to minimize the transmission power whilst achieving the desired data rate of each user. We opt for the game theory to propose an efficient solution for competitive spectrum allocation. Hence, we reformulate the channel allocation and power control problem as a generalized Nash equilibrium game, where the strategy of each player depends on the other players' strategies since the SINR of a user depends on the other users' transmit powers.

Power Control Game

In this section, we describe the Generalized Nash Equilibrium Problem (GNEP) model for radio resource allocation and power control problem.

Generalized Nash Equilibrium Game Formulation

In the standard non-cooperative game, it is usually assumed that the feasible set of the game is composed of full Cartesian product of the individual strategy sets; it is assumed that players can only affect the utilities of other players but not their feasible sets. However, in many real-world problems, such as those of radio resources allocation, each player's strategy set may depend on the strategies of other players. This leads to the introduction of the generalized Nash game, or the generalized Nash equilibrium problem (GNEP for short) defined as a n-person non-cooperative game with non-disjoint strategy sets.

Using the concepts of GNEP, we introduce the power control game as G = N , P n (p -n ) n∈N , u n (.) n∈N , where P n (p -n ) and u n (.) represent the set of player n's feasible strategies and the payoff function, respectively. The players are the V2V pairs Unlike P1, where each user tries to maximize the data ratio whilst minimize the transmission power; in this game, each player compete against other players by choosing the strategy that minimizes his transmission power whilst ensuring a minimum desired achievable data rate. This data rate is chosen by the user itself among the achievable data rates in the system. Hence, the strategy set is defined as:

P n (x -n ) {p n ∈ R N + |R n (p n , p -n ) ≥ R * n } (9) 
where R * n denotes the minimum information rate desired by user n. In the following, we consider the vector R * = R * n N n=1 as the rate profile. Observe that, because of rate constraints, the set of feasible strategies P n (p -n ) and utility function u n of each player depend on all players' strategies, which are collectively denoted by the vector p -n .

Player n's strategy is denoted by p n and his utility function u n depend on all players' strategies, which are collectively denoted by the vector p = [p 1 , . . . , p N ]. Player n's strategy set P n (p -n ) is dependent of the other players' strategies, which are denoted by p -n := (p 1 , . . . , p n-1 , p n+1 , . . . , p N ). For every fixed but arbitrary vector (I.,e., strategy) p -n , player n solves the following optimization problem for his own decision vector p n :

min pn u n (p n , p -n ) = K k=1 p k n (10) subject to p n ∈ P n (p -n ) (11) 
Let P(p) := P 1 (p -1 ) × . . . × P N (p -N ) denotes the Cartesian product of the strategy sets of all players. The corresponding equilibrium for the GNEP G = N , P n (p -n ) n∈N , u n (.) n∈N can be defined as follows:

Definition 1. A tuple of strategies p * := (p * n ) N n=1 ∈ P(p * ) is called a generalized Nash equilibrium of the GNEP if u n (p * n , p * -n ) ≤ u n (x n , p * -n ), ∀p n ∈ P n (-n) ( 12 
)
hold simultaneously for all players n = 1, . . . , N .

The optimal solution p * n = {p k * n } K k=1 , for any fixed and non-negative p -n , exists and is unique. This solution is the well-known water-filling power allocation:

p * n = W F n (p -n ) ( 13 
)
where the water-filling operator W F n (.) is defined as:

[W F n (p n )] k λ n - m =n∈N p k m g k nm + σ k n g k nn + , k ∈ K (14) 
with (x) + max(0, x) and the water level λ n is a constant chosen so that the rate constraint R n (p * n , p -n ) = R * n is met. The W F n (.) operator selects the strategy that minimize the utility function u n while achieving the minimum data rate.

The solutions of the game G, if they exist, form the generalized Nash equilibria that satisfies the following condition: A feasible strategy p * = (p * n ) n∈N is a GNE of the game G if and only if it satisfies the following nonlinear system:

p * = W F n ((p n ), ∀n ∈ N (15) 
Given the above system, the questions that we need to answer are: i) does a solution exist for any rate profile?, ii) if it exists, is it unique?, and iii) how can this solution be reached in a distributed way?

