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ABSTRACT

The Disassembly Economic Order Quantity (DEOQ) problem is to determine the

quantities of a product to be disassembled at different times over an infinite plan-

ning horizon by considering ordering, operation and inventory costs. The demands

for the components are independent, which can lead to accumulations of unneces-

sary inventories over time. This paper proposes the models which integrate price

sensitive demands and disposal decisions in DEOQ problems to maximize the profit

of disassembly systems without inventory accumulations. Three models are devel-

oped and analyzed to obtain solution approaches that give prices, replenishment

cycle time (or, equivalently, order quantity) and disposal quantity. The inventory

policy integrating both pricing and disposal decisions allows higher profits to be

achieved. A numerical experiment shows its efficiency and highlights its potential

implementation in practical cases.
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1. Introduction

In recent years, increasing concerns about environmental issues are forcing compa-

nies to be more responsible for their products and to recover them more efficiently.

Furthermore, shorter product life cycles and shifts in consumer preferences result in

higher product return flows, causing faster waste production and depletion of natural

resources (El Saadany and Jaber [1] and [2]). In this situation, the regulation and leg-
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islation concerning the processing of End-Of-Life (EOL) products force companies to

achieve higher recovery of their used products. This aims at making dismantling, and

recycling of EOL products more environmentally friendly. For example, some directives

of the European Union (EU) such as End-of-Life-Vehicles (ELVs) and Waste-Electrical

and Electronic-Equipment (WEEE) will put more pressure on companies to solve the

problem of waste management by recycling and re-use.

Product recovery is one of the options which aims to generate new parts or raw

materials by separating and processing the EOL products. It is becoming increasingly

important due to its role in saving resources and minimizing the impact of EOL prod-

ucts on the environment (Godichaud and Amodeo [3], Liu and Zhang [4]). Achieving

both high recyclability and a positive economic balance is a challenging issue in product

recovery operations, and the selection of recycling processes with specific economic and

environmental benefits is very important. This encouraged some researchers to pro-

pose appropriate new models and methods to increase opportunities for cost saving

and maximizing profit.

Disassembly is considered as an important step in product recovery since most re-

turned products are disassembled prior to re-manufacturing, recycling or disposal (Kim

and Xirouchakis [5]). The disassembly processes consist of generating components from

the EOL products that can be allocated to a recovery channel which generates demands

and revenues, or to other channels which reduce environmental impacts. However, the

economic gain can be small between revenues and disassembly costs. Efficient planning

of disassembly systems can increase opportunities for cost saving and make them more

profitable.

Disassembly systems have special characteristics that make them challenging for

planning decisions ([6]):

• The product is decomposed to meet multiple demands for parts or components,

• The demands for components are independent and not necessarily well balanced,

• The disassembly operation generates all the parts or components simultaneously.

These features imply that the quantity of product to be disassembled is not necessarily

equal to the number of requested components and an unnecessary surplus inventory is
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likely to be generated after each disassembly operation. It can be held to satisfy future

demands or be disposed of in a conscious environmental way in real industrial cases.

Several solutions can be proposed to help managers to handle this surplus inventory,

such as lost sales, disposal, or demand balancing by pricing.

Inventory policy can be critical within specific industries with a high return rate.

The ELVs recycling sector is an example, where the EOL vehicles will be disassembled

into their parts and materials, such as engines, doors, seats, tyres, plastics, metals, etc.

All obtained parts and materials are checked to ensure that they are in good working

order, but they are also identified, catalogued and stored for better management and

traceability in order to guarantee optimal safety at the best price. According to the

EU, all ELVs would need a rate of reuse and recovery of not less than 95% by no

later than 1 January 2015 (the European Directive 2000/53/EC). Several costs are

involved such as purchasing, disassembly operation, inventory holding, disposal and

disassembly order costs. The companies must provide optimal policies so that the ELVs

can be efficiently dismantled. They can sell the obtained parts on the secondary market

in order to make the disassembly system profitable. This paper considers the effect of

both inventory and pricing policies on the profitability of disassembly systems. The

use of pricing associated with demand and surplus inventory decisions help companies

manage their disassembly operations and optimize inventory policies.

The remainder of this paper is organized as follows: Section 2 presents a review of

related literature. Section 3 describes the problem, followed by the model assumptions

and notations, and develops the profit function with constraints for the disassembly

system. In Section 4, we develop a solution approach to determine prices (or alter-

natively demands) for the components, the reorder interval of component inventories

and order quantities. The solution approach is developed gradually by considering

inventory costs, disposal decisions and upper bounds on the demands. The results

of a numerical study that compares the models for the profit maximization problem

(with and without a disposal option) are presented in Section 5. Section 6 provides a

summary of the paper with some concluding remarks.
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2. Related literature

This section reviews the literature related to the problem. Three research fields are

identified to position our contributions: disassembly scheduling, disassembly economic

order quantity (DEOQ) and EOQ models with price sensitive demand. The first two

highlight inventory issues in disassembly systems, and the last one considers the op-

portunity of considering pricing in EOQ models. We note that there are few works on

EOQ models adapted for disassembly systems, despite their advantages for real-case

applications, and we point out the differences between our problem and the works in

the three mentioned research fields.

2.1. Disassembly scheduling

Disassembly problems have gained increasing attention in studies concerning product

recovery during the last decade. There are several classes of problems arising in dis-

assembly systems identified in the literature (Özceylan et al. [7]). Inventory issues are

mainly considered in disassembly scheduling problems, which consist of determining

the overall timing and quantities of EOL products to disassemble over a planning hori-

zon under various assumptions (on demands, returns and costs). Most of the works

in this disassembly research field consider a planning decision with time varying de-

mands over a discrete and finite planning horizon. In this context, the seminal paper

of Gupta and Taleb [8] presents MRP-like (Material Requirement Planning) proce-

dure. It determines the quantity of a product to disassemble in order to satisfy the

demands for its components based on its bill-of-material. The general specificities of

disassembly scheduling are highlighted in Lee et al. [9] and several extensions of the

MRP-like procedure have been made to consider multiple products with part com-

monalities (Taleb and Gupta [10]), lot-sizing heuristics (Barba-Gutiérrez et al. [11])

and demand uncertainties (Barba-Gutiérrez and Adenso-Dı́az [12]). These papers do

not consider the problem of inventory accumulation mentioned in section 1. When

considering various types of planning costs, mathematical programming approaches

are another approach to find optimal planning. If set-up or fixed ordering cost is not

considered, on-the-shelf solvers can find optimal solutions (see for instance, Lee et al.
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[9], Kongar and Gupta [13], Langella [14]). Uncertainties make the problem more dif-

ficult to solve (Inderfurth et al. [15], Inderfurth and Langella [16], Kongar and Gupta

[17]). Disposal decisions, which are an option to handle inventory accumulation, are

considered in Kongar and Gupta [13], Langella [14], Inderfurth and Langella [16] and

Kongar and Gupta [17], but only for a one period planning horizon. When considering

a multi-period model with set-up cost, the inventory accumulation has to be handled

period to period. The main features and properties of the problem are reviewed in

Kim et al. [18], and its different variants are presented in Slama et al. [19]. Kim et

al. [18] point out the inventory surplus inherent to disassembly scheduling but, few

papers consider this issue. Inventory accumulation in disassembly can be indirectly

reduced by allowing lost sales or external purchasing (Godichaud et al. [20], Hrouga

et al. [21], Hrouga et al. [22], Ji et al. [23]), but they don’t provide explicit decisions

for managing the surplus inventory in each period. More recently, disposal decisions

are integrated in lot-sizing models by Tafti et al. [24] and [25]. The solutions of these

models show that total planning cost can be reduced and their application potentials

are improved since the surplus inventory cannot be kept indefinitely in real cases.

