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An adaptive predictive maintenance model for repairable deteriorating systems using
inverse Gaussian degradation process

K.T. Huynh∗

Université de Technologie de Troyes, Laboratoire Informatique et Société Numérique (LIST3N), 10004 Troyes, France

Abstract

Predictive maintenance is a promising solution to keep the long-run operation of industrial systems at high reliability and low cost.

In this spirit, we aim to develop an adaptive predictive maintenance model for continuously deteriorating single-unit systems subject

to periodic inspection, imperfect repair and perfect replacement. The development consists of four steps: degradation modeling,

maintenance effect modeling, maintenance policy elaboration, and performance evaluation. Compared with existing models, ours

differs in three main aspects. Firstly, we take into account the past dependency of maintenance actions in the degradation modeling

via the random effect of an inverse Gaussian process. Secondly, we use both the system remaining useful life and maintenance

duration to enable dynamic maintenance decision-making. Finally, we take advantage of the semi-regenerative theory to analytically

evaluate the long-run cost rate of maintenance policies whose decision variables are of different nature. We validate and illustrate the

developed adaptive predictive maintenance model by various numerical experiments. Comparative studies with benchmarks under

different maintenance costs and degradation characteristics confirm the flexibility and cost-effectiveness of the model.

Keywords: Adaptive maintenance decision; Imperfect repair; Inverse Gaussian process; Predictive maintenance; Remaining useful

life; Semi-regenerative process

Acronyms

AGAN as-good-as-new

cdf, pdf, sf cumulative distribution function, probability density function, survival function

CR, PR corrective replacement, preventive replacement

IG inverse Gaussian

IM, IR imperfect maintenance, imperfect repair

PdM predictive maintenance

RUL remaining useful life

std standard deviation

Notations

Xt, {Xt}t≥0 system deterioration level at timet ≥ 0, system degradation process

IGP (·, ·), IG (·, ·), IG process, IG distribution

E j , S j end time of thej-th repair/replacement, starting time of the( j + 1)-st repair/replacement

µ0, µ1

(

x j

)

constant andx j-dependent parts of the shape parameterµ
(

x j

)

of IG process{Xt}E+j ≤t≤S j
with XE+j

= x j

λ constant scale parameter of{Xt}t≥0

Φ (·), ϕ (·), standard normal cdf and pdf

T j,k k-th inspection time during the( j + 1)-st repair/replacement cycle
[

E+j ,E
+
j+1

]

f (·; ·, ·), F (·; ·, ·),F̄ (·; ·, ·) pdf, cdf and sf of IG probability law

L, RT j,k system failure threshold, system RUL atT j,k

F̄RT j,k |·,·, S
(

RT j,k | ·, ·
)

sf and std ofRT j,k

ρ0, ρ1 (·, ·) constant duration for a PR or CR, additional degradation-dependent duration for an IR

ρ (·, ·) total duration for an IR

g (· | ·, ·) truncated pdf of the system deterioration level after an IR

Cm, Cr , Co, Ci , Cu inspection cost, repair cost, replacement cost, inactivity cost rate and unavailability cost rate
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C (t), C∞ cumulative maintenance cost up to timet, long-run maintenance cost rate

Nm (t), Nm

([

E+j ,E
+
j+1

])

number of inspections up to timet, and over
[

E+j ,E
+
j+1

]

Nr (t), Nr

([

E+j ,E
+
j+1

])

number of repairs up to timet, and over
[

E+j ,E
+
j+1

]

No (t), No

([

E+j ,E
+
j+1

])

number of replacements up to timet, and over
[

E+j ,E
+
j+1

]

I (t), I
([

E+j ,E
+
j+1

])

cumulative duration of the system inactivity up to timet, and over
[

E+j ,E
+
j+1

]

U (t), U
([

E+j ,E
+
j+1

])

cumulative duration of the system unavailability up to timet, and over
[

E+j ,E
+
j+1

]

∆E j+1 length of the(k+ 1)-st Markov renewal cycle
[

E+j ,E
+
j+1

]

ψ (·, ·, ·) waiting time interval before a maintenance

δ, σ, α, τ decision variables of the(δ, σ, α, τ) policy

δ, ξ, ω, η decision variables of the(δ, ξ, ω, η) policy
{

Yj

}

j≥N
Markov chain describing the system deterioration at repair/replacement times (Yj = XE+j

)

π (·) stationary measure of
{

Yj

}

j≥N
P (·, ·) transition kernel of

{

Yj

}

j≥N
Eπ [·] expectation with respect to the stationary measureπ

1{·}, δ0 (·) indicator function, Dirac mass at 0

1. Introduction

With usage, age and environmental impacts, many industrialsystems suffer continuous degradation leading eventually to random

failure, no matter how good they are designed. Cutting toolsare subject to cumulative wear [1], hydrocarbon pipelines undergo

corrosion [2], hydraulic structures suffer erosion [3], water-feeding turbo-pumps of nuclear powerplants endure fatigue crack growth

[4], etc. The failure of such systems causes damage not only to the industry, but also to the society and the environment. Therefore,

keeping their efficient operation at high reliability is vital to enterprises, especially in the context of aggressive global competition.

When the systems are repairable, various maintenance actions, such as inspection, testing, repair, replacement, etc., are conceivable

[5]. Nevertheless, these actions are themselves time-consuming and costly, seeking an effective maintenance solution to gain a

competitive advantage is thus of great concern to enterprises.

Among existing solutions (see e.g., [6] for a recent overview), predictive maintenance (PdM) could be most appropriate[7]. It uses

collected condition monitoring data to predict the future system health in real-time, and through that knowledge, enables maintenance

decision-making [8]. As such, the PdM allows to save resources by carrying out proper and timely actions only when necessary. This

definite advantage, together with the dissemination of computer-based monitoring technologies, has promoted the rapid development

of PdM models for continuously deteriorating systems during the last two decades [9]. Basically, the PdM modeling includes four

connected steps [10]: (i) continuous degradation modeling, (ii ) maintenance effects modeling, (iii ) maintenance policy elaboration,

and (iv) performance assessment.

1.1. State-of-the-art

Continuous degradation modeling is critical for system health prognostics. In the current state-of-the-art, it relies mostly on Lévy

or diffusion stochastic processes that fit in with condition monitoring data [11]. The Gamma process is the most common choice

for monotonic degradation because of its physical meaning and mathematical tractability [12]. When this choice fails (e.g., in the

case of GaAs laser degradation data [13] or energy pipeline corrosion data [14]), the inverse Gaussian (IG) process [15]could be a

good alternative. Indeed, it is proved more flexible than theGamma process in incorporating random effects and covariates, while

still holding similar physical and mathematical meanings [16]. This explains why the IG process has recently attractedconsiderable

attentions, especially in accelerated degradation test optimization [17] and in the system remaining useful life (RUL) assessment [18].

However, up to now, its applications in PdM modeling are still very scarce despite its versatility [19].

Maintenance effects modeling describes the impacts of maintenance actionson the system degradation behavior. Perfect main-

tenance with as-good-as-new (AGAN) effect is certainly the best-known assumption in the literature [20]. However, it cannot cover

numerous realistic actions whose imperfectness may be induced by influential factors such as human errors, spare parts quality, lack

of materials, lack of maintenance time, etc. To meet this practical need, imperfect maintenance (IM) models (see [21] for a complete

overview) have been extensively studied under the assumption that the system condition after a maintenance is worse-than-new but

better-than-old. Despite those efforts, modeling IM effects in the context of degradation processes is still not active, and mainly

mimics the ideas of lifetime-based IM models (see e.g., [22–25]). Furthermore, in most existing models, past and present IM actions

are linked by the memory assumption [26]. This assumption ishowever not easily verified in practice owing to the stochastic nature
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of degradation processes. How to break this strong assumption to reach more feasible past-dependent IM models remains an open

issue.

PdM policy specifies actions to be adopted at decision epochsbased on the system health evolution. In the literature, theelabo-

ration of such a policy has mainly focused on inspection schedules and thresholds for preventive maintenance decision-making [27].

A policy with periodic inspection and fixed degradation-based threshold is perhaps the simplest one (see e.g., [28, 29]). This sim-

plification allows easy applications in practice, but also implies a non-optimal maintenance policy. Therefore, much attentions have

been paid to make the policy more flexible seeking higher performance. Some authors suggested non-periodic inspection schemes

by adapting the inter-inspection intervals to the system age [30], system degradation level [31], system degradation rate [32], system

RUL [33], or to the working environment [34]. Meanwhile, some others proposed using varied preventive maintenance thresholds

(see e.g., [19, 35]). These solutions usually lead to very complex, even unfeasible, maintenance policies because of a high number

of decision variables. So, a big challenge is to build an adaptive PdM policy, on the one hand, simple enough to facilitatepractical

applications, and on the other hand, sophisticated enough to fulfill certain performance criteria (e.g., cost, availability, etc.).

The ultimate goal of performance assessment is to optimize maintenance policies by adjusting their decision variables(inter-

inspection intervals, maintenance thresholds, etc.) so that the maintenance performance is maximum. As far as economic criteria

and mathematical models are concerned, the performance assessment can be done by two main approaches [36]. The first approach

relies on the (semi)-Markov decision process and dynamic programming or policy iteration tools [37]. It requires transforming

the continuous-state space of degradation processes into the associated discrete-state space [19, 38]. Note, however, that such a

discretization could be undesirable in some cases where theintrinsic continuity of degradation processes is more significant for

maintenance decision-makers [10]. The second approach allows avoiding this obstacle. Indeed, using the (semi)-regenerative theory

or (Markov)-renewal theory [39], this approach can be effectively applied for degradation processes with continuous-state space [40],

as well as with discrete-state space [41]. More importantly, it results in full analytical cost models rather than numerical solutions

given by the first approach. Recently, several authors have used the semi-regenerative technique to evaluate and optimize the long-run

maintenance cost rate of static maintenance policies (see e.g., [42, 43]). This technique is even more meaningful in thecontext of

adaptive PdM policies [40, 44], but more effort in mathematical formulation is, no doubt, required [45].