Existence and Uniqueness of GNE

We start by providing sufficient conditions for the existence of a nonempty and bounded solution set of Nash equilibria. Then, we consider the uniqueness of the GNE.

Given the rate profile R * = (R * n ) N n=1 > 0, we define the Z -matrix (i.e., a matrix where its off-diagonal entries are all non-positive) Z k (R * ) ∈ R N ×N as follows:

Z k (R * )      g k 11 -(e R * 1 -1)g k 12 . . . -(e R * 1 -1)g k 1N -(e R * 2 -1)g k 21 g k 22 . . . -(e R * 2 -1)g k 2N . . . . . . . . . . . . -(e R * N -1)g k N 1 -(e R * N -1)g k n2 . . . g k N N      (16) 
Referring to [START_REF] Pang | Distributed Power Allocation With Rate Constraints in Gaussian Parallel Interference Channels[END_REF], the game G admits a nonempty and bounded solution set if Z k (R * ) is a P -matrix ∀k ∈ K. A matrix is called P -matrix if every principal minor is positive. Moreover, any GNE p * is defined as:

   p k * 1 . . . p k * N    ≤    p k 1 . . . p k N    (Z k (R * )) -1    σ k 1 (e R * 1 -1) . . . σ k N (e R * N -1)    , k ∈ K. ( 17 
)
As a proven in [START_REF] Cottle | The Linear Complementarity Problem[END_REF] and [START_REF] Berman | Nonnegative Matrices in the Mathematical Sciences[END_REF], sufficient conditions for Z k (R * ) to be P -matrices are

m =n g k nm g k nn d β nn d β nm < 1 e R * n -1 , ∀m ∈ N , ∀k ∈ K ( 18 
)
where g k nm = g k nm d β nm denotes the normalized channel gain. d β nm represents the distance between n and m; β is the path-loss exponent.

The interpretation of these conditions is as follows: Given the channels and the data rates, the GNE exists if the interference ratio is small, which means the vehicular pairs are sufficiently far apart and the distance between them is beyond a minimum distance.

To provide the conditions of the uniqueness of the GNE, we define the matrix

B k (R * ) ∈ R N ×N as follows: [B k (R * )] nm = e -R * n , if n = m e -R * n .α max nm , otherwise (19) 
where

α max nm = max k∈K g k nm g k mm . m =m g k mm p k m + σ k m σ k n ( 20 
)
Assuming that the solution set is nonempty and bounded, if B k (R * ) is a P -matrix, then the GNE of the game G is unique as proven in [START_REF] Pang | Distributed Power Allocation With Rate Constraints in Gaussian Parallel Interference Channels[END_REF]. However, as for the existence of GNE, its uniqueness depends on the interference level.

Water-Filling algorithms

In this section, we introduce two distributed iterative water-filling algorithms to solve the problem P2. In the distributed solving, each user chooses its optimal strategy independently while perceiving the other users as interferences.

Sequential Water-Filling Algorithm

The proposed sequential iterative water-filling algorithm (IWFA) is an instance of the Gauss-Seidel approach [START_REF] Bertsekas | Parallel and Distributed Computation: Numerical Methods[END_REF] by mapping solution [START_REF] Xiao | Spectrum resource sharing in heterogeneous vehicular networks: a noncooperative game-theoretic approach with correlated equilibrium[END_REF]. In this algorithm, each user sequentially and locally measures the interference-plus-noise power level over the K channels and water-fill based on this level as described in Algorithm 1

When number iterations tends to ∞, IWFA converges linearly to the unique GNE of the game G, if the conditions of existence and uniqueness hold [START_REF] Pang | Distributed Power Allocation With Rate Constraints in Gaussian Parallel Interference Channels[END_REF]. This means that the convergence is guaranteed if the level of interferences level is not too high. However, despite the fact that IWFA has low complexity, it may suffer Algorithm 1 Sequential iterative water-filling algorithm p (0) n =random(non-negative); for i = 0 to number iterations do

p (i+1) n = W F n (p (i) -n ), if i + 1 mod N = n p (i) n , otherwise ∀n ∈ N ; (21) 
end for from high convergence delay when the number of users becomes large. Since each user measures the SINR power level over the K channels and water-fill using this level, the complexity is O(K × N ).