2.2. Disassembly economic order quantity (DEOQ)

Disassembly scheduling with inventory consideration can be addressed under EOQ-

like assumptions. It comes down to a lot-sizing problem but with continuous time,

infinite planning horizon and constant parameters. Historically, EOQ seems to be the

oldest and the most widespread lot-sizing problem, but in disassembly it came after the

variant with discrete and time varying demands. The main specificity of disassembly

economic order quantity (DEOQ) is presented in Godichaud et al. [26]. The authors

show that if no decision is considered for handling surplus inventory, stationary policies

cannot be found and the model is difficult to apply in practice. Disposal decisions are

then considered in the model, and the authors propose solution approaches to find the

optimal disassembly reorder interval. The work is extended in Godichaud et al. [3] for

both disposal and lost sales decisions. The results show that the proposed models can

determine inventory policies which allow surplus inventories to be avoided. Recently,

Godichaud et al. [27] propose several DEOQ models for the problem with variant
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stockouts policies, such as full backorders, full-lost sales and partial backorders. In the

present paper, we propose another variant to handle inventory surplus. In fact, if the

demands can be varied with respect to the price, they can be adjusted to eliminate

the inventory surplus, and help firms determine profit-maximizing policies.

2.3. EOQ with price sensitive demand

In many real cases, item demands are price sensitive according to a mathematical

function containing market potential and price elasticity as parameters. EOQ models

with price sensitive demands have been considered in several papers, but we aim to

show that, due to disassembly specificity, new models have to be proposed in the case

of disassembly systems. The basic model, integrating pricing and inventory decisions

under EOQ assumptions for a single item, is presented in Kunreuther and Richard

[28]. The model is a maximization of mean profit per unit of time function, including

revenues (function of price and demand), unit purchasing cost, inventory holding and

order costs. Compared to sequential optimization, i.e. a pricing decision based on rev-

enues and unit purchasing cost first, and then an inventory decision based on holding

and order costs, the joint optimization results in higher profit. The pricing part of

the problem is developed in Lau and Lau [29] by considering several price-demand

functions. The authors derive the optimal price for each function in the cases of single

and serial stage systems. The model with pricing and inventory decision is analyzed in

detail in Ray et al. [30] with two widespread demand functions: the negative power of

the price (also called iso-elastic function) and a linear function. The main result, based

on the first and second order derivative of the profit function, is that the optimal price

has the smallest value when the first derivative of the profit function is zero, assuming

there is a contiguous price range where the profit function is positive. Mathematical

sensitivity analysis is performed on all the parameters of the model to give managerial

insights. A similar result is presented in Abad [31] for the same demand function and

the author integrates a quantity discount mechanism for the unit purchasing cost.

Teksan and Geunes [32] perform the same analytical approach as in Ray et al. [30] for

systems where the supply is made according to a price sensitive rate. The supply rate

is an increasing function of the supply price, which is directly related to the sales price,
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as the supply rate must be equal to the demand rate. Recently, Adeinat and Ventura

[33] discuss the problem of integrating pricing and lot-sizing decisions by considering

price-dependent deterministic demand in order to maximize the profit per time unit

in a serial supply chain. In disassembly systems, the prices of several items have to be

considered simultaneously in the profit function with several additional constraints,

and the single item models reviewed do not apply.

The single item EOQ model with pricing decision has been extended for multi-item

and multi-stage problems. In multi-item problems, the item EOQ decisions are subject

to linked constraints. In Cheng [34] and Chen and Min [35], they are linked according to

an inventory limit constraint (investment in storage space), and the authors derived the

optimal decision. Pal et al. [36] develops multi-item models with a price break level that

links all the items. The first order condition gives a closed form for the optimal decision,

but the second order condition can only be checked numerically on given examples.

Salvietti and Smith [37] propose a solution method for the multi-item economic lot-

scheduling problem (EOQ like assumption except that all the items are produced at a

given rate on a single facility), with pricing decisions and capacity constraint. In multi-

stage problems, one upstream stage supplies one or many downstream stages which

deal with the demands. The supplier sells the item to the retailers at a wholesale price,

which is a decision variable like the sales price and the order quantity. In Abad [38], the

problem with one supplier and one retailer is analyzed to compare different bargaining

schemes. The problem is also studied in Weng [39] by considering quantity discount on

the wholesale price. These works consider, as an example, the negative power of price

demand function on the retailer. The problem is extended in Viswanathan and Wang

[40] by considering different discount schemes (on quantity or on volume). Bernstein

and Federgruen [41] consider the problem with one supplier and several retailers, where

the retailers are in competition (the demand volume of one retailer affects the demand

of the others). The demand function of each retailer is a linear function of his own price,

but it is also a function of other retailers’ prices (if the price of one retailer increases,

the demands of other retailers increase). Different decision strategies are analyzed:

centralized (all the decisions are optimized together) and decentralized (each retailer

optimizes his profit function). For the decentralized problem, the results are not the
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same when considering the prices or the demands (Bertrand or Cournot competition)

as decision variables. The conditions guaranteeing a unique equilibrium (optimal price

or demand) are proposed. The disassembly case differs from the ones mentioned here

due to the different coordination between items. In the disassembly problem addressed

in the present paper, all the component inventories are replenished simultaneously from

a single source at each operation, while the demands remain independent.

The model with EOQ assumptions and pricing decision has been extended by taking

into account perishable products (or subject to deterioration) and partial backorders

(customers agree to wait with respect to a function of the waiting time). The model

is presented assuming general assumptions for the demand function of the price in

Abad [42] and Abad [43] and, in Dye et al. [44] and Papachristos and Skouri [45], for the

same model with quantity discount. Linear and iso-elastic demand functions are used in

examples. A different demand function for this model is proposed in Sana [46]. We note

that the most used demand functions are the linear and iso-elastic functions, which are

good compromise between real case representations and computational efficiency (ease

of finding optimal solutions). Some researchers consider both disposal rate and pricing

decision, as in El Saadany and Jaber [1] and [2]. The authors analyse a production

and remanufacturing system with the return rate as a function of EOL product price

and quality level. They propose new models to help firms find an optimal policy

between pure manufacturing, pure remanufacturing and mixed strategy. However, in

the problem we address in this paper, the demands for components are independent

and can be sold to different recovery channels (material recycling, spare part markets

as well as remanufacturing processes).

Based on the reviewed works in this section, we note that the pricing decision has

not been investigated in disassembly systems, specifically for handling the inherent

inventory surplus, and the EOQ models with price sensitive demands do not apply

to disassembly. New models and solution approaches are proposed to fill the gap be-

tween EOQ models for disassembly systems and pricing decisions in EOQ models.

The practical purpose is to provide decision makers clear indications concerning the

profitability of a given disassembly process.
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3. Problem and model statements

3.1. Problem statement

Disassembly systems with two-level bills of material are considered. The first level

represents the leaf items obtained by one disassembly operation and the second level

represents the product. A disassembly bill of material can contain spare parts, re-

manufacturing or requested parts as well as material fractions that can be recycled.

Disassembly operations are on the product and there is no inventory for this item.