1.2. Contributions and organization

In this paper, our ambition is to seek answers to the above-mentioned shortcomings of the PdM modeling. Consequently, a new

adaptive PdM model is developed for a continuously deteriorating single-unit system subject to periodic inspection, imperfect repair

(IR) and perfect replacement. The inspection and replacement are assumed memoryless, while the repair is past-dependent in the

sense that it cannot bring the system back to a degradation level better than the one reached at the last repair [29]. To characterize such

an imperfect effect, we sample the system degradation level after a repair from a probability distribution truncated by the degradation

levels just before the current repair and just after the lastrepair/replacement. This allows breaking the memory assumption usually

made in the IM modeling (see e.g., arithmetic reduction model [22] or Kijima’s type model [25]). We also take into accountthe

impact of maintenance efficiency on the system degradation behavior via the random effect of an IG degradation process. Indeed,

expressing its shape parameter as an increasing function ofthe degradation level returned by a system repair/replacement, we consider

that the system degradation is faster and more chaotic when the maintenance efficiency is lower. Some real-world examples of this

phenomenon are the degradation paths of gyroscopes and draught fans provided respectively in [46] and [47]. Besides, the considered

maintenance actions consume different duration and incur different costs. All of them should be properly coordinated intoa unifying

policy to enable the best maintenance performance. Using the system RUL and the maintenance duration as decision variables, we

build an adaptive PdM policy that allows (i) to determine the right moment for a switch from periodic inspection to a maintenance, (ii )

to dynamically schedule maintenance times, and (iii ) to select the suitable maintenance action (i.e., either IRor perfect replacement)

at a scheduled time. Interestingly, the versatility of decision variables offers a good compromise between simplicity and performance.

To assess the economic performance of the policy in the long-run, we analyze the probabilistic behavior of the maintained system at

steady state, and analytically evaluate its maintenance cost rate using the semi-regenerative technique. The main difficulty lies in the

difference in the nature of decision variables. We thus transform all these variables into associated degradation levels toovercome

this obstacle. Various numerical experiments and comparative studies with benchmarks under different system configurations allow

to illustrate the developed adaptive PdM model, and to confirm its cost-effectiveness.

The paper remainder is organized as follows. Section 2 describes the considered maintained system. Its probabilistic behavior at

steady state is analyzed in Section 3. Sections 4 is devoted to the cost model formulation and optimization for the maintained system.

Section 5 gives more insight into the effectiveness of the proposed adaptive PdM model thanks to numerical assessments. Finally,

conclusions and perspectives are discussed in Section 6.
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2. Description of the maintained system

Let us consider a continuously deteriorating single-unit system subject to inspection, imperfect repair and perfect replacement.

Its health state at timet ≥ 0 is completely characterized by a scalar random variableXt ≥ 0, with x j = 0. In the absence of repair or

replacement, the system evolves from its new state (i.e.,Xt = 0) to its failure state (i.e.,Xt ≥ L) following an increasing stochastic

degradation process{Xt}t≥0. Each of maintenance actions has its own effects on the behavior of{Xt}t≥0 and incurs different cost. From

an economic viewpoint, they should be coordinated into a unified adaptive PdM policy. The aim of this section is to model such a

maintained system based on the assumption that{Xt}t≥0 acts like an inverse Gaussian process. To facilitate the comprehension, the

following description focuses on the( j + 1)-st repair/replacement cycle which is the time interval between two successive end-of-

repair/replacement timesE j andE j+1, with E0 = 0 and j ∈ N.

2.1. Degradation modeling

Let S j be the starting time of a repair/replacement within the cycle
[

E+j ,E
+
j+1

]

, the system degradation over
[

E+j ,S j

]

evolves from

XE+j
= x j following a stationary IG process with shape parameterµ

(

x j

)

and scale parameterλ > 0

{Xt}E+j ≤t<S j
∼ IGP

(

µ
(

x j

)

, λ
)

. (1)

The shape functionµ
(

x j

)

is the sum of two elements: (i) a constantµ0 > 0 characterizing the proper dynamics of the system

degradation, and (ii ) a functionµ1

(

x j

)

≥ 0 representing the effects of repair/replacement actions beforeE j on the dynamics of

{Xt}E+j ≤t<S j
via the recovery degradation levelx j

µ
(

x j

)

= µ0 + µ1

(

x j

)

. (2)

As in [48], we shall expressµ1

(

x j

)

as an increasing function ofx j with µ1 (0) = 0 to take into account the phenomenon that the lower

the efficiency of past repairs, the more the system is chaotic and vulnerable to degradation. Therefore, the degradation increment

between two timessandt, with E+j ≤ s< t ≤ S j , is IG distributed with shape parameterµ
(

x j

)

· (t − s) and scale parameterλ · (t − s)2,

i.e., Xt − Xs ∼ IG
(

µ
(

x j

)

· (t − s) , λ · (t − s)2
)

. Its probability density function (pdf), cumulative distribution function (cdf) and

survival function (sf) are respectively

f
(

x; µ
(

x j

)

· (t − s) , λ · (t − s)2
)

=

√

λ · (t − s)2

2πx3
· exp





















− λ

2µ2
(

x j

) ·

(

x− µ
(

x j

)

· (t − s)
)2

x





















· 1{x>0}, (3)

F
(

x; µ
(

x j

)

· (t − s) , λ · (t − s)2
)

= Φ
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· Φ
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, (4)

F̄
(

x; µ
(

x j

)

· (t − s) , λ · (t − s)2
)

= Φ

















−
√

λ

x
·
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µ
(
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) − (t − s)

































− exp
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(
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· Φ
















−
√

λ
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·
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µ
(

x j

) + (t − s)

































, (5)

where 1{·} is the indicator function which equals 1 if the argument is true and 0 otherwise,Φ (·) denotes the standard normal cdf

Φ (x) =
1
√

2π

∫ x

−∞
exp

(

− t2

2

)

dt. (6)

These probability functions are the basis to develop the stationary law and the cost model of the maintained system (see Sections 3

and 4). The IG degradation processIGP
(

µ
(

x j

)

, λ
)

has the mean rateµ
(

x j

)

and the variance rateµ3
(

x j

)

/λ over
[

E+j ,E
+
j+1

]

. Despite

its stationarity over a given repair/replacement cycle, this process is non-stationary from cycle to cycle owing to the randomness of

x j , j ∈ N.

2.2. Inspection and remaining useful life estimation

The inspection is merely an information-taking operation that reveals perfectly the current hidden degradation levelof the system.

We assume that the inspection takes negligible time and has no effect on the system degradation behavior. This is why the system

degradation level just before and just after ak-th inspection time,k ∈ N
∗, during the cycle

[

E+j ,E
+
j+1

]

remains unchanged (i.e.,

XT−j,k
= XT+j,k

= XT j,k).

Given XT j,k, we can further access the system RUL using the degradation modelIGP
(

µ
(

x j

)

, λ
)

. Indeed, letL denote a fixed

failure threshold, if no more maintenance action is planned, the system RUL atT j,k given XT j,k = x j,k < L andXE+j
= x j < x j,k is
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defined by the random variable

RT j,k = inf
{

r > 0 : XT j,k+r ≥ L | XT j,k = x j,k,XE+j
= x j

}

. (7)

We are interested in the sf and the standard deviation (std) of RT j,k which are measures of thepredictive system reliabilityand of the

prognosis precisionrespectively. The increasing ofIGP
(

µ
(

x j

)

, λ
)

allows to compute the sf ofRT j,k at r as

F̄RT j,k |XT j,k ,XE+j

(

r | x j,k, x j

)

= P
(

XT j,k+r < L | XT j,k = x j,k,XE+j
= x j

)

= F
(

L − x j,k; µ
(

x j

)

· r, λ · r2
)

, (8)

whereFXs+r−Xs (·) is given by (4). Meanwhile, the std ofRT j,k can be obtained from̄FRT j,k |XT j,k ,XE+j

(

r | x j,k, x j

)

as follows

S
(

RT j,k | XT j,k = x j,k,XE+j
= x j

)

=
µ
(

x j

)

λ

√

1
4
+ β2

(

β2 + 3
)

Φ (β) + β
(

β2 + 2
)

ϕ (β) − ((

β2 + 1
)

Φ (β) + βϕ (β)
)2
, (9)

whereβ ≔ β
(

x j,k, x j

)

=

√

λ ·
(

L − x j,k

)

/µ
(

x j

)

. We remark that both̄FRT j,k |XT j,k ,XE+j

(

r | x j,k, x j

)

andS
(

RT j,k | XT j,k = x j,k,XE+j
= x j

)

are independent of the inspection timeT j,k, and always decreasing with respect tox j,k or x j (see also Subsection 2.6). This

property makes these measures more versatile for predictive maintenance than the degradation levelsXT j,k andXE+j
. We shall use

S
(

RT j,k | XT j,k = x j,k,XE+j
= x j

)

to decide a switching from an inspection to a maintenance at an inspection timeT j,k, andF̄RT j,k |XT j,k ,XE+j

(

r | x j,k, x j

)

for maintenance planning because of the time markr.

2.3. Replacement and repair

The replacement is a perfect action that always makes the system AGAN independently of previous system states and interven-

tions. It takes a fixed durationρ0 due to, e.g., the material set-up, the system dismantling and reassembly, etc. During the replacement

duration, the system is assumed inactivated. Therefore, ifa replacement starts atS j , it will end atE j+1 = S j + ρ0. The corresponding

system degradation levels areXS j = XE−j+1
andXE+j+1

= 0.

The repair, on the contrary, is an IM action whose duration and efficiency depend closely on the system degradation levels returned

by the last replacement/repairXE+j
and at the beginning of the current repairXS j . More concretely, the repair duration includes not

only a fixed durationρ0 due to the same reasons as in the replacement, but also a variable durationρ1

(

XE+j
,XS j

)

depending onXS j

andXE+j

ρ
(

XE+j
,XS j

)

= ρ0 + ρ1

(

XE+j
,XS j

)

, (10)

with ρ1 (0, 0) = 0. Especially,ρ1

(

XE+j
,XS j

)

≥ 0 is an increasing function ofXE+j
andXS+j

, because a higher degraded system (i.e.,

higher XS j ) which has been undergone more repairs since the last renewal (hence higherXE+j
) requires naturally a longer repair

duration [44]. Throughout the repair, the system is inactivated:XS j = XE−j+1
with E j+1 = S j + ρ

(

XE+j
,XS j

)

. Once the repair ends, the

system degradation is returned to a random level betweenXE+j
andXS j (i.e.,XE+j

≤ XE+j+1
≤ XS j ). Such a condition implies the impact

of previous maintenance actions on the current repair (i.e., XE+j
≤ XE+j+1

) while retaining the inherent better-than-old characteristic

(i.e.,XE+j+1
≤ XS+j

) [21]. Evidently, a system, which has been repaired severaltimes since the last renewal, is subject to lower efficiency

even the same repair quality [29, 49, 50]. To model such a repair efficiency, we representXE+j+1
as a random sample of a truncated pdf

with lower boundXE+j
and upper boundXE−j+1

[51]

XE+j+1
∼ g

(

x j+1 | XE+j
,XS j

)

. (11)

This model allows avoiding the strong memory assumption usually made in the IM modeling:the system after a repair is put back to

an exact deterioration level where it was in the past(see e.g., [22] and [25]).

