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Abstract

Nowadays, hospital logistics has become an essential component of healthcare institutions. It
allows the synchronization of all the flows inside a hospital to ensure the efficiency of the health
care system. For many years, the management was commonly focused on improving the quality of
medical care, while less attention was usually devoted to operations management. In recent years,
the need of considering the costs while increasing the competitiveness along with the new policies
of national health service hospital financing forced hospitals to necessarily improve their opera-
tional efficiency. In this work, we focus on a real optimization problem of the supply chain of the
hospital center of Troyes (HCT). The HCT is currently seeking to review and improve its logistics
processes. The implementation of techniques and methods of operational research must provide
solutions to improve the efficiency of logistics activities. The present work focuses on developing
operational decision support models and algorithms for scheduling of production processes in hos-
pital catering. The aim is to optimize and better organize the daily work of employees of the catering
service of HCT, by supporting them with automated tools for their daily decision making. A novel
mathematical model and different metaheuristics for the production scheduling of multi-products
and multi-stages food processes are developed. The computational results of these methods have
proven their effectiveness for scheduling operations in the food production processes.

Keywords : hospital logistics, hospital catering, scheduling production process, mathematical model,
flexible job shop scheduling, sequence-dependent setup time, job-splitting, genetic algorithm, local
search methods, iterated local search algorithm.

1 Introduction

The efficient use of resources and the search for optimal patient service stimulates logistical thinking in
hospitals. The difficulties of optimising flows are leading managers to find difficult balances and to dis-
cover new ways for rationalizing expenditure and seeking refined solutions to these new problems. In
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this context, logistics allows the hospital to reduce the financial impact of product consumption, reduce
inventory, limit waste and provide better inventory tracking and trace-ability of service products. On
the other hand, the increase in hospital spending leads to worrying deficits. The obligation to control
these expenses is therefore in itself an additional and sufficient reason to undertake steps to reorganize
the supply chain. These problems confirm the need to restructure the hospital logistics flows that de-
serve to be analysed and evaluated. Cremadez and Grateau (1997) oppose this idea by stressing that the
aim of the hospital system is to ensure the well-being of the patient regardless of the cost.

In this context, the constant search for savings for health officials is a natural approach to examine how
logistics activities are managed in order to increase productivity. These issues require major changes
in hospital management practices by seeking profitability, lower costs, efficiency and quality of service.
This requires the management of a care establishment to ensure that the resources available are used
appropriately to meet the demand for care. This explains the current tendency of hospitals to try to
control the entire supply chain from production sites to consumption sites.

Health facilities are required to ensure an impeccable quality of service to patients, and to optimize
their supply chain. These constraints have led the hospital system to embark on a process of deep
reorganization and control of the growth of health expenditure and budgets. These constraints stim-
ulate reflections on how to use the available resources more efficiently (Landry, (2000); Blouin, (2001);
Sampiere, (2004)). The deep evolution and transformations of the environment, and the economic re-
gression lead the hospital to reformulate its health policy, which requires controlling expenditure in
this sector ([Mucchielli,(1993) and Cauvin, (1997)). This transformation requires a reorganization of the
supply chain to adapt to the patient’s valued needs. Naylor (1999) summarizes this situation by requir-
ing the optimization of the antithetic triad of health system objectives: quality, accessibility and cost.

Generally, the provision of care is based on various products and services that are deployed in the
establishment through a set of activities that Landry et al (2002) incorporate under the term hospital
logistics. These logistics activities can make a significant contribution to the performance of a hospital
center including the presence of the right products at the right time to support the delivery of services.
Hospital logistics is a complex process characterized by a diversity of needs, users, products and dis-
tribution channels. The main mission of this logistics is to control and optimize physical flows from
suppliers to patients. It is an indispensable tool for the reorganization of chain process. This reorga-
nization seeks the best performance at the best cost that respects technical, economic and regulatory
conditions for optimal delivery to patients. According to Fixari and Tonneau 1993 management logistics
activities at the hospital have very specific characteristics, which directly influence the definition of the
patient’s role and place in care. We could even go further by considering that hospital flows are much
more critical and sensitive as those in the industrial sector since it is health, and therefore life even,
patients who are at stake. On the other hand, coordinating these activities requires logistical expertise
that few establishments will succeed in developing on their own (Ruiz, (2002)). This has led researchers
to take an interest in the supply chain management in hospitals for several years. The evolution of the
hospital sector as well as the richness and originality of the hospital environment contributed to its
growth. Bonniol (1999) indicates that physical flow has always played an important role in the mainte-
nance and delivery of health care (saving lives, preventing the spread of disease, helping to diagnose,
improving the quality of life and relieving pain).

According to Gasquet (2004) the logistical functions of hospitals are evolving as much as medical and
medico-technical activities, but probably in a less visible way, especially in the healthcare providers
and the public. These logistical functions can not only be the source of savings in the logistics activities
themselves, but can also free up resources for patient care through better support for service delivery.
Whatever its field of intervention, logistics is not a science with immutable laws but an approach that
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adapts its contributions from the strategic level to the operational according to its environment and
defined objectives. As for other sectors of activity, the challenge ahead is for the logistics engineer to
make a contribution to all of the hospital’s processes. Logistics is always at the service of the missions
and objectives of a company or hospital establishment project. Therefore, it naturally accompanies the
evolution of a system.

The advantage of research on hospital logistics is that it is considered as a key to the evolution and
optimization of the management of flows in an establishment, particularly with regard to its contribu-
tion to the core business (essential activities) of hospitals. In a period of financial constraints, logistics
managers play an important role in the hospital centre because they have to develop cost reduction
strategies. The study of Thevenin (1999) carried out in French healthcare establishments, underlines
that major transformations of the logistic activities require a favorable agreement of those responsible
for the medical and pharmaceutical functions of the establishment, the weight of the logistics depart-
ment alone being insufficient. Moreover, the author notes that these transformations are not part of
a one-off process but rather a more global process associated with the development of the settlement
project.

To meet effectively the needs of patients and to improve working conditions and employee well-being,
the hospital center of Troyes implements important measures to improve its daily efficiency. It is in this
context that our study of optimization of the activities of hospital’s catering service takes place. The
hospital is carrying out a project to revise its supply chain, which must in particular consider the man-
agement of food flows within the hospital. Indeed, the hospital center of Troyes, as the main component
of the Champagne Sud Hospitals, provides hospital centers, nursing homes and psychiatric clinics with
meals (Figure 1). Our study in the central food production unit of this hospital aims to determine the
best plan to meet customers’ demands in terms of food flow and to propose ways to improve the well-
being and working conditions of employees of the catering service of the hospital centre of Troyes.
Given the complexity and scale of the flows concerned, the project to reorganize the management of
food flows is the only subject of this study. Regarding physical flows, we will therefore analyze only the
supply chain management for meals and we focus on the work organization, the objective is to provide
methods and tools for scheduling production processes over the day.
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Figure 1: Logistics network of hospital center of Troyes.
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The remainder of this paper is organized as follows : section 2 presents a state-of-the-art regarding the
problem of scheduling food production. Then, the problem statement are defined in section 3. In section
4 the mathematical model developed for the scheduling food production problem and the computational
results of this model are presented. Finally, the genetic algorithm proposed for the problem studied, the
different elements of this metaheuristic and the computational results are presented in section 5.

2 Literature Review

The production scheduling problem in food industries represents a famous class of problems referred
to as scheduling with sequence-dependent setups that are well known to be NP-hard (Sun et al 1999).
In recent years, there has been great interest in the development of intelligent solutions for this prob-
lem in various fields of applications. The promising results of scheduling methods (such as reduction of
production costs, increased throughput and smoother operation of the production equipment, improve-
ment of working conditions and the well-being of employees) have stimulated a considerable research
effort. Most of existing works in literature on scheduling food production are from the food industry and
dairy industry where the production system is a flow shop or parallel machine system in the most cases
(Table 1), as there is an increasing interest in investigating changeovers in scheduling approaches from
this sector. Akkerman and van Donk (2009) developed a methodology for the analysis of the scheduling
problems in food processing. In (1988) Smith Daniels and Ritzman develop a general lot sizing model
for process industries and apply their method to a situation representative of a food processing facility.
Kopanos et al (2012) offered an efficient mathematical framework for detailed production scheduling in
the food processing industries. Wauters et al (2012) introduced an integrated approach to real world
production scheduling for the food processing industries. In (2016) Tempelmeier and Copil considered
a capacitated dynamic lot sizing problem with parallel machines for the food industry, in which all of
a given product, produced during a specified time period, is used to satisfy the related demand. Ni-
aki et al (2017) addressed the integrated lot sizing and scheduling problem of food production in batch
manufacturing systems with multiple shared-common resources and proposed a new mixed integer
linear programming formulation with multiple objective functions. In (2009) Ahumada and Villalobos
review models for the agri-food business where products may be perishable or not, but their focus is
on procurement and harvesting planning and the only goods they are interested in are crops. Sel et
al (2015) introduced the planning and scheduling decisions considering of the shelf-life restrictions,
product dependent machine speeds, demand due dates, regular and overtime working hours in the per-
ishable supply chain. In (1999) Arbib et al consider a three-dimensional matching model for perishable
production scheduling, which is studied under two independent aspects: the relative perishability of
products and the feasibility of launching/completion time. Basnet et al (1999) have described an exact
algorithm to solve scheduling and sequencing problem in the same industry. Chen et al (2019) provided
a review of literature on the integration of scheduling and lot sizing for perishable food products and
they categorized the papers by the characteristics of lot-sizing and scheduling that were included in
their models, and the strategies used to model perishability. In (1993) Claassen and Van Beek propose
an approach to solve a planning and scheduling problem for the bottleneck packaging facilities of the
cheese production division of a large dairy company. Nakhla (1995) emphasizes the need for flexibil-
ity for operations scheduling in the dairy industry, and proposes a rule-based approach for scheduling
packaging lines. In (2005) Entrup et al presented three different mixed integer linear programming for
scheduling problems in fresh food industry in the packing stage of stirred yogurt production. They
accounted for shelf life issues and fermentation capacity limitations. Marinelli et al (2007) addressed
a solution approach for a capacitated lot sizing and scheduling problem with parallel machines and
shared buffers, arising in a packaging company producing yoghurt. In (2007) Doganis and Sarimveis
propose a model that aims the optimal production scheduling in a single yoghurt production line. The
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model takes into account all the standard constraints encountered in production scheduling (material
balances, inventory limitations’, machinery capacity). It also considers special features that characterize
yoghurt production which are limitations in production sequencing mainly due to different fat contents
and flavors of various products and sequence dependent setup times and costs. However the model is
limited to single production line. In another study, Doganis and Sarimveis (2008) present a methodol-
ogy for optimum scheduling of yoghurt packaging lines that consist of multiple parallel machines. The
methodology incorporates features that allow it to tackle industry specific problems, such as multiple
intermediate due dates, job mixing and splitting, product specific machine speed, minimum, maximum
lot size and sequence dependent changeover times and costs. However the model does not incorporate
multi-stage production decisions, and ignores some industry-specific characteristics, such as shelf life.
Finally, it is worth mentioning that, to the best of our knowledge, there is almost no study addressing
the problem of scheduling food production in hospital catering. Therefore, the aim of the present work
is to propose a new mathematical model for this problem.

Author Year  Product Nb Products  Production System Modeling Domain

Our problem 2019 - Multi products  Flexible Job Shop MLP Hospital catering
Wei et al. 2018 - Multi products Flow Shop MILP Food industry
Sargut and Isik 2017 - Single product  Single machine - Food industry
Tempelmeier et al. 2016 - Multi products  Parallel machine - Food industry
Stefansdottir et al. 2016  Cheese  Single product Flow Shop MILP Dairy industry
Acevedo-Ojeda et al. 2015 - Single product  Single machine MIP Food industry
Bilgen and Celeb 2013 - Multi product Flow Shop MILP Dairy industry
Kopanos et al. 2012 Ice cream Single product Flow Shop MILP Food industry
Kilic et al. 2011 Milk Single product Flow Shop MILP Dairy industry
Karray et al. 2011 - Multi products  Single machine ILP Food industry
Kopanos et al. 2010  Yogurt  Single product Flow Shop MILP Dairy industry
Giinther et al. 2006 Sausage Single product Flow Shop MILP Food industry

MLP: Mixed linear programming, MILP : Mixed integer linear programming, ILP : Integer linear pro-
gramming
Table 1: Bibliographic summary on food production scheduling problems.

In this work, the production system studied is considered as flexible job shop system. In most of the
existing work in the literature on flexible job shop problems, the criterion to optimize is the minimi-
sation of the makespan, but the minimisation of flow time which is the target criterion in this work is
very little studied. In (2015) Chaudhrya and Khanb published a literature review on the methods used
to solve the flexible job shop problems and the different objective functions studied (Figure 2).
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H Eas (23 86%)

u Heuristic (9,64%) B Minimum makespan, workload most
loaded machine, total workload

HTS (6,09%) machines (23,35%)

B Minimum makespan and mean
fardiness (2,54%)

B Integer linear pregramming (5,08%)
P8O (4,06%)

o Minimum makespan and production
coste (2,03%)

B Miscellanecus techniques (3,55%)
B NS (3,06%)
m AIS (2,54%) u Total tardiness (1,62%)

B Mathematical programming (2,03%)

B 3A(2,03%) Minimum mean tardiness (1,02%)
mACO (1,52%)

GRASP (1,02%) = Others (24,87%)
B ABC (0,51%)

Figure 2: Bibliographic summary on flexible job shop problem resolution methods.