The leaf items (or components) are associated with demand function, and there is an

inventory for each of them. All the inventories of leaf items are replenished simulta-

neously by one disassembly operation on the product. The disassembly yield of each

leaf item is the number of units of leaf item obtained at each disassembly operation of

one unit of EOL product. Fig. 1 represents an example of a disassembly system for a

product with three leaf items. The disassembly operation is on the product (item 0),

and it generates all the leaf items (I, II, and III) in the quantity noted on the edge

(disassembly yields).

Figure 1. An example of a two-level disassembly structure

The following assumptions are made for all the proposed models in the paper (these

are basic EOQ settings):

• demands of leaf items are independent, constant, and continuous,

• each demand is characterized by a constant rate in units per unit time (per year

for example),

• the planning horizon is considered as infinite,

• the replenishment of inventories (by disassembly operations) are instantaneous,

• the disposal of a quantity of items in inventory is also instantaneous,
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• the disassembly yields are known and constant,

• there is a fixed cost for each disassembly operation incurred whenever an order

is placed,

• there is an inventory holding cost for each unit of an inventory per unit time.

One of the characteristics of disassembly systems is that the disassembly of one

unit of EOL product generates one or more units of each of its components. It implies

that, for each leaf item, the quantity of product disassembled does not necessarily

give exactly the requested quantity of each component, and unnecessary stocks can

be generated at each disassembly operation. By considering stationary demands, these

surplus inventories accumulate with time. Disposal is an option for handling them, but

it can incur additional costs. When the demands can be varied with respect to the sale

price of the items (price sensitive demands), they can be optimized to maximize the

profit of disassembly systems including disposal costs. A disassembly order launches

disassembly operations on products and replenishes the inventories of each leaf item.

The price can be defined as an increasing function of demand (or conversely the de-

mands can be defined by using the reverse function). By integrating both disposal and

pricing policies, firms can investigate the impact of price on consumer demands and

examine the optimal pricing and disposal decisions.

The problem is to determine the sale prices (or alternatively the demands) of leaf

items simultaneously with the disassembly policy, which sets the timing of disassembly

orders and the associated quantities. The objective is to maximize the profit function.

This profit function includes both the revenues generated by the sales of the leaf items

and also the costs of the unit disassembly, inventory holding and order. We restrict our

attention to the policies which are stationary and have the zero-inventory property. In

a stationary policy, the orders are repeated according to a time cycle with a constant

length. The zero-inventory property means that an inventory can be replenished only

when it is zero (excluding surplus). This type of policy is commonly used in practice

and studied in inventory systems (Muckstadt et al. [47]).
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3.2. Model statement

The decision variables and functions used in the mathematical models are as follows:

• Q: Disassembly quantity per order (so that αiQ units of the leaf item i will be

received after disassembly);

• T : Cycle time (time between two disassembly orders);

• X = Q/T : Virtual demand (used as decision variable);

• D = {d1 . . . dN}: Set of demands for each component;

• Di(pi), Pi(di): Demand function of price and the price function of demand for

the leaf item i, respectively;

• Π(T,X,D): Total mean profit per unit time;

• R(X,D): Total mean profit per unit time without ordering and inventory holding

costs;

• C(T,D): Total mean ordering and inventory holding costs per unit time.

The following sets and parameters are used in this paper:

• i = 0, 1 . . . N : Index for the leaf items (i = 0 is used for the EOL product);

• αi: Yield of the leaf item i (number of units leaf item i in the EOL product);

• hi: Inventory holding cost of one unit of the leaf item i per unit time;

• ri: Disposal cost for one unit of the leaf item i;

• c: Disassembly operations cost of one unit of the EOL product;

• k: Ordering cost of the EOL product;

• di: Constant demand per unit time for the leaf item i;

• pi: Constant price for one unit of the leaf item i;

• ai, bi: Parameters of the price-demand function of the leaf item i.

We consider the demand of items to be deterministic with price-sensitive function.

This means that the demands are defined by a decreasing function of price. In the

literature, several demand functions of price are commonly studied, such as linear

demand, iso-elastic, exponential and algebraic curves. Among them, linear and iso-

elastic demand function of the price are the two most commonly-used mathematical

functions in inventory modeling (Huang et al. [48], Ray et al. [30]). In this paper, we
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use an iso-elastic model, also called constant elasticity model, written as follows:

D(p) = ap−b where a, b > 0

This curve has a constant demand elasticity of a, which can be interpreted as the

market potential, and b is the price elasticity (Ray et al. [30], Lau and Lau [29]). We

note that this function is not mathematically bounded (the demand tends to infinity

when the price tends to zero). We also note that the function can be easily reversed

to use demand as a decision variable instead of the price. We note P(d) price function

of demand, written as P(d) = (a/d)(1/b) where a, b > 0.

In disassembly planning, pricing decisions, when they are possible, are also advanta-

geous to reduce surplus inventory by balancing the demands for the components. Fig. 2

represents the effect of considering both disposal decisions and price sensitive demand

on a given leaf item inventory with two different policies. The quantity received for

item i is represented by αiQ. The first policy is represented by D1i(p1i) which is less

than αiQ/T and a quantity Ri has to be disposed of. In the second policy, by increas-

ing the demand of item i to D2i(p2i) (or reducing the price), the disposed quantity is

reduced but the inventory is increased if T is fixed. The problem is to find the values

of T and Di for all the items to obtain the maximum profit.

Figure 2. Inventory evolution of a given leaf item i with respect to time by varying its demand

The problem is defined in (1) as a non-linear problem with constraints. The decision

variables are T , X, and D with:

• D = {d1 · · · dN} is the set of demands for each component as decision variables

(the functions Pi(di) determine the associated price),

• X = Q/T is the quantity of EOL product disassembled per unit time such that
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all component demands can be served, which indicates virtually demands.

The objective function is the total mean profit per unit time. The constraints ensure

that the disassembly quantity for each order is enough to serve all the demands.

Max Π(T,X,D) =

N∑
i=1

di (Pi(di) + ri)−X

(
c+

N∑
i=1

riαi

)
− k

T
− T

(
N∑
i=1

hidi
2

)

s.t. αiX ≥ di ∀i = 1 . . . N (1)

The profit function is a difference between a profit function R(X,D) without ordering

and inventory holding costs, and a DEOQ cost function C(T,D), which are studied

separately below to analyze the problem:

Π(T,X,D) = R(X,D)−C(T,D)

with

R(X,D) =

N∑
i=1

Pi(di)di − cX −
N∑
i=1

ri(αiX − di) and C(T,D) =
k

T
+ T

(
N∑
i=1

hidi
2

)

R(X,D) consists of the sum of the revenues per unit of time for each leaf item, the

disassembly cost per unit of time and the sum of the disposal costs per leaf item.

αiX − di is the quantity of leaf item i disposed of per unit of time. C(T,D) is the

DEOQ cost function if D is fixed (Godichaud and Amodeo [3]). The maximization of

R(X,D) is a pricing problem without inventory costs and we highlight its properties

in the following section as a sub-problem of (1).

4. Solution approach

The Non-Linear Programming (NLP) model with constraints (equation (1)) is ana-

lyzed in this section. The solution is gradually developed with respect to the different

problems, including inventory, disposal option, and demand limits considerations. The

problem without inventory consideration is studied as a sub-problem. We analyze both

problems with and without disposal option. The first one can be used when the dis-

13



posal option is effectively not allowed, but it is also used as a sub-problem to solve the

second one. Also, the problem with disposal options and limits on demands is studied.

4.1. Problem without inventory costs

By decomposing Π(T,X,D) into the difference between R(X,D) and C(T,D), the

pricing problem without inventory costs defined in (2) is studied as a sub-problem of

(1). The two propositions in this section state optimal values for X and D and the

shape of R(X,D) that can be used to solve the problem (1) efficiently .

