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Abstract—In this paper, we propose an extension
of the spatial rich model for steganalysis of color
images. The additional features are formed by three-
dimensional co-occurrences of residuals computed from
all three color channels and their role is to capture
dependencies across color channels. These CRMQ1
(color rich model) features are extremely powerful
for detection of steganography in images that exhibit
traces of color interpolation. Content-adaptive algo-
rithms seem to be hurt much more because of their ten-
dency to modify the same pixels in each channel. The
efficiency of the proposed feature set is demonstrated
on three different color versions of BOSSbase 1.01 and
two steganographic algorithms – the non-adaptive LSB
matching and WOW.

Index Terms—Steganalysis, steganography, color,
rich models, security

I. Introduction

Steganography in digital images is nowadays a well ad-
vanced discipline. Most studies focus on grayscale images
with the unspoken assumption that both steganography
design and its detection can be extended in a straightfor-
ward manner to color images by considering the color im-
age as three grayscale images. This view, however, ignores
the important fact that there exist dependencies among
color channels that should be taken into consideration for
both steganography and its detection.

It is true that virtually all steganalysis techniques de-
signed for grayscales can be applied to color images, for
example, by considering the color image as a three times
larger grayscale image or by steganalyzing each channel
separately and fusing the detection evidence from each
channel. Such methods, however, do not utilize the inter-
channel dependencies that can potentially be utilized for
detection. The first steganalysis techniques specifically de-
signed for color images were developed for palette images.
In [12], the authors pointed out that numerous steganog-
raphy tools at that time introduced easily identifiable
artifacts into the color palette, at least for images with
a low color depth (e.g., smaller than 256). A suspiciously
large number of close color pairs was proposed in [6] as
a distinguishing feature for LSB (Least Significant Bit)
replacement and matching in true-color images. The so-
called Pairs Analysis [7] (not to be confused with Sample
Pairs Analysis) targeted steganographic methods hiding

in palette images by swapping paired up colors (an equiv-
alent of LSB replacement for palette formats). The first
steganalysis feature set for color images that considered
dependencies among color channels was proposed by Lyu
et al. [18]. The authors used higher-order moments of
noise residuals obtained using predictors of coefficients in
a QMF decomposition of the image from all three color
channels. Another detector of LSB matching in color im-
ages was proposed in [19] by Westfeld. The author used the
3D color cube representation of the image and proposed
the relative frequency of the number of neighbors (in the
3 × 3 × 3 neighborhood) as a steganalysis feature. LSB
matching typically introduced a characteristic tail into
this histogram, which was not observed in cover images.
While this method works reasonably well in decompressed
JPEGs, it performs poorly in images with a large number
of unique colors, such as never-compressed or resized
images. Ker extended the work by Harmsen [9] that used
the center of gravity of the histogram characteristic func-
tion (HCF) by calibration by resampling and by totalling
the color components [13]. Methods based on the HCF,
however, do not work well on images that were never
compressed. Finally, in a recent work Kirchner et al. [15]
improved the Weighted-Stego attack on LSB replacement
by using more accurate predictors that consider the de-
pendencies among pixels and channels introduced by the
Color Filter Array (CFA) interpolation algorithm.

This work focuses on detection of both non-adaptive
LSB matching and modern content-adaptive steganogra-
phy in true color images in raster formats that were not
previously subjected to JPEG compression.1 In the next
section, we describe the common core of all experiments,
including the image sources, the classifier used to build
detectors, and the tested steganographic schemes. In Sec-
tion III, we augment an existing feature set designed for
grayscale images, the spatial rich model (SRM) computed
from the union of all three color channels, with a new set
of features formed by co-occurrences between color resid-
uals to capture inter-channel dependencies. Experiments
included in Section IV demonstrate that these additional
features are extremely efficient in color images with de-

1Lossy compression suppresses the noise component, which makes
steganalysis substantially easier. In decompressed JPEGs, one could
also use JPEG compatibility attacks (see, e.g., [16]).



tectable traces of color interpolation and work especially
well against content-adaptive algorithms. The experiments
are executed for three versions of the color BOSSbase 1.01
database and two steganographic algorithms. Section V
contains the summary and a list of additional possible
improvements and future directions.

II. Common core of experiments

All experiments in this paper are carried out on three
versions of BOSSbase 1.01 [1]. Starting with the full-
resolution raw images, we converted them using the same
script that was used for creating the BOSSbase with the
following modifications. The output of ufraw (ver. 0.18
with dcraw ver. 9.06) was changed to the color ppm format
instead of the pgm grayscale. Also, all calls of ’convert’
used ppm for the output as well as for resizing so that the
smaller image dimension was 512 and for central cropping
to 512 × 512. As in the original script, the resizing algo-
rithm uses the Lanczos kernel. We thus obtained 10,000
true color 512 × 512 ppm images. For brevity, we will call
this version of color BOSSbase ’BOSSbaseRes’ (resized).

