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Abstract5

In the last few years, deep learning methods have been proposed to automate the quality control of various agri-6

cultural products. Despite the excellent results obtained, one of their main drawbacks is the need for a large annotated7

dataset to obtain satisfactory performance. Building this dataset is time-consuming and tedious. Moreover, in some8

real-world applications, vision systems can be modified over time. Such changes may generate a drop in network9

performance trained with the initial database (source images). To avoid the creation of a new labeled database every10

time a change in data distribution occurs (target images), several domain adaptation methods have been proposed.11

In this article, we introduce an unsupervised deep domain adaptation method based on adversarial training. A large12

dataset is used, including six classes of potatoes: healthy, damaged, greening, black dot, common scab, and black13

scurf. Two different scenarios of domain adaptation problem are considered. Firstly, a simply modification of the14

image acquisition system is simulated by artificially increasing the brightness of some white potatoes images (target15

images). Secondly, a significantly different dataset including red potatoes is introduced. In this setting, white potatoes16

are used as source images and red tubers as target images. We propose to train a target classifier using a pseudo-label17

loss, due to the unavailability of target annotations. Experimental results show that a domain adaptation method is18

mandatory, going from an average F1-score of 0.46 without adaptation, to 0.84 by applying our method. Finally, a19

comparative analysis is achieved showing that adversarial-based unsupervised domain adaptation methods outperform20

discrepancy-based approaches.21

Keywords: Unsupervised domain adaptation, convolutional neural networks, adversarial training, disease detection,22

agricultural applications23

1. Introduction24

Potato is a well-known tuberous crop with a world production exceeding 374 million tons [1]. The surface of this tuber25

is often affected by a variety of defects that impact its quality and selling value. Precise quality control is essential to26

define not only the correct sale price but also the market to which the crop will be oriented. In most industries, quality27
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control is still performed manually, where one or more operators observe the potatoes to classify them according to28

defects. This manual task has several disadvantages: it is laborious, subjective and time-consuming, which leads29

to sorting errors that could be avoided. Therefore, several methods to automate the quality control of agricultural30

products have been proposed. The first works were focused on computer vision systems, which were mainly based on31

hand-crafted features [2, 3, 4, 5, 6, 7]. Despite the good results found, these methods require human expertise to define32

the features to extract. Normally, these features are adapted to each particular problem and they lack of generalization.33

In recent years, methods based on deep neural networks have been proposed for quality control in agriculture34

[8, 9, 10, 11, 12]. Most of these methods have proven to be more accurate than traditional methods based on hand-35

crafted features. However, they have a major drawback: they need a large labeled database to obtain satisfactory36

results. Also, even if the labeled database is built, the model will perform well only with samples generated from the37

same distribution of training samples. In real-world applications, it may be necessary to make changes to the system38

initially used for collecting the training dataset, e.g. changes in the illumination, image quality and/or pose. These39

variations, known as a domain shift problem [13], would produce a drop in performance if the model trained with the40

initial images (source images) is used to predict the classes of the new images (target images). The construction of41

a labeled database with the target images is very laborious and sometimes impossible. Thus, different deep domain42

adaptation methods have been proposed. The main idea is to leverage the available annotated source images to be able43

to construct a new model with little or no labeled target data. In the latter case, where fully unlabeled target data is44

available, unsupervised domain adaptation algorithms (UDA) are applied.45

There are three main approaches to solve the problem of domain variation through deep UDA methods [14]: (a)46

the discrepancy-based approaches, which normally seek to align the shift of statistical distribution between the source47

and target domains using different techniques. Some of the most known techniques are maximum mean discrepancy48

(MMD) [15, 16, 17, 18], and correlation alignment (Deep CORAL) [19]. (b) The adversarial-based approaches,49

which train a discriminator network to differentiate samples coming from source or target domains, and a generator50

network that tries to fool the discriminator. The main objective of the adversarial training is to learn source and target51

features that are indistinguishable. Generative models [20, 21, 22] and discriminative models [23, 24, 25, 26, 27] are52

included in these approaches. (c) The reconstruction-based approaches, which use the reconstruction of source or53

target samples to create domain-invariant features [28, 29, 30].54

The UDA methods found in the literature are normally applied to specific datasets, such as office-31 [31] and55

digits [32, 33]. In this paper, we propose to address the domain shift problem applied to potato quality control. This56

problem can occur when modifications are made to image acquisition systems, or when a new product variety has to57

be analyzed, which is common in real-life applications. The main contributions are as follows:58
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• A large labeled data set is used with potato images, including six classes: healthy, damaged, greening, black59

dot, common scab, and black scurf. We evaluate two domain change scenarios. In the first case, we simulate60

the target domain by artificially increase the brightness of some white potato images. In the second case, we61

use white and red tubers as source and target samples respectively.62

• An adversarial unsupervised domain adaptation method is proposed to tackle the problem of domain shift. A63

pseudo-label loss function is proposed to improve the performance of the target classifier.64

• A comparison of the proposed method with discrepancy-based and adversarial-based methods is carried out.65