Max R(X,D) =

N∑
i=1

di(Pi(di)+ri)−X

(
c+

N∑
i=1

riαi

)

s.t. αiX ≥ di ∀i = 1 . . . N (2)

Proposition 1. The problem (2) can be written as follows:

R(X) =

((
N∑
i=1

αiPi(αiX)

)
− c

)
X

with only X as a decision variable by setting all di = αiX and Pi(αiX) =

(ai/(αiX))(1/bi) for the case with bi > 1 for all i = 1 · · ·N .

Proof. See Appendix.

Proposition 1 states that the optimal solution of (2) is to set the demands so that

for each leaf item there is no surplus inventory and, therefore, no disposal. As a result,

the problem has only one decision variable, which can be found efficiently according

to Proposition 2.

Proposition 2. For bi > 1 (for all i = 1 · · ·N), R(X) is concave and attains its

maximum at X0 the unique solution of (R
′
(X) = 0):

N∑
i=1

αi

(
ai
αiX

)1/bi (bi − 1

bi

)
− c = 0
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Proof. See Appendix.

In Proposition 2, the assumption bi > 1 has been discussed in the proof of Propo-

sition 1. Based on this analysis, a simple line search method can be used to find X0.

4.2. Problem without disposal decisions

In the problem without disposal options, each demand is set as di = αiX in order

to have no surplus inventory to dispose of at the end of each replenishment cycle

(T ). The constraints in (1) are not necessary and the problem is to determine the

values of T and X which maximize Π1(T,X), as defined in (3). The problem is always

mathematically feasible with an iso-elastic price demand function, as the function is

not bounded (Pi(αiX) is always defined for X > 0). The case with maximum potential

demand is discussed later.

Π1(T,X) =

((
N∑
i=1

αiPi(αiX)

)
− c

)
X− k

T
−(TX)

(
N∑
i=1

hiαi

2

)
(3)

For a fixed value of X, the optimal reorder interval T ∗(X) is the minimum of the

DEOQ cost function. With T ∗(X) =
√

2k/(X(
∑N

i=1 hiαi)), the problem is equivalent

to (4):

Π1(X) = R(X)−C(X) =

((
N∑
i=1

αiPi(αiX)

)
− c

)
X −

√√√√2kX

(
N∑
i=1

hiαi

)
(4)

The analysis of Π1(X) gives Proposition 3. It shows that a simple non-linear search

method can find the optimal solution (global maximum). The proof of the proposition

follows directly because it highlights the shape of the function on which the search

method is based. We also note that a maximum profit, denoted by X∗ if it exists, is

X∗ < X0 and the search method can be started efficiently at X0 and X∗ is the first

point such that Π
′

1(X) ≥ 0 by decreasing X from X0.

Proposition 3. For bi > 1, Π1(X) attains its maximum at the largest value of X

such that Π
′

1(X) = 0 or at X = 0 if Π1(X) is always negative.
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Proof. After analyzing the derivatives we found that there is no closed-form for the

first and second derivatives.

Π
′

1(X) = R
′
(X)− C

′
(X) =

N∑
i=1

αi

(
bi − 1

bi

)
Pi(αiX)− c−

√
k(
∑N

i=1 hiαi)

2X

We analyze Π1(X) directly based on the shape of R(X) and C(X). We obtain the

following results:

(1) R(X) is concave with maximum X = X0 and R(0) = 0.

(2) C(X) is strictly increasing with no stationary point.

(3) Based on (1) and (2), there are 0, 1 or 2 intersection points between R(X) and

C(X) functions:

• 0 intersection point: Π1 is always negative (which means C(X) always lies

above R(X) and C(X) > R(X)) and the solution is to disassemble nothing

with X = 0,

• 1 intersection point Xmax: Π1 is positive from X = 0 to Xmax and then

negative (which means R(X) first sits above C(X) and then below),

• 2 intersection points Xmin and Xmax: Π1 is positive only between Xmin and

Xmax (which means R(X) first sits below C(X), then above, and finally

below again).

In real cases, upper bounds on the demands di can be imposed according the context.

A maximum demand DM
i is then defined for each item i = 1 . . . N . We must have

di ≤ DM
i for all i = 1 . . . N , and as di = αiX for the problem without disposal, there

is an additional constraint: X ≤ min
i
{DM

i /αi}. This is an upper bound for X and, if

X∗ > min
i
{DM

i /αi}, then X = min
i
{DM

i /αi}.

4.3. Problem with disposal decisions

Based on the results obtained in sections 4.1 and 4.2, a solution approach is proposed

to solve the initial problem (1). This is a non-linear programming problem with con-
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straints and an optimal solution satisfies the Karush-Kuhn-Tucker (KKT) conditions.

The proposed search procedure uses these conditions to solve the problem by itera-

tively changing a solution until they are achieved. We first state the conditions and

description of the search procedure.

By denoting the Lagrangian multipliers θi associated with each constraint αiX ≥ di,

the Lagrange function of the problem is defined as follow:

LΠ(T,X,D, θ) =

N∑
i=1

di(Pi(di) + ri)−X

(
c+

N∑
i=1

riαi

)
− k

T
−

N∑
i=1

hidi
2
T

−
N∑
i=1

θi(di − αiX)

The KKT conditions are as follows:

k

T 2
−

N∑
i=1

hidi
2

= 0 (5a)

Pi(di)

(
bi − 1

bi

)
+ ri −

hiT

2
− θi = 0 ∀i = 1 . . . N (5b)

−

(
c+

N∑
i=1

αiri

)
+

N∑
i=1

αiθi = 0 (5c)

θi(di − αiX) = 0, θi ≥ 0 ∀i = 1 . . . N (5d)

A first solution is found by solving the problem with di = αiX for all i = 1 . . . N .

This solution is feasible for the problem (1) and easy to find, as shown in section 4.1

(only X as variables without constraints). By setting θi with respect to (5b), the initial

solution is optimal if θi ≥ 0 for all i = 1 . . . N (the other conditions (5a) to (5c) are

satisfied based on proposition 3). If there are some θi < 0, the initial solution can be

improved by setting θi = 0 and changing the related di with respect to (5b). At this

point, the following steps are repeated iteratively until the KKT conditions (5a) to

(5d) are satisfied at a given threshold:

• Step 1. The di with di < αiX (θi = 0) and T are fixed. The change in X is

made to satisfy (5c) (the values of θi are set at the previous iteration).

• Step 2. X and T are fixed. With respect to (5b): update the di with di < αiX,
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compute θi for the di with di = αiX and change the di if θi < 0 (θi is changed

to θi = 0).

• Step 3. The di is fixed, T is set with respect to (5a).

The procedure optimizes one variable, considering the others as fixed at each step

with respect to KKT conditions. It improves the profit function iteratively from the

initial solution without disposal. At Step 1, only X is changed (and implicitly the dis

with di = αiX). If the subset of items such that di = αiX is denoted by S, solving

(5c) is equivalent to solving the following equation:

∑
i∈S

αiPi(αiX)

(
bi − 1

bi

)
= c+

∑
i/∈S

αiri + T
∑
i∈S

αihi/2

The right side is constant at Step 1, and the left side is convex in X. Starting with the

value of X from the previous iteration, a new value satisfying the equality is found by

simple line search. At Step 2, di is directly found with (5b) if θi = 0 and T is fixed at

the value from the previous iteration (Step 3). If di = αiX, the value of θi is found

with (5b) and the value of X found in Step 1. However, if θi < 0, the condition (5d)

is not satisfied and the related di can be decreased to improve the profit. Once all the

dis have been set in previous steps, T is easily computed in Step 3 with respect to

(5a).