Simultaneous Water-Filling Algorithm

As an alternative of IWFA, we propose a simultaneous water-filling algorithm (SWFA) to reduce the convergence delay. This algorithm is an instance of Jacobi algorithm, where the users update their power strategies simultaneously using the interference level of the previous iteration as described in Algorithm 2 Algorithm 2 Simultaneous water-filling algorithm p (0) n =random(nonegative),∀n ∈ N ; for i = 0 to number iterations do

p (i+1) n = W F n (p (i) -n ), ∀n ∈ N ; (22) 
end for

When number iterations tends to ∞, SWFA converges linearly to the unique GNE of the game G, if the conditions of existence and uniqueness hold [START_REF] Pang | Distributed Power Allocation With Rate Constraints in Gaussian Parallel Interference Channels[END_REF]. Moreover, it converges faster than IWFA with the same low complexity even with a large number of users.

Performance Evaluation

To evaluate the performance of the proposed scheme, we perform extensive simulations. We consider an area with V2V users randomly distributed. Table 1 shows the simulation parameters. We compare the proposed scheme to an approach that aims to maximize the data rate of each user without considering the minimization of the transmission power (Max data rate approach).

We first illustrate the impact of the number of V2V communications at the same time on the power and data rate at the equilibrium. We compare the transmit power of two users U1 and U2 with different QoS requirements. The desired data rates of U1 and U2 equal 10 Mbps and 2 Mbps, respectively using the proposed GNE approach and max data rate approach. As Fig. 2 shows, with a small number of V2V users, the users can achieve the desired data rate with a low power level as the interference ratio is small. When the network density increases, the uses are obliged to increase their transmit powers to overcome the interferences. However, although the data rate is multiplied by 5, the minimal power to achieve 10 Mbps is less than the double of that to achieve 1 Mbps.

With the aim to maximize the data rate with the only constraint to not exceed the allowed maximal power, the two users U1 and U2 achieve high data rates, as depicted by Fig. 3, by using high levels of power even that they need lower rates. Unfortunately, not all the users need these high rates. This allocation approach results that some users are allocated more resources than they need while others are still starving and cannot achieve the required QoS. The data rates as well as the transmission powers decrease as the number of V2V pairs increases because of the interferences. It is obvious that the users need to adjust their power to minimize the interference level and reach the maximum possible data rates at the equilibrium. However, using max rate approach, the two users U1 and U2 cannot achieve the required data rates since as all the users try to maximize their data rates regardless their required rates. The loss is heavier for U1 who needs 10 Mbps and obtain only 1.75 Mbps. In the proposed approach, user U2 maintains the desired rate, while U2's data rate decreases slightly and is still above 7 Mbps even with 100 vehicular pairs.

To evaluate the efficiency of power control allocation, we define the efficiency metric as min(required rate,achieved rate) power (measured in Mbps/W). Fig. 4 depicts how the number of communications influences the efficiency of the spectrum allocation of the compared approaches. From the figure, it is clear that the efficiency of all the approaches decreases with a larger number of users due to the interference factor and the smaller set of feasible allocation strategies. However, the proposed GNE approach outperforms the max rate approach and is still way better than it even when the network becomes denser. This reflects the importance of the allocation method that consider different desired data rates that achieves different QoS requirements.

To show that the proposed GNE based allocation approach outperforms the allocation based on data rate maximization, we evaluate the packet delivery ratio. Fig. 5 depicts that the Max data rate approach offers slightly better results with small number of vehicles. When the network becomes denser, the packet delivery ratio decreases quickly because of collisions and interferences. With our proposed approach, the obtained results are close to those offered by the first approach when the number of vehicles is small. Moreover, the gap between the results of the two approaches becomes wider with the increasing number of vehicles as shown by the figure. Even if the packet delivery ratio decreases in the power minimization based approach, it is still above 80% with 100 users, which is much better than the ratio obtained by Max data rate approach.