3 Problem description

In the problem of scheduling food production, we were particularly interested in the process from the
pretreatment of the raw materials until the cooling and stock of finished products as shown in the figure
(Figure 3) which represents the different stages of the meal preparation process from the reception of
raw materials until the distribution of meals to the patients.
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Figure 3: Representative scheme of the meal preparation process.
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The problem of scheduling food production can be described by a set of N jobs, where each job ¢
corresponds to the preparation of a dish characterized by a number of portions (); (quantity), and a
set of operations J; necessary for the preparation of the dish (from raw material to finished product).
It is worth to highlight that the dishes to be prepared do not have the same operating ranges (set of
operations necessary for the preparation of dish). In this study, we identified eight possible operating
ranges (Figure 4) for all the dishes to be prepared and it is possible that several dishes may have the
same operating range.

: : - Stock finished
Prefreatment  |— — | Pack
Cold production ackaging — Crating —»| roducts
Cold production -
Pretreatment | Hot production [—| Cooling . (mixing, ) Packaging - Grating ] Stock finished
seasoning) products
Pretreatment |, Cold | Hotproduction |—| Packaging [ Craling || Stock finished
production products
i ; - Stock finished
Pretreatment (— Hot production [—*  Packaging  — Cooling — Crating B B
Pretreatment [—s| Hotproduction [—  Cooling |  Packaging | Crating || Stock finished
products
Hot production - _ Stock finished
Pretreatment |— lower |  Fackaging —] Cooling — Crating —_— opfmdﬂgs
temperature
Cold . . s
Pretreatment |—s aodadion |7 Hotproduction [ Cold production |  Packaging |—»| Craing || Stockfinished
products
Packaging |—» Crating __,| Stockfinished
products

Figure 4: Set of production operating ranges for the preparation of dishes.

For each operation of an operating range there is a set of material resources that can realize it. Among
these material resources, we cite as an example : ovens, packaging machines, cooling cells, etc. For each
material resources there is a setup time to take into account which corresponds to the preparation time
of the resource before carrying out an operation and the cleaning time of the resource between two
consecutive operations. The problem of scheduling food production treated in this study is considered
as a flexible job shop scheduling with sequence-dependent setup time. Since, the jobs do not have the
same order of operations and each job has its own order of operation, and each operation is not to
be processed by a predefined machine, but rather has to be assigned to one among a set of possible
machines (Figure 5).
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Figure 5: Example of an operating range consisting of a set of operations from pretreatment of raw
materials to stock of finished products.

Note that the corresponding machines may not be identical, involving different processing times accord-
ing to the chosen machine. The setup times of machines are sequence dependent because it dependents
on the preceding operation on the same machine. The scheduling food production involves two steps:
(i) assignment of operations to machines i.e., each operation must be assigned to a machine among those
that can process the considered operation, (ii) sequencing of operations on machines i.e., determining
an operation sequence for each machine.

As mentioned previously, in order to respect the production capacity of material resources, a job can
be splitted into smaller sub-lots, in such a way that the operations of sub-lots of a job can be performed
simultaneously on different machines. This strategy, which is useful when machine capacity does not
allow the treatment of the whole job, also enables a more efficient processing scheme. The criterion
to minimize in the present study is the flow time of jobs in the production system. The choice of this
criterion is based on the fact that in a food process we must ensure the respect of the cold chain at
each stage of the product life cycle which aims to constantly maintain a low temperature (positive or
negative depending on the product) to ensure the maintenance of all the qualities (hygienic, nutritional
and gustatory) of food.

F. Abderrabi et al Scheduling production processes in hospital catering



4 MATHEMATICAL MODEL Page. 9

—| Cold packaging
Gooi
1
e [coupromsmen
Il Workplan 1
Cell3 Crating
i
1 ﬂ Cell 4
Workplan T
Raw 2
Hot production (baking) products
Iﬂl Marmite 1 Induction
hob 1
| Oven 2 | Marmite 2 Hot kaai
Oven 3 Marmite 3 I Induction Operation
Oven 6 Cooker 2 hob 1 - Stock
s w— oc
Electric
I Snack plate | hob 2 '

Figure 6: Operation orders of the operating ranges with the material resources that can perform each
operation.

4 Mathematical model

In this section we present a mixed integer linear programming model. This model formalises the prob-
lem studied and can be used to solve small-sized problems using a branch-and-bound algorithm. So-
lutions from such small-sized problems can be used to validate the correctness of the developed meta-
heuristic methods.

4.1 Assumptions

The mathematical model for the scheduling food production inherits its main assumptions from the
standard flexible job shop scheduling problem and flexible job shop scheduling problem with sequence-
dependent setup times, in addition to some specific features due to the job splitting :

e Jobs are independent of each other,
e A job can be split into sub-lots,
e The sub-lots of jobs can be grouped on the machines to be treated at the same time,

e FEach sub-lot of a job consists of a set of operations that must be processed consecutively (prece-
dence constraints between operations of sub-lots of jobs),

e Each operation of sub-lot has a given processing time,

e The preemption of operations of sub-lots of jobs is not allowed, i.e. operation processing on a
machine cannot be interrupted,

e Each job has a given due date (finish date of production at latest),
e Sub-lot sizes (number of portions) are discrete,

e Sub-lots creation is consistent throughout the processing sequence, meaning that job splitting
and sub-lot sizes remain constant for all operations,

F. Abderrabi et al Scheduling production processes in hospital catering
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Machines are independent,
A machine can process at most one operation at a time,
The setup times of machines are dependent on the sequence of operations of sub-lots of jobs,

Material resource has a given availability time windows that must be taken into account.

Accounting for these assumptions, the objective is to find a schedule involving sub-lots assignment
to machines and sub-lot sequencing for each machine, in such a way that each job’s demand is ful-
filled, different constraints of problem are respected and the flow time of jobs in production system is
minimized.

4.2

Notations

The definition of the proposed mathematical model parameters relies on the following sets and indexes

M : set of all material resources, where m = |M|.
N : set of jobs (dishes to prepare), where n = |N| and {0,n + 1} are two dummy jobs.

J; : set of operations of job ¢ € N, such that the operation ;7 € J; is done before the operation
]—|— 1€ J; and |J()| = |Jn+1| =1.

(); : number of portions (quantity) of job 7 € N.

¢; - number of portions in each sub-lot of jobi € N.

L; : set of sub-lot of job i € N, with |Ly| = |L,,41| = 1 and [; = |L;| such that [; = [%]

2

d; : due date of jobi € N.
M;; C M: set of material resources that can perform the operation j € J; of job¢ € N.
Ry, : maximum capacity in number of portions of the material resource k € M.

M, C M: set of material resources that have a capacity of one portion and that can not be
processed several jobs at the same time (material resources that can perform preprocessing and
cold production operations).

My C M: set of material resources that have a capacity greater than one portion and which can
not be processed several jobs at the same time (ovens,...).

Ms C M: set of material resources that have a capacity greater than one portion and that can
processed several jobs at the same time (cooling cells).

P;]k : unit processing time of operation j € J; of job ¢ € N on the material resource & € M.
P,j, : processing time of operation j € J; of job ¢ € N on the material resource k € My U Ms.

Sijhgk : setup time of material resource k& € M;; N M, if operation j € J; of job 7 € N precedes
directly operation g € J}, of job h € [N on the material resource £ € M;; N Mj,.

T} : preparation time of the material resource k at the beginning of scheduling.
E}, : preparation time of the material resource £ at the end of scheduling.
[Ak, Y| : time window of availability of material resource k € M.

B : big integer.

F. Abderrabi et al Scheduling production processes in hospital catering
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4.3

4.4

Decision variables
Xk, + binary variable, equals to 1, if operation j € J; of sub-lot [ € L; of job i € IV is assigned
to the material resource & € M;;, 0 otherwise.

Fijnrgr - binary variable, equals to 1, if operation j € J; of sub-lot [ € L; of job i € IV precedes
directly operation g € Jj of sublot ' € Lj, of job h € N on the material resource k € M;; N Mg,
0 otherwise.

Ziyjr - binary variable, equals to 1, if operation j € J; of sub-lot I € L; of job i € N starts and
finishes at the same time as the operation j € J; of sub-lot I’ € L; of job ¢ € N on the material
resource k € M;;, 0 otherwise.

Siiji + starting time of operation j € J; of sub-lot [ € L; of job ¢ € N on the material resource
ke M;;.

Ciiji: completion time of operation j € J; of sub-lot [ € L; of job i € N on the material resource
ke M;;.

C;: completion time of job ¢ € N.

Mathematical model

The mathematical model (P2) provided here for the problem of scheduling food production was devel-
oped based on the ( Buddala and Mahapatra, 2018) formulation (P1), that is designed for the basic flexible
job shop scheduling problem. This mathematical model was adapted and improved for the problem of
scheduling food production by integrating the different constraints that were not taken into consider-
ation in the work of Buddala and Mahapatra (2018). The following table represents the characteristics
of the two mathematical models (P1) and (P2) :

Constraints and objective (P1) (P2)

- Processing times for job operations X
- Precedence constraints between job operations X
- Non preemption of job operations X
- Machine production capacity (number of operations processed at the same time) X
- Machine production capacity (in number of portions)

- Due date of jobs

- Machine availability time windows

- Sequence-dependent setup time of machines

- Splitting of jobs into sub-lots

- Batching of sub-lots of jobs on machines

KX R XK XK X )X XX

- Cma:l: X

-2G

=

Table 2: Characteristics of the mathematical models (P1) and (P2).

The mathematical model (P2) is formulated as indicated through equations (1) to (22) :

F. Abderrabi et al Scheduling production processes in hospital catering
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iEN
Ci> Y Cuyp, VieN, leL;,jel; (2)
keM;;
Sijk + Ciujr < B x Xy, Vie Nl € L, je Ji, ke M; (3)
Cijk — Sije > Py — B* (1 — Xuji), Vi€ Nl € L, j € Ji,k € My U Mg (4)
Ciji — Saje > P, % Qi — Bx (1 = Xuy),Vi € Nl € Ly, j € J;, k € My (5)

Shrgk = Cujk + Sijhge — B % (1 — Fujnrge), Vi€ Nl € Ly, j € Ji,he N,I' € Ly, g € Jy,
k€ My N My, \ M,

Sivik > Cuji + Sijiji — B * (1 — Fyjirje) — B * Zywje, Vi € NI € Ly, j € J;, k € My O\ My (7)

Sijr — Swje < B* (1 — Zypi),Vi € N,1,I' € Li,j € Jij,k € My U M
Cijr — Cwjk < Bx (1 = Zyyji), Vi€ N,[,I' € Li,j € Ji,k € My U M;

Z Z Z Filjhllgk:1,ViEN\{n+1},lELi,j € Ji,k‘EMijlﬁthg

hGN\{O} l'eLy geJy,

Z Z Z Eljhl’gk - 1,\V/h E N\ {0},l, E Lh,g E Jh,k E MZ] thg

ieEN\{n+1}I€L; jEJI;

> Suk— Y, Cajou>0,VieN, lel;, jel;

kEMiJ‘ keMij—l

Z Xiljk:L VieN, lel, jeJ;
k‘GMi]‘

C;<d;, Yie N
Z Qi*Zill’jk < Ry, Yie N, je Ji, ke MyUDM;
Ll'eL;

SilijAk—FTk,ViGN, ZGLZ‘, jEJi, ]{IGMZ‘]‘

Cajp <Y+ Ey, VieN, leL; jeJ, ke My

(8)

&)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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Zuwwjx=0,VieN,l, I'eL; jeJ, keM (18)

X € {0,1}, Vie N, l € L;, jeJi, ke M (19)

Zawse € {0,1}, Yie N,I,I' € Li,j € J;,k € Mj (20)

Fujrge € {0,1}, Yie Nl e L;,j € J,h € N,I' € Ly, g € Jy, k € M;; 0\ My, (21)
Sijr = 0,Caji > 0,C; > 0,Vi e Nl € L;,j € Ji,k € M (22)

In the mathematical model presented previously, the first constraint (1) represents the objective function
consisting in minimizing of the flow time of jobs in production system, which is defined as the sum of
completion time of all jobs. In turn, job completion times are computed as the completion time of the last
sub-lot derived from the considered job, as indicated in (2). Note that, due to (3), for giveni € N, [ € L;
and j € J;, variables Sy and Uy, are equal to zero for all £ € M;; values different from the index of
the machine that really processes the considered sub-lot. On the other hand, when Xj;;;, equals to 1, (4)
and (5) activate the relationship constraint between starting time and completion time of an operation of
a sub-lot. It is worth noting that, in this case, the processing time does not depend on the quantity of job
for the material resources M;UM3 (4), but it depends on the quantity of job for the material resources M,
(5). Constraints (6) considers sequence dependent setup times between completion time and starting
time of two operations of sub-lots which are processed on machine one after another. Equations (7)
disable the constraints (6) if two different sub-lot of the same job are performed at the same time by the
same material resource. Constraints (8) and (9) require that if two operations of two different sub-lots of
the same job are assigned at the same time to a material resource M2 or M3, they must have the same
starting time and completion time respectively. Constraint (10) ensures that only one operation follows
immediately j th operation of sub-lot I € L; of job i € N on machine k € M;; N Mj, and constrain
(11) guaranties that only one operation precedes immediately ¢ th operation of sub-lot I’ € Lj, of job
h € N on machine k € M;; N My, Equations (12) establishes the precedence constraint between
two consecutive operations of the same sub-lot. Constraints (13) enforces that each operation of each
sub-lot should be assigned to exactly one machine among the possible ones. The respect of the due
date of jobs is modeled by (14). The constraints (15) ensure that the capacities of material resources in
number of portions are respected. The respect of the time windows of availability of material resources
is modeled by (16) and (17). Finally, (19), (20), (21) and (22) define the domain of decision variables.