The paper is structured as follows: Section 2 presents a summary of the related work. In Section 3 a detailed66

explanation of the proposed method is given. Discussion and results are exposed in Section 4. Finally, the paper is67

concluded in Section 5.68

2. Related Works69

Unsupervised domain adaptation has been intensively studied in the last few years. Authors in [15] trained a convo-70

lutional neural network (CNN) combining a classification loss on source images and a maximum mean discrepancy71

metric (MMD) to minimize the distance between source and target domains. The output of a fully-connected layer,72

called "bottleneck adaptation layer" was used to obtain the source and target representations. The empirical approxi-73

mation of the MMD metric is normally calculated as follows:74

ˆMMD
2
(Xs, Xt) =

∥∥∥∥∥∥∥∥ 1
ns

ns∑
i=1

φ(x(i)
s ) −

1
nt

nt∑
j=1

φ(x( j)
t )

∥∥∥∥∥∥∥∥
2

(1)

where ‖·‖ is the L2 norm, ns the number of source samples, nt the number of target samples, φ(·) is a mapping function,75

xs ∈ XS and xt ∈ XT the source and target data points from distributions Ds(Xs) and Dt(Xt) respectively. From Eq.76

1 we can notice that if distributions of both domains are similar, MMD will be small, and large if distributions are77

different. Instead of applying MMD to a single layer, authors in [16] proposed a Deep Adaptation Network (DAN)78

architecture, where they applied a multi-layer adaptation based on a multiple kernel variant of MMD, aka MK-MMD.79

A loss of transferability normally occurs in the deepest layers of CNN. That is why the authors proposed minimizing80

the MK-MDD in the last three fully-connected layers. While great results were found, a shared-classifier assumption81

was made, in which the source classifier was applied directly to the target images. This strong assumption may not82

be true in several real applications. To overcome this issue, authors in [17] and in [18] proposed to take into account83

possible changes in the conditional distributions. In the first work, they used the MMD metric to match distributions84
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and performed a target classifier adaptation by a residual transfer module. In the second work, they proposed a joint85

adaptation network (JAN) to reduce the shift in joint distributions of multiple task-specific layers. The adaptation was86

achieved by a joint maximum mean discrepancy (JMMD) penalty that computes the discrepancy between source and87

target kernel embedding of empirical joint distributions.88

Previous methods were mainly based on the MMD metric to bridge the distribution difference between domains.89

In contrast, authors in [19] applied a nonlinear transformation to align the second-order statistics of source and target90

distributions (Deep CORAL). Combining a source classification loss and a CORAL loss, the CNN was trained end-91

to-end, where the final learned features were supposed to perform well on both source and target domains.92

Despite the great results that were found with the mentioned discrepancy-based approaches, several methods93

started to apply the principle of the generative adversarial network (GAN) [34] to unsupervised domain adaptation. A94

coupled generative adversarial network (CoGAN) was proposed by authors in [20]. They used two GANs to generate95

images from source and target domains. The networks were trained with tied weights in the first and last few layers96

with the aim of learning a domain-invariant feature space, see Figure 1. In the specific application of Unsupervised97

Domain Adaptation (UDA), a softmax layer was attached to the last hidden layer of the source discriminator network.98

The CoGAN was trained to jointly solve the classification problem using source labeled samples, and the generative99

problem using source and target samples. By doing this, the authors showed that the networks were capable of learning100

the joint distribution of images without supervision. Instead of generating images, authors in [23] introduced a domain

Figure 1: CoGAN architecture [20].
101

adversarial neural network (DANN) that was formed by a feature extractor, a label classifier, and a domain classifier.102

The adversarial training was achieved by training the feature extractor to fool the domain classifier and to minimize103

the classification loss of the label classifier. Simultaneously, the domain classifier was trained to minimize the domain104

classification loss. Therefore, the feature extractor was able to learn discriminative and domain-invariant features.105

Instead of using the same feature extractor for source and target samples, authors in [24] proposed an adversarial106

discriminative domain adaptation (ADDA) method. The model was composed of a fixed pre-trained source CNN,107

a target CNN, and a discriminator network. The target CNN was initialized by the pre-trained source CNN. Then,108

the discriminator was trained to correctly classify the domain of samples, while the target CNN’s objective was to109
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maximize the loss of domain classification. The fact of using untying parameters of source and target CNNs allowed110

the learning of domain-specific features. However, they assumed that a pre-trained source classifier could be applied111

directly to target images, which is a strong assumption in some cases [35].112

3. Materials and Methods113

In this Section, we first present our datasets. Then, a detailed explanation of the proposed method is given.114

3.1. Datasets115

Two datasets were created and used. The first set (DB1) aimed to evaluate the relevance of the unsupervised domain116

adaptation approach in the context of a limited change simulated by a modification in image brightness. The second117

set, called DB2, was used to demonstrate the relevance of the proposed method in a situation where a significantly118

different new variety of potatoes needs to be analyzed (red tubers).119

120

DB1. A vision system was developed to take images from potatoes automatically. A led panel and a digital camera121

were used. A dataset of 9688 images was created, including white potatoes from different varieties and divided into122

six classes: healthy, damaged, greening, black dot, common scab, and black scurf. Subsequently, the dataset was123

divided into two sets: 70% of images were used to create the training set, and the rest was used to test models. The124

training set was divided into source images and target images. As for the test set, all images were from the target125

domain. To obtain the target domain, we artificially increased the brightness of raw images as follows:126

Inew = Ib × (1 − αb) + I × αb (2)

where I is the original image, Ib is a black image of the same size as I, Inew is the modified image and αb is a factor127

that was set to 1.5.128

In Table 1 we show the number of images per class. An example of the dataset images is presented in Figure 2, where129

the same image is shown as source and target to observe the difference between domains. When training sets were130

generated, the same image could merely belong to one domain.131

132

DB2. The vision system described above was used to take 8016 images from red tubers from the six different classes:133

healthy, damaged, greening, black dot, common scab, and black scurf. 80% of images were used to form the training134

target set and the rest was used to create the test target set. White potatoes were used as the source labeled samples.135
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Table 1: Number of images in the dataset DB1 (white potatoes).