We note that with an iso-elastic demand function, the demand is not bounded and

a huge value can be optimal. This could not be practicable in real cases. The problem

then is extended by imposing upper bounds for the demands which is studied in the

next section.

4.4. Problem with disposal decisions and limits on demands

Without loss of integrality, we use ai as an upper bound on the demand of item i.

This assumption is modeled with the following set of constraints added in (1):

di ≤ ai ∀i = 1 . . . N (6)

The Lagrangian multipliers associated with each constraint (6) are denoted by λi.

18



The constraints (6) change the conditions (5b) into (5e) and add the condition (5f).

Pi(di)

(
bi − 1

bi

)
+ ri −

hiT

2
− θi − λi = 0 ∀i = 1 . . . N (5e)

λi(di − ai) = 0, λi ≥ 0 ∀i = 1 . . . N (5f)

The previous search method is modified by integrating these new conditions. The

solution without bounds on the demands is used as an initial solution. The demands

are changed to satisfy the constraints (6) if necessary. If di > ai in the previous solution

then set di = ai (all other constraints are satisfied since di is decreased and X is fixed,

i.e. αiX > di) and θi = 0 since di < αiX. T is iteratively updated according to the

changes in dis with (5a), (5e) and X fixed.

The changes in X are then made according to the condition (5c) considering T and

di with di < αiX as fixed. The changes in some dis by setting θi = 0 result in a

change in the left side of condition (5c). If in the current solution −
(
c+

∑N
i=1 αiri

)
+∑N

i=1 αiθi > 0 (resp. < 0), X must be increased (resp. decreased) to improve the

solution. We note that after changing the initial solution to satisfy (6), if some dis are

changed to di = ai then θi = 0 and the right side of (5c) becomes negative. X can be

decreased to improve the initial solution.

Starting from the corrected initial solution and by decreasing X, the search is po-

sitioned on an interval [XL XU ] for X as follows. At first, XU is set to the solution of

the problem without an upper bound on the demands and XL is set to the maximum

value of ai/αi with i such that αiX > ai in the current solution. Then, while condition

(5c) is positive in XL and negative in XU , XU is set to XL and XL is set to the next

maximum value of ai/αi such that αiX > ai. After each change in X, D and T are

changed according to (5a) and (5e) while considering X fixed. We note that, if for one

item di = αiX = ai, θi and λi can be positive while satisfying (5e). In this case, θi is

set to satisfy (5c) if θi + λi is enough with respect to (5e).

After finding the search interval [XL XU ] for X, a bisection approach on X is used

to find the best solution. Each value of X is tested with respect to (5c) after having

changed D and T iteratively according to (5a) and (5e) while considering X fixed.
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5. Numerical analysis

A numerical analysis is presented in this section based on several data sets. The data

sets are experimental, but they can correspond to any type of real case product with

several components that can be sold in different markets. For instance, disassembly

centers of end-of-life vehicles have several types of glass, metal, and plastic as material

outputs and headlights and engine components as spare parts outputs. These outputs

correspond to the component items i = 1 to 10 in the data sets. The results on the

experimental data sets show that the solution method is efficient enough to be applied

to any real case data. The solution provided indicates if a disassembly operation is

profitable, at which level and with what options. The objectives of the analysis are on

four levels:

(1) The applicability of the solution method is illustrated;

(2) The effect of the disposal option and limits on the demand are highlighted;

(3) Sensitivity analysis on disposal cost and the disassembly yield are presented;

(4) Three different policies are derived to consider the case with uncertain yield.

We note from all the experiments that the proposed models and methods find the

solution efficiently for all the cases with or without disposal option, and with and

without limit on demands. If the disposal is allowed and the demands are limited, an

optimal solution can be without disposal and all the optimal demands can be under

the limit, but the solution approach finds it.

At a first level, the proposed models and methods are applied to the data presented

in Table 1 to illustrate their application. It is a product with ten components. The

results are presented in Table 2, with the initial solution and the last solution obtained

by the procedure. Note that the disassembly quantity of EOL product per order (Q)

can be calculated by Q = X · T . The precision on the KKT conditions (stopping

criteria) is fixed at 0.001. The computational time is negligible and the last solution is

obtained after 20 iterations. The gap between the initial and last solutions is important

for the tested instances, but it depends mainly on the disparity of the demand function

parameters between leaf items. It is more economical to have disposal rather than more

sales for items 1, 2, 4, 5 and 9 for this instance. As managerial insights, this example
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illustrates the data required to apply the proposed policy and show the efficiency of

the solution method. Decision makers can rapidly have some indications as to the

profitability of the disassembly of a product, and on the effect of changing one model

parameter (a solution is easily restarted with alternative data).

Table 1. An illustrative instance with 10 items

c = 10, k = 9407
αi 1.0 5.0 1.0 3.0 3.0 1.0 3.0 1.0 1.0 3.0
hi 0.92 0.17 0.85 0.88 0.41 0.48 0.26 0.2 0.56 0.14
ai 897.81 110.40 16592.38 486.58 1048.51 2541.04 5926.08 2714.32 1143.93 948.5
bi 2.3 1.8 2.6 2.9 2.6 2.4 2.1 1.8 1.5 3.0
ri 0.092 0.059 0.092 0.078 0.024 0.034 0.058 0.045 0.011 0.031

Table 2. Result for the illustrative instance

X T Q Profit Solution without disposal
42.1 7.074 297.815 207.008

di 42.1 210.5 42.1 126.3 126.3 42.1 126.3 42.1 42.1 126.3
pi 3.78 1.88 3.78 2.35 2.35 3.78 2.35 3.78 3.78 2.35

X T Q Profit Solution with disposal
75.062 7.828 587.585 579.278 (disposal per unit time, for an item i: αiX − di)

di 13.474 63.124 75.062 4.226 90.25 75.062 225.186 75.062 68.368 225.186
pi 6.207 3.172 2.942 10.277 2.715 2.942 1.825 2.942 3.064 1.825

Fig. 3 illustrates the shape of Π1(X), R(X) and C(X) for this instance and brings

additional justifications of the solution approach. We note that C(X) passes above

R(X) before it reaches its maximum. As shown in proposition 3, Π1(X) is concave

while R(X) is above C(X). We also note that the solver Excel (which used a generalized

reduced gradient method) finds the solution for the problem without disposal (only

X as decision variable), but not for the problem with disposal (with X, T and D as

decision variables) starting with the initial solution. Furthermore, if the last solution

is loaded in the solver, it does not improve it.

At a second level, we note in Table 2 that the disposal option is profitable in this

instance. Another effect of allowing disposal is that more products are disassembled. It

can be considered as negative or positive depending on whether recovery channels with

proper environmental conditions are considered for the disposed items (however this

is not considered in the model). Table 3 illustrates the improvement of the profit that

can be achieved over the other nine examples by considering disposal option (data sets

are provided in the appendix). We can note that the solution without disposal can be
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Figure 3. Shape of the curves for Π1(X), R(X) and C(X)

optimal, as in example 8. It is detected in the procedure after having found the initial

solution by testing the KKT conditions. For all the instances, as previously, the solver

Excel finds the solution for the problem without disposal but not for the problem with

disposal. The solution procedure starts with the solution without disposal option and

then tries to improve it by considering disposal. We note that the solution determines

whether disposal is profitable and what quantity of each item to dispose of.