2.4. Maintenance costs

We denoteCm, Cr andCo the constant unit costs for inspection, repair and replacement respectively.Cr andCo include already

the inspection cost. The effects of maintenance actions on the system degradation implythe relationshipCo > Cr > Cm > 0. Besides,

depending on the system state at a maintenance time, additional costs could be considered. During a preventive maintenance, a

running system is inactivated at a constant cost rateCi . Whereas, a failed system induces an unavailability cost atconstant rate

Cu from the failure time to the end of the next corrective maintenance (i.e., also including the required duration for the corrective

maintenance). Since the system unavailability is unforeseen, it incurs a higher cost rate than the system inactivity (i.e.,Cu > Ci > 0).

Therefore, the cumulative maintenance cost incurred in thetime interval [0, t] can be expressed as

C (t) = Cm · Nm (t) +Cr · Nr (t) +Co · No (t) +Ci · I (t) +Cu · U (t) , (12)
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whereNm (t), Nr (t) andNo (t) denote respectively the number of inspections, of repairs and of replacements up to timet, I (t) and

U (t) are the total duration of system inactivity and unavailability in [0, t]. Our aim is to build an adaptive PdM policy allowing the

lowest long-run maintenance cost rate [52, chapter 11]

C∞ = lim
t→∞

C (t)
t
, (13)

with C (t) given from (12). Note thatCm, Cr andCo are given incost unit, Ci , Cu andC∞ are given incost unit/time unit, andI (t),

U (t) are given intime unit. The cost unit may be U.S. Dollar, Euro, British Pound, etc.,while time unit may be month, quarter, year,

etc. The cost unit may be U.S. Dollar, Euro, British Pound, etc., and time unit may be month, quarter, year, etc.

2.5. Policy structure

Seeking the lowestC∞ leads to two questions: (i) when should we intervene on the system? and (ii ) what should we do at an

intervention time? Following the PdM concept, we rely on thestd of RUL to decide, at a periodic inspection time, whether to continue

inspection or to switch to maintenance. If the latter is chosen, we next use the sf of RUL to determine a proper maintenancetime. The

nature of maintenance operation (i.e., repair or replacement) will depend on associated maintenance duration. As in [53], we prefer

using a parametric structure (with decision variablesδ, σ, α andτ) to build the desired PdM policy. Consequently, the maintenance

plans and decision rules over the( j + 1)-st maintenance cycle
[

E+j ,E
+
j+1

]

, with XE+j
, are schematized in Figure 1.

start

E j, XE+j

T j,k ← E j

S
(

RT j,k | XT j,k,XE+j

)

≥ σ?

inspection at
T j,k ← T j,k + δ

XT j,k ≥ L?

CR starts atT j,k

E j+1 ← T j,k + ρ0

XE+j+1
← 0

stop

maintenance plan at
S j ← T j,k + ψ

(

α,XT j,k ,XE+j

)

XS j ≥ L?

CR starts atS j

E j+1 ← S j + ρ0

XE+j+1
← 0

PR starts atS j

E j+1 ← S j + ρ0

XE+j+1
← 0

ρ
(

XE+j
,XS j

)

≥ τ?

IR starts atS j

E j+1 ← S j + ρ
(

XE+j
,XS j

)

XE+j+1
∼ g

(

y | XE+j
,XS j

)

stop stop stop

input/output
block

process block

decision block

yes

no

no

yes yes

no no

yes

Figure 1: Maintenance plan and decision rules over the( j + 1)-st maintenance cycle
[

E+j , E
+
j+1

]

The system is regularly inspected at timesT j,k = E j +k · δ, with k = 0, 1, 2, . . ., and inspection periodδ > 0. Note that the moment

T j,0 = E j of the cycle
[

E+j ,E
+
j+1

]

is just a “fictional” inspection time, at which the system degradation level has already known by the

last repair/replacementXT+j,0
= XE+j

. This is why no cost is counted atT j,0 = E j . GivenXT j,k, the following rules are adopted.

1. If XT j,k ≥ L, the system has been failed within the interval
(

T j,k−1,T j,k

]

, and a corrective replacement (CR) starts immediately

at T j,k. After the CR, the system is AGAN (i.e.,XE+j+1
= 0 with E j+1 = T j,k + ρ0).
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2. If XT j,k < L andS
(

RT j,k | XT j,k ,XE+j

)

< σ, the system is still running atT j,k and its RUL can be predicted with an acceptable

precision. No further inspection is thus needed, and the next maintenance is planned atS j = T j,k + ψ
(

α,XT j,k,XE+j

)

with

ψ
(

α,XT j,k,XE+j

)

=

{

r ≥ 0 | F̄RT j,k |XT j,k ,XE+j

(

r | x j,k, x j

)

= α

}

(14)

and 0≤ α ≤ 1. The decrease of̄FRT j,k |XT j,k ,XE+j

(

r | x j,k, x j

)

allows dynamic maintenance times adaptive to the degradation levels

XE+j
andXT j,k while keeping the system reliability at a desired levelα. The choice of a maintenance action depends on the

degradation levelXS j and on the associated maintenance duration.

(a) If XS j ≥ L, the system has been failed within the interval
(

T j,k,S j

]

, a CR with durationρ0 is triggered immediately atS j

to reset the system to an AGAN state (i.e.,XE+j+1
= 0 with E j+1 = S j + ρ0).

(b) If XS j < L andρ
(

XE+j
,XS j

)

≥ τ, the system is still running atS j , and the “long” durationρ
(

XE+j
,XS j

)

implies that an

imperfect repair (IR) is not appropriate for the current maintenance. This is why a preventive replacement (PR) should be

carried out immediately atS j . After the PR, the system is AGAN (i.e.,XE+j+1
= 0 with E j+1 = S j + ρ0).

(c) If XS j < L andρ
(

XE+j
,XS j

)

< τ, we perform an IR immediately atS j on the running system because of its economic

efficiency. After the preventive IR, the system degradationXE+j+1
returns to a random level betweenXE+j

andXS j such that

XE+j+1
∼ g

(

y | XE+j
,XS j

)

, whereE j+1 = S j + ρ
(

XE+j
,XS j

)

andg is a known truncated pdf.

3. If XT j,k < L and S
(

RT j,k | XT j,k,XE+j

)

≥ σ, additional inspections are needed to reinforce the precision of RUL prediction.

Accordingly, the decisions is postponed to the next inspection time atT j,k+1 = T j,k + δ.

The next maintenance cycle begins atE+j+1 with initial deterioration levelXE+j+1
. For this maintenance policy, the decision variablesδ,

σ, α andτ are parameters to be optimized. To highlight their importance, we call the policy(δ, σ, α, τ).

2.6. Numerical illustration

For a numerical illustration, we consider a maintained single-unit system defined byL = 15, µ
(

XE+j

)

= 1 + 0.1 · XE+j
, λ = 4,

ρ
(

XE+j
,XS j

)

= ρ0 + ρ1

(

XE+j
,XS j

)

= 1 + 0.1 · XE+j
+ 0.2 · XS j , a continuous uniform pdf forg

(

x j+1 | XE+j
,XS j

)

, δ = 3, σ = 1.1,

α = 0.95 andτ = 4. We first sketch in Figures 2a and 2b the shapes ofF̄RT j,k |XT j,k ,XE+j

(

r | x j,k, x j

)

andS
(

RT j,k | XT j,k = x j,k,XE+j
= x j

)

respectively. Obviously, they are decreasing with respectto x j,k andx j , hence easily controllable and more informative than the sole
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(b) S
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RT j,k | XT j,k = xj,k, XE+j
= xj

)

Figure 2: Shapes of the sf and std of the system RUL

XT j,k or XE+j
. We next represent the schematic behavior of the maintainedsystem and the associated maintenance actions in Figure 3.

For a specific explanation, let us describe what happens on the system during the fourth maintenance cycle
[

E+3 ,E
+
4

]

(see Figure 3a),

the system behavior and the maintenance actions over other cycles are similar. As shown in Figure 3b, the std of the systemRUL

at the three first inspection times of the cycle is still greater than the thresholdσ, so further inspections with periodδ are needed.

At the fourth inspection timeT3,4, the RUL stdS
(

RT3,4 | XT3,4,XE+3

)

< σ, no more inspection is thus required, and a maintenance

action is plannedψ
(

α,XT3,4,XE+3

)

time unit later as depicted in Figure 3c. At the maintenance time S3 = T3,4 + ψ
(

α,XT3,4,XE+3

)

, the

system degradation level is still smaller than the failure thresholdL (see Figure 3a), so a preventive action is immediately carried

out on the running system. Since the duration required for a repairρ
(

XE+3
,XS3

)

is less than the thresholdτ, the maintenance action

7
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(b) RUL sdt at inspection times
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(c) Waiting time before the beginning of maintenance actions
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(d) Maintenance duration

Figure 3: Schematic behavior of the maintained system underthe policy(δ, σ, α, τ)

is an IR instead of a PR. During the IR, the system is inactivated. Afterρ
(

XE+3
,XS3

)

time unit, the system degradation is returned

to a levelXE+4
∼ g

(

x4 | XE+3
,XS3

)

, and the maintenance cycle ends. We can find that the fixed thresholdsσ andτ in Figures 3b and

3d correspond to variable degradation thresholdsxσ and xτ in Figure 3a (see also Subsection 3.1 for the definition ofxσ and xτ).

Besides, a single thresholdα can match with various waiting times depending on the systemdegradation state (see Figure 3c). This

high flexibility confirms the versatility of the(δ, σ, α, τ) policy without a large number of decision variables.

3. Probabilistic behavior of the maintained system at steady state

Evaluation of the cost rateC∞ requires the knowledge about the probabilistic degradation behavior of the maintained system at

steady state [10]. In this section, we take advantage of the semi-regenerative properties of the degradation process{Xt}t≥0 to derive

such a stationary measure. Indeed, givenXE+j
returned by a repair or replacement at timeE j , j ∈ N, the future{Xt}t>E j

of the

degradation process{Xt}t≥0 is conditionally independent of its past{Xt}0≤t<E j
. Following [54],{Xt}t≥0 appears as a semi-regenerative

process with an embedded Markov renewal process
{

Yj ,E+j
}

j∈N
, whereYj = XE+j

denotes the system degradation level at the semi-

regenerative timeE+j . The Markov chain
{

Yj

}

j∈N
starts fromY0 = 0, takes the value in the continuous state space [0, L), and comes

back to 0 (i.e., a regeneration set) almost surely due to replacement actions. According to [55, Chapter VII, Section 3],
{

Yj

}

j∈N
is

Harris recurrent and has an unique stationary measureπ which is the solution of the following invariance equation [56, Chapter 10]

π
(

dx j+1

)

=

∫

[0,L)
P

(

x j , dx j+1

)

π
(

dx j

)

, (15)

whereP
(

x j , dx j+1

)

stands for the transition pdf of
{

Yj

}

j∈N
from XE+j

= x j to XE+j+1
= x j+1. We seek hereinafter a closed-form expression

of P
(

x j , dx j+1

)

, and thence a solution for (15).
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3.1. Transition probability density function P
(

x j , dx j+1

)

The main difficulty in formulatingP
(

x j , dx j+1

)

is the difference in the nature of the decision thresholdsα andτ. To overcome

this obstacle, we first convert all these thresholds into thecorresponding degradation levelsxσ
(

x j

)

andxτ
(

x j

)

such that

xσ
(

x j

)

= inf
{

x j ≤ x j,k ≤ L : S
(

RT j,k | XT j,k = x j,k,XE+j
= x j

)

≤ σ
}

, (16)

and

xτ
(

x j

)

= min
{

L, inf
{

xs ≥ x j : ρ
(

XE+j
= x j ,XS j = xs

)

≥ τ
}}

, (17)

whereS
(

RT j,k | XT j,k = x j,k,XE+j
= x j

)

andρ
(

XE+j
= x j ,XS j = xs

)

are given from (9) and (10) respectively. Next, we exhaustively ana-

lyze all maintenance scenarios over
[

E+j ,E
+
j+1

]

based on the system degradation, and effectuate associated probabilistic computations.