Class
No. of
images

No. of training
source images

No. of training
target images

No. of testing
target images

Healthy 5325 2989 747 1586
Damaged 984 535 134 315
Greening 1263 700 175 391
Black dot 597 344 86 167
Common scab 1276 733 183 360
Black scurf 243 139 35 69
Total 9688 5440 1360 2888

Figure 2: Images from DB1 dataset. Domain by rows: source and target. Classes by columns: healthy, damaged, greening, black dot, common
scab, and black scurf.

Table 2 show the number of images per class and per domain. Images belonging to each domain can be seen in the136

Figure 3. As we can observe, white and red varieties are significantly different.137

Table 2: Number of images in the dataset DB2 (white and red potatoes).

Class
No. of
images

No. of training
source images

No. of training
target images

No. of testing
target images

Healthy 7850 3736 3274 840
Damaged 1420 669 612 139
Greening 2030 875 931 224
Black dot 958 430 427 101
Common scab 2182 918 1024 240
Black scurf 376 172 156 48
Total 14816 6800 6424 1592

3.2. Unsupervised domain adaptation138

The main objective of domain adaptation methods is to alleviate domain change when transferring knowledge from139

a source domain to a target domain. When we have access to source labels, but no label information is available for140

the target, we are in a particular case called unsupervised domain adaptation. We are given ns labeled source data141

belonging to K classes defined by Ds = {(x(i)
s , y

(i)
s )}nS

i=1, where xs ∈ Xs and ys ∈ Ys = {1, 2, . . . ,K}. Also, nt unlabeled142

target data defined by Dt = {x( j)
t }

nt
j=1, where xt ∈ Xt. In a covariate shift scenario [36], we assume that Xs and Xt143
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Figure 3: Images from DB2 dataset. Domain by rows: source and target. Classes by columns: healthy, damaged, greening, black dot, common
scab, and black scurf.

are related but different, and target task Yt is assumed to be the same as source task Ys. Our main objective is to144

adapt the deep neural network used to classify source samples so that it can label the new target samples. From an145

operational point of view and to guarantee a similar performance, it is important to keep the model architecture that146

works correctly on the source database unchanged. In this way, when a shift that modifies the source images occurs147

(e.g. the lighting conditions), the adaptation of the network is straightforward, and putting it into production can be148

done quickly.149

3.3. Proposed method150

The overall scheme of the proposed method is presented in Figure 4. Firstly, following the work of authors in [24], a151

source fully convolutional network (FCNs) and a source classifier (Cs) are trained on labeled source images. Secondly,152

adversarial training is applied to align the target distribution to that of the source. A pseudo-label loss is also applied to153

train the target classifier (Ct). In this phase, parameters of the FCNs are frozen. Finally, the target fully convolutional154

network (FCNt) and the target classifier (Ct) are used to perform the inference on the target dataset. A detailed155

explanation of each step is given in the following sections.156

3.4. Training on source labeled images157

In the first stage, we use source images Xs and their labels Ys to train the FCNs and the Cs in a supervised manner. A158

pre-trained GoogLeNet [37] is used as the FCNs in which we remove the last fully-connected layer. The network is159

initially trained on ImageNet [38] to classify images between 1000 classes. The Cs consists of a fully-connected layer160

of K units, where K is the number of categories, and a softmax activation function. The whole network is trained by161

minimizing the cross-entropy loss of Equation 3. In the case of adopting the trained model to the target images, a162

reduction in performance will be observed due to the discrepancy between the source and the target. Therefore, it is163

mandatory to adapt the model to minimize the distance between the two domains. The adapted model must correctly164

classify the new target images without using their labels during training.165
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Figure 4: Scheme of the proposed method. Dashed grey lines indicate fixed parameters.

Lclass = −E(xs,ys)∼(Xs,Ys)

K∑
k=1

1(k=ys) log(Cs(FCNs(xs))) (3)

3.5. Adversarial training166

This phase aims to align the target distribution to that of the source. After training the FCNs, the learned parameters167

are frozen, which maintains the performance of the source data unchanged. Parameters of the target network, FCNt168

and Ct, are initialized with the trained source network. Comparable to GANs [34], the output of the FCNs can be seen169

as the real images and the FCNt can be seen as the generator of fake images. We train the FCNt in an adversarial170

manner by using a domain classifier D. Source and target images are passed to the FCNs and FCNt respectively.171

Features extracted of both networks are used as input of D, which is trained to indicate if features come from source172

or target. On the other hand, FCNt is trained to fool D, resulting in a minimax two-player game as follows:173

max
FCNt

min
D
LadvD = −Exs∼Xs [log(D(FCNs(xs)))]

−Ext∼Xt [log(1 − D(FCNt(xt)))]
(4)
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In practice, when training the FCNt as shown in Eq. 4, − log(1 − D(FCNt(xt))) saturates at the beginning of training174

because the discriminator can easily recognize the different domains. Following the work of authors in [34], we175

avoid the saturation problem by training the FCNt to minimize − log(D(FCNt(xt))), instead of maximizing − log(1 −176