Table 3. Illustration of the gap between initial and last solutions (without and with disposal)

Inst. 1 2 3 4 5 6 7 8 9

Initial 11653.403 147.504 2694.759 1224.661 2925.528 549.553 478.126 2364.457 3141.517

Opt. 11656.177 596.561 2722.754 1370.793 2941.938 620.709 1232.796 2364.457 3141.779

Gap 0.024% 304% 1.039% 11.93% 0.561% 12.9%. 157.8% 0% 0.008%

As mentioned in previous sections, the limits on the demands are an additional

consideration for using power iso-elastic function. In real cases, the markets have given

potentials that cannot be exceeded. By considering ai as the maximum demand for

each component in all examples, the solutions of examples 3, 8 and 9 are not feasible

at this step of the procedure, as presented in Table 4. The procedure can be continued,

as presented in section 4.4, to improve the solution within the constraints. The results

are presented in Table 4. As previously, the computational time is negligible and all

the KKT conditions are satisfied (with a given threshold) for the last solution found.

The negative feature of power iso-elastic function (no limitation on demands) is then

overcome with the proposed procedure.

At a third level, we analyze the sensitivity of the model with respect to disassembly

yield and disposal cost. One of the characteristics of disassembly systems is the yield

attached to each component, and we give insight into the effect of the estimation
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variation of this parameter on decisions and profit. Table 5 reports the results of a

sensitivity analysis with respect to disassembly yield for the instance 0 (data on Table 1

in the paper). The experiment is based on the variation of each yield by one percentage

point between ±25% of the initial value in 0.05% steps. The effect on the decisions

(X, T and D) and the profit are evaluated on average in percentage variation from

the initial values (for instance, the first line indicates that a gap of -25% on one yield

parameters leads to variation of -3.5% of the profit).

Table 4. Solution for the problem with upper bound on demands (Instances 3, 8 & 9)

Inst. 3

X T Q Profit Solution without limit on demands

224.052 2.022 453.033 2722.754

di 448.104 224.052 448.104 224.052 448.104 458.860 448.104 442.347 672.156 672.156

pi 2.723 8.350 4.409 2.453 1.129 2.258 2.569 1.504 1.966 0.726

ai 4058.3 8263.83 4147.93 3023.47 614.31 1832.65 2956.57 922.46 3898.07 311.85

X T Q Profit Solution with limit on demands

207.95 2.17 451.251 2694.596 (the demand of an item must be di ≤ ai)
di 415.9 207.95 415.9 207.95 415.9 403.37 415.9 387.47 623.85 311.85

pi 2.816 8.724 4.633 2.517 1.162 2.436 2.666 1.619 2.023 1

Inst. 8

X T Q Profit Solution without limit on demands

469.64 1.324 621.803 2364.457

di 1878.56 939.28 1408.92 1878.56 939.28 469.64 469.64 1878.56 939.28 1408.92

pi 0.885 2.101 1.268 1.036 0.957 1.966 6.423 0.861 0.938 1.003

ai 1336.24 7514.05 2548.69 2066.2 838.94 3333.54 13355.88 1413.39 832.28 1419.53

X T Q Profit Solution with limit on demands

334.06 1.628 543.849 2293.275 (the demand of an item must be di ≤ ai)
di 1336.24 668.12 1002.18 1199.15 668.12 334.06 334.06 1336.24 668.12 793.338

pi 1 2.373 1.453 1.223 1.092 2.211 7.761 1.030 1.123 1.231

Inst. 9

X T Q Profit Solution without limit on demands

367.68 1.412 519.164 3141.779

di 735.36 1470.72 367.68 1470.72 1470.72 735.36 735.36 367.68 1398.89 367.68

pi 2.175 0.518 3.262 1.250 1.374 2.193 2.040 5.893 0.708 2.538

ai 2978.69 548.3 6278.22 2198.47 3812.5 5238.36 4070.88 10692.41 726.1 1965.56

X T Q Profit Solution with limit on demands

315.35 1.609 507.398 3037.924 (the demand of an item must be di ≤ ai)
di 630.7 548.3 315.35 1261.4 1261.4 630.7 630.7 315.35 726.1 315.35

pi 2.369 1 3.478 1.362 1.446 2.332 2.175 6.389 1 2.764

From Table 5, we can assume that if one yield increases, the reorder interval T is

decreased, the quantity of product disassembled per unit of time X is increased and

the item demands are increased. We note that the variation is contained within ±4%
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for X, T and in ±6% for the demand of items whose yield is not varied, while the

variation is significantly more important for the demand of the item whose yield is

varied. However, this variation has little effect on the profit.

One specificity of the proposed model is the disposal option and we conducted a

sensitivity analysis with respect to disposal costs in instance 0. As for the analysis

of the disassembly yield, each initial value of ri is varied by one percentage point

between ±25%. The results are reported in Table 6. We note that small variations

of the disposal cost have a limited effect on the decision. It has no effect for the

component with no disposal options included in the initial decision (the variation of

±25% does not generate disposal for these components). In a second experiment, we

vary each disposal cost more widely until it becomes unprofitable to dispose of the

related component.

Table 5. Effect of the variation of disassembly yield on optimal decisions

One yield
variation

(%)

Average
profit

variation
(%)

Average
X-value
variation

(%)

Average
T-value

variation
(%)

Average
di-value
variation
(*) (%)

Average
di-value
variation
(**) (%)

-25 -3.5 -4.05 3.87 -17.06 -5.99
-20 -2.75 -3.21 3.00 -13.61 -4.78
-15 -2.03 -2.39 2.18 -10.08 -3.58
-10 -1.33 -1.58 1.38 -6.46 -2.35
-5 -0.66 -0.77 0.66 -3.19 -1.16
5 0.64 0.79 -0.66 3.32 1.22
10 1.26 1.58 -1.29 6.73 2.46
15 1.87 2.33 -1.88 10.16 3.66
20 2.47 3.09 -2.46 13.71 4.91
25 3.05 3.81 -3.00 17.27 6.13

(*) for the item whose yield is varied, (**) for the item whose yield is not varied

In this second experiment, each ri is varied from 0 up to the value at which there

is no more disposal for i. Fig. 4 presents the variation of the profit with respect to

disposal cost for each item that has disposal quantity in the initial solution (items 1,

2, 4, 5 and 9). The values at which there is no more disposal for each i are highlighted

in Fig. 4. We note that, for each item, these values exceed the inventory holding cost

(hi is a cost per unit of item per unit of time while ri is cost per unit of item). We

also note that the profit decreases with respect to the increase in disposal cost, and

the variation of the profit is not the same for each item: it is more important for item
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4 than for item 9. Finally, an important managerial insight is that the optimization

finds solutions efficiently whatever the data. Decision makers can use it to have an

idea of the profitability of the disassembly process of any EOL product.

At a fourth level, we analyse the application of the proposed model with uncertain

disassembly yields in practice. We compare three policies that can be applied in situa-

tions with uncertain disassembly yields. The policies are based on the model proposed

in the paper. The comparison is made according to a simulation study (i.e. simulation

of uncertain yields) over a planning horizon with 1000 orders (or cycles).

For the three policies, we assume that the yields are estimated and the values used

for the decision optimization are expected values. We assume that the components

that cannot be disassembled (or recycled) are detected at the receipt of the order. The

quantity received in each component inventory can be above or below the nominal

quantity (the repartition over the nominal value can be represented by a probability

distribution). We also note that the three policies are stationary to maintain EOQ-like

conditions: each cycle is independent and all the inventories are zero at the beginning

of a cycle. We apply the model without limits on maximum demand rates (the results

can be easily extended).