The next two versions of BOSSbase were created using
the same process as above with two choices for the demo-
saicking algorithm and with the final resizing operation
removed. The crop command was modified to extract the
center 512 × 512 part of the non-resized image. The two
demosaicking algorithms used in dcraw were the Patterned
Pixel Grouping (PPG, sometimes referred to as Pixel
Grouping), which is the default algorithm in dcraw, and
the Adaptive Homogeneity–Directed (AHD) algorithm,
which is generally known to provide a better visual quality
at the cost of a higher computational complexity. The
two corresponding versions of BOSSbase will be called
BOSSbasePPG and BOSSbaseAHD.

All detectors were trained as binary classifiers imple-
mented using the FLD ensemble [17] with default set-
tings. A separate classifier was trained for each image
source, embedding algorithm, and payload to show how
the detection performance depends on the payload size.
As described in the original publication, the ensemble by
default minimizes the total classification error probability
under equal priors PE = minPFA

1
2 (PFA + PMD), where

PFA and PMD are the false-alarm and missed-detection
probabilities. The random subspace dimensionality and
the number of base learners is found by minimizing the
out-of-bag (OOB) estimate [3] of the testing error, EOOB,
on bootstrap samples of the training set. We evaluate the
security using the PE measured on the testing set averaged
over ten 5000/5000 database splits denoted as P E. The
statistical spread is the sample standard deviation.

Two embedding algorithms were included in this study:
the non-adaptive LSB matching (LSBM) with the change
rate as the distortion measure and the content-adaptive
WOW [10] both simulated at their corresponding rate–
distortion bounds. The tested payloads were 0.05, 0.1, 0.2,
. . ., 0.5 bpc (bits per channel pixel). Both algorithms were

applied to color images by treating their color channels as
three grayscale images and embedding the same relative
payload in each channel.2 A second option that makes
sense for the adaptive WOW algorithm is to consider the
color image as a three times larger grayscale image and
embed the same relative payload in this larger image. This
way, WOW could automatically distribute the payload
across color channels, potentially embedding more into
the noisier channels, thus providing a better security. For
investigative purposes and because this paper focuses on
detection rather than steganography design, we chose the
first option (embedding the same relative payload in each
channel) because it allows us to better interpret the results
when it comes to statistical detectability of embedding
changes across channels.

III. Rich Model for Steganalysis of Color
Images

Most color images that are stored in a raster format,
such as TIFF, PNG, BMP, PPM, etc., have undergone
a potentially long processing pipeline consisting of gain
adjustment (white balance), color correction, color in-
terpolation, gamma correction, denoising, filtering, con-
trast/brightness adjustment, and profile correction, which
includes the correction for lens distortion and chromatic
aberration. This is what happens inside the camera that
has been set to store images in a true-color uncompressed
format (e.g., 24-bit TIFF) and a similar processing chain
occurs when a raw image is manually processed in an
image editing software, such as Adobe Lightroom. In this
case, the resulting image will contain no or only rather
weak traces of color interpolation. On the other hand, if
a color image exhibits detectable traces of color interpola-
tion, they can likely aid the steganalyst in detection (see
the recent work of Kirchner [15] on WS steganalysis). This
is why in this paper we test the proposed features on three
versions of color BOSSbase (Section II).

Since steganalysis of grayscale images is a well re-
searched topic, we capitalize on existing advancements in
feature-based steganalysis. The proposed model for color
images is called Spatio–Color rich model or SCRMQ1
and it consists of two different components. The first
component is the spatial rich model [8] with a single
quantization step q = 1 (SRMQ1) with dimensionality
12,753. The SRMQ1 feature is computed for each color
channel and the three features are added (merged) to
keep the same dimensionality as for grayscale images.3

The second component is a collection of 3D color co-
occurrences, the Color Rich Model (CRMQ1), built from
the same noise residuals as those used in the SRMQ1 but
formed across the three channels of each pixel. We next

2The corresponding change rates for LSB matching were 0.00496,
0.01122, 0.02602, 0.04318, 0.06258, and 0.08398.

3As will become apparent from experiments in Section IV, concate-
nating the three features instead of adding brings only a negligible
improvement.



TABLE I
Steganalysis of LSB matching at 0.1 bpc and WOW at 0.4 bpc in BOSSbaseRes, BOSSbasePPG, and BOSSbaseAHD, their

individual color channels, and their grayscale versions using three feature sets: SRMQ1, CRMQ1, and their union
SCRMQ1.