D(FCNt(xt))). By doing this, stronger gradients are provided and the optimization can be divided into two objectives,177

where the discriminator D is trained by minimizing LadvD , and the FCNt by minimizing the following loss function:178

LadvG = −Ext∼Xt [log(D(FCNt(xt)))] (5)

In this phase, we use untied weights between the FCNs and FCNt, which allows the networks to learn features that179

are specific to each domain.180

Until now, the target classifier is not trained. Authors in [35] demonstrated that even if the source and target181

domains are aligned, it is possible that the source classifier does not work properly in the target domain. Because182

target labels are unavailable, it is not straightforward to train Ct. This is why we propose to assign pseudo-labels to183

the target samples and train the target classifier by minimizing the following pseudo-label loss:184

Lpl = −E(xt ,ŷt)∼(Xt ,Ŷt)

K∑
k=1

1(k=ŷt) log(Ct(FCNt(xt))) (6)

The target network is used to compute the pseudo-labels ŷt of target samples xt. However, only samples with a185

pseudo-label probability exceeding a confidence threshold are taken into account for computing the pseudo-label loss.186

In this way, we assume that if the network is uncertain of the assigned class, the prediction may not be correct. While187

training, the number of target samples that have a pseudo-label probability higher than the confidence threshold (set188

at 0.9 in experiences) will increase. This is because the target fully convolutional network (FCNt) learns a more189

appropriate representation.190

In summary, this stage is based on iteratively minimizing the following loss function:191

Ltotal = LadvD +LadvG + λLpl (7)

where λ is the hyper-parameter that balances the pseudo-label loss. Once training is accomplished, we use FCNt and192

Ct to perform inference on the target samples.193
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3.6. Evaluation Metrics194

When working with an unbalanced database, the accuracy of the classification is not an adequate evaluation measure195

[39]. That is why the following metrics were chosen to evaluate and compare different unsupervised domain adaptation196

methods:197

• Precisionk:198

Pk =
TPk

TPk + FPk
(8)

• Recallk:199

Rk =
TPk

TPk + FNk
(9)

• F1-scorek:200

F1-scorek = 2 ×
Pk × Rk

Pk + Rk
(10)

where TPk is the true positives of class k, FPk is the false positives of class k and FNk is the false negatives of201

class k.202

• Confusion Matrix: compare the output classes (columns) with the ground-truth expert label (rows). This matrix203

allows us to identify the types of confusion that occur between the different classes.204

Comparison methods. We compared our method with three unsupervised domain adaptation approaches: Deep205

Correlation Alignment (Deep CORAL) [19], Joint Adaptation Networks (JAN) [18] and Adversarial Discriminative206

Domain Adaptation (ADDA) [24]. All these methods satisfy the requirement that the architecture of the network207

trained with source images should not change when applying the adaptation phase. In this way, we can implement the208

new model to classify the target samples quickly, which is essential in real-world applications.209

For the Deep CORAL method, the following loss function is added to the baseline CNN:210

LCORAL =
1

4d2 ‖Cs −Ct‖
2
F (11)

where ‖·‖2F indicates the squared matrix Frobenius norm, Cs and Ct are the covariance matrices of the d-dimensional211

features of source and target respectively. It is necessary to emphasize that in this method both networks (source and212

target) are trained with tied weights. The classification loss (Lclass) of Eq. 3 is added at the top of the source classifier213

Cs. Finally, the training is achieved by minimizing the following loss function:214

LtotalCORAL = Lclass + λCLCORAL (12)
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where the hyper-parameter λC compensates the classification loss and the adaptation.215

On the other hand, JAN adds a joint maximum mean discrepancy (JMMD) penalty to train the CNN. The acti-216

vations generated by a network with M layers are {(z(i)
s1, · · · , z

(i)
sM)}ns

i=1 and {(z(i)
t1 , · · · , z

(i)
tM)}nt

i=1, for source and target217

samples respectively. By applying the kernel trick to compute the MMD in multiple layers, the following empirical218

estimate of JMMD can be computed:219

ˆJMMD(Ds,Dt) =
1
n2

s

ns∑
i=1

ns∑
j=1

∏
m∈M

km(z(i)
sm, z

( j)
sm)

+
1
n2

t

nt∑
i=1

nt∑
j=1

∏
m∈M

km(z(i)
tm, z

( j)
tm )

−
2

nsnt

ns∑
i=1

nt∑
j=1

∏
m∈M

km(z(i)
sm, z

( j)
tm )

(13)

where km(·, ·) is the kernel function of layer m, and ns and nt are the number of source and target samples respectively.220

By embedding the ˆJMMD into the CNN, the discrepancy in the joint distributions of multiple task-specific layers is221

reduced. To avoid the quadratic complexity of Eq. 13 a linear-time estimate of the JMMD is used for training:222

ˆJMMD(Ds,Dt) =

2
ns

ns/2∑
i=1

 ∏
m∈M

km(z(2i−1)
sm , z(2i)

sm ) +
∏

m∈M

km(z(2i−1)
tm , z(2i)

tm )


−

2
ns

ns/2∑
i=1

 ∏
m∈M

km(z(2i−1)
sm , z(2i)

tm ) +
∏

m∈M

km(z(2i−1)
tm , z(2i)

sm )