4.5 Computational results of mathematical model

The mathematical model presented previously was implemented in Java programming language using
the Cplex library to solve it. This mathematical model has been tested on more than 100 instances of
different types : adapted instances of literature (Behnkel and Geiger (2012), Azzouz et al (2017), Buddala
and Mahapatra (2018), Shen et al (2018)), randomly generated instances (Table 5), andomly generated
instances of type HCT (Table 4) and real instances of HCT (Table 3). The real instances of HCT were
built after having timed the processing times of operations of dishes of some examples of days (example:
instance with 82 dishes, 92 sub-lots , 370 operations and 29 machines, ...). From this example, several
instances were built by increasing each time the number of jobs, sub-lots and operations to see from
what number of jobs, sub-lots and operations the model is not able to find solutions in a reasonable
resolution time. The following tables presents the computational results of the mathematical model
(P2) on these different types of instances:
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Job Sub-lot Operation Machine > C; Time -

2 2 10 29 153h 25 o

3 3 15 29 244h 45 -

4 4 20 29 32.8h 2mn h

5 5 24 29 399h 4mn u«m

6 6 29 29 49.2h 20 mn

7 7 34 29 57.6h 45 mn o

8 10 39 29 69.4h  2h30 .

9 11 44 29 - >3h

82 92 370 29 - >3h W A . w om = w

a5

50

Table 3: Computational results of the mathematical

model (P2) on real instances of HCT. according to the number of operations.

Figure 7: Computational time of instances

Job Sub-lot Oper Mach > C; Time Job Sub-lot Operat Mach 3} C; Time
110 395 402 29 - >3h 3 12 11 6 117 16 s
100 100 342 29 - >3h 3 8 13 6 85 24 s
90 90 324 29 - >3h 3 10 8 6 45 10s
80 277 286 29 - >3h 3 11 11 6 55 20s
60 208 200 29 - >3h 3 12 12 6 117 104 s
50 50 173 29 - >3h 3 11 13 6 78 30s
20 20 74 29 - >3h 3 10 12 6 88 172 s
15 15 59 29 - >3h 3 10 13 6 103 240 s
10 10 31 29 - >3h 3 10 10 6 76 28 s
5 5 19 29 - >3h 3 8 9 6 44 24 s
Table 4: Computational results on randomly Table 5: Computational results on randomly
generated instances of type HCT. generated instances.

From the computational results of the mathematical model presented previously, we observe that the
model gives quickly a solution for the small instances with a certain number of jobs, sub-lots, and
operations. The execution times of this mathematical model for these instances vary according to the
number of jobs, sub-lots, and operations. It is important to note that the execution time is given only for
instances where the optimal solution is obtained. In the opposite case, the bar - means that no optimal
solution was found after 3 hours of execution. The computational results of the mathematical model
proposed on different types of instances and specifically on real instances of HCT show the limits of an
exact resolution for the problem of food production scheduling.

5 Genetic algorithms

Solving the classical job shop problem is known to be NP-hard (Garey et al 1976) and so is solving the
flexible job shop problem with job splitting. In order to solve this problem efficiently and in a reasonable
resolution time, we developed a hybrid method combining a genetic algorithm and three local research
methods. The overall operation of this method with the different stages are given in the following
flowchart (Figure 8) :
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Generation of feasible initial population

v
Fitness evaluation of individuals

Maxiteration
No
Selection operator
v
Crossover operators
v
Mutation operators
]
Local search algorithms

v

Update current population

END

Figure 8: Flowchart of the genetic algorithm developed.

The various elements of this method are presented in the following subsections.

5.1 Solution representation

By solving a flexible job shop scheduling problem using a genetic algorithm, Kacem (2003) uses a solu-
tion representation coding both the assignment and the sequencing of operations on different machines.
Similar representations can be used to solve the flexible job shop scheduling problem with job splitting,
if each sub-lot is considered a job. To illustrate this representation of the solution, consider a small ex-
ample of the problem with three jobs and four machines. The number of operations, of sub-lots for each
job, and all the machines eligible for each operation are given in the figure (Figure 9). By considering
each sub-lot as a job, and using the technique proposed by Kacem (2003), a representation of assignment
of machines to operations, and sequencing is coded in a chromosome (Figure 9). In this chromosome,
each gene is represented by a quadruple (i, [, j, k), designating the assignment of the operation j of the
sub-lot [ of job i to machine k. The sequence of genes in the chromosome represents the sequencing
of operations on machines. For example, the assignment and sequencing of operations on machine 1
can be decoded as follows : (i1,13,j1) — (43,12, j3) — (43,13, j3). This information is obtained from
genes 8, 20 and 21 in the chromosome, where k£ = 1. In this chromosome, for a given ¢ and [, the gene
(1,1, 7, k) is always located on the right of all the other genes (7,1, j', k') with 5/ < j. This ensures that
the precedence requirement of the operations of a particular sub-lot are not violated.
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5.2

Set of eligible machines
for operation

Job Operations Sublots ol 02 03

gl 3 3 {m1, m2} {m3} {m2, m4}

32 2 2 {m3, md} {m2}

73 3 3 {m3} {m2, m4}  {ml, m3}
L2134 5[61 78] 9]10{t1|12)13]14[15(16]|17]|18|19(20]21]22
el leflo|~|a|la(afa|fa|a|o|(ale|a]ler]|=[=[ca] x
R G R G R G I G R G A A N N e
IR GGG R R A A R A R G
M A I A I A s M I M I s I A = .

i =job index, |=sublotindex, j = operation index, k = machine index

Figure 9: Representation of the assignment of operations to machines and their sequencing.

Operation assigned to production run

Machine i r2 r3 r4 r 6 i 18

m | (1) | @B123) | 1B1)

m | (i) | @312 | @) | 382 | @12 | @222 | (12

md | @Rt | @) | @B | e | @R | i | g | iR

mb | (@2R2i1) | 131212 | (t1h3) | (1B)

Figure 10: Operation assignment and sequencing decoded from Figure 8.

Initial population

The initial population plays an important role in the performance of genetic algorithms. An initial
population of better solutions, with more diversity can avoid falling into a premature convergence or
a local minimum. The initial population cannot be formed until the operations of each sub-lot of job

have
for a

been assigned and sequenced on machines. Assignment and sequencing rules must be developed
flexible job shop problem with splitting of jobs into sub-lots, while taking into account the spe-

cific characteristics of the material resources. For the assignment problem, three heuristics have been
proposed :

Random assignment (RA) : the operations are randomly assigned to the machines.

SPT assignment (SPTA) : the operations are assigned to machines according to the SPT (Shortest
Processing Time) rule. For each operation, the machine with a smaller processing time is selected
to perform this operation.

LPT assignment (LPTA) : the operations are assigned to machines according to the LPT (Longest
Processing Time) rule. For each operation, the machine with a longer processing time is selected

to perform this operation.

Minimum machine workload assignment (MMWA) : the operations are iteratively assigned
to machines based on their processing times and machine workloads. The workload of a machine
depends on its type. For the set of machines M1 (material resources that can perform only one
operation at the same time), the workload of machine is equal to the sum of processing times of
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operations assigned to the machine. For the set of machines /2 and M 3 (set of machines that
can perform several operations at the same time, exp : ovens, cooling cells, etc.), the workload
of machine is equal to the total machine occupation time. The procedure consists in finding, for
each operation, the machine with the minimum workload. The aim of this heuristic is to balance
the workload between machines.

The procedure for assigning operations to machines using the MMWA heuristic is explained in the
following table through an example with 4 machines and 3 jobs. Each operation can be processed by
any of the 4 machines. The data and the assignment of operations to machines using MMWA heuristic
are shown in the following table (Table 6) :

Job Operation Machine
M1 M2 M3 M4
J 0] ( Setup time, Processing time)
1 1 (10, 20) (10, 50) (15, 10) (10, 30)
(10, 40) (15, 60) (15, 80) (10, 40)
3 (15, 90) (10, 70) (15, 20) (10, 20)
2 1 (25, 70) (20, 60) (20, 40) (20, 50)
2 (10, 40) (10, 80) (30, 50) (20, 60)
3 (15, 90) (20, 50) (15, 40) (15, 70)
3 1 (10, 80) (15, 60) (25, 30) (15, 50)
(15, 30) (15, 50) (20, 80) (15, 30)
J O Initial Data 1st Assignment 2nd Assignment --- Final Assignment
M4 M1 M3 M2 M4 M1 M3 M2 M4 M1 M3 M2 M4 M1 M3 M2
31 50 80 30 60 50 80 60 50 B0 30 60 50 80 60
2 30 30 80 50 30 30 110 50 30 110 50 30 80 50
21 50 70 40 60 50 70 7O 60 80 70 70 60 50 70 40
60 40 50 80 60 40 80 80 90 40 80 80 --- 60 50 80
3 70 90 40 50 70 90 70 50 100 90 70O 50 70 90 50
11 30 20 10 50 30 20 40 50 60 20 40 50 20 10 50
2 40 40 80 60 40 40 110 60 7O 40 110 60 40 80 60
3 20 9 20 70 20 9 50 70 50 90 50 70 20 20 70

Table 6: Assignment of operations to machines according to MMWA heuristic.

The order of jobs and operations in the first two columns of the above table are randomly permutated
when forming the initial population. Here the random order is job 3, job 2, and job 1.

Now that assignment rules are in place to determine which machine should be used for a particular
flexible operation, the sequence of the operations in the chromosomes still needs to be determined
before forming the initial population. Four heuristics are proposed to determine the sequencing of op-
erations on the machines :
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e Random sequence (RS) : randomly orders the operations on each machine.
e SPT sequence (SPTS) : the operations with the shortest processing time will be firstly processed.

e Most Number of Operations Remaining (MNOR) : the sequence of operations depends on
the job that has the most remaining operations to schedule. It consists of processing first, the
operations of sub-lots of job which has the most remaining operations.

e Most Work Remaining (MWR) : the operations which have the most remaining processing

time will be processed in priority.

Using the assignment of operations to machines given in the table above (Table 6), the following table
(Table 7) shows the procedure for sequencing operations on machines using the MWR rule :

Work Remaining (WR) Calculation Operation Sequence
J O WR Machine Runl Run2 Run3
1 1 (10+30)+(10+40)+(10+20)=120
2 (10+40)+ (10 +20)=280
3 (10+20)=30 Mi: 12,02 J1,02
2 1 (20+60)+(10+40)+(15+40)=185 |M2: J2,01
2 (10 +40) + (15 + 40) = 105
3 (15+40)=355 M3: J3,01 12,03
3 1 (25+30)+ (15+30)=100 | M4: J1,0l 13,02 J1,03
2 (15+30)= 45

Table 7: Sequencing of operations on machines according to the MWR heuristic.

In all the heuristics presented previously, the solutions obtained must respect the constraints of prece-
dence between the operations of sub-lots of jobs, the due dates of jobs, the time windows of availability
of material resources and the production capacities of machines.