We then evaluate the convergence speed of the two water-filling alternatives. We compare two scenarios: with 10 users and with 20 users. We consider a desired data rate of 1 Mbps for the two scenarios. As shown by Fig. 6 and as expected, the simultaneous algorithm SWFA converges quicker than the iterative algorithm IWFA. When the number of vehicle pairs increases, the difference between the convergence speeds becomes more important. This can be explained by the fact that the users update their power allocation strategies sequentially in IWFA, which means that each user must wait for all the strategies to be updated.

In Fig. 7, we compare the power allocation process delay of the proposed SWFA algorithm to an existing game-theoretic approach [START_REF] Xiao | Spectrum resource sharing in heterogeneous vehicular networks: a noncooperative game-theoretic approach with correlated equilibrium[END_REF]. We can notice that the SWFA delay increases slightly with the number of communications contrarily to the other approach where the delay increases quickly. The gap between the delays generated by the two approaches becomes wider and wider with the number of users. The low delays generated by SWFA is the consequence of the simultaneous execution of the water-filling by all the users.

Finally, Table 2 gives a comparison of the proposed GNE approach to some of existing power allocation approaches in terms of main objective, used method, and complexity.

Conclusion

The exploitation of C-V2X technology may improve the different QoS requirements for V2V communication in vehicular networks. However, sharing the spectrum between multiple interfering V2V users with different QoS requirements may be very challenging. In this paper, we have investigated the topic of radio resource and power allocation in vehicular networks. We first have proposed a model that aims to find a tradeoff between the maximization of data rate and minimization of transmission power for each user. However, since vehicles use different services with different QoS requirements in terms of data rate, it would be better to develop an optimization model adapted to different data rate requirements. Hence, we have proposed of non-cooperative game model where the users try to achieve their desired data rate with the minimum transmission power while competing for radio resources. We have formulated the power allocation problem as a Generalized Nash Equilibrium (GNE) game where the transmit power distribution strategies' set of each player depends on the strategies of all the other players. Then, we have demonstrated the existence and uniqueness of Nash equilibrium under certain conditions. Moreover, we have presented two distributed water-filling algorithms that solve the problem with low complexity in a totally distributed manner. These algorithms have been proved to converge to the Nash equilibrium. The simulation results have shown that the proposed scheme can satisfy the V2V users regarding their desired data rate, while minimizing their transmit powers. As a future work, we intend to investigate the impact of vehicles' velocity on the QoS requirements in C-V2X based vehicular networks. 
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Table 1 :

 1 Simulation Parameters

	Parameter		Value
	Area		1 km x 1 km
	Number of V2V pairs [10..100]
	Required data rate	From 1 Mbps to 10
			Mbps
	Number of channels	16
	Max V2V communi-	200 m
	cation distance	
	Maximal	transmit	30 dBm
	power		
	Thermal noise power	-115 dBm/Hz
	density		
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Approach

Main objective Method Complexity [START_REF] Zhang | Interference graph-based resource-sharing schemes for vehicular networks[END_REF] maximize the sum rate Graph theory Low [START_REF] Meng | An interference-aware resource allocation scheme for connectivity improvement in vehicular networks[END_REF] Improve the connectivity Graph theory Low [START_REF] Liang | Resource allocation for D2D-enabled Figure 6: Convergence speed of IWFA and SWFA vehicular communication[END_REF] maximize the ergodic capacity Geographical information - [START_REF] Ye | Deep reinforcement learning based resource allocation for V2V communications[END_REF] maximize the sum rate Deep reinforcement learning very high [START_REF] Lin | Optimization-oriented resource allocation management for vehicular fog computing[END_REF] minimize the latency Lagrangian algorithm high [START_REF] Xiao | Spectrum resource sharing in heterogeneous vehicular networks: a noncooperative game-theoretic approach with correlated equilibrium[END_REF] maximize the overall data rate

Game theory high

Proposed GNE approach minimize the power and achieve the different QoS requirements in terms of data rates Game theory and waterfilling algorithms very low