(14)

Finally, the JMMD penalty is combined with the classification loss to train the network:223

LtotalJAN = Lclass + λJ ˆJMMD(Ds,Dt) (15)

ADDA is a two-step method. At first, a source CNN (FCNs) and a classifier (Cs) is trained with source images224

using the classification loss (Lclass) of Eq. 3. Then, a target CNN (FCNt) is initialized with the pre-trained FCNs.225

While keeping parameters of the FCNs frozen, adversarial training is adopted by using a discriminator to classify the226

domain label of samples. An iterative training is performed by minimizing the following loss function:227

Ltotal = LadvD +LadvG
(16)

When adversarial training is finished, the Cs initially trained with source images is used on the top of FCNt to predict228

the label of the target sample.229
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4. Results and discussion230

In this section, we show the results obtained by the proposed method. Furthermore, we apply discrepancy-based231

[19, 18] and adversarial-based [24] methods for comparison. The results obtained show that we can apply our method232

to successfully classify defects in potatoes coming from a target domain when only using labels from a source domain.233

Implementations were developed with Pytorch [40]. All experiments were done using a GPU NVIDIA GeForce R©GTX234

1070 Ti (8 GB memory).235

4.1. Setup236

Datasets. We evaluated the proposed method with our created datasets, as explained in Section 3.1. In DB1, raw237

white potato images were used as coming from the source domain. To create the target domain, images were modified238

by increasing their brightness. In this way, we tried simulating a change in the lighting conditions of the acquisition239

system. In a second scenario (DB2), white potatoes were used as coming from the source domain and red potatoes240

were used to create the target domain.241

Implementation details. For all methods, the pre-trained GoogLeNet without the last fully-connected layer was used242

as fully convolutional network (FCNs and FCNt). The source and target classifiers (Cs and Ct) consisted of a fully-243

connected layer of 6 neurons, where 6 is the number of classes of our dataset. Input images were resized to 224× 224244

according to GoogLeNet architecture. For our method, the discriminator (D) consisted of 3 fully-connected layers:245

the first layer with 1024 units, the second with 500 units and the third was a one-unit layer to classify the domain.246

All fully-connected layers, except the last one, used ReLU activation functions. Data augmentation techniques such247

as rotation, and horizontal and vertical flipping, were randomly applied when training the network. Labeled source248

samples and unlabeled target samples were used for training to follow the unsupervised domain adaptation setting.249

In the first step of our proposed method (Section 3.4), the FCNs and Cs were trained with stochastic gradient250

descent (SGD) with batch size of 32, momentum of 0.9 and weight decay of 5 × 10−4. The learning rate was set to251

1 × 10−4, except for the last fully connected layer, which was set to 10 times the baseline learning rate. In the second252

step (Section 3.5), the fully-convolutional network (FCNt) and classifier (Ct) were trained using SGD with a batch253

size of 256 (128 images from each domain) and learning rate of 1 × 10−5. The discriminator D was trained using254

Adam optimizer with β1 of 0.5, β2 of 0.999 and learning rate of 1 × 10−4. The number of epochs was set to 200. The255

hyper-parameter λ that balance the pseudo-label loss was progressively modified from 0 to 1 by λ =
ne − 1
te − 1

, where ne256

is the current epoch number and te is the maximum number of epochs. This strategy was adopted to suppress noisy257

pseudo-label information at the beginning of training.258
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In the case of the Deep CORAL method, features obtained by the last convolutional layers of FCNs and FCNt were259

used to compute the CORAL loss (LCORAL). Stochastic gradient descent (SGD) with a batch size of 32, momentum260

of 0.9 and weight decay of 5 × 10−4 was used to train the network. The learning rate was set to 1 × 10−4, except for261

the fully connected layer of the Cs, which was set to 10 times the initial learning rate. The hyper-parameter λC was262

set to 5 to compensate for classification loss and the adaptation.263

For JAN we used a Gaussian kernel with bandwidth set to median pairwise squared distances on the training264

data, as proposed by authors in [41]. Two layers were used to compute the JMMD penalty of Eq. 14: the output of265

the FCNs network and the output of the Cs. As in Deep CORAL, source and target networks used tied weights, so266

FCNs = FCNt and Cs = Ct. The SGD with the same hyper-parameters used to train Deep CORAL was applied. We267

gradually changed the weight parameter λJ from 0 to 1.268

To obtain ADDA results, we used the optimizers and hyper-parameters as our proposed method. Since ADDA269

uses the same classifier for source and target data, no pseudo label loss had been applied.270

Following the work of authors in [42], we computed the test performance for all methods at the epoch where the271

maximum number of target samples surpassed the confidence threshold (used to calculate the pseudo-label loss).272

4.2. Experimental results273

The precision, recall and F1-score of five random experiments on DB1 dataset are shown in Table 3. A lower bound274

and two upper bound performance were computed to compare methods. Source only corresponds to the lower bound275

performance, where no adaptation is carried out. Target only and Source+Target represent the upper bound results. In276

the first case, the network is trained on the target dataset using the labels. In the second case, both source and target277

datasets with labels are used to train the CNN.278

We can observe that applying a domain adaptation method is mandatory to prevent a significant decrease in per-279

formance on the target domain. The class with the lowest performance was the black dot, which is the most difficult280

to detect even with a target only setting. Furthermore, we note that adversarial-based methods (ADDA and ours)281

outperformed discrepancy-based methods (Deep CORAL and JAN). If we compare ADDA with our method, we can282

see that adding the pseudo-label loss help the classifier to increase the performance on the target dataset. Furthermore,283

our method is comparable to the target only setting, which is trained in a fully-supervised manner.284