Consequently, we obtain the closed-form expression ofP
(

x j , dx j+1

)

as

P
(

x j , dx j+1

)

= δ0

(

dx j+1

)

· p
(

x j

)

+ f
(

x j+1 | x j

)

· dx j+1, (18)

whereδ0 (·) stands for the Dirac mass at 0,p
(

x j

)

denotes the probability that the system is AGAN due to a PR or CR

p
(

x j

)

= 1{xτ(x j)≤xσ(x j)} · 1{0≤x j≤L} +
(

p1

(

x j

)

+ p2

(

x j

)

+ p3

(

x j

)

+ p4

(

x j

))

· 1{0≤x j<xσ(x j)<xτ(x j)}
+ p5

(

x j

)

· 1{xσ(x j)≤x j<xτ(x j)} + 1{xσ(x j)<xτ(x j)≤x j<L}, (19)

and f
(

x j+1 | x j

)

is the pdf of the system degradation state after an IR

f
(

x j+1 | x j

)

=
(

f1
(

x j+1 | x j

)

+ f2
(

x j+1 | x j

))

· 1{0≤x j<xσ(x j)<xτ(x j)} + f3
(

x j+1 | x j

)

· 1{xσ(x j)≤x j≤xτ(x j)}. (20)

In (19), p1

(

x j

)

, p2

(

x j

)

, p3

(

x j

)

, p4

(

x j

)

andp5

(

x j

)

are respectively the transition probabilities conditional on XE+j
= x j such that

• a PR or a CR starts after 1 inspection period (withXT j,1 ≥ xτ
(

x j

)

)

p1

(

x j

)

= F̄
(

xτ
(

x j

)

− x j ; µ
(

x j

)

· δ, λ · δ2
)

, (21)

• a PR or a CR starts after 1 inspection period (withxσ
(

x j

)

≤ XT j,1 < xτ
(

x j

)

)

p2

(

x j

)

=

∫ xτ(x j)

xσ(x j)
F̄

(

xτ
(

x j

)

− w; µ
(

x j

)

· ψ
(

α,w, x j

)

, λ · ψ2
(

α,w, x j

))

· f
(

w− x j ; µ
(

x j

)

· δ, λ · δ2
)

dw, (22)

• a PR or a CR starts after at least 2 inspection periods (withXT j,k+1 ≥ xτ
(

x j

)

, k = 1, 2, . . .)

p3

(

x j

)

=

∫ xσ(x j)

x j

F̄
(

xτ
(

x j

)

− w; µ
(

x j

)

· δ, λ · δ2
)

·
∞
∑

k=1

f
(

w− x j ; µ
(

x j

)

· kδ, λ · (kδ)2
)

dw, (23)

• a PR or a CR starts after at least 2 inspection periods (withxσ
(

x j

)

≤ XT j,k+1 < xτ
(

x j

)

, k = 1, 2, . . .)

p4

(

x j

)

=

∫ xτ(x j)

xσ(x j)
F̄

(

xτ
(

x j

)

− z; µ
(

x j

)

· ψ
(

α, z, x j

)

, λ · ψ2
(

α, z, x j

))

×














∫ xσ(x j)

x j

f
(

z− w; µ
(

x j

)

· δ, λ · δ2
)

·
∞
∑

k=1

f
(

w− x j ; µ
(

x j

)

· kδ, λ · (kδ)2
)

dw















dz, (24)

• a PR or a CR starts without any inspection before

p5

(

x j

)

= F̄
(

xτ
(

x j

)

− x j ; µ
(

x j

)

· ψ
(

α, x j , x j

)

, λ · ψ2
(

α, x j , x j

))

, (25)

while in (20), f1
(

x j+1 | x j

)

, f2
(

x j+1 | x j

)

and f3
(

x j+1 | x j

)

are the transition pdf conditional onXE+j
= x j such that
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• an IR starts after 1 inspection period

f1
(

x j+1 | x j

)

=

∫ xτ(x j)

xσ(x j)
1{x j+1,0,x j≤x j+1≤z} · g

(

x j+1 | x j , z
)

×














∫ xτ(x j)

xσ(x j)
1{w<z} · f

(

z− w; µ
(

x j

)

· ψ
(

α,w, x j

)

, λ · ψ2
(

α,w, x j

))

· f
(

w− x j ; µ
(

x j

)

· δ, λ · δ2
)

dw















dz, (26)

• an IR starts after at least 2 inspection periods

f2
(

x j+1 | x j

)

=

∫ xτ(x j)

xσ(x j)
1{x j+1,0,x j≤x j+1≤s} · g

(

x j+1 | x j , s
)

·














∫ xτ(x j)

xσ(x j)
1{z<s} · f

(

s− z; µ
(

x j

)

· ψ
(

α, z, x j

)

, λ · ψ2
(

α, z, x j

))

×














∫ xσ(x j)

x j

f
(

z− w; µ
(

x j

)

· δ, λ · δ2
)

·
∞
∑

k=1

f
(

w− x j ; µ
(

x j

)

· kδ, λ · (kδ)2
)

dw















dz















ds, (27)

• an IR starts without any inspection before

f3
(

x j+1 | x j

)

=

∫ xτ(x j)

x j

1{x j+1,0,x j≤x j+1≤w} · g
(

x j+1 | x j ,w
)

· f
(

w− x j ; µ
(

x j

)

· ψ
(

α, x j , x j

)

, λ · ψ2
(

α, x j , x j

))

dw, (28)

where f (·; ·, ·) andF̄ (·; ·, ·) are derived from (3) and (5).

3.2. Stationary probability density functionπ
(

dx j+1

)

From the closed-form expression (18) ofP
(

x j , dx j+1

)

, we can derive the stationary pdfπ
(

dx j+1

)

as a convex combination of Dirac

mass function and a continuous pdf

π
(

dx j+1

)

= a · δ0

(

dx j+1

)

+ (1− a) · b
(

x j+1

)

· 1{0<x j+1<L}dx j+1, (29)

where

a =
1

1+
∫ L

0
B

(

x j+1

)

dx j+1

and b
(

x j+1

)

=
a

(1− a)
· B

(

x j+1

)

. (30)

The value ofa has to belongs to [0, 1] as it is a probability. Whena = 0, the system is never replaced at the end of a maintenance

cycle; on the contrary, a replacement is always performed whena = 1. To obtain the values ofB
(

x j+1

)

, we divide the value interval

(0, L) of x j+1 by N sub-intervals with same lengthh = L
N : x j+1,0 = 0, x j+1,N = L, andx j+1,m = m · h with m = 1, . . . ,N. Next, we

approximateB
(

x j+1

)

with 0 < x j+1 < L by Bm = B
(

x j+1,m

)

with m= 1, . . . ,N, such that

B =M−1 · q, (31)

whereB =
[

B0 · · · BN

]T
, q =

[

q0 · · · qN

]T
, andM =

(

Mm,n
)

0≤m,n≤N is a lower triangular matrix with

Mm,m = 1− h
2

Km,m, m= 1, . . . ,N,

Mm,n = −hKm,n, 1 ≤ n ≤ m≤ N,

Mm,0 = −h
2

Km,0, m= 1, . . . ,N,

M0,0 = 1.

The quantitiesqm = q
(

x j+1,m

)

andKm,n = K
(

x j+1,m | x j,n

)

, with n = 1, . . . ,m, are given by

q
(

x j+1

)

=
(

f1
(

x j+1 | 0
)

+ f2
(

x j+1 | 0
))

· 1{x j+1≤xτ(0)} · 1{xσ(0)<xτ(0)}, (32)

and

K
(

x j+1 | x j

)

=
(

f1
(

x j+1 | x j

)

+ f2
(

x j+1 | x j

))

· 1{0≤x j<xσ(x j)<xτ(x j)} + f3
(

x j+1 | x j

)

· 1{xσ(x j)≤x j≤xτ(x j)}, (33)

where f1
(

x j+1 | x j

)

, f2
(

x j+1 | x j

)

and f3
(

x j+1 | x j

)

are given from (26), (27) and (28).
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3.3. Numerical illustration

Based on the maintained system defined byL = 15, µ
(

XE+j

)

= 1 + 0.1 · XE+j
, λ = 4, ρ

(

XE+j
,XS j

)

= ρ0 + ρ1

(

XE+j
,XS j

)

=

1+ 0.1 · XE+j
+ 0.2 · XS j and a continuous uniform pdf forg

(

x j+1 | XE+j
,XS j

)

, our goal is twofold: (i) show the shapes ofP
(

x j , dx j+1

)

and ofπ
(

dx j+1

)

, and (ii ) validate their mathematical development.

To illustrate both Dirac part and continuous part ofP
(

x j , dx j+1

)

, we consider two configurations:
{

0 ≤ x j < xσ
(

x j

)

< xτ
(

x j

)}

:

x j = 3, δ = 3, σ = 1.1, α = 0.95, τ = 4, and
{

xσ
(

x j

)

≤ x j ≤ xτ
(

x j

)}

: x j = 7, δ = 3, σ = 1.5, α = 0.95, τ = 4. The others (i.e.,
{

xτ
(

x j

)

≤ xσ
(

x j

)

, 0 ≤ x j ≤ L
}

and
{

xσ
(

x j

)

< xτ
(

x j

)

≤ x j < L
}

), which merely correspond to a Dirac measure at 0 with magnitude 1,

are omitted. We next use two different methods to sketch out the shape ofP
(

x j , dx j+1

)

in Figures 4a and 4b. The solid black curves
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Figure 4: Shapes of the transition pdfP
(

xj , dxj+1

)

are obtained by combining the Monte Carlo simulation (following the flowchart in Figure 1) and the kernel density estimation (KDE)

[57]. Meanwhile, the dashed red curves are returned by the numerical computation of (18) using the well-known trapezoidrule. The

identical results confirm the exactness of the mathematicalformulation forP
(

x j , dx j+1

)

.