5.3 Fitness evaluation

When the chromosomes are coded, they must be decoded in order to calculate the fitness function. The
flow time of the schedule corresponding to a given chromosome is used as the fitness function of this
chromosome. The chromosomes with better fitness function have a smaller flow time. The chromosome
evaluation function takes into account : (1) the precedences between the operations of sub-lots of jobs,
(2) the production capacity in number of portions of machines, (3) the due dates of jobs, (4) machines
availability time windows, (5) the setup times of machines which depend on the sequence of operations.
The process of decoding a chromosome to evaluate its fitness function is as follows :
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Algorithm 1 Evaluation steps of the fitness function of a chromosome.
e Step01:Set P =1

e Step 02 : Set 7, [, j, k, the index values of the gene located at the P position of the chromosome.

e Step 03 : Calculate the completion time. Cj;,
e If operation j of sub-lot [ of job ¢ is the first operation assigned to the machine k and j =1

Sijkk = Ak + Ti; Cuje = Sujk + Piji; Ci = Max{C;, Cyji}

e If operation j of sub-lot [ of job ¢ is the first operation assigned to the machine k£, 7 > 1 and
the operation j — 1 is assigned to the machine £’

Sitje = Max{ A + T, Cyj—1i }; Cuje = Sujk + Piji; Ci = Max{C;, Cy;i}

e If operation j’ of sub-lot I’ of job i’ is the operation to be processed immediately before the
operation j of sub-lot / of job 7 on the machine k£ and j =1

Sitik = Svjriji + Covie: Caje = Sugk + Piji; Ci = Max{C;, Cyji}

e If operation j of sub-lot [ of job i and the operation j of sub-lot I’ of job i are assigned to the
machine kand j =1

o If (k€ MyU Mz and 2 x ¢; <= Ry)

Sijk = Sirjk; Cijk = Sujk + Pijk; Ci = Max{C;, Cii}
o If (k€ MyU Mjset2xq; > Ry)ou(k € M)

Sijk = Furji; Caje = Sujk + Piji; Ci = Max{C;, Cyji}

e If operation j' of sub-lot I’ of job i’ is the operation to be processed immediately before the
operation j of sub-lot / of job 7 on the machine k, j > 1 and the operation j — 1 is assigned
to the machine &'

Sk = Max{syjijk + Covji, Citj—1w }; Cujk = Saji + Piji; C; = Maz{C;, Cyji}

e If operation j of sub-lot [ of job i and the operation j of sub-lot I’ of job i are assigned to the
machine £, j > 1 and the operation j — 1 is assigned to the machine £’

o Tf(k € MyU My and 2 g; <= Ry)
Sitjk = Sijk; Cije = Sugk + Piji; Ci = Maz{C;, Cy;i}
o If (k€ My U M;sand 2% q; > Ry)or(k € M)
Sitje = Max{Cyjr, Cuj—1r }; Cijk = Sajk + Piji; Ci = Maz{C;, Cyji}

e Step 04 : If P is less than the total number of operations of sub-lots of jobs, increment its
value by 1 and go to Step 2; otherwise, go to Step 05

e Step 05 : Calculate the fitness function of the solution }_; C;.

This process of fitness function evaluation, in particular Step 03 is based on the property of the chro-
mosomes that, for a given i and [, the gene (7, (, j, k) is always located on the right of all the other genes
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(i,1,7', k") with j* < j. Based on this property, when the completion time of operation (i, [, j, k) on
machine £ is to be calculated, the completion time of operation (7,1, j — 1, k") is already calculated and
available, regardless to which machine this preceding operation is assigned. Moreover, the completion
time of the operation (i, !, j/, k) to be processed on machine k£ immediately before operation (4, [, j, k)
is also calculated and available.

5.4 Genetic operators

Genetic operators evolve the population to promising regions of the research space. Their design is so
crucial that the convergence behavior of the algorithm depends largely on them. These operators are
generally categorised as selection, crossover, and mutation operators.

5.4.1 Selection operator

The process of selecting two parents from the population for reproduction is called selection. The aim of
the selection operator is to highlight individuals with best fitness, in hopes that their resulting offsprings
are fitter individuals. In the proposed genetic algorithm, we used k-way tournament selection operator
which was introduced in Goldberg et al (1989). Depending on the value of k, there can be a variation
of chromosomes selected to form the new population. A large value of k£ will lead to lower variation of
chromosomes in the new population. A small value of k£ will lead to a higher variation of chromosomes
in the new population. The selection operator is involved in holding competition among %k randomly
selected individuals, and choosing the one with the best fitness (smallest flow time). This individual is
added to the mating population to form the next generation. Then, the £ individuals in the tournament
are placed back in the current population, and the process is repeated. This process continues until the
number of individuals added to the mating population is equal to the population size.

5.4.2 Crossover operator

After the selection of chromosomes for reproduction, crossover operator is applied to combine the fea-
tures of the parent chromosomes in order to produce a new childs, and to enriching the population with
best chromosomes. The individuals in the mating population are randomly paired to form parents for
the next generation. Then for each pair, the algorithm arbitrarily selects one of the available crossover
operators, and applies it with a certain probability to create two child individuals, by exchanging in-
formation contained in the parent chromosomes. In the following, we provide the description of the
crossover operators developed in this study for flexible job shop scheduling with job splitting problem.

The crossover operators for flexible job shop scheduling with job splitting problem can be categorized
as assignment or sequence crossover operators. The assignment crossover operators consist generating
offsprings, by exchanging the assignment properties of the parent chromosomes. The role of sequence
crossover operators are to produce two new offsprings, by exchanging the sequencing properties of
parent chromosomes. The assignment and sequence crossover operators used in the proposed genetic
algorithm are: OMAC (Operation to Machine Assignment Crossover), JLOSC (Job Level Operations Se-
quence Crossover), SLOSC (Sublot Level Operations Sequence Crossover).

From a given pair of parent chromosomes, OMAC creates two child chromosomes, where each child
chromosome retains the order of the operations supplied by the other parent chromosome. The cre-
ation of child 1 by this operator, retaining the order of the operations as obtained from parent 1, as
illustrated in Figure 13 and Figure 14. In the genetic algorithm proposed, we developed three crossover
operators OMAC 1, OMAC 2 and OMAC 3. The objective of crossover operator OMAC 2 is to balance
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the workload between the machines. Whereas, in the crossover operator OMAC 3, the goal is to reduce
the ending dates of jobs, with a larger completion times. The difference between these three crossover
operators is in the choice of operations that we seek to change their assignments. In the first crossover
operator OMAC 1, a set of operations of sub-lot of jobs is chosen randomly. In OMAC 2, we choose a
set of operations of sub-lots assigned to the loaded machines, while in OMAC 3, a set of operations of
sub-lots of jobs with larger completion times is chosen.

The steps of the different operators OMAC 1, OMAC 2 and OMAC 3 are as follows :

Algorithm 2 Crossover operator OMAC 1

e Step 01 : Randomly select a set of operations from the chromosome parent 1.

e Step 02 : Keep the remaining unmodified sequence of the set of operations from the chromosome
parent 1, and copy onto the child chromosome.

e Step 03 : Assignment properties from the chromosome parent 2 are copied onto the child chro-
mosome.

e Step 04 : Create child 2 by starting to select the operations from the chromosome parent 2, and
continue the above process.

Algorithm 3 Crossover operator OMAC 2

e Step 01 : Choose a set of operations assigned to the loaded machines in the chromosome parent
1.

e Step 02 : All the genetic informations of the parent 1 except the assignment informations of the
selected operations is copied to child 1.

e Step 03 : The assignment properties of the selected operations are copied from parent 2 to com-
plete child 1.

e Step 04 : Create child 2 by starting to select the operations from parent 2, and continue the above
process.

The procedure for choosing the set of operations in Step 01 is as follows :

Algorithm 4 Procedure for choosing operations in OMAC 2

e Step 01 : Calculate machine workloads.
e Step 02 : Sort machines in descending order from the most loaded to the least loaded machine.

e Step 03 : Choose the o most loaded machines.
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Loaded machines
1 Number of machines =M

Figure 11: Machines selection procedure in OMAC 2.

Algorithm 5 Crossover operator OMAC 3

e Step 01 : Choose a set of operations of sub-lots of jobs with larger completion times in the
chromosome parent 1.

e Step 02 : All the genetic informations of the chromosome parent 1 except the assignment infor-
mations of the selected operations is copied to child 1.

e Step 03 : The assignment properties of the selected operations are copied from parent 2 to com-
plete child 1.

e Step 04 : Create child 2 by starting to select the operations from chromosome parent 2, and
continue the above process.

The procedure for choosing the set of operations in Step 01 is as follows :

Algorithm 6 Procedure for choosing operations in OMAC 3

e Step 01 : Calculate the completion times of jobs.
e Step 02 : Sort the jobs in descending order of completion time of jobs.

e Step 03 : Choose the a jobs with a larger completion time.

Jobs with larger completion times

f—l—\ Number of jobs =N

Figure 12: Jobs selection procedure in OMAC 3.
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The crossover sequencing operators JLOSC and SLOSC produce two new offsprings, by exchanging
the sequencing properties of parent chromosomes, while leaving the assignment of the machines in a
gene unmodified. They are applied with certain probabilities. The creation of the child chromosome
by JLOSC and SLOSC, preserving the operation assignment informations of parent chromosomes, is
illustrated in Figure 16 and Figure 17. In the genetic algorithm proposed, we developed two crossover
operators JLOSC 1, JLOSC 2 and two crossover operators SLOSC 1, SLOSC 2. The objective of the
crossover operators JLOSC 2 and SLOSC 2 is to keep the sequencing of operations of jobs and the se-
quencing of operations of sub-lots of jobs with smaller completion times.

The steps of creation of a child chromosome by JLOSC 1, SLOSC 1, JLOSC 2 and SLOSC 2 are as follows:

Algorithm 7 Crossover operator JLOSC 1

e Step 01: Choose arbitrary a set of operations of sub-lots of jobs from the chromosome parent 1.

e Step 02 : For the set of chosen operations, keep the remaining unmodified operations of all the
sublots of jobs and copy onto the child chromosome.

e Step 03 : For the remaining jobs, retain and copy the same sequence from the second parent onto
the child chromosome.

e Step 04 : Create child 2 by starting to select the operations in the parent 2 and continue the above
process.

The crossover operator SLOSC 1 is similar to JLOSC 1, but instead of keeping the unmodified operations
of all the sublots, only the information from the sublot of the selected operation is kept and copied to
the child chromosome.
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Algorithm 8 Crossover operator JLOSC 2

Step 01 : Choose a set of jobs with a smaller completion time in the chromosome parent 1.
Step 02 : The operations of sub-lots of jobs chosen in Step 01 are copied to child 1.

Step 03 : The operations of sub-lots assigned to the same machines as the operations of sub-lots
of jobs chosen in Step 01 and the previous operations of these operations of the same job are
copied to child 1.

Step 04 : Child 1 is completed with the remaining operations, in the same order as they appear
in parent chromosome 2 while their assignment properties are kept unchanged as they were in
parent chromosome 1.

Step 05 : Create child 2 by starting to select the operations in the parent 2 and continue the above
process.

The procedure for choosing the set of operations in Step 01 is as follows :

Algorithm 9 Procedure for choosing operations in JLOSC 2

Step 01 : Calculate the completion times of jobs.
Step 02 : Sort the jobs in ascending order of completion time of jobs.

Step 02 : Choose the « jobs with a smaller completion time.

lobs with smaller completion times
| Number of jobs =N

Figure 15: Jobs selection procedure in JLOSC 2.

The SLOSC 2 crossover operator is similar to the JLOSC 2 crossover operator except that in Step 01, we
choose a set of sub-lots of jobs with smaller completion time.
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It is important to note that, after the application of any crossover operator, the child chromosome have
always for a given ¢ and [, the gene (i, [, j, k) is located after any gene (i, [, j, k), where j' < j. This
ensures that precedence constraints between operations of a particular sub-lot are not violated in the
new created child chromosome.

5.4.3 Mutation operator

Crossover operators do not change the genetics of the existing chromosomes. They only alter the as-
signment and, sequencing of the chromosome. Mutation operators are able to introduce new genetic
material into the population, by altering the information contained in one of the genes. The role of
mutation operators is to prevent the algorithm from being trapped in local optimum, and to maintain
genetic diversity in the population. Unlike the role of crossover operator in exploiting the current solu-
tion for better ones, mutation operator plays the role of exploring whole search space (Sivanandam and
Deepa, 2007). The mutation operators are usually applied on chromosomes with certain probabilities.
Assignment and sequence operators also exist amongst the mutation operators. Assignment mutation
operators change the assignment of operations to machines without changing the sequencing of these
operations, and sequence operators only change the sequencing property of the chromosome under-
going the mutation, while the assignment property is reserved. The mutation operators used in the
proposed genetic algorithm are : ROAM (Random Operation Assignment Mutation) and OSSM (Opera-
tions Sequence Shift Mutation). The ROAM mutation operator is applied with a certain probability on
a set of operations of a given individual chromosome, and changes the assignment property of these
operations to another alternative machines. The OSSM mutation operator is in class of sequence mu-
tation operator. Whenever this operator is applied on an individual, an operation is selected and then
moved to another position on the chromosome in such a way that no precedence constraint is violated.
Figure 18 and 19 illustrate the creation of new offsprings using these operators.
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Figure 18: ROAM assignment operator. Figure 19: OSSM sequence operator.

5.5 Local search methods

5.5.1 Local search by gene movement

This local search method improves the quality of any solution built after the application of the crossover
and mutation operators. The procedure for this method is illustrated through an example in Figure 20.
The steps of this local search method are as follows :

Algorithm 10 Local search procedure by gene movement

e Step 01 : Choose a set of operations of jobs with larger completion time in the current chromo-
some.

e Step 02 : Each operation chosen in Step 01 is positioned just before the previous operation as-
signed to the same machine (left movement) or just after (right movement) the following opera-
tion assigned to the same machine, while respecting the constraints of precedence between the
operations of sub-lots of jobs. This process changes the sequencing of operations on the machines.

e Step 03 : This process is repeated a certain number of iterations.