285

In Table 4 the results obtained of five random experiments on DB2 can be observed. In this scenario, white286

potatoes were used as source images and red potatoes as target images. From the results obtained, we can confirm287

that the network trained with source images cannot be directly used to classify the new target images (mean F1-score288

of 0.12). Therefore, applying a domain adaptation method is mandatory to improve network performance on target289
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Table 3: Precision, recall and F1-score on testing target DB1 dataset. Classes are: H=Healthy, D=Damaged, G=Greening, BD=Black Dot,
CS=Common Scab and BS=Black Scurf.

Metric Classes Source only Deep CORAL JAN ADDA Ours Target only Source+Target

Precision

H 0.77 ± 0.06 0.85 ± 0.01 0.89 ± 0.00 0.89 ± 0.00 0.90 ± 0.01 0.89 ± 0.00 0.99 ± 0.00
D 0.50 ± 0.14 0.84 ± 0.02 0.83 ± 0.03 0.84 ± 0.03 0.85 ± 0.01 0.87 ± 0.01 0.90 ± 0.01
G 1.00 ± 0.00 0.91 ± 0.03 0.92 ± 0.02 0.99 ± 0.01 0.98 ± 0.01 0.95 ± 0.01 0.98 ± 0.01

BD 0.00 ± 0.00 0.56 ± 0.03 0.71 ± 0.01 0.74 ± 0.05 0.77 ± 0.02 0.78 ± 0.02 0.81 ± 0.01
CS 0.54 ± 0.09 0.77 ± 0.02 0.83 ± 0.03 0.85 ± 0.03 0.83 ± 0.02 0.86 ± 0.02 0.89 ± 0.01
BS 0.66 ± 0.18 0.91 ± 0.01 0.84 ± 0.04 0.85 ± 0.05 0.88 ± 0.03 0.87 ± 0.01 0.85 ± 0.03

Average 0.58 ± 0.08 0.81 ± 0.02 0.84 ± 0.02 0.86 ± 0.03 0.87 ± 0.02 0.87 ± 0.01 0.89 ± 0.01

Recall

H 0.82 ± 0.08 0.92 ± 0.01 0.93 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.96 ± 0.00
D 0.66 ± 0.09 0.75 ± 0.01 0.83 ± 0.02 0.85 ± 0.01 0.86 ± 0.01 0.83 ± 0.01 0.87 ± 0.01
G 0.20 ± 0.08 0.71 ± 0.02 0.82 ± 0.03 0.78 ± 0.01 0.79 ± 0.01 0.81 ± 0.02 0.89 ± 0.01

BD 0.00 ± 0.00 0.57 ± 0.05 0.70 ± 0.02 0.73 ± 0.03 0.73 ± 0.04 0.72 ± 0.02 0.78 ± 0.01
CS 0.74 ± 0.14 0.78 ± 0.02 0.79 ± 0.05 0.78 ± 0.03 0.82 ± 0.03 0.79 ± 0.02 0.83 ± 0.01
BS 0.50 ± 0.17 0.55 ± 0.05 0.82 ± 0.04 0.79 ± 0.03 0.79 ± 0.03 0.85 ± 0.02 0.91 ± 0.01

Average 0.49 ± 0.09 0.72 ± 0.02 0.81 ± 0.03 0.81 ± 0.02 0.82 ± 0.02 0.82 ± 0.01 0.87 ± 0.01

F1-score

H 0.79 ± 0.02 0.88 ± 0.00 0.91 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.94 ± 0.00
D 0.54 ± 0.07 0.79 ± 0.01 0.83 ± 0.01 0.85 ± 0.01 0.85 ± 0.00 0.85 ± 0.00 0.88 ± 0.00
G 0.32 ± 0.11 0.80 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.93 ± 0.01

BD 0.00 ± 0.00 0.57 ± 0.02 0.70 ± 0.01 0.73 ± 0.02 0.75 ± 0.02 0.74 ± 0.01 0.80 ± 0.01
CS 0.59 ± 0.06 0.77 ± 0.01 0.81 ± 0.02 0.81 ± 0.01 0.83 ± 0.01 0.82 ± 0.00 0.86 ± 0.01
BS 0.51 ± 0.09 0.69 ± 0.03 0.83 ± 0.02 0.81 ± 0.03 0.83 ± 0.03 0.86 ± 0.01 0.88 ± 0.02

Average 0.46 ± 0.06 0.75 ± 0.01 0.82 ± 0.01 0.83 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.88 ± 0.01

images. Similar to results obtained on the DB1 dataset, adversarial-based methods (ADDA and ours) outperformed290

discrepancy-based methods (Deep CORAL and JAN). The most affected classes were the black dot and common scab,291

which can be explained by the fact that these diseases present different visual characteristics according to the variety292

of potato in which it occurs (white or red). Contrary to the previous scenario (DB1), the best results were obtained293

when training the network with target labeled images (Target only), and not with the source and target labeled images294

together (Source+Target). This can be explained by the fact that both domains are quite different.295

Confusion matrices are computed to understand the types of mistakes occurred on both datasets. Figures 5 and296