Applying the above methods to the two following configurations of the(δ, σ, α, τ) policy: δ = 3,σ = 1.1, α = 0.95,τ = 4, and

δ = 3,σ = 1.5, α = 0.95,τ = 4, we obtain in Figures 5a and 5b the shapes ofπ
(

dx j+1

)

. Once again, the identical results given by
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Figure 5: Shapes of the stationary pdfπ
(

dxj+1

)

both the numerical computation of (29) (i.e., dashed red curves) and the combination of Monte Carlo simulation and of KDE(i.e.,

solid black curves) justify the correctness of the mathematical development ofπ
(

dx j+1

)

.
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4. Long-run maintenance cost rate evaluation and maintenance policy optimization

The aim of this section is to evaluate the long-run maintenance cost rate (13) using the semi-regenerative technique [40]

C∞ (δ, σ, α, τ) = lim
t→∞

C (t)
t
=

Eπ

[

C
([

E+j ,E
+
j+1

])]

Eπ

[

∆E j+1

] , (34)

whereC (t) is given from (12),∆E j+1 denotes the length of the(k+ 1)-st Markov renewal cycle
[

E+j ,E
+
j+1

]

with XE+j
= x j ∈ [0, L),

Eπ [·] stands for thes-expectation with respect to the stationary measureπ. Once the closed-form expression ofC∞ (δ, σ, α, τ) is

available, we apply the generalized pattern search algorithm [58] to search the optimal configuration
(

δopt, σopt, αopt, τopt

)

of the

(δ, σ, α, τ) policy.

4.1. Long-run maintenance cost rate evaluation

From (12), we can express (34) as

C∞ (δ, σ, α, τ) =
1

Eπ

[

∆E j+1

] ·
(

Cm · Eπ

[

Nm

([

E+j ,E
+
j+1

])]

+Cr · Eπ

[

Nr

([

E+j ,E
+
j+1

])]

+Co · Eπ

[

No

([

E+j ,E
+
j+1

])]

+Ci · Eπ

[

I
([

E+j ,E
+
j+1

])]

+Cu · Eπ

[

U
([

E+j ,E
+
j+1

])])

, (35)

whereNm

([

E+j ,E
+
j+1

])

, Nr

([

E+j ,E
+
j+1

])

andNo

([

E+j ,E
+
j+1

])

are the number of inspections, of repair and replacement over
[

E+j ,E
+
j+1

]

,

I
([

E+j ,E
+
j+1

])

andU
([

E+j ,E
+
j+1

])

are the associated duration of system inactivity and unavailability. Since there is one and only one

maintenance action (either PR, CR or IR) over
[

E+j ,E
+
j+1

]

,

Eπ

[

Nr

([

E+j ,E
+
j+1

])]

+ Eπ

[

No

([

E+j ,E
+
j+1

])]

= 1. (36)

Moreover, we can express
[

E+j ,E
+
j+1

]

as
[

E+j ,E
+
j + δ · Nm

([

E+j ,E
+
j+1

])]

∪
[

E+j + δ · Nm

([

E+j ,E
+
j+1

])

,S j

]

∪
[

S j ,E+j+1

]

, so

∆E j+1 = δ · Nm

([

E+j ,E
+
j+1

])

+W
([

E+j ,E
+
j+1

])

+ I
([

E+j ,E
+
j+1

])

, (37)

whereW
([

E+j ,E
+
j+1

])

denotes the waiting duration before a maintenance starts since the last inspection over
[

E+j ,E
+
j+1

]

. Consequently,

the cost rate (35) is rewritten by

C∞ (δ, σ, α, τ) =
1

δ · Eπ

[

Nm

([

E+j ,E
+
j+1

])]

+ Eπ

[

W
([

E+j ,E
+
j+1

])]

+ Eπ

[

I
([

E+j ,E
+
j+1

])] ·
(

Cm · Eπ

[

Nm

([

E+j ,E
+
j+1

])]

+Co − (Co −Cr ) · Eπ

[

Nr

([

E+j ,E
+
j+1

])]

+Ci · Eπ

[

I
([

E+j ,E
+
j+1

])]

+Cu · Eπ

[

U
([

E+j ,E
+
j+1

])])

. (38)

In the following, we give the mathematical expressions ofEπ

[

Nm

([

E+j ,E
+
j+1

])]

, Eπ

[

Nr

([

E+j ,E
+
j+1

])]

, Eπ

[

W
([

E+j ,E
+
j+1

])]

, Eπ

[

I
([

E+j ,E
+
j+1

])]

andEπ

[

U
([

E+j ,E
+
j+1

])]

.

4.1.1. Expected number of inspections over
[

E+j ,E
+
j+1

]

Starting atXE+j
∈ [0, L), the cycle

[

E+j ,E
+
j+1

]

may be stopped (i) after 1 inspection if 0≤ XE+j
< xσ

(

XE+j

)

≤ XT j,1, (ii ) afterk + 1

with k ∈ N
∗ if 0 ≤ XE+j

< XT j,k < xσ
(

XE+j

)

≤ XT j,k+1, or even (iii ) without inspection ifxσ
(

XE+j

)

< XE+j
< L. So, the number of

inspections over
[

E+j ,E
+
j+1

]

can be expressed as

Nm

([

E+j ,E
+
j+1

])

= 1{

0≤XE+j
<xσ

(

XE+j

)

≤XT j,1

} +

∞
∑

k=1

(k+ 1) · 1{

0≤XE+j
<XT j,k<xσ

(

XE+j

)

≤XT j,k+1

}. (39)

Its expected value with respect to the stationary measureπ is thus computed by

Eπ

[

Nm

([

E+j ,E
+
j+1

])]

= Pm,1 +

∞
∑

k=1

(k+ 1) · Pm,k+1, (40)

where
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• Pm,1 denotes the probability that only one inspection is performed over
[

E+j ,E
+
j+1

]

Pm,1 = a · F̄
(

xσ (0) ; µ (0) · δ, λ · δ2
)

+ (1− a) ·
∫ xσ(x j)

0
F̄

(

xσ
(

x j

)

− x j ; µ
(

x j

)

· δ, λ · δ2
)

· b
(

x j

)

dx j , (41)

• Pm,k+1 denotes the probability that(k+ 1) inspections, withk ∈ N∗, are performed over
[

E+j ,E
+
j+1

]

Pm,k+1 = a ·
∫ xσ(0)

0
F̄

(

xσ (0) − w; µ (0) · δ, λ · δ2
)

· f
(

w; µ (0) · kδ, λ · (kδ)2
)

dw+ (1− a)×
∫ xσ(x j)

0















∫ xσ(x j)

x j

F̄
(

xσ
(

x j

)

− w; µ
(

x j

)

· δ, λ · δ2
)

· f
(

w− x j ; µ
(

x j

)

· kδ, λ · (kδ)2
)

dw















· b
(

x j

)

dx j, (42)

with a andb
(

x j

)

given from (30).

4.1.2. Expected number of repair over
[

E+j ,E
+
j+1

]

Since we can perform an IR over
[

E+j ,E
+
j+1

]

(i) without inspection ifxσ
(

XE+j

)

≤ XE+j
≤ XS j < xτ

(

XE+j

)

, (ii ) after 1 inspection if

0 ≤ XE+j
< xσ

(

XE+j

)

≤ XT j,1 ≤ XS j < xτ
(

XE+j

)

, or (iii ) after(k+ 1) inspections, withk ∈ N∗, if 0 ≤ XE+j
< XT j,k < xσ

(

XE+j

)

≤ XT j,k+1 ≤
XS j < xτ

(

XE+j

)

, the number of IR over
[

E+j ,E
+
j+1

]

can be expressed by

Nr

([

E+j ,E
+
j+1

])

= 1{

xσ
(

XE+j

)

≤XE+j
≤XSj<xτ

(

XE+j

)} + 1{

0≤XE+j
<xσ

(

XE+j

)

≤XT j,1≤XSj<xτ
(

XE+j

)} +

∞
∑

k=1

1{

0≤XE+j
<XT j,k<xσ

(

XE+j

)

≤XT j,k+1≤XSj<xτ
(

XE+j

)}. (43)

This leads us to computeEπ

[

Nr

([

E+j ,E
+
j+1

])]

as

Eπ

[

Nr

([

E+j ,E
+
j+1

])]

= Pr,0 + Pr,1 +

∞
∑

k=1

Pr,k+1, (44)

where

• Pr,0 denotes the probability that an IR is performed over
[

E+j ,E
+
j+1

]

without any inspection

Pr,0 = (1− a) ·
∫ xτ(x j)

xσ(x j)
F

(

xτ
(

x j

)

− x j ; µ
(

x j

)

· ψ
(

α, x j , x j

)

, λ · ψ2
(

α, x j , x j

))

· b
(

x j

)

dx j, (45)

• Pr,1 denotes the probability that an IR is performed over
[

E+j ,E
+
j+1

]

after one inspection

Pr,1 = a ·
∫ xτ(0)

xσ(0)
F

(

xτ (0) − w; µ (0) · ψ (α,w, 0) , λ · ψ2 (α,w, 0)
)

· f
(

w; µ (0) · δ, λ · δ2
)

dw+ (1− a) ·
∫ xσ(x j)

0
b
(

x j

)

×














∫ xτ(x j)

xσ(x j)
F

(

xτ
(

x j

)

− w; µ
(

x j

)

· ψ
(

α,w, x j

)

, λ · ψ2
(

α,w, x j

))

· f
(

w− x j ; µ
(

x j

)

· δ, λ · δ2
)

dw















dx j, (46)

• Pr,k+1 denotes the probability that an IR is performed over
[

E+j ,E
+
j+1

]

after(k+ 1) inspections withk ∈ N∗

Pr,k+1 = a ·
∫ xσ(0)

0

(∫ xτ(0)

xσ(0)
F

(

xτ (0) − z; µ (0) · ψ (α, z, 0) , λ · ψ2 (α, z, 0)
)

× f
(

z− w; µ (0) · δ, λ · δ2
)

dz

)

· f
(

w; µ (0) · kδ, λ · (kδ)2
)

dw

+ (1− a) ·
∫ xσ(x j)

0















∫ xσ(x j)

x j















∫ xτ(x j)

xσ(x j)
F

(

xτ
(

x j

)

− z; µ
(

x j

)

· ψ
(

α, z, x j

)

, λ · ψ2
(

α, z, x j

))