5.5.2 Local search by grouping sub-lots

This local search method consists in grouping the operations of sub-lots of jobs on machines, if the
capacities of machines allow to process several operations at the same time. This method can only be
applied for machines such as ovens, cooling cells, etc. The procedure for this local search method is
illustrated through an example in Figure 21. The grouping of operations of sub-lots of jobs on machines
must take into account the precedence between operations of these sub-lots.

Left movement
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Figure 20: Gene movement procedure. Figure 21: Procedure of grouping of sub-lots.
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5.5.3 Local search by intelligent assignment of operations

In this local search approach, a set of operations assigned to the most loaded machines is reassigned
to the least loaded compatible ones. The workload of a machine is the sum of processing times of
operations assigned to the machine, for all the material resources that can perform only one operation
at the same time, and it is equal to the total duration of occupation of the material resource for the set
of machines that can perform several operations at the same time.

5.6 Pseudo codes of developed genetic algorithms

In this subsection, we present the pseudo codes of the two developed genetic algorithms. These algo-
rithms differ in the generation methods of the initial population, and in the crossover operators. In both
algorithms, several affectation and sequence heuristics were tested for the generation of the initial pop-
ulation. In the first genetic algorithm, crossover operators are based on random choices of operations,
while in the second algorithm different operators specific and more adapted to the problem studied have
been developed. The pseudo codes of the two algorithms are given in algorithms 11 and 12.

Algorithm 11 Genetic algorithm 1

1. Initialization : the initial solutions are chosen randomly or using the heuristics described above

. Evaluation : evaluation of initial solutions using the procedure of calculating the fitness function
nblterations < 0; nblndividuals < 0

. Application of the selection operator to choose the parent chromosomes to cross and mutate

. Randomly choose one of the crossover operators OMAC 1, JLOSC 1 or SLOSC 1

. Application of the crossover operator chosen in 4

. Randomly choose one of the mutation operators ROAM, IOAM or OSSM

. Application of the mutation operator chosen in 6

. Application of local research by grouping sub-lots on child chromosomes obtained after crossover

and mutation

9. nbIndividuals < nbIndividuals + 1

10. If the population size is reached then go to 11 else go to 3

11. Sorting solutions of the current population in ascending order of fitness functions

12. Construction of the new population with solutions of the previous population before and after

sorting 13. Application of local research by gene movement on the « solutions of the new population

14. nblterations < nblterations + 1

15. If the maximum number of iterations is not reached then go to 3 else go to 16

16. End of algorithm

[\

o N N U W
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Algorithm 12 Genetic algorithm 2

1. Initialization : the initial solutions are chosen using the assignment and sequence heuristics de-

scribed above

2. Evaluation : evaluation of initial solutions using the procedure of calculating the fitness function
nblterations < 0; nblndividuals < 0

. Application of the selection operator to choose the parent chromosomes to cross and mutate

. Randomly choose one of the crossover operators OMAC 2, OMAC 3, JLOSC 2 or SLOSC 2

. Application of the crossover operator chosen in 4

. Randomly choose one of the mutation operators ROAM, IOAM or OSSM

. Application of the mutation operator chosen in 6

. Application of local research by grouping sub-lots on child chromosomes obtained after crossover

and mutation

9. nbIndividuals <— nbIndividuals + 1

10. If the population size is reached then go to 11 else go to 3

11. Sorting solutions of the current population in ascending order of fitness functions

12. Construction of the new population with solutions of the previous population before and after sort-

ing 13. Application of local research by gene movement on the « solutions of the new population

14. nblterations < nblterations + 1

15. If the maximum number of iterations is not reached then go to 3 else go to 16

16. End of algorithm

0 N N U W

6 Iterated Local Search

This section describes our proposed iterated local search (ILS) algorithms for solving the problem of
scheduling production process. ILS is a simple, robust and highly effective local search procedure,
which explores local optima in a given neighborhood (Lourenco et al, 2003). ILS starts from an initial
solution and obtains local optimum in its neighborhood, by a local search procedure. To improve upon
the current local optimum, ILS performs the local search procedure to a perturbation solution of the
current local optimum and finds a new local optimum. An acceptance criterion is employed to determine
which local optimum will become the current local optimum in the next iteration. The above process is
repeated until a termination criterion is met. The ILS consists of three main components: initial solution
construction, local search procedure and perturbation mechanism which are detailed in the following.
The overall operation of the iterated local search algorithm with the different stages are given in the
following flowchart (Figure 22) :
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Figure 22: Flowchart of the iterated local search algorithm developed.

To generate the initial solutions of the iterative local search algorithms, the affectation and sequence
heuristics described above were used.

In the proposed iterative local search, the local search procedure is based on two operators : affec-
tation operator (AO) and sequence operator (SO). The affectation operator changes the assignment of
a set of operations to the machines without changing their sequencing on the machines, while the se-
quence operator changes the sequencing of operations without changing their affectation to machines.
In the ILS algorithm proposed, we developed three affectation operators AO 1, AO 2, AO 3, and three
sequence operators SO 1, SO 2 ans SO 3. The goal of OA 2, is to balance the workload between the
machines, while AO 3, SO 2 and SO 3 allow to reduce the ending dates of jobs with a larger completion
times. The different steps of these operators are described in the following,.

With reducing of solution space, local search is easy to trap in a local optimum. To solve this prob-
lem, we carry out a number of insertion moves to the current local optimum and obtain a perturbation
solution. The ILS algorithm restarts local search from this perturbation solution. If the number of per-
turbations is too large, the perturbation solution is far from the current local optimum. On the other
hand, if the perturbation number is too small, the perturbation solution is very close to the current local
optimum. The ILS algorithm will fall into a local optimum and the diversification of the search space
will be very limited. Therefore, appropriate the number of perturbations should be determined for the
ILS algorithm.

At each iteration of the main loop, an initial feasible solution is constructed for the ILS loop. At each
ILS iteration, the local search procedure takes as input the current solution, and returns an improved
solution of this one, which is accepted as the new best current solution if it is feasible and has a flow
time strictly smaller than the initial solution. Then a new starting solution for the local search proce-
dure is generated by perturbing the new best current solution. This procedure repeats until a predefined
number of iterations have been executed.
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The steps of the different sequence and affectation operators are as follows :

Algorithm 13 Sequence operator (SO)

Input : Solution to improving
Output : Improved solution of the current one after resequencing of operations on machines
nblterations < 0

while the maximum number of iterations is not reached do
1. Randomly choose one of the operators SO 1, SO 2 or SO 3

2. Choose an operation in the current solution according to the operator chosen in 1

3. Shift the selected operation in 2 to the left until the permutation of this operation with the
previous operation assigned to the same machine is effective

4. If the left shift is blocked (precedence constraints are violated) then from the solution obtained
in 3, shift the selected operation in 2 to the right until the permutation of this operation with the
next operation assigned to the same machine is effective

5. nblterations<— nblterations + 1
end

Algorithm 14 Affectation operator (AO)

Input : Solution to improving
Output : Improved solution of the current solution after reassigning and resequencing of operations
nblterations < 0

while the maximum number of iterations is not reached do
1. Randomly choose one of the assignment operators AO 1, AO 2 or AO 3

2. Choose an operation in the current solution according to the operator chosen in 1

3. Affectation of the operation chosen in 2 to another machine among a set of alternative machines
4. If the solution obtained after the reassignment of the operation chosen in 2 is not better than
the current solution then apply a sequence operator (SO) on the operation chosen in 2 with the
affectation to machine obtained in 3

5. nblterations<— nblterations + 1
end

Algorithm 15 Perturbation operator (PO)

nbPerturbations < 0
while the maximum number of perturbations is not reached do

1. Randomly choose one of the sequence operators S1, SO 2, SO 3 or one of the affectation operators
AO1,A02,A03
2. Application of the sequence or affectation operator chosen in 1

3. nbPerturbations< nbPerturbations + 1
end

The difference between affectation operators, and sequence operators is in the choice of operations that
we seek to change their assignments and sequencing. In AO 1 and SO 1 a set of operations of sub-lot
of jobs is chosen randomly. The operator AO 2 choose a set of operations of sub-lots assigned to the
loaded machines. In AO 3, SO 2 and , we select a set of operations of jobs with larger completion times,
while in SO 3 a set of operations of sub-lots of jobs with larger completion times is chosen. The different
steps of the iterative local search method are illustrated by an example in the figure 23.
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6.1 Pseudo codes of developed ILS algorithms

In this section, we present two iterated local search algorithms. The difference between the two algo-
rithms lies in the generation of the initial solution which is generated by using different heuristics in the
two iterated local search algorithms. In the first algorithm, the operations to be selected to change their
sequencing and assignments are chosen randomly, while in the second iterated local search algorithm,
the choice of these operations is based on developed and specific rules more suited to the problem stud-
ied. The pseudo codes of the two iterated local search algorithms are given by algorithms 16 and 17

Algorithm 16 Iterative local search algorithm 1

1. Initialization : the initial solution is generated by using assignment and sequencing heuristics
previously described
current solution < initial solution
2. Evaluation : evaluation of the initial solution
nbPerturbation < 0
3. Application of the SO 1 sequence operator
4. If the solution is improved in 3 then
current solution <— solution obtained in 3
Else goto 5
5. Application of the AO 1 affectation operator
6. If the solution is improved in 5 then
current solution <« solution obtained in 5
Else go to 7
7. Application of the perturbation operator on the current solution
8. nbPerturbation < nbPerturbation + 1
9. If the maximum number of perturbations is not reached then go to 3
Else go to 10
10. End of algorithm
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Algorithm 17 Iterative local search algorithm 2

1. Initialization : the initial solution is generated by using assignment and sequencing heuristics
previously described
current solution < initial solution
2. Evaluation : evaluation of the initial solution
nbPerturbation < 0
3. Application of the SO 2 or SO 3 sequence operator
4. If the solution is improved in 3 then
current solution <— solution obtained in 3
Else goto 5
5. Application of the AO 2 or AO 3 affectation operator
6. If the solution is improved in 5 then
current solution <— solution obtained in 5
Else goto 7
7. Application of the perturbation operator on the current solution
8. nbPerturbation - nbPerturbation + 1
9. If the maximum number of perturbations is not reached then go to 3
Else go to 10
10. End of algorithm

Initial solution : Qutput solution of the sequence operator : Solution after shifting the ps operation to the left :
10 2 1 0 2 1 0 2 102 1 02 10 2 10 102 1 02112 010
000 0 O0O0CO0 OO0 O 000D O0O0DO0TO0TUO0O00 000 0 0O0TO0CTD OO0
0000 1 11 2 2 12 000 1 112 2 2 33 000 1 112 2 2 33
000 5 1 3 5 4 2 4 43 0 0 5 1 3 5 4 2 4 43 0 05 1 35 41 1 43
3 Heration:0 | Flow fime =86 ] Flow time = 86 Step04: [ | Flow time = 88
Sequence operator : Affectation o r: ] )
Qutput zolution of the affectation eperator :
Selected position sp=1 Selected position sp =9
10 2 1 0 2 10 2 10 102102101210 102 10210 210
0000 O0DODTGOUODODDODD 0000 O0DO0OODUO0OOUO0TO0OOD 60 00O0O0O0O0TDUOOC OO
00000 1 11 2 2 32 33 0001 112 2 2 33 000 1 112 2 2 33
00 5 1 3 5 4 7 4 413 0 05 1 3 5 4 1 & 43 000 5 1 3 5 4 2 4 43
Step 01: l Flow time =86 Step 01: l Flow fime = 36 [ | Flow time = 36
Perturbation r
Solution after shifting sp to the left : Solution after changing the affectation of the sp
operation: Selected posifion sp=19
102 1 02 2 1010 102 10 210 2 10 10210210 210
00 0 0 0 0O O 0 0 0 0 0000 O0O0TGOC D OO 000 0 0O0O0TCO0C D OO
000 1 112 2 2 3 3 0o 0 1 11 2 2 2 33 o001 112 2 2 33
00 5 1 3 5 4 4 2 4 3 00 5 1 3 5 4 2 2 43 0 05 1 3 5 4 2 4 43
Step02: | Flow time =89 Step 02: } Flow time = 87 Step01.: [ | Flow fime = 86
Solution after shifting sp to the right from the initial Sequence operator after changing the affectation Solution obtained after perturbation by
golufion : of the sp operation: changing the affectation :
102 1 0210 120 10 2 10 210 2 10 TS 1 85 95 0 5 300
g4 40 &g sl ¢ 000 0 00O0TDO0D 0 00 0 0000 D DO
00001 112 2 3 2 3 00 0 1 1132 2 31 33 i b & G 3 5 & EE
0 0 5 1 3 5 4 2 4 4 3 0 005 1 3 5 4 2 31 43 e 1 s
s 1 Flow fime = 83 Step 03 : l Flow fime = 87 Step2: Flow time = 85
= | End iteration 0

Figure 23: Steps of the iterative local search method on an iteration.
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7 Parameter optimization using Taguchi design of experiments

The choice of optimal parameters apparently has a significant effect on the efficiency of metaheuristic
algorithms. When the number of factors affecting the performance of the genetic algorithm is greater,
the full factorial experiment and exhaustive approach to investigate the effect of different parameters
becomes increasingly complicated and impractical.