6 show confusion matrices obtained by applying different methods on DB1 and DB2 respectively. The following297

conclusions can be obtained from the results: (1) the class that was most affected by the change of brightness in298

images was the black dot (BD). Without performing a domain adaptation method, this class was no longer detected299

(Figure 5a), and it was usually confused with the healthy class. (2) Another class that was greatly affected by the300

change in brightness of images was the green (G) class, going from 78.6% of detection using our method to 19.6%301

without adaptation. This can be explained by the importance of image colors to correctly detect this class. (3) The302

confusion between similar classes, for example, common scab (CS) and black scurf (BS), increased when a domain303

adaptation method was not applied. (4) The biggest difference between ADDA and our method on the BD1 was the304
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Table 4: Precision, recall and F1-score on testing target DB2 dataset. Classes are: H=Healthy, D=Damaged, G=Greening, BD=Black Dot,
CS=Common Scab and BS=Black Scurf.

Metric Classes Source only Deep CORAL JAN ADDA Ours Target only Source+Target

Precision

H 0.59 ± 0.23 0.68 ± 0.01 0.76 ± 0.01 0.76 ± 0.00 0.75 ± 0.00 0.89 ± 0.01 0.88 ± 0.01
D 0.21 ± 0.03 0.54 ± 0.01 0.66 ± 0.04 0.71 ± 0.02 0.72 ± 0.01 0.88 ± 0.01 0.88 ± 0.02
G 0.57 ± 0.22 0.81 ± 0.02 0.85 ± 0.06 0.90 ± 0.01 0.90 ± 0.01 0.93 ± 0.01 0.91 ± 0.02

BD 0.07 ± 0.00 0.18 ± 0.03 0.16 ± 0.07 0.36 ± 0.07 0.39 ± 0.10 0.81 ± 0.05 0.81 ± 0.04
CS 0.16 ± 0.09 0.5 ± 0.01 0.48 ± 0.05 0.66 ± 0.02 0.68 ± 0.04 0.81 ± 0.01 0.82 ± 0.01
BS 0.00 ± 0.00 0.86 ± 0.06 0.88 ± 0.03 0.82 ± 0.04 0.85 ± 0.05 0.93 ± 0.02 0.84 ± 0.04

Average 0.27 ± 0.08 0.59 ± 0.02 0.63 ± 0.04 0.70 ± 0.03 0.71 ± 0.04 0.87 ± 0.02 0.86 ± 0.02

Recall

H 0.03 ± 0.03 0.90 ± 0.01 0.85 ± 0.02 0.92 ± 0.01 0.93 ± 0.00 0.92 ± 0.01 0.91 ± 0.01
D 0.38 ± 0.13 0.48 ± 0.03 0.63 ± 0.06 0.63 ± 0.04 0.61 ± 0.00 0.85 ± 0.03 0.86 ± 0.01
G 0.05 ± 0.03 0.43 ± 0.07 0.80 ± 0.03 0.90 ± 0.02 0.90 ± 0.01 0.92 ± 0.00 0.93 ± 0.01

BD 0.09 ± 0.05 0.17 ± 0.02 0.12 ± 0.05 0.17 ± 0.06 0.15 ± 0.08 0.74 ± 0.02 0.70 ± 0.05
CS 0.75 ± 0.12 0.23 ± 0.01 0.40 ± 0.05 0.43 ± 0.02 0.40 ± 0.01 0.76 ± 0.02 0.75 ± 0.03
BS 0.00 ± 0.00 0.45 ± 0.04 0.52 ± 0.05 0.59 ± 0.08 0.66 ± 0.06 0.87 ± 0.02 0.84 ± 0.03

Average 0.22 ± 0.06 0.44 ± 0.03 0.55 ± 0.04 0.61 ± 0.04 0.61 ± 0.03 0.84 ± 0.02 0.83 ± 0.02

F1-score

H 0.05 ± 0.06 0.78 ± 0.00 0.80 ± 0.00 0.83 ± 0.00 0.83 ± 0.00 0.90 ± 0.00 0.90 ± 0.00
D 0.25 ± 0.07 0.51 ± 0.01 0.64 ± 0.02 0.66 ± 0.02 0.66 ± 0.01 0.87 ± 0.01 0.87 ± 0.01
G 0.09 ± 0.06 0.56 ± 0.06 0.82 ± 0.03 0.90 ± 0.01 0.90 ± 0.00 0.93 ± 0.00 0.92 ± 0.01

BD 0.07 ± 0.02 0.17 ± 0.03 0.14 ± 0.05 0.23 ± 0.06 0.22 ± 0.10 0.77 ± 0.01 0.75 ± 0.01
CS 0.26 ± 0.01 0.32 ± 0.01 0.43 ± 0.04 0.52 ± 0.02 0.50 ± 0.01 0.78 ± 0.01 0.78 ± 0.01
BS 0.00 ± 0.00 0.59 ± 0.04 0.65 ± 0.04 0.69 ± 0.05 0.74 ± 0.04 0.90 ± 0.01 0.84 ± 0.01

Average 0.12 ± 0.04 0.49 ± 0.02 0.58 ± 0.03 0.64 ± 0.03 0.64 ± 0.02 0.86 ± 0.01 0.84 ± 0.01

common scab detection, going from 77.6% to 82.4%, respectively. (5) When the change of domain is more significant305