× f
(

z− w; µ
(

x j

)

· δ, λ · δ2
)

dz

)

· f
(

w− x j ; µ
(

x j

)

· kδ, λ · (kδ)2
)

dw

)

· b
(

x j

)

dx j, (47)

with a andb
(

x j

)

given from (30).
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4.1.3. Expected length of waiting duration over
[

E+j ,E
+
j+1

]

Following the(δ, σ, α, τ) policy, the considered waiting duration is the time interval from the latest inspection (including the

starting time of a Markov renewal cycle) to the beginning of amaintenance action. Since a maintenance can be done without

inspection, after one inspection or after(k+ 1) inspections withk ∈ N
∗, the associated waiting duration over

[

E+j ,E
+
j+1

]

is either

(i) ψ
(

α,XE+j
,XE+j

)

if xσ
(

XE+j

)

≤ XE+j
< L, (ii ) ψ

(

α,XT j,1,XE+j

)

if 0 ≤ XE+j
< xσ

(

XE+j

)

≤ XT j,1 < L, or (iii ) ψ
(

α,XT j,k+1,XE+j

)

if

0 ≤ XE+j
< XT j,k < xσ

(

XE+j

)

≤ XT j,k+1 < L. We can therefore express the waiting durationW
([

E+j ,E
+
j+1

])

by

W
([

E+j ,E
+
j+1

])

= ψ
(

α,XE+j
,XE+j

)

· 1{

xσ
(

XE+j

)

≤XE+j
<LL

} + ψ
(

α,XT j,1,XE+j

)

· 1{

0≤XE+j
<xσ

(

XE+j

)

≤XT j,1<L
}

+

∞
∑

k=1

ψ
(

α,XT j,k+1,XE+j

)

· 1{

0≤XE+j
<XT j,k<xσ

(

XE+j

)

≤XT j,k+1<L
}. (48)

As such, we obtain its expected value with respect toπ as

Eπ

[

W
([

E+j ,E
+
j+1

])]

= Ew,0 + Ew,1 +

∞
∑

k=1

Ew,k+1, (49)

where

• Ew,0 denotes the expected length of the waiting time just after the beginning of the renewal cycle (i.e., without inspection)

Ew,0 = (1− a) ·
∫ L

xσ(x j)
ψ

(

α, x j , x j

)

· b
(

x j

)

dx j . (50)

• Ew,1 denotes the expected length of the waiting time just the 1-stinspection

Ew,1 = a ·
∫ L

xσ(0)
ψ (α,w, 0) · f

(

w; µ (0) · δ, λ · δ2
)

dw

+ (1− a) ·
∫ xσ(x j)

0













∫ L

xσ(x j)
ψ

(

α,w, x j

)

· f
(

w− x j ; µ
(

x j

)

· δ, λ · δ2
)

dw













· b
(

x j

)

dx j, (51)

• Ew,k+1 denotes the expected length of the waiting time just the(k+ 1)-st inspection

Ew,k+1 = a ·
∫ xσ(0)

0

(
∫ L

xσ(0)
ψ (α, z, 0) · f

(

z− w; µ (0) · δ, λ · δ2
)

dz

)

· f
(

w; µ (0) · kδ, λ · (kδ)2
)

dw

+ (1− a) ·
∫ xσ(x j)

0















∫ xσ(x j)

x j













∫ L

xσ(x j)
ψ

(

α, z, x j

)

f
(

z− w; µ
(

x j

)

· δ, λ · δ2
)

dz













× f
(

w− x j ; µ
(

x j

)

· kδ, λ · (kδ)2
)

dw

)

· b
(

x j

)

dx j, (52)

with a andb
(

x j

)

given from (30).

4.1.4. Expected length of the system inactivity duration over
[

E+j ,E
+
j+1

]

During a preventive maintenance (i.e., either a PR or an IR),the considered system is inactivated. Such an inactivity duration

over
[

E+j ,E
+
j+1

]

can be obtained by analyzing all possible scenarios of PR or IR

I
([

E+j ,E
+
j+1

])

= ρ0 · 1{

all scenarios of PR and IR over
[

E+j ,E
+
j+1

]} + ρ1

(

XE+j
,XS0

)

· 1{

all scenarios of IR over
[

E+j ,E
+
j+1

]}. (53)

However, since the scenarios of PR are burdensome to analyze, we propose to base on the ones of CR or IR instead

I
([

E+j ,E
+
j+1

])

= ρ0 ·
(

1− 1{

all scenarios of CR over
[

E+j ,E
+
j+1

]}

)

+ ρ1

(

XE+j
,XS0

)

· 1{

all scenarios of IR over
[

E+j ,E
+
j+1

]}. (54)

All scenarios for IR have been analyzed in Subsection 4.1.2,it is enough to seek the scenarios of CR to make clear (54). Over
[

E+j ,E
+
j+1

]

, a CR may be carried out either

1. without inspection ifxσ
(

XE+j

)

≤ XE+j
< L ≤ XS0,
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2. with one inspection: (i) at the 1-st inspection if 0≤ XE+j
< xσ

(

XE+j

)

< L ≤ XT j,1, (ii ) after the 1-st inspection if 0≤ XE+j
<

xσ
(

XE+j

)

< XT j,1 < L ≤ XS0,

3. or with k + 1 inspections,k ∈ N
∗: (i) at the(k+ 1)-st inspection if 0≤ XE+j

< XT j,k < xσ
(

XE+j

)

< L ≤ XT j,k+1, (ii ) after the

(k+ 1)-st inspection if 0≤ XE+j
< XT j,k < xσ

(

XE+j

)

< XT j,k+1 < L ≤ XS0.

Therefore, we can expressI
([

E+j ,E
+
j+1

])

as

I
([

E+j ,E
+
j+1

])

= ρ0

(

1− 1{

xσ
(

XE+j

)

≤XE+j
<L≤XS0

} − 1{

0≤XE+j
<xσ

(

XE+j

)

<L≤XT j,1

} − 1{

0≤XE+j
<xσ

(

XE+j

)

<XT j,1<L≤XS0

}

−
∞
∑

k=1

1{

0≤XE+j
<XT j,k<xσ

(

XE+j

)

<L≤XT j,k+1

} −
∞
∑

k=1

1{

0≤XE+j
<XT j,k<xσ

(

XE+j

)

<XT j,k+1<L≤XS0

}















+ ρ1

(

XE+j
,XS0

)

· 1{

0≤xσ
(

XE+j

)

≤XE+j
≤XS0<xτ

(

XE+j

)}

+ ρ1

(

XE+j
,XS0

)

· 1{

0≤XE+j
<xσ

(

XE+j

)

≤XT j,1≤XS0<xτ
(

XE+j

)} +

∞
∑

k=1

ρ1

(

XE+j
,XS0

)

· 1{

0≤XE+j
<XT j,k<xσ

(

XE+j

)

≤XT j,k+1≤XS0<xτ
(

XE+j

)}. (55)

Its expectation with respect toπ is computed by

Eπ

[

I
([

E+j ,E
+
j+1

])]

= ρ0 ·














1− Pc,0 − Pc,1,i − Pc,1,s−
∞
∑

k=1

Pc,k+1,i −
∞
∑

k=1

Pc,k+1,s















+ Ei,r,0 + Ei,r,1 +

∞
∑

k=1

Ei,r,k+1, (56)

where

• Pc,0 denotes the probability that a CR is performed without any inspection

Pc,0 = (1− a) ·
∫ L

xσ(x j)
F̄

(

L − x j ; µ
(

x j

)

· ψ
(

α, x j, x j

)

, λ · ψ2
(

α, x j, x j

))

· b
(

x j

)

dx j , (57)

• Pc,1,i denotes the probability that a CR is performed at the 1-st inspection

Pc,1,i = a · F̄
(

L; µ (0) · δ, λ · δ2
)

+ (1− a) ·
∫ xσ(x j)

0
F̄

(

L − x j ; µ
(

x j

)

· δ, λ · δ2
)

· b
(

x j

)

dx j, (58)

• Pc,1,s denotes the probability that a CR is performed after the 1-stinspection

Pc,1,s = a ·
∫ L

xσ(0)
F̄

(

L − w; µ (0) · ψ (α,w, 0) , λ · ψ2 (α,w, 0)
)

· f
(

w; µ (0) · δ, λ · δ2
)

dw+ (1− a) ·
∫ xσ(x j)

0
b
(

x j

)

×












∫ L

xσ(x j)
F̄

(

L − w; µ
(

x j

)

· ψ
(

α,w, x j

)

, λ · ψ2
(

α,w, x j

))

· f
(

w− x j ; µ
(

x j

)

· δ, λ · δ2
)

dw













dx j, (59)

• Pc,k+1,i denotes the probability that a CR is performed at the(k+ 1)-st inspection

Pc,k+1,i = a ·
∫ xσ(0)

0
F̄

(

L − w; µ (0) · δ, λ · δ2
)

· f
(

w; µ (0) · kδ, λ · (kδ)2
)

dw+ (1− a)×
∫ xσ(x j)

0















∫ xσ(x j)

x j

F̄
(

L − w; µ
(

x j

)

· δ, λ · δ2
)

· f
(

w− x j ; µ
(

x j

)

· kδ, λ · (kδ)2
)

dw















· b
(

x j

)

dx j, (60)

• Pc,k+1,s denotes the probability that a CR is performed after the(k+ 1)-st inspection

Pc,k+1,s = a ·
∫ xσ(0)

0

(∫ L

xσ(0)
F̄

(

L − z; µ (0) · ψ (α, z, 0) , λ · ψ2 (α, z, 0)
)

· f
(

z− w; µ (0) · δ, λ · δ2
)

dz

)

× f
(

w; µ (0) · kδ, λ · (kδ)2
)

dw+ (1− a) ·
∫ xσ(x j)

0















∫ xσ(x j)

x j













∫ L

xσ(x j)
F̄

(

L − z; µ
(

x j

)

· ψ
(

α, zxj

)

, λ · ψ2
(

α, z, x j

))

× f
(

z− w; µ
(

x j

)

· δ, λ · δ2
)

dz

)

· f
(

w− x j ; µ
(

x j

)

· kδ, λ · (kδ)2
)

dw

)

· b
(

x j

)

dx j, (61)
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• Ei,r,0 denotes the expected length of the system inactivity when noinspection is performed over
[

E+j ,E
+
j+1

]

Ei,r,0 = (1− a) ·
∫ xτ(x j)

xσ(x j)
b
(

x j

)















∫ xτ(x j)

x j

ρ1

(

x j ,w
)

· f
(

w− x j ; µ
(

x j

)

· ψ
(

α, x j , x j

)

, λ · ψ2
(

α, x j , x j

))

dw















dx j, (62)

• Ei,r,1 denotes the expected length of the system inactivity when 1 inspection is performed over
[