In this work, the Taguchi method is used to optimize the parameters of metaheuristic algorithm de-
veloped. The parameters of a metaheuristic that are needed to be optimized act like controllable factors
in the design of experiments (DOE). The aim is to find an optimal combination of the parameters such
that the flow time is minimized. The Taguchi method is a special case of the fractional factorial de-
sign in which some special orthogonal arrays are used (Roy, 1990). Orthogonal arrays under Taguchi
method would help to study a large number of decision variables with a limited number of experiments.
Decision variables are divided into controllable and noise factors. Noise factors can not be controlled di-
rectly. It is also impractical and most of the time impossible to eliminate the noise factors (Dehnad,1989).
Taguchi experimental design will help to reduce the effect of noise factors.

Taguchi adopted the concept of signal to noise ratio to reduce the effect of noise factors in the ex-
periment. The desired value or mean response value is represented by signal (S).The undesirable value
or standard deviation is denoted by noise (N). The variation present in the response variable or the
component of noise factor is represented by S/N ratio. Objective functions are classified into 3 types
for design of experiment applications by Taguchi. They are “smaller is better,” the “larger is better,” and
“the nominal is best” Since in the algorithms developed the objectif is to minimize the flow time. The
“smaller is better” type is used, his corresponding S/N ratio is given by the following equation :

S
N —101og,o(k)?, (23)
where £ is the objective function value.

The parameters of the genetic algorithm are : population size (PS), maximum number of generations
(MNG), crossover probability (Pc), mutation probability (Pm), number of elite individuals (NEI) and the
number of individuals on which local research is applied (NILS). The parameters of the iterated local
search algorithm are : maximum number of iterations of sequence operator (MISO), maximum number
of iterations of affectation operator (MIAO), maximum number of perturbations of perturbation oper-
ator (MPPO) and maximum number of perturbations of the iterated local search algorithm (MPILS).
Taguchi design which is based on fractional factorial experiments is used to set the parameters of the
genetic algorithm and those of the iterated local search method.

Minitab 19 is used to employ the Taguchi method. Under the menu options of Minitab, Stat-DOE-
Taguchi Design Create Design is selected. For 5 levels of 6 factors, L25 orthogonal array is used. This
orthogonal array lists the different combinations of factors at different levels at which the response
values of experiments have to be determined.

For different combinations of the factor levels, each example is solved five times and the mean response
was used in the analysis. Figures 25, 27, 29 and 31 show the main effect plot of S/N ration for different
parameter levels of the proposed algorithms. Based on “smaller is better” definition for the signal to
noise ratio, optimum values of the genetic algorithm and iterated local search algorithm parameters are
shown in Tables 18-21.
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Level PS MNG NEI NILS Pc Pm Level PS MNG NEI NILS Pc Pm
1 100 500 1 1 0.1 0.1 1 100 500 1 1 0.1 0.1
2 200 600 50 50 02 0.2 2 200 600 80 80 0.2 0.2
3 500 800 100 100 0.7 0.3 3 500 800 100 100 0.7 0.3
4 800 1000 500 500 0.8 0.8 4 800 1000 500 500 0.8 0.8
5 1000 1200 1000 1000 0.9 0.9 5 1000 1200 1000 1000 0.9 09

Table 8: Parameters of genetic algorithm 1. Table 9: Parameters of genetic algorithm 2.

Table 10: Genetic algorithm parameters and levels of Taguchi design.

Level MPILS MISO MIAO MPPO Level MPILS MISO MIAO MPPO
1 500 100 100 50 1 500 100 100 50

2 600 200 200 100 2 600 200 200 100

3 800 500 500 200 3 800 500 500 200

4 1000 800 800 500 4 1000 800 800 500

5 1200 1000 1000 800 5 1200 1000 1000 800

Table 11: Parameters of iterated local search 1. Table 12: Parameters of iterated local search 2.

Table 13: Iterated local search parameters and levels of Taguchi design.
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PS MNG NEI NILS Pc Pm Fitness S/N ratio

100 500 1 1 09 0.1 990.2 -59.914

100 600 100 1 0.8 0.2 988.9 -59.903

100 800 100 100 07 03 9877 -59.892

100 1000 50 100 08 0.1 987.2 -59.888

100 1200 100 50 09 0.2 9874 -59.889

200 500 50 100 08 09 997.7 -59.979

200 600 100 50 09 0.1 9898 -59.910

200 800 50 100 0.1 0.2 1000.1 -60.000

200 1000 100 1 0.2 0.7 9975 -59.978

200 1200 1 50 0.7 0.8 9983 -59.985

500 500 100 500 0.2 0.8 1004.9 -60.042

500 600 500 1 0.7 09 9989 -59.990

500 800 500 100 09 0.1 987.1 -59.887

500 1000 50 50 0.8 0.2 986.8 -59.884

500 1200 50 500 0.1 0.7 999.2 -59.993

800 500 500 50 09 0.7 997.2 -59.975

800 600 500 100 0.1 0.8 1005.8 -60.050

800 800 1 500 0.2 09 9991 -59.992

800 1000 50 500 07 0.1 9873 -59.888

800 1200 50 50 0.8 0.2 987.1 -59.887

1000 500 1000 500 09 0.2 9874 -59.889

1000 600 1 1000 0.8 0.7 994.6 -59.952

1000 800 50 1 09 0.8 9958 -59.963

1000 1000 100 50 0.1 0.2 1004.6 -60.039

1000 1200 500 100 0.2 0.1 1003.5 -60.030

Table 14: Experimental results of Taguchi design GA 1.
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Figure 24: Main effect plot of means GA 1.

Figure 25: Main effect plot of S/N ratios GA 1.
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709
708+
707
706
705

704
SLLELIL TS "8 Fe *

PS MNG NEI NILS Pc Pm Fitness S/Nratio
100 500 1 1 09 0.1 989.2 -59.905
100 600 100 1 08 02 9875 -59.890
100 800 100 100 0.7 03 9869 -59.885
100 1000 80 100 0.8 0.1 986.7 -59.883
100 1200 100 80 09 0.2 986.8 -59.884
200 500 80 100 0.8 09 99%.4 -59.968
200 600 100 80 09 0.1 988.6 -59.900
200 800 80 100 0.1 0.2 9997 -59.997
200 1000 100 1 0.2 0.7 996.2 -59.966
200 1200 1 80 0.7 08 9974 -59.977
500 500 100 500 02 08 1003.5 -60.030
500 600 500 1 0.7 09 9973 -59.976
500 800 500 100 0.9 0.1 986.7 -59.883
500 1000 80 80 0.8 0.2 986.5 -59.881
500 1200 80 500 0.1 0.7 999.2 -59.993
800 500 500 80 09 0.7 996.7 -59.971
800 600 500 100 0.1 0.8 1004.6 -60.039
800 800 1 500 0.2 09 998.8 -59.989
800 1000 80 500 0.7 0.1 986.5 -59.881
800 1200 80 80 08 02 986.3 -59.880
1000 500 1000 500 0.7 0.2 986.7 -59.883
1000 600 1 1000 0.8 0.7 993.8 -59.945
1000 800 80 1 09 08 994.6 -59.952
1000 1000 100 80 0.1 09 10034 -60.029
1000 1200 500 100 0.2 0.1 1002.2 -60.019
Table 15: Experimental results of Taguchi design GA 2.
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Figure 26: Main effect plot of means GA 2.
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Figure 27: Main effect plot of S/N ratios GA 2.
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MPILS MISO MIAO MPPO Flow time S/N ratio

500 100 100 50 922.6 -59.301
500 200 500 50 921.1 -59.286
500 500 500 200 919.8 -59.273
500 800 200 200 919.2 -59.268
500 1000 500 100 919.4 -59.270
600 100 200 200 931.3 -59.381
600 200 500 100 922.2 -59.296
600 500 200 200 934.0 -59.407
600 800 500 50 931.0 -59.379
600 1000 100 100 932.0 -59.388
800 100 500 500 939.5 -59.458
800 200 800 50 932.6 -59.394
800 500 800 200 919.1 -59.267
800 800 200 100 932.9 -59.396
800 1000 200 800 933.0 -59.397
1000 100 800 100 930.7 -59.376
1000 200 1000 200 940.6 -59.468
1000 100 100 50 918.2 -59.258
1000 800 200 500 919.3 -59.269
1000 1000 200 100 919.1 -59.267
1200 100 1000 500 919.4 -59.270
1200 200 100 800 927.7 -59.348
1200 200 200 100 929.1 -59.361
1200 800 500 50 939.2 -59.455
1200 1000 1000 200 937.9 -59.443

Table 16: Experimental results of Taguchi design ILS 1.

MPILS MISO MIAO MPPO MPILS MIsO MIAQ MPPO

55901

-55.91-
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55937
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55,99+
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Figure 28: Main effect plot of means ILS 1. Figure 29: Main effect plot of S/N ratios ILS 1.
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MPILS MISO MIAO MPPO Flow time S/N ratio
500 100 100 50 908.4 -59.166
500 200 500 50 906.5 -59.147
500 500 500 200 906.9 -59.152
500 800 200 200 906.7 -59.149
500 1000 500 100 906.8 -59.150
600 100 200 200 916.7 -59.245
600 200 500 100 907.7 -59.159
600 500 200 200 920.5 -59.280
600 800 500 50 916.5 -59.242
600 1000 100 100 917.9 -59.255
800 100 500 500 924.9 -59.321
800 200 800 50 917.7 -59.254
800 500 300 200 906.5 -59.147
800 800 200 100 919.9 -59.275
800 1000 200 800 917.0 -59.248
1000 100 800 100 926.1 -59.333
1000 200 1000 200 919.5 -59.271
1000 100 100 50 906.5 -59.147
1000 800 200 500 906.3 -59.145
1000 1000 200 100 906.7 -59.149
1200 100 1000 500 913.7 -59.216
1200 200 100 800 914.6 -59.225
1200 200 200 100 905.5 -59.137
1200 800 500 50 924.7 -59.320
1200 1000 1000 200 9234 -59.307

Table 17: Experimental results of Taguchi design ILS 2.
MPILS MisO MIAO MPPO MPILS MISO MiA0 MPPQ

-58.324

-58,33

-58,35 1

-58,36

-58.34

-3837
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Figure 30: Main effect plot of means ILS 2.
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Figure 31: Main effect plot of S/N ratios ILS 2.
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PS MNG NEI NILS Pc Pm PS MNG NEI NILS Pc Pm
500 1000 50 50 0.8 0.2 800 1200 80 80 0.8 0.2
Table 18: Optimal parameters GA 1. Table 19: Optimal parameters GA 2.
MPILS MISO MIAO MPPO MPILS MISO MIAO MPPO
1000 100 100 50 1200 200 200 100
Table 20: Optimal parameters ILS 1. Table 21: Optimal parameters ILS 2.

8 Performance of developed operators

This subsection presents the results of the improvement percentages of crossover operators of genetic
algorithms, and affectation and sequence operators of iterative local search algorithms developed. The
goal is to evaluate the performance of these operators for each algorithm. The improvement percent-
ages of the operators were evaluated for the algorithms with the same initial solutions and the same
parameters to compare the performance of algorithm operators. For each algorithm, the operator im-
provement percentages were calculated on more than 100 instances. These instances are of several
types : real instances of HCT, randomly generated instances of type HCT and randomly generated in-
stances. For each instance, the minimum, average and the maximum of improvement percentages for
each operator are evaluated, and the improvement percentages at the start, center and at the end of al-
gorithms and for each operator are also calculated, as well as the number of times where each operator
is applied in the iterations of each algorithm. The figures below present the results of the improvement
percentages of the crossover operators of the two genetic algorithms and the improvement percentages
of affectation and sequence operators of iterative local search algorithms on an instance. The operator
improvement percentages differ from one instance to another. For the genetic algorithms, the improve-
ment percentages of local search algorithms were also evaluated. The goal is to show the evolution of
the local search improvement percentages with the operators of two algorithms.

OMAC 1 OMAC 2

‘ Improvement percentages|

‘ Improvement percemages‘

Figure 32: OMAC 1 crossover operator. Figure 33: OMAC 2 crossover operator.
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Figure 34: OMAC 3 crossover operator.
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Figure 37: SLOSC 1 crossover operator.