(BD2), the use of a domain adaptation method is compulsory. (6) By comparing adversarial-based methods (ADDA306

and ours) applied on DB2, we can observe that the major difference occurred on the correct detection of the black scurf307

class (59.2% with ADDA and 66.2% with our proposed method). (7) When the same defect presents very different308

visual symptoms according to the domain in which it occurs (e.g., black dot or common scab), an unsupervised domain309

adaptation method may not be sufficient, and a semi-supervised approach could be considered.310

Pseudo-label threshold sensitivity. We study the influence of the pseudo-label threshold. This threshold defines the311

target samples that are taken into account to compute the pseudo-label loss, i.e. only target samples with a pseudo-312

label probability exceeding the threshold will be used to calculate the pseudo-label loss. Figure 7 shows the mean313

F1-score of five random experiments on DB2 dataset when varying the pseudo-label threshold. We observe that the314

F1-score increases as the pseudo-label threshold increases which confirms our initial assumption that if the network315

outputs a low probability for the assigned class, the prediction is likely to be inaccurate.316

Feature Visualization. We use the t-SNE technique [43] to visualize the learned features extracted by the fully317

convolutional network (FCNt) of “Source only”, “Deep CORAL”, “JAN”, “ADDA” and our method. Figures 8 and 9318

show the results obtained on DB1 and DB2 respectively. We can see that if we only use source samples for training319
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(a) Source only (b) Deep CORAL (c) JAN

(d) ADDA (e) Ours

(f) Target only (g) Source+Target

Figure 5: Confusion matrices using the DB1 dataset for (a) source only model, (b) deep CORAL, (c) JAN, (d) JAN, (e) our model, (f) target only, (g)
source+target. By rows: true labels. By columns: predicted labels. Classes: H=healthy, D=damaged, G=greening, BD=black dot, CS=common
scab and BS=black scurf.

(Figures 8a and 9a), target features of different classes are mixed together. On the other hand, features are more320

discriminative when adaptation methods are applied (Figures 8b-8e and Figures 9b-9e). Finally, we can observe that321

even if visualizations of adapted methods are similar, features of some classes are more compact using our method.322

5. Conclusion323

In this work, we have presented an effective unsupervised adversarial domain adaptation method to classify potato324

defects in two different scenarios. Firstly, we have simulated a change in lighting conditions by artificially increasing325

the brightness of some images. Secondly, a change in a variety of color have been analyzed. Indeed, white potatoes326

have been used as source samples and red potatoes as target samples. Images from both datasets have been classified327

into six classes: healthy, damaged, greening, black dot, common scab, and black scurf. A two-stages method has328

been proposed to adapt a source model to a target dataset. Firstly, a fully convolutional network and a classifier329
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(a) Source only (b) Deep CORAL (c) JAN

(d) ADDA (e) Ours

(f) Target only (g) Source+Target

Figure 6: Confusion matrices using the DB2 dataset for (a) source only model, (b) deep CORAL, (c) JAN, (d) JAN, (e) our model, (f) target only, (g)
source+target. By rows: true labels. By columns: predicted labels. Classes: H=healthy, D=damaged, G=greening, BD=black dot, CS=common
scab and BS=black scurf.

Figure 7: Pseudo-label threshold sensitivity.

have been trained with labeled source images. Secondly, adversarial training has been applied to align source and330

target distributions. Moreover, a pseudo-label loss has been proposed to train a specific target classifier, despite the331
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(a) Source only (b) Deep CORAL (c) JAN (d) ADDA (e) Ours

Figure 8: The t-SNE visualization of features of target samples (DB1 dataset) learned by (a) Source only, (b) Deep CORAL, (c) JAN, (d) ADDA
and (e) our method. Each color represents a class, with a total of 6 classes: healthy, damaged, greening, black dot, common scab, and black scurf.

(a) Source only (b) Deep CORAL (c) JAN (d) ADDA (e) Ours

Figure 9: The t-SNE visualization of features of target samples (DB2 dataset) learned by (a) Source only, (b) Deep CORAL, (c) JAN, (d) ADDA
and (e) our method. Each color represents a class, with a total of 6 classes: healthy, damaged, greening, black dot, common scab, and black scurf.

unavailability of target labels.332

Experimental results have shown that a domain adaptation method is mandatory to obtain satisfactory results333

on the target dataset, reaching an average F1-score of 0.84 when the lighting conditions of the acquisition system334

change. Despite the straightforward implementation of certain discrepancy-based approaches, such as Deep CORAL335

and JAN, we have shown that these approaches are outperformed by our adversarial-based method. We have also336

shown that training the target classifier with a pseudo-label loss improves classification results on target images. This337

is an important difference between our method and ADDA, which directly applies the pre-trained source classifier on338

the new target images.339

Finally, we have shown that our proposed method can be used in a real-world application when the source and340

target distributions are different. Our main objective is to avoid manual labeling of the new target images by leveraging341

the knowledge of the annotated source images. In this way, efficient model modifications can be made, which is342

essential in a real industrial application. Future works consist of evaluating our method in a semi-supervised scenario,343

especially for cases where the domain change is quite significant (e.g. from white to red potatoes). We will also344

study an unsupervised heterogeneous domain adaptation approach to address the problem of working with source345

RGB images and transfer the knowledge to target multi-spectral images. Furthermore, more recent CNN architectures346

(Inception-v4 [44], Xception [45], ResNeXt-50[46]) will be tested.347
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