Table 6. Effect of the variation of disposal cost on optimal decisions

One dispo.
cost

variation
(%)

Average
profit

variation
(%)

Average
X-value
variation

(%)

Average
T-value

variation
(%)

Average
di-value
variation
(*) (%)

Average
di-value
variation
(**) (%)

-25 0.19 0.39 -0.17 -0.44 0.39
-20 0.16 0.31 -0.14 -0.35 0.32
-15 0.12 0.22 -0.10 -0.28 0.22
-10 0.08 0.15 -0.06 -0.19 0.15
-5 0.04 0.07 -0.03 -0.10 0.07
5 -0.04 -0.07 0.03 0.10 -0.07
10 -0.08 -0.15 0.06 0.19 -0.15
15 -0.11 -0.22 0.10 0.29 -0.22
20 -0.15 -0.29 0.13 0.39 -0.29
25 -0.19 -0.36 0.16 0.49 -0.36

(*) for the item whose disposal cost is varied, (**) for the item whose disposal
cost is not varied

Based on these assumptions, the yields are simulated at each order with respect to

a probability distribution. We use the data of the previous instance where αi is used
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as the mean of uniform distribution with a range of 0.1 around αi for the support of

the distribution (i.e. α̂i = U(0.95αi, 1.05αi)). α̂i is the observed (simulated) value of

the yield of component i at the beginning of a cycle, after having received the order.

Policy P1. The decisions Q, T and D are fixed for all orders. The quantity received

in each inventory is α̂iQ. If diT > α̂iQ then α̂iQ items i are sold during the cycle and

diT − α̂iQ sales are lost. If diT ≤ α̂iQ then α̂iQ− diT items i are disposed of and diT

are sold. The sale revenue, the disposal cost and the average inventory cost for each

item i during the cycle are then, respectively: pi min{diT, α̂iQ}, ri max{0, α̂iQ− diT}

and (hi/2) min{diT 2, (α̂iQ)2/di}.

In this policy, stockouts are allowed and are considered as lost sales without addi-

tional costs. The only effect is that fewer items can be sold during one cycle. The two

other policies avoid lost sales by changing more variables at each cycle.

Figure 4. Variation of the profit with respect to the disposal cost (from 0 to the value at which there is no

more disposal for item i)

Policy P2. The decisions Q and D are fixed for all orders but T is changed every

cycle to prevent lost sales. After having observed the value of the yields, the next order

will arrive after T = min
i
{α̂iQ/di} units of time, with T ∗ the reorder interval obtained

by optimization. It means that T is adjusted with respect to the first inventory that

reaches zero during the cycle. The surplus inventories for other items are disposed of.

The sales revenue, the disposal cost and the average inventory cost for each leaf item
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i during the cycle are then, respectively, pidiT, ri(α̂iQ− diT ) and (hi/2)diT
2.

In this policy, stockouts are avoided in contrast to policy P1, but variation of the

reorder interval must be allowed. We also note that the variation of the cycle times,

while keeping the order quantity fixed, is the same principle as for the policy (s,Q)

applied to the single item inventory model with uncertain demand and non-zero lead

time.

Policy P3. The decisions Q and T are fixed for all orders but the demand-price de-

cisions D and the disposal quantity are optimized at each cycle, after having observed

the value of the yields, with respect to equation (1) considering T and X fixed (NB

X = Q/T ). The first derivative of (1) with respect to di gives the stationary point:

Pi(di) = pi =

(
hiT

2
− ri

)(
bi

bi − 1

)
and di = max{pi, αiX}

Table 7. Simulation study under yield uncertainty

Profit (per unit time) Gap (%)
Inst. Static P1 P2 P3 gap P1 gap P2 gap P3

0 579.28 562.39 549.30 578.93 2.9146 5.1749 0.0593
1 11656.18 11392.97 11223.36 11655.22 2.2581 3.7132 0.0082
2 596.56 574.61 553.92 595.87 3.6792 7.1468 0.1148
3 2722.75 2657.19 2618.95 2721.70 2.4080 3.8124 0.0385
4 1370.79 1324.79 1280.18 1370.42 3.3558 6.6103 0.0269
5 2941.94 2869.33 2818.59 2941.42 2.4680 4.1928 0.0177
6 620.71 597.31 567.08 620.27 3.7699 8.6403 0.0706
7 1232.80 1198.15 1179.01 1232.59 2.8100 4.3630 0.0169
8 2364.46 2268.11 2138.96 2365.10 4.0749 9.5371 -0.0272
9 3141.78 3045.93 2963.29 3140.87 3.0509 5.6810 0.0289

Min 2.2581 3.7132 -0.0272
Avg. 3.0789 5.8872 0.0355
Max 4.0749 9.5371 0.1148

The profit for each cycle is computed according to (1) with the modified value of

di. This policy prevents stockouts as in policy P2, but it necessitates accepting price

variation at each cycle.

The results of the simulation are presented in Table 7. We compared the policies

according to the average profit per unit of time. The Table presents the profit found

by the solution approach for all the instances studied in this paper. The gaps are
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calculated with respect to the profit found by the solution approach proposed in the

paper (static profit). We note that, based on the assumption of the simulation study,

policy P3 is always better than policies P1 & P2. It is also not surprising that policy

P3 can slightly improve the profit: average yield is used for optimization and more

items can be received in the simulation. This would not be the case if a maximal value

were used for simulation. The drawback of P3 is that it requires a modification of

the prices at each cycle, which is not always possible, and which can have a negative

effect not taken into account in the simulation. Policy P1 is better than policy P2

on all instances, but it requires the possibility of stockouts. We finally note that the

proposed model, initially dedicated to a deterministic context, is sufficiently efficient

to be adapted to situations with uncertain quantity yields.

6. Summary and Conclusion

This paper provides a disassembly EOQ model that permits pricing to be used on

the demands, with consideration of disposal decisions in order to handle unnecessary

accumulations of components in a recovery system optimally. This surplus inventory

can lead to inappropriate inventory decisions that are not environmentally sound, but

disposal decisions can be applied to handle it. However, when it is possible, it can be

both economically and environmentally advantageous to vary the demands if they are

price sensitive according to a profit function.

A model has been developed in this paper to set the prices of components in dis-

assembly systems in order to optimize a profit function with different cost structures.

When considering only the disassembly cost or the disassembly with inventory costs

(order and holding cost under EOQ assumptions), the optimality conditions have been

derived showing that simple non-linear search methods can be used. Disposal decisions

and costs have been considered subsequently, which has led to a non-linear problem

with constraints. The KKT conditions have been derived to propose a solution ap-

proach. It shows that keeping the disposal option can lead to higher profit margins

if the demands are price sensitive, depending on the data instances. The numerical

examples show that the procedure provides solutions in short computational times.
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In practical applications, estimation of the required data for the proposed model

is a real challenge. However, based on the numerical analysis, the model seems to

be robust enough to be used, in a first attempt to manage the process, with rough

data. The quality or ratio of obtained parts and materials may be different after the

disassembly operation. The solution obtained from the model can, however, be used

in an uncertain context as shown in the numerical experiment. Further research can

extend the results in several ways. In disassembly centers, the return of products can be

limited and a price sensitive return function can be added to the model. Shortages can

also be taken into account with different strategies and associated costs. Additionally,

our model considered EOQ-like assumptions, but it could be interesting to study the

effect of pricing decisions with other inventory assumptions such as dynamic lot-sizing

problems, or stochastic models.
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Appendix

Proof of proposition 1.