Figure 36: JLOSC 2 crossover operator.
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Figure 38: SLOSC 2 crossover operator.
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Figure 39: Local search with operators OMAC 1,
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Figure 40: Local search with operators OMAC 2,

OMAC 3, JLOSC 2 and SLOSC 2.
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Figure 41: Opérateur d’affectation AO 1.
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Figure 44: Opérateur de séquencement SO 2.
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Figure 42: Opérateur de séquencement SO 1.
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Figure 43: Opérateur d’affectation AO 2.

sofiejuaotad Justuanodw)

Scheduling production processes in hospital catering

F. Abderrabi et al



9 COMPUTATIONAL RESULTS OF DEVELOPED ALGORITHMS Page. 42

OA3 503

50

w
@
i=23
ol
=
g
&
a
=
&
g
>
2
IS4
£

@
4
=)
S
13
8
©
=
=
1
©
§
k4
2
=
E

™~ [ [ It
R NBmWOmo WNNO OO NN o
manRoNduhaoNdohadNTon

Figure 45: Opérateur d’affectation AO 3. Figure 46: Opérateur de séquencement SO 3.

9 Computational results of developed algorithms

The genetic algorithms presented previously have been implemented using the JAVA programming
language and have been tested on more than 100 instances of different types : adapted instances of
literature (Behnkel et Geiger (2012), Azzouz et al. (2017), Buddala et Mahapatra (2018), Shen et al.(2018)),
randomly generated instances, randomly generated instances of type HCT and real instances of HCT.
The optimization criteria are based on three sub-criteria : quality of solutions, rapidity and stability
of algorithms. The quality and efficiency of the solutions obtained has been proven by comparing
the solutions obtained with the algorithms and the optimal solutions of the mathematical model. The
quality of solutions has also been proven by evaluating the degrees of similarity between solutions
of metaheuristics and also between solutions obtained by metaheuristics and real solutions of some
examples of production days. The degrees of similarity between solutions are evaluated based on the
distances of Manhattan and Hamming which are represented in Table 22. By comparing the real solution
of an example of a production day (Table 23) with the solution obtained with the genetic algorithm,
it was found that the gap between the two solutions is —12,565%, which shows the quality of the
algorithms developed. Regarding the rapidity of algorithms, the computation times of the algorithms
were compared with those of the mathematical model. The stability of the algorithms was measured by
launching them 10 runs for each instance tested. Based on the criteria : quality, rapidity and stability, the
performance of the algorithms developed has been proven by testing them on several types of instances
of different sizes. The results are presented in detail below.
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Distance Mathematical formulas
rol-Nre2
Gap Dy = 100+ 252
P S |Soll,—Sol?
Manhattan | Dy = 2pm1 Zrzlllj pr—Soly|
D 1_q2
Manhattan | D3 = —Zizll‘gi Sl
n 1_2
Manhattan | D, = —Zizllgi cil
. r X
Hamming D5:d:ZZZT1,X: (X1, .oy Xiy . X0)
¥ 1, if starting dates of job ¢ in the compared solutions are different
’ 0, otherwise
Hamming | Dy = &= X = (X3, .., X;, .. X))
X 1, if completion dates of job 7 in the compared solutions are different
' 0, otherwise
Hamming | D; = Dg
Hamming | Dg = D5 * Dg
Hamming | Dy = D5+ D
P
X
Hamming | Dyg = Z”j} =X = (X, Xy X))
] 1, if columns p in the compared solution vectors are not identical
P 0, otherwise
P
) X
Hamming | Dy =b= @,X: (X1, .y Xy, . X))
~ )1, if the operation in columns p of solution vectors is not assigned to the same machine
P 0, otherwise
Hamming | Dy, = D8,
Hamming D13 = DlO * D11
Hamming D14 = DlO -+ D11
Hamming | Dy; = &= X = (X3, .., X;, ... X,,)

B {1, if the sub-lots of jobs i are not treated similarly in the compared solutions

0, otherwise

SrCH Y C? - flow times of compared solutions, P : size of vector solution, Sol*, Sol? : two compared
solutions, S}, S? : starting times of job 7 in compared solutions, C}}, C? : completion times of job 7 in
compared solutions.

(2

Table 22: Metrics used to measure the degrees of similarity between solutions.
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- Instance data

- Number of dishes 82

- Total number of sub-lots of dishes 92

- Total number of operations 370

- Number of material resources 29

- Average number of meals produced 5 000

- Real solution 901,97 h
- Genetic algorithm solution 788,64 h

- Gap between real and genetic algorithm solutions - 12,565 %

Table 23: Comparison between real and genetic algorithm solutions on an example of a production day.
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3.38

1.87
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1.35

0.89 | 2.36

1.08

Table 24: Degrees of similarity between real and genetic algorithm solutions.

9.1 Results of genetic algorithm 1

[Perfomance of assignment and sequence heuristics
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Figure 47: Performance of GA 1 in terms of rapidity with the different combinations of heuristics for

the generation of initial population.
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[Performance of assignment and sequence heuristics|
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Figure 48: Performance of GA 1 in terms of quality with the different combinations of heuristics for the
generation of initial population.

Job Sub-lot Operation Machine > C; Time Gap1l Gap2 Stability
2 2 10 29 153h 0.1s 0.0% 00% 100%
3 3 15 29 244h 02s 00% 00% 100 %
4 4 20 29 328h 03s 0.0% 00% 100%
5 5 24 29 399h 04s 00% 00% 100 %
6 6 29 29 492h 06s 00% 00% 100 %
7 7 34 29 57.6h  08s 00% 00% 100%
8 10 39 29 694h 1s 00% 00% 100 %
9 11 44 29 77.7h 155 - 0.0% 100 %
10 12 48 29 85.0h 2s - 0.0% 100 %
20 22 93 29 162.4h 30s - 0.0% 100 %
30 32 138 29 2529h 60s - 0.0% 100 %
40 42 179 29 339.7h 15mn - 0.0% 100 %
50 58 227 29 471.6h 23mn - -1.46 % 100 %
60 68 271 29 5904h 3mn - -0.59% 100 %
70 78 315 29 682.8h 3.8mn - 0.77 % 100 %
82 92 370 29 7983h 5mn - 1.23% 100 %

Gap 1 : gap between optimal solutions and those of genetic algorithm 1, Gap 2 : gap between solutions
of genetic algorithms 1 and 2.
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Figure 49: Computational results of genetic algorithm 1 on real instances of HCT.

Job Sub-lot Operation Machine ) C; Time Gap1l Gap2 Stability
100 100 342 29 7047h 4mn - -0.07 % 99.97 %
110 395 402 29 986.7h 8mn - 0.04 % 99.96 %
90 90 324 29 696.5h 45mn - -0.01% 99.98 %
80 277 286 29 525.6h 23mn - 0.02% 100 %
60 208 200 29 2488h 40s - 0.12% 100 %
50 50 173 29 3189h 1mn - 0.19% 100 %
20 20 74 29 158.6h 25s - 0.25% 100 %
15 15 59 29 4215h 2mn - 0.09% 100 %
10 10 31 29 215.4h 40s - 0.14% 100 %
5 5 19 29 368.8h 25mn - 0.16 % 100 %

Gap 1 : gap between optimal solutions and those of genetic algorithm 1, Gap 2 : gap between solutions

of genetic algorithms 1 and 2.

Table 25: Computational results of genetic algorithm 1 on randomly generated instances of type HCT.
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Job Sub-lot Operation Machine > C; Time Gap1l Gap2 Stability

3 12 11 6 117 3s 0.0% 100%  100%
3 8 13 6 85 5s 0.0% 100% 100 %
3 10 8 6 45 1.5s  00% 100%  100%
3 11 11 6 55 4s 0.0% 100% 100 %
3 12 12 6 117 24s  00% 100% 100 %
3 11 13 6 78 6s 0.0% 100% 100 %
3 10 12 6 88 42s 00% 100% 100 %
3 10 13 6 103 56s  0.0% 100% 100 %
3 10 10 6 76 6s 0.0% 100% 100 %
3 8 9 6 44 5s 0.0% 100%  100%

Gap 1 : gap between optimal solutions and those of genetic algorithm 1, Gap 2 : gap between solutions
of genetic algorithms 1 and 2.

Table 26: Computational results of genetic algorithm 1 on randomly generated instances.

9.2 Results of genetic algorithm 2
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Figure 50: Performance of GA 2 in terms of rapidity with the different combinations of heuristics for
the generation of initial population.
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Figure 51: Performance of GA 2 in terms of quality with the different combinations of heuristics for the
generation of initial population.

Job Sub-lot Operation Machine > C; Time Gap1l Gap2 Stability
2 2 10 29 153h 03s 0.0% 00% 100%
3 3 15 29 244h 05s 00% 00% 100 %
4 4 20 29 328h 08s 0.0% 00% 100%
5 5 24 29 399h 1s 00% 00% 100 %
6 6 29 29 492h 14s 0.0% 00% 100%
7 7 34 29 576 h 18s 0.0% 00% 100%
8 10 39 29 694h 2s 00% 00% 100 %
9 11 44 29 777h  3s - 0.0% 100 %
10 12 48 29 85.0h 4s - 00% 100 %
20 22 93 29 1624h 1mn - 0.0% 100 %
30 32 138 29 2529h 2mn - 00% 100 %
40 42 179 29 339.7h 3mn - 0.0% 100 %
50 58 227 29 4786h 4.6mn - 1.48% 100 %
60 68 271 29 5939h 6mn - 0.59 % 100 %
70 78 315 29 677.6h 7.8 mn - -0.77 % 100 %
82 92 370 29 7886h 10mn - -1.22% 100 %

Gap 1 : gap between optimal solutions and those of genetic algorithm 2, Gap 2 : gap between solutions
of genetic algorithms 1 and 2.
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Computational time of instances

Figure 52: Computational results of genetic algorithm 2 on real instances of HCT.
Job Sub-lot Operation Machine 3} C; Time Gap1l Gap2  Stability
100 100 342 29 7051h 6mn - 0.06 % 99.98 %
110 395 402 29 986.2h 12mn - -0.07 % 99.97 %
90 90 324 29 696.5h 8 mn - -0.04% 9999 %
80 277 286 29 5255h 4 mn - -0.04% 100 %
60 208 200 29 2485h 1mn - -0.12% 100 %
50 50 173 29 3183h 1.8mn - -0.19% 100 %
20 20 74 29 1582h 45s - -0.25% 100 %
15 15 59 29 421.1h 3.8s - -0.09% 100 %
10 10 31 29 2151h 75s - -0.14% 100 %
5 5 19 29 368.1h 42mn - -0.17 % 100 %

Gap 1 : gap between optimal solutions and those of genetic algorithm 2, Gap 2 : gap between solutions

of genetic algorithms 1 and 2.

Table 27: Computational results of genetic algorithm 2 on randomly generated instances of type HCT.
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Job Sub-lot Operation Machine > C; Time Gap1l Gap2 Stability
3 12 11 6 117 6 0.0% 00% 100 %

3 8 13 6 85 10s  00% 00% 100%
3 10 8 6 45 3s 0.0% 00% 100 %
3 11 11 6 55 8s 0.0% 00% 100%
3 12 12 6 117 48s  00% 00% 100%
3 11 13 6 78 12s  00% 00% 100%
3 10 12 6 88 82s 00% 00% 100%
3 10 13 6 103 112s 0.0% 00% 100%
3 10 10 6 76 12s  00% 00% 100%
3 8 9 6 44 10s  00% 00% 100 %

Gap 1 : gap between optimal solutions and those of genetic algorithm 2, Gap 2 : gap between solutions
of genetic algorithms 1 and 2.

Table 28: Computational results of genetic algorithm 2 on randomly generated instances.

Instance D1 D2 D3 D4 D5 D6 D7 Dg Dg D10 D11 D12 D13 D14 D15
2x29x10 00 | 00| 00| 00| 00| O00]O00]|00)|O00] 00/ 00/ 00 0.0 0.0 0.0
3x29x15 00| 00| 00| 00| 00]|00]O00]|00)|00] 00/ 00/ 00 0.0 0.0 0.0
4x29x20 00| 00| 00| 00| 00]|00]O0O0]|00)|00]|00]|00] 00 0.0 0.0 0.0
5x29x24 00|00 |00])00]|00]|O00]|O00]O00]|O00]O00]O00]|O00 0.0 0.0 0.0
6x29x29 00| 00| 00| 00| 00]|00]O00]|00)|00] |00/ 00/ 00 0.0 0.0 0.0
7x29x34 00| 00| 00| 00| 00| O00]O00]|00)|00] |00/ 00/ 00 0.0 0.0 0.0
8x29x39 00 | 00| 00| 00| 00| O00]O00]|00)|O00] |00/ 00/ 00 0.0 0.0 0.0
9x29x44 00| 00| 00| 00| 00]|00]O00]|00)|00]|00]|00] 00 0.0 0.0 0.0
10x29x48 | 0.0 | 0.0 | 00 | 00O | 0O | OO | 00 | 00 | 0.0 | 0.0 | 0.0 | 0.0 0.0 0.0 0.0
20x29x93 | 0.0 | 00 | 0.0 | OO | 0.0 | OO0 | 00 | 0.0 | 00 | 0.0 | 0.0 | 0.0 0.0 0.0 0.0
30x29x138 | 0.0 | 00 | 0.0 | OO0 | 0.0 | 00 | 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 0.0 0.0
40x29x179 | 0.0 | 0.0 | 0.0 | 0.0 | OO | OO | OO | OO | OO | 00 | 0.0 | 0.0 0.0 0.0 0.0
50x29x227 | 1.46 | 3.74 | 0.07 | 0.08 | 0.41 | 0.52 | 0.76 | 0.21 | 0.93 | 0.19 | 0.05 | 0.92 | 0.009 | 0.24 | 0.02
60x29x271 | 0.58 | 1.60 | 0.03 | 0.04 | 0.54 | 0.68 | 0.82 | 0.36 | 1.22 | 0.09 | 0.02 | 0.95 | 0.002 | 0.11 | 0.04
70x29x315 | 0.76 | 2.10 | 0.05 | 0.06 | 0.72 | 0.80 | 0.85 | 0.57 | 1.52 | 0.11 | 0.03 | 0.93 | 0.001 | 0.14 | 0.06
82x29x370 | 1.23 | 3.32 | 0.07 | 0.08 | 0.82 | 0.94 | 0.95 | 0.77 | 1.76 | 0.16 | 0.04 | 0.92 | 0.006 | 0.056 | 0.09

Table 29: Degrees of similarity between GA 1 and GA 2 solutions on real instances of HCT.