E+j ,E
+
j+1

]

Ei,r,1 = a ·
∫ xτ(0)

xσ(0)

(∫ xτ(0)

w
ρ1 (0, z) · f

(

z− w; µ (0) · ψ (α,w, 0) , λ · ψ2 (α,w, 0)
)

dz

)

· f
(

w; µ (0) · δ, λ · δ2
)

dw

+ (1− a) ·
∫ xσ(x j)

0















∫ xτ(x j)

xσ(x j)















∫ xτ(x j)

w
ρ1

(

x j , z
)

· f
(

z− w; µ
(

x j

)

· ψ
(

α,w, x j

)

, λ · ψ2
(

α,w, x j

))

dz















× f
(

w− x j ; µ
(

x j

)

· δ, λ · δ2
)

dw

)

· b
(

x j

)

dx j, (63)

• Ei,r,k+1 denotes the expected length of the system inactivity when(k+ 1) inspections are performed over
[

E+j ,E
+
j+1

]

Ei,r,k+1 = a ·
∫ xσ(0)

0

(∫ xτ(0)

xσ(0)

(∫ xτ(0)

z
ρ1 (0, s) · f

(

s− z; µ (0) · ψ (α, z, 0) , λ · ψ2 (α, z, 0)
)

ds

)

× f
(

z− w; µ (0) · δ, λ · δ2
)

dv

)

· f
(

w; µ (0) · kδ, λ · (kδ)2
)

dz

+ (1− a) ·
∫ xσ(x j)

0















∫ xσ(x j)

x j















∫ xτ(x j)

xσ(x j)















∫ xτ(x j)

z
ρ1

(

x j , s
)

· f
(

s− z; µ
(

x j

)

· ψ
(

α, z, x j

)

, λ · ψ2
(

α, z, x j

))

ds















× f
(

z− w; µ
(

x j

)

· δ, λ · δ2
)

dv

)

· f
(

w− x j ; µ
(

x j

)

· kδ, λ · (kδ)2
)

dz

)

· b
(

x j

)

dx j, (64)

with a andb
(

x j

)

given from (30).

4.1.5. Expected length of the system unavailability duration over
[

E+j ,E
+
j+1

]

Once the system fails, it is unavailable from the failure time to starting time of the next CR and then during the CR duration. This

is why an analysis of scenarios of system failure and CR allows to determine the unavailability duration of the system. Infact, the

duration of system unavailability over
[

E+j ,E
+
j+1

]

is either

(i)
∫ ψ

(

α,XE+j
,XE+j

)

0 1{

xσ
(

XE+j

)

≤XE+j
<L≤Xt

}dt + ρ0 · 1{

xσ
(

XE+j

)

≤XE+j
<L≤XS0

} if the system fails before the first inspection and a CR is performed

without inspection,

(ii )
∫ δ

0
1{

0≤XE+j
<xσ

(

XE+j

)

<L≤Xt

}dt+ρ0 ·1{

0≤XE+j
<xσ

(

XE+j

)

<L≤XT j,1

} if the system failure is detected at the 1-st inspection at which a CR starts,

(iii )
∫ δ+ψ

(

α,XT j,1 ,XE+j

)

δ
1{

0≤XE+j
<xσ

(

XE+j

)

<XT j,1<L≤Xt

}dt + ρ0 · 1{

0≤XE+j
<xσ

(

XE+j

)

<XT j,1<L≤XS0

} if the system failure is detected after the 1-st inspec-

tion at which a CR starts,

(iv)
∫ (k+1)δ

kδ
1{

0≤XE+j
<XT j,k<xσ

(

XE+j

)

<L≤Xt

}dt + ρ0 · 1{

0≤XE+j
<XT j,k<xσ

(

XE+j

)

<L≤XT j,k+1

} if the system failure is detected at the(k+ 1)-st inspection

with k ∈ N∗ at which a CR starts,

(v)
∫ (k+1)δ+ψ

(

α,XT j,k+1 ,XE+j

)

(k+1)δ 1{

0≤XE+j
<XT j,k<xσ

(

XE+j

)

<XT j,k+1<L≤Xt

}dt+ρ0·1{

0≤XE+j
<XT j,k<xσ

(

XE+j

)

<XT j,k+1<L≤XS0

} if the system failure is detected after

the(k+ 1)-st inspection withk ∈ N∗ at which a CR starts.

As a result, we can express the expected length of the system unavailability duration over
[

E+j ,E
+
j+1

]

with respect to the stationary

measureπ as

Eπ

[

U
([

E+j ,E
+
j+1

])]

= ρ0 ·














Pc,0 + Pc,1,i + Pc,1,s+

∞
∑

k=1

Pc,k+1,i +

∞
∑

k=1

Pc,k+1,s















+ Eu,0 + Eu,1,i + Eu,1,s+

∞
∑

k=1

Eu,k+1,i +

∞
∑

k=1

Eu,k+1,s, (65)
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wherePc,0, Pc,1,i, Pc,1,s, Pc,k+1,i andPc,k+1,s are given from (57), (58), (59), (60) and (61) respectively,andEu,0, Eu,1,i , Eu,1,s, Eu,k+1,i

andEu,k+1,s are represented as follows.

• Eu,0 denotes the expectation of the duration from the system failure time to the starting time of the next CR when no inspection

has been performed

Eu,0 = (1− a) ·
∫ L

xσ(x j)















∫ ψ(α,x j ,x j)

0
F̄

(

L − x j ; µ
(

x j

)

· t, λ · t2
)

dt















· b
(

x j

)

dx j , (66)

• Eu,1,i denotes the expectation of the duration from the system failure time to the 1-st inspection time at which the CR starts

Eu,1,i = a ·
∫ δ

0
F̄

(

L; µ (0) · t, λ · t2
)

dt + (1− a) ·
∫ δ

0















∫ xσ(x j)

0
F̄

(

L − x j ; µ
(

x j

)

· t, λ · t2
)

· b
(

x j

)

dx j















dt, (67)

• Eu,1,s denotes the expectation of the duration from the system failure time to the starting time of the next CR when one

inspection has been done

Eu,1,s = a ·
∫ L

xσ(0)

(∫ ψ(α,w,0)

0
F̄

(

L − w; µ (0) · t, λ · t2
)

dt

)

· f
(

w; µ (0) · δ, λ · δ2
)

dw

+ (1− a) ·
∫ xσ(x j)

0
b
(

x j

)

·














∫ L

xσ(x j)















∫ ψ(α,w,x j)

0
F̄

(

L − w; µ
(

x j

)

· θ, λ · θ2
)

dθ















· f
(

w− x j ; µ
(

x j

)

· δ, λ · δ2
)

dw















dx j, (68)

• Eu,k+1,i denotes the expectation of the duration from the system failure time to the(k+ 1)-st inspection time at which the CR

starts

Eu,k+1,i = a ·
∫ δ

0

(∫ xσ(0)

0
F̄

(

L − w; µ (0) · t, λ · t2
)

· f
(

w; µ (0) · kδ, λ · (kδ)2
)

dw

)

dt

+ (1− a) ·
∫ δ

0















∫ xσ(x j)

0















∫ xσ(x j)

x j

F̄
(

L − w; µ
(

x j

)

· t, λ · t2
)

· f
(

w− x j ; µ
(

x j

)

· kδ, λ · (kδ)2
)

dw















· b
(

x j

)

dx j















dt, (69)

• Eu,k+1,s denotes the expectation of the duration from the system failure time to the starting time of the next CR when(k+ 1)

inspections have been done

Eu,k+1,s = a ·
∫ xσ(0)

0

(∫ L

xσ(0)

(∫ ψ(α,z,0)

0
F̄

(

L − z; µ (0) · t, λ · t2
)

dt

)

· f
(

z− w; µ (0) · δ, λ · δ2
)

dz

)

× f
(

w; µ (à) · kδ, λ · (kδ)2
)

dw+ (1− a) ·
∫ xσ(x j)

0















∫ xσ(x j)

x j















∫ L

xσ(x j)















∫ ψ(α,z,x j)

0
F̄

(

L − z; µ
(

x j

)

· t, λ · t2
)

dt















× f
(

z− w; µ
(

x j

)

· δ, λ · δ2
)

dz

)

· f
(

w− x j ; µ
(

x j

)

· kδ, λ · (kδ)2
)

dw

)

· b
(

x j

)

dx j, (70)

with a andb
(

x j

)

given from (30).

4.2. Maintenance policy optimization

Optimizing the(δ, σ, α, τ) policy returns to seek the optimal configuration
(

δopt, σopt, αopt, τopt

)

that minimizes the long-run main-

tenance cost rateC∞ (δ, σ, α, τ)

(

δopt, σopt, αopt, τopt

)

= arg min
(δ,σ,α,τ)

{C∞ (δ, σ, α, τ) : δ > 0, σ > 0, 0 < α < 1, τ ≥ ρ0} , (71)

whereρ0 denotes the required duration for a replacement. Even though the closed-form expression ofC∞ (δ, σ, α, τ) is available, its

complexity does not allow an analytical solution for (71), and numerical methods should be used instead.

To prove the existence of
(

δopt, σopt, αopt, τopt

)

numerically, we varyδ, σ, α and τ in a wide rank, and observe the form of

C∞ (δ, σ, α, τ). Repeating such an experiment for various configurations ofmaintenance costs (i.e.,Cm, Cr , Co, Ci andCu) and of

system characteristics (i.e.,L, µ0, µ1 (·), λ, ρ0, ρ1 (·, ·), g (· | ·, ·)), we can draw a conclusion about the existence of
(

δopt, σopt, αopt, τopt

)

.

Although this numerical approach cannot cover all possibleconfigurations of the maintained system, it is still an alternative solution

when analytical approach is impossible. To find the optimum
(

δopt, σopt, αopt, τopt

)

, we propose using the generalized pattern search
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algorithm [58]. Numerous numerical experiments confirm that this algorithm allows to speed up the optimum finding regardless of

chosen initial values.

4.3. Numerical illustration

As an illustration, we apply the maintenance costsCm = 2, Cr = 20,Co = 100,Ci = 5 andCu = 15 to the system considered in

Subsection 3.3. We compute and sketch in Figure 6 the long-run maintenance cost rateC∞ (δ, σ, α, τ) by varyingδ from 1 to 6 with

step 0.25,σ from 0.6 to 1.6 with step 0.05,α from 0.79 to 0.99 with step 0.01, andτ from 3 to 5 with step 0.1. In the Figures 6a, 6b
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Figure 6: Shapes ofC∞ (δ, σ, α, τ) andC∞ (δ∗, σ∗, α∗, τ∗) = 6.8163

and 6c, 2 among 4 decision variables are fixed and 2 others vary, while in Figure 6d, onlyδ varies. The convex forms ofC∞ (δ, σ, α, τ)

confirm the existence of optimal configuration for the(δ, σ, α, τ) policy.