If X is fixed, the problem is to maximize V(D) =
∑N

i=1 Vi(di) with Vi(di) = (Pi(di) +

ri)di subject to αiX ≥ di (for all i = 1 · · ·N). The function V(D) can be decomposed

into N independent sub-functions of Vi(di) to set the value of the dis. Based on its

first derivative with respect to di, denoted by V
′

i(di), a stationary point of Vi(di) must

satisfy Pi(di) + ri + P
′

i(di)di = Pi(di)((bi − 1)/bi) + ri = 0. In the case of bi < 1, the

function is convex (the second derivative is V
′′

i (di) = P
′

i(di)((bi−1)/bi) > 0) and, since

we must have αiX ≥ di, di must be set as small as possible, which is an uninteresting

scenario. In the following we consider that bi > 1 for all i = 1 · · ·N . In this case, the

equation V
′

i(di) = 0 has no solution and Vi(di) increases. Each di is then chosen as

large as possible, subject to the constraints αiX ≥ di which lead to di = αiX.

Proof of proposition 2.

For Pi(αiX) = (ai/(αiX))(1/bi), the first derivative is P
′

i(αiX) = −Pi(αiX)/(biX).

The first derivative of R(X) is then:

R
′
(X) =

N∑
i=1

αiPi(αiX)− c+

(
N∑
i=1

αiP
′

i(αiX)

)
X

=

N∑
i=1

αiPi(αiX)

(
bi − 1

bi

)
− c (A.1)

For bi > 1 (for all i = 1 · · ·N), the function αiPi(αiX)(bi−1)/bi then strictly decreases

from +∞ to 0 as X varies from 0 to +∞. The sum function
∑N

i=1 αiPi(αiX)(bi−1)/bi

is then strictly decreasing from +∞ to 0 and R
′
(X) = 0 has one solution. We obtain
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second derivative of function R(X) as follows:

R
′′
(X) =

N∑
i=1

(
−αiPi(αiX)

biX

)(
bi − 1

bi

)
< 0 (A.2)

The second derivative of R(X) is strictly negative so R(X) is concave.

Example data sets (Example 1 to 9).

Inst. 1 (c = 10, k = 9407)
αi 1.0 5.0 1.0 3.0 3.0 1.0 3.0 1.0 1.0 3.0
hi 0.92 0.17 0.85 0.88 0.41 0.48 0.26 0.20 0.56 0.14
ai 897.81 110.40 16592.23 486.58 1048.51 2541.04 5926.08 2714.32 1143.93 948.50
bi 2.3 1.8 2.6 2.9 2.6 2.4 2.1 1.8 1.5 3.0
ri 0.092 0.059 0.092 0.078 0.024 0.034 0.058 0.045 0.011 0.031

Inst. 2 (c = 10, k = 7753)
αi 3.0 3.0 3.0 3.0 4.0 3.0 3.0 1.0 2.0 3.0
hi 0.48 0.78 0.16 0.97 0.85 0.87 0.34 0.18 0.21 0.21
ai 3983.73 182.9 1020.66 2660.12704.53 1415.28 2230.57 4287.82 530.48 2996.21
bi 2.9 1.9 2.0 1.9 3.0 2.6 2.4 2.2 2.0 2.0
ri 0.027 0.016 0.019 0.064 0.054 0.089 0.052 0.099 0.064 0.057

Inst. 3 (c = 10, k = 5863)
αi 2.0 1.0 2.0 1.0 2.0 3.0 2.0 3.0 3.0 3.0
hi 0.98 0.67 0.87 0.75 0.4 0.99 0.44 0.69 0.44 0.43
ai 4058.3 8263.83 4147.93 3023.47 614.31 1832.65 2956.57 922.46 3898.07 311.85
bi 2.2 1.7 1.5 2.9 2.6 1.7 2.0 1.8 2.6 2.4
ri 0.085 0.069 0.022 0.051 0.056 0.071 0.027 0.029 0.055 0.041

Inst. 4 (c = 10, k = 9517)
αi 1.0 1.0 2.0 2.0 1.0 1.0 4.0 2.0 3.0 1.0
hi 0.98 0.67 0.87 0.75 0.4 0.99 0.44 0.69 0.44 0.43
ai 1922.3 1008.89 6770.25 569.75 8160.06 3820.94 2014.76 4528.52 1154.33 1416.09
bi 2.0 2.3 2.9 2.4 2.3 1.8 2.4 1.9 2.4 1.9
ri 0.018 0.059 0.099 0.029 0.038 0.095 0.072 0.021 0.019 0.055
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Inst. 5 (c = 10,k = 6623)
αi 1.0 2.0 1.0 2.0 2.0 1.0 1.0 3.0 2.0 1.0
hi 0.63 0.44 0.98 0.37 0.95 0.82 0.14 0.56 0.38 0.12
ai 929.47 3734.65 6285.2 3405.1 1995.09 1400.92 7022.46 4053.93 4290.27 534.52
bi 2.8 1.7 2.7 2.2 1.9 2.0 2.2 1.6 2.0 2.5
ri 0.056 0.02 0.063 0.083 0.018 0.06 0.043 0.085 0.03 0.072

Inst. 6 (c = 10, k = 5595)
αi 2.0 4.0 4.0 4.0 1.0 3.0 4.0 2.0 3.0 2.0
hi 0.68 0.41 0.23 0.82 0.7 0.48 0.44 0.84 0.18 0.32
ai 2900.67 1381.02 628.43 3293.88 3289.64 3363.23 234.75 613.37 937.7 550.6
bi 1.8 2.6 2.1 2.7 2.7 2.4 2.0 1.8 1.9 2.0
ri 0.094 0.036 0.022 0.041 0.084 0.067 0.021 0.042 0.021 0.03

Inst. 7 (c = 10, k = 9725)
αi 1.0 2.0 4.0 2.0 1.0 1.0 4.0 3.0 3.0 2.0
hi 0.24 0.23 0.94 0.47 0.75 0.5 0.39 0.48 0.58 0.18
ai 3202.42 3777.52 344.13 842.73 2894.51 7123.17 595.35 7025.1 178.04 1469.85
bi 1.8 2.1 1.7 3.0 2.0 2.5 2.8 1.8 2.3 2.2
ri 0.069 0.067 0.088 0.053 0.011 0.081 0.035 0.079 0.012 0.059

Inst. 8 (c = 10, k = 5996)
αi 4.0 2.0 3.0 4.0 2.0 1.0 1.0 4.0 2.0 3.0
hi 0.35 0.9 0.28 0.98 0.35 0.31 0.11 0.37 0.52 0.99
ai 1336.24 7514.05 2548.69 2066.2 838.94 3333.54 13355.881413.39 832.28 1419.53
bi 2.8 2.8 2.5 2.7 2.6 2.9 1.8 1.9 1.9 2.8
ri 0.019 0.096 0.03 0.027 0.033 0.092 0.014 0.041 0.048 0.014

Inst. 9 (c = 10, k = 5505)
αi 2.0 4.0 1.0 4.0 4.0 2.0 2.0 1.0 4.0 1.0
hi 0.96 0.29 0.15 0.66 0.92 0.4 0.86 0.24 0.59 0.47
ai 2978.69 548.3 6278.22 2198.47 3812.5 5238.36 4070.88 10692.41726.1 1965.56
bi 1.8 1.5 2.4 1.8 3.0 2.5 2.4 1.9 1.9 1.8
ri 0.017 0.082 0.042 0.026 0.06 0.084 0.014 0.054 0.081 0.064
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