From the results presented above, we remark that the two genetic algorithms are efficient in terms of
quality, rapidity and stability. The performance of these two algorithms depends on the type of instances
and their sizes, and it also depends on the choice of heuristics for the generation of initial solutions.
The first genetic algorithm is more efficient in terms of quality with the MMWA assignment heuristic
and the SPT sequence heuristic, while the second genetic algorithm is more efficient with the MMWA
and MNOR heuristics.

The results of the genetic algorithms on different types of instances show that the metaheuristics de-
veloped are efficient relative to the quality of solutions. For some instances, the two algorithms found
the optimal solutions in a very short computation time compared to the mathematical model. For the
instances for which the optimality is not reached, the gaps between the solutions obtained with the
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algorithms and the optimal solutions are very small. For the large instances for which the mathemati-
cal model has failed to find solutions after more than three hours of execution, the genetic algorithms
have found feasible solutions within reasonable computation time. By comparing the two algorithms
in terms of rapidity, the first algorithm is faster than the second algorithm, while comparing them to
stability both algorithms are stable for real instances of HCT and randomly generated instances, while
for the randomly generated instances of type HCT, the second algorithm is more stable than the first
algorithm. Comparing the two algorithms in terms of quality of solutions, for some instances the first
algorithm is better than the second algorithm, while for other instances the second algorithm is more
efficient than the first algorithm.

9.3 Results of iterated local search algorithm 1
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Figure 53: Performance of ILS 1 in terms of rapidity with the different combinations of heuristics for
the generation of initial solutions.
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Figure 54: Performance of ILS 1 in terms of quality with the different combinations of heuristics for the
generation of initial solutions.

Job Sub-lot Operation Machine > C; Time Gap1l Gap2 Gap3 Gap4 Stability
2 2 10 29 153h  0.05s 00% 00% 00% 00% 100%
3 3 15 29 244h  008s 00% 00% 00% 00% 100%
4 4 20 29 328h  01s 00% 00% 00% 00% 100%
5 5 24 29 399h  014s 00% 00% 00% 00% 100%
6 6 29 29 492h 02s 00% 00% 00% 00% 100%
7 7 34 29 57.6h  03s 00% 00% 00% 00% 100%
8 10 39 29 694h 05s 00% 00% 00% 00% 100%
9 11 44 29 77.7h 075s - 0.0% 00% 00% 100%
10 12 48 29 86.4h 1s - 1.65% 1.65% 058 % 100 %
20 22 93 29 1665h 10s - 252% 252% 042% 100%
30 32 138 29 2623h 20s - 3.72% 372% 0.65% 100 %
40 42 179 29 3549h 28s - 447% 447% 074% 100 %
50 58 227 29 490.6h 35s - 403% 251% 1.03% 100 %
60 68 271 29 6244h 48s - 576 % 514% 125% 100 %
70 78 315 29 7207h 56s - 555% 636% 0.77% 100 %
82 92 370 29 8465h 75s - 6.04% 734% 068% 100 %

Gap 1 : gap between optimal solutions and those of ILS 1, Gap 2 : gap between solutions of ILS 1 and
GA 1, Gap 3 : gap between solutions of ILS 1 and GA 2, Gap 4 : gap between solutions of ILS 1 and ILS

2.

Table 30: Computational results of iterated local search algorithm 1 on real instances of HCT.
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Job Sub-lot Operation Machine 3} C; Time Gap1l Gap2 Gap3 Gap4 Stability

100 100 342 29 740.2h 45s - 502% 496 % 1.05% 99.94%
110 395 402 29 1030.5h 120s - 442% 448% 119% 99.93%
90 90 324 29 7323h 525 - 500% 512% 1.22% 99.95%
80 277 286 29 556.7h  42s - 590% 594% 1.46% 100 %
60 208 200 29 2624h 185 - 547% 559% 1.47% 100 %
50 50 173 29 336.9h 24s - 564% 584% 1.63% 100 %
20 20 74 29 1653h 8s - 422% 449% 0.85% 100 %
15 15 59 29 4321h  28s - 251 % 261% 077% 100 %
10 10 31 29 219.8h 155 - 204% 219% 087% 100 %
5 5 19 29 3765h 325 - 209% 225% 0.64% 100 %

Gap 1 : gap between optimal solutions and those of ILS 1, Gap 2 : gap between solutions of ILS 1 and
GA 1, Gap 3 : gap between solutions of ILS 1 and GA 2 and Gap 4 : gap between solutions of ILS 1 and
ILS 2.

Table 31: Computational results of iterated local search algorithm 1 on randomly generated instances
of type HCT.

Job Sub-lot Operation Machine > C; Time Gap1l Gap2 Gap3 Gap4 Stability
3 12 11 6 123 05s  513% 513% 5.13% 0.82% 100%
3 8 13 6 89 06s 471% 471% 471% 114% 100%
3 10 8 6 47 01s 444% 4.44% 4.44% 00% 100%
3 11 11 6 58 06s 545% 545% 545% 1.75% 100%
3 12 12 6 120 2s 256 % 256% 256% 084% 100 %
3 11 13 6 81 08s 3.85% 38% 38% 125% 100%
3 10 12 6 92 4s 455 % 4.55% 4.55% 1.10% 100 %
3 10 13 6 106 8s 291 % 291% 455% 0.95% 100 %
3 10 10 6 80 09s 526% 5.26% 526% 1.27% 100%
3 8 9 6 45 07s 227% 227% 227% 0.0% 100%

Gap 1 : gap between optimal solutions and those of ILS 1, Gap 2 : gap between solutions of ILS 1 and
GA 1, Gap 3 : gap between solutions of ILS 1 and GA 2 and Gap 4 : gap between solutions of ILS 1 and
ILS 2.

Table 32: Computational results of iterated local search algorithm 1 on randomly generated instances.
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9.4 Results of iterated local search algorithm 2
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Figure 55: Performance of ILS 2 in terms of rapidity with the different combinations of heuristics for
the generation of initial solutions.
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Figure 56: Performance of ILS 2 in terms of quality with the different combinations of heuristics for the
generation of initial solutions.
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Job Sub-lot Operation Machine 3} C; Time Gap1l Gap2 Gap3 Gap4 Stability
2 2 10 29 153h  0.12s 00% 00% 00% 0.0% 100 %
3 3 15 29 244h 018s 00% 00% 00% 00% 100 %
4 4 20 29 328h  024s 0.0% 00% 00% 00% 100 %
5 5 24 29 399h  032s 00% 00% 00% 00% 100 %
6 6 29 29 492h 044s 00% 00% 00% 00% 100 %
7 7 34 29 576 h  058s 0.0% 00% 00% 00% 100 %
8 10 39 29 694h 07s 00% 00% 00% 00% 100 %
9 11 44 29 77.7h  16s - 0.0% 00% 00% 100 %
10 12 48 29 85.9h 18s - 1.06 % 1.06% -058% 100 %
20 22 93 29 165.8h 16s - 209% 2.09% -042% 100 %
30 32 138 29 260.6h 36s - 3.04% 3.04% -0.65% 100%
40 42 179 29 3523h 54s - 3.71 % 3711 % -0.73% 100 %
50 58 227 29 485.6h 65s - 297 % 146 % -1.02% 100%
60 68 271 29 616.7h 92s - 445% 384% -1.23% 100%
70 78 315 29 7152h 108s - 474 % 555% -0.76 % 100 %
82 92 370 29 8408h 146s - 532% 6.62% -0.67% 100%

Gap 1 : gap between optimal solutions and those of ILS 2, Gap 2 : gap between solutions of ILS 2 and
GA 1, Gap 3 : gap between solutions of ILS 2 and GA 2 and Gap 4 : gap between solutions of ILS 2 and
ILS 1.

Table 33: Computational results of iterated local search algorithm 2 on real instances of HCT.

Job Sub-lot Operation Machine 3} C; Time Gap1l Gap2 Gap3 Gap4 Stability
100 100 342 29 7325h 82s - 393% 387% -1.04% 99.96 %
110 395 402 29 10184 h 230s - 319% 325% -1.17% 99.95%
90 90 324 29 723.5h 98s - 3.83% 386 % -1.20% 99.97 %
80 277 286 29 548.7h  80s - 438 % 441% -1.44% 100%
60 208 200 29 2586h 32s - 394% 406% -1.45% 100 %
50 50 173 29 331.5h 44s - 3.95% 415% -1.60% 100 %
20 20 74 29 163.9h 12 - 334 % 3.60% -0.85% 100 %
15 15 59 29 4288h 525 - 1.73% 1.83% -076% 100 %
10 10 31 29 2179h 26 - 116 % 130% -086% 100 %
5 5 19 29 3741h 62 - 144 % 1.60% -0.64% 100 %

Gap 1 : gap between optimal solutions and those of ILS 2, Gap 2 : gap between solutions of ILS 2 and
GA 1, Gap 3 : gap between solutions of ILS 2 and GA 2 and Gap 4 : gap between solutions of ILS 2 and
ILS 1.

Table 34: Computational results of iterated local search algorithm 2 on randomly generated instances

of type HCT.

F. Abderrabi et al

Scheduling production processes in hospital catering



10 CONCLUSION Page. 56

Job Sub-lot Operation Machine ) C; Time Gap1l Gap2 Gap3 Gap4  Stability
3 12 11 6 122 08s  427% 427% 427% -081% 100 %
3 8 13 6 88 1.2s  353% 353% 353% -1.12% 100%
3 10 8 6 47 04s 444 % 4.44% 444%  0.00% 100 %
3 11 11 6 57 14s 364% 3.64% 3.64% -1.72% 100%
3 12 12 6 119 42s 1.71% 1.71% 1.71% -083% 100 %
3 11 13 6 80 1.6s 256% 256% 256% -1.23% 100%
3 10 12 6 91 92s 341% 3.41% 341% -1.09% 100 %
3 10 13 6 105 14s 194 % 194% 194% -094% 100 %
3 10 10 6 79 21s  395% 395% 3.95% -125% 100%
3 8 9 6 45 1.8s  227% 227% 227% 0.00% 100 %

Gap 1 : gap between optimal solutions and those of ILS 2, Gap 2 : gap between solutions of ILS 2 and
GA 1, Gap 3 : gap between solutions of ILS 2 and GA 2 and Gap 4 : gap between solutions of ILS 2 and
ILS 1.

Table 35: Computational results of iterated local search algorithm 2 on randomly generated instances.

To evaluate the performance of iterated local search algorithms developed, these metaheuristics were
tested on the same instances as the genetic algorithms. From the previous results, we observe that
the performance of the iterated local search algorithms depends on the type of instances and their
sizes, and it depends also on the choice of heuristics for the generation of initial solutions such as the
genetic algorithms. The first algorithm gives better solutions with the SPT assignment heuristic and
the MNOR sequence heuristic, while the second algorithm finds good solutions with the MMWA and
MNOR heuristics. By comparing the results obtained with genetic algorithms and iterated local search
methods on all the tested instances, we find that the ILSs are less good than the GAs in terms of quality
of solutions obtained. Whereas, in terms of rapidity, the ILSs methods are very fast compared to the
GAs.

10 Conclusion

The present work deals with the study of a new industrial problem. Different resolution methods for
scheduling production processes in hospital catering were developed. A mathematical model integrat-
ing all the constraints of the studied problem was proposed. This model is an improvement of standard
flexible job shop scheduling problem with sequence-dependent setup times by integrating specific in-
dustrial constraints. An extensive model study confirming the effectiveness of the proposed model is
presented. The computational results of the mathematical model on different types of instances show
the limits of an exact resolution for the problem of scheduling production processes. To solve the large
instances of the problem, different metaheuristics have been developed and tested on several types
of instances. The computational results of these metaheuristics have proven their effectiveness and
reliability for scheduling operations in the food production processes and allowed significant improve-
ments in the performance of the studied production system. As regards future research, the present
work opens the way to different perspectives such as the study of the production planning problem
over several days and our future works will focus on the development of resolution methods for this
problem.
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