In Figure 6, we find the minimum valueC∞ (δ∗, σ∗, α∗, τ∗) = 6.8163 atδ∗ = 4.1, σ∗ = 1.2, α∗ = 0.94, τ∗ = 4.1. However,

this configuration is not optimal yet, because the chosen lattices forδ, σ, α andτ are not fine enough. To seek the “real” optimum
(

δopt, σopt, αopt, τopt

)

, we use thepatternsearch solver of Matlab’s Global Optimization Toolbox. As shown inFigure 7, the

optimal configuration of the above maintained system is reached atδopt = 3.375,σopt = 1.1563,αopt = 0.94688 andτopt = 4 with

C∞
(

δopt, σopt, αopt, τopt

)

= 6.8085.

5. Numerical assessment

To assess the economic performances of the(δ, σ, α, τ) policy, comparative studies with benchmark policies are proposed in this

section. The studies take into account the impacts of different maintenance costs and various system deterioration characteristics.

Notwithstanding, we just present hereinafter the results for the maintained system defined by
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Figure 7: Optimization of(δ, σ, α, τ) policy with Matlab’spatternsearch solver

• a failure threshold:L = 15,

• a degradation process with linear shape function:IGP
(

µ
(

x j

)

, λ
)

= IGP
(

µ0 + µ1 · x j , λ
)

= IGP
(

1+ µ1 · x j , 4
)

,

• a linear IR duration:ρ
(

XE+j
,XS j

)

= ρ0 + ρ1

(

XE+j
,XS j

)

= ρ0 + ρ1,1 · XE+j
+ ρ1,2 · XS j = 1+ 0.1 · XE+j

+ 0.2 · XS j ,

• a continuous uniform pdf forg
(

x j+1 | XE+j
,XS j

)

.

The linear form ofµ
(

x j

)

andρ1

(

XE+j
,XS j

)

is inspired by [18] and [59] respectively, while the other parameters are arbitrarily chosen.

The applied maintenance costs are fixed atCm = 2, Co = 100,Ci = 5 andCu = 15. Some missing values (i.e.,µ1 andCr ) will be

stated latter depending on concrete numerical illustrations.

5.1. Benchmark maintenance policies

Three PdM policies are used as benchmarks. The first one, called (δ, ζ, ω, η), is static in the sense that repair and replacement

decisions are not adaptive to the system degradation behavior. Meanwhile, as extreme cases of the(δ, σ, α, τ) policy, the two others,

called(δ, σ, α, τ→ ρ0) and(δ, σ, α, τ→ +∞), are adaptive, but either the IR or perfect replacement is used as preventive actions.

5.1.1. (δ, ζ, ω, η) policy

The(δ, ζ, ω, η) policy generalizes the PdM policies proposed in [48] and [53]. Over the cycle
[

E+j ,E
+
j+1

]

, the system is regularly

inspected at timesT j,k = E j + k · δ, with k = 0, 1, 2, . . .. to reveal its degradation level. GivenXT j,k, we adopt the following decision

rules.

1. If XT j,k ≥ L, the failed system is correctively replaced immediately atT j,k. After the CR with durationρ0, the system is AGAN

(i.e.,XE+j+1
= 0 with E j+1 = T j,k + ρ0).

2. If ξ ≤ XT j,k < L, the system is still running atT j,k and its RUL can be predicted with an acceptable precision (see Subsection

2.2). So, no further inspection is needed, and the next maintenance is plannedω ≥ 0 time units later (i.e., atS j = T j,k + ω).

The nature of the maintenance action depends on both the degradation levelsXS j andXE+j
.

(a) If XS j ≥ L, a CR with durationρ0 is triggered immediately atS j to reset the failed system to an AGAN state (i.e.,XE+j+1
= 0

with E j+1 = S j + ρ0).

(b) If XS j < L andXE+j
≥ η, the system is still running atS j , and the “high” value ofXE+j

implies that an IR is no longer

suitable for the current maintenance. So, a PR should be carried out atS j instead. After the PR, the system is AGAN (i.e.,

XE+j+1
= 0 with E j+1 = S j + ρ0).

(c) If XS j < L andXE+j
< η, a preventive IR is immediately performed atS j on the running system. It takesρ

(

XE+j
,XS j

)

time

units, and returns the system degradationXE+j+1
to a random level betweenXE+j

andXS j such thatXE+j+1
∼ g

(

y | XE+j
,XS j

)

,

whereE j+1 = S j + ρ
(

XE+j
,XS j

)

andg is a known truncated pdf.

3. If XT j,k < ξ, additional inspections are required to reinforce the precision of RUL prediction. Accordingly, the decisions is

postponed to the next inspection time atT j,k+1 = T j,k + δ.
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Figure 8: Schematic behavior of the maintained system withδ = 2.33,ξ = 11.03,ω = 1 andη = 3.53 (i.e., optimal(δ, ζ, ω, η) policy whenµ1 = 0.1 andCr = 20)

The next maintenance cycle begins atE+j+1 with initial deterioration levelXE+j+1
. The inspection periodδ, the degradation thresholds

ξ andη, and the waiting timeω are decision variables. Its long-run maintenance cost model is developed in the same way as the

(δ, σ, α, τ) policy. Figure 8 illustrates the schematic behavior of the maintained system under the(δ, ζ, ω, η) policy. Its meaning is

very similar to the one of Figure 3. Clearly, with fixedξ, ω andη, the maintenance decisions of the(δ, ζ, ω, η) policy cannot adapt to

the system degradation behavior. So, the comparison between the(δ, ζ, ω, η) and(δ, σ, α, τ) policies allows to see the added values of

adaptive maintenance decisions.

5.1.2. (δ, σ, α, τ→ ρ0) policy and(δ, σ, α, τ→ +∞) policy

These two benchmarks policies are extreme cases of the(δ, σ, α, τ) policy, where either replacement or repair is used as preventive

maintenance action.

1. Whenτ → ρ0, only replacement is implemented for preventive action becauseP
(

ρ
(

XE+j
,XS j

)

≥ τ
)

→ 1. The(δ, σ, α, τ)

policy becomes a pure PR policy(δ, σ, α, τ→ ρ0) (see also [53]). The schematic behavior of the maintained system under the

(δ, σ, α, τ→ ρ0) policy is sketched in Figure 9. We find that the waiting timeψ (·) well adapts to the system degradation.
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Figure 9: Schematic behavior of the maintained system withδ = 5.75,σ = 1.3,α = 0.939 (i.e., optimal(δ, σ, α, τ→ ρ0) policy whenµ1 = 0.1 andCr = 20)

2. Whenτ→ +∞, only repair is carried out in preventive decision becauseP
(

ρ
(

XE+j
,XS j

)

≥ τ
)

→ 0. So,(δ, σ, α, τ) policy returns

to a pure preventive IR policy(δ, σ, α, τ→ +∞). The schematic behavior of the associated maintained system is illustrated in

Figure 10. Obviously, the flexibility of the(δ, σ, α, τ→ +∞) policy is reflected not only by the dynamic waiting timeψ (·), but

also by the varied value ofxσ.

The comparison between the(δ, σ, α, τ) policy and its extreme cases will justify the effectiveness of hybrid maintenance decisions.
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Figure 10: Schematic behavior of the maintained system withδ = 5.75,σ = 1.3,α = 0.939 (i.e., optimal(δ, σ, α, τ→ +∞) policy whenµ1 = 0.1 andCr = 20)

5.2. Case studies and comparison results

To understand the impacts of the maintenance costs and the system characteristic on the cost saving, we consider 2 following case

studies:

1. sensitivity to repair cost: Cr varies from 3 to 39 with step 3, andµ1 = 0.1,

2. sensitivity to degradation rate: Cr = 20, andµ1 varies from 0 to 0.3 with step 0.03.

The associated optimal long-run maintenance cost rate of the 4 considered maintenance policies are shown in Figures 11aand 11b.

In each figure, lowers curve correspond to higher economic performances.
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Figure 11: Evolution of the optimal long-run maintenance cost rates

The (δ, σ, α, τ→ ρ0) policy has a constant optimal cost rate in both the situations, because this pure PR policy is independent

of Cr andλ1. Meanwhile, using IR as a preventive maintenance action, the other PdM policies have evidently increasing cost rate

with respect toCr andλ1. Comparing the cost curves of the(δ, σ, α, τ→ ρ0) policy and(δ, σ, α, τ→ +∞) policy, we find out the

effectiveness of each kind of maintenance actions. The replacement is better ifCr orµ1 is small, otherwise the repair is more profitable.

To make use of their advantage, hybrid maintenance decisions should be resorted to. Indeed, as clearly shown in Figures 11a and

11b, the(δ, σ, α, τ) policy always saves more maintenance cost, and just returnsto the pure policies in worse cases. Now, looking at

the cost curves of the(δ, σ, α, τ) policy and the(δ, ζ, ω, η) policy, the former always gives more cost saving. The profit is even higher

whenCr or µ1 increases. This implies that adaptive decisions allows to resist better to the negative impact of maintenance costs, and

to well adapt to the variation of the system degradation behavior.
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6. Conclusion and perspectives

The focus of this paper is to develop a cost-effective PdM model for deteriorating systems using periodic inspection, IR and perfect

replacement. The development consists of four steps: continuous degradation modeling, maintenance effect modeling, adaptive PdM

policy elaboration, and long-run maintenance cost rate evaluation. The connection between these steps is especially highlighted by

(i) the consideration of the past dependency of IR actions in the IG degradation process, (ii ) the use of estimated system RUL and

maintenance duration to enable adaptive PdM decisions, and(iii ) the probabilistic study of the behavior of maintained system at

steady state based on the semi-regenerative theory. Various numerical experiments and comparative studies show that the developed

adaptive PdM model is more flexible, and hence more profitablethan related PdM models.

Despite very encouraging results, our PdM model is still based on a strong assumption that the model parameters are already

known. However, these parameters are usually unknown in practice, and should be estimated from the available degradation and

maintenance data. This is why our future works will focus on overcoming this drawback. Some potential perspectives are as

follows. Firstly, we think of building a testing platform able to deliver both the degradation and maintenance data. Thereason is that

most existing benchmark data-sets1 are interesting to test prognostic algorithms, but not suitable for the PdM modeling. Once the

required data are available, we carry out the distribution selection for the past-dependent IR and the parameters estimation for the IG

degradation process. We believe that statistical methods proposed in [18, 60, 61] can help. Finally, we shall adapt our PdM model to

online application by updating the decision variables following available monitoring data. Such an online model is currently studied

in [33] under Bayesian framework, but the considered PdM policy remains relatively simple.
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