LSBM (0.1 bpc) WOW (0.4 bpc)

P E Dim BOSSbaseRes BOSSbasePPG BOSSbaseAHD BOSSbaseRes BOSSbasePPG BOSSbaseAHD

SRMQ1, Merged 12753 .1945 ± .0015 .1490 ± .0016 .1146 ± .0010 .2323 ± .0016 .0225 ± .0004 .0255 ± .0004
SRMQ1, Concat 38259 .1862 ± .0020 .1234 ± .0019 .0936 ± .0009 .2255 ± .0009 .0195 ± .0008 .0157 ± .0008
SRMQ1, Red 12753 .3425 ± .0016 .2756 ± .0014 .2227 ± .0018 .3191 ± .0015 .0885 ± .0014 .0821 ± .0014
SRMQ1, Green 12753 .2097 ± .0015 .1744 ± .0012 .1510 ± .0012 .2487 ± .0016 .0368 ± .0007 .0264 ± .0007
SRMQ1, Blue 12753 .2510 ± .0010 .2579 ± .0018 .2083 ± .0012 .2671 ± .0017 .0811 ± .0009 .0804 ± .0009
SCRMQ1 18157 .1790 ± .0015 .0472 ± .0010 .0297 ± .0008 .1765 ± .0014 .0080 ± .0005 .0041 ± .0005
CRMQ1 5404 .2304 ± .0012 .0621 ± .0007 .0381 ± .0005 .1985 ± .0015 .0117 ± .0004 .0046 ± .0004

SRMQ1, Gray 12753 .2101 ± .0012 .2785 ± .0013 .2373, ±.0011 .2388 ± .0011 .0606 ± .0004 .0440 ± .0005

TABLE II
Relative number of pixels with 2 or 3 changes in their

color components for WOW at payloads 0.1, 0.2, and 0.4 bpc
in BOSSbaseRes, BOSSbasePPG, and BOSSbaseAHD

(abbreviated as ’Res’, ’PPG’, and ’AHD’). The last column is
for LSBM, which is the same for all three databases.

α
WOW LSBM

Res PPG AHD All

0.1 0.0060 0.0023 0.0024 0.0004
0.2 0.0166 0.0072 0.0074 0.0020
0.4 0.0472 0.0246 0.0208 0.0112

describe only those aspects of the SRMQ1 model that are
essential for explaining these additional CRMQ1 features
while referring the reader to the original publication for
more details [8].

The SRMQ1 noise residuals are computed using two
types of local pixel predictors – linear, computed by
convolving the image with a high-pass filter with a shift-
invariant kernel (’spam’ residuals), and non-linear ones
obtained by taking the maximum / minimum of outputs
from several linear filters (’min-max’ residuals). The resid-
uals are further divided into five classes depending on the
filter structure: filters using first-order, second-order, and
third-order differences, edge kernels, and square kernels
(see Figure 2 in [8]).

Let us assume that we have a true color image, I,
represented as three n1 ×n2 matrices I = {R, G, B}, R =
(rij), G = (gij), B = (bij), rij , gij , bij ∈ {0, 1, . . . , 255},
1 ≤ i ≤ n1, 1 ≤ j ≤ n2. Furthermore, let Z

(r) =
(z

(r)
ij ) be the quantized noise residual computed only

from the red channel, for example, as the average of
its horizontal neighbors (denoted as ’spam12h,v’ in [8]),

z
(r)
ij = QT ([rij − (ri,j−1 + ri,j+1)/2]/q), where QT : R →

{−T, −T + 1, . . . , T } is a quantizer with 2T + 1 integer
centroids and q is the quantization step (here, q = 1). Sim-

ilarly, we also compute the residuals, z
(g)
ij , z

(b)
ij in the other

two channels. The SRMQ1 uses 4D co-occurrences of four
neighboring residuals, e.g., (z

(r)
ij , z

(r)
i,j+1, z

(r)
i,j+2, z

(r)
i,j+3) for

the horizontal co-occurrence. Because the co-occurrences
formed in the horizontal and vertical directions capture
different statistics among pixels, they are treated sepa-

rately in SRMQ1. In the CRMQ1 model, however, we form
the co-occurrences across the color channels for each pixel
from the triplets (z

(r)
ij , z

(g)
ij , z

(b)
ij ). Thus, we only need one

co-occurrence even when the noise residual is “directional”
as is the case in the example above. Due to symmetries of
natural images, we combine the 3D co-occurrences com-
puted from the horizontal version of the predictor with the
vertical version: z

(r)
ij = QT ([rij − (ri−1,j + ri+1,j)/2]/q).

Depending on the symmetries of the residual kernel, we
may be adding statistics from four or even eight residual
versions after including the mirror versions of the kernels
and their versions rotated by 90 degrees (e.g., see the
residuals ’minmax24’ and ’minmax48h,v’ in [8]).

Since the SRMQ1 is formed from 8 first-order and
8 third-order residuals, 5 second-order residuals, 8 edge
residuals, and two square residuals, there will be a total
of 31 3D co-occurrences in the CRMQ1 model. They
all will be symmetrized by direction and by sign as in
the original SRM (sign symmetry means merging the bin
d1, d2, d3, d4 with −d1, −d2, −d3, −d4, dk ∈ {−T, . . . , T },
while a directional symmetry merges the bin with its
mirror version d4, d3, d2, d1). Because we form 3D co-
occurrences in CRMQ1, we opted for a larger threshold
T = 3 instead of T = 2 used for the residuals in the SRM.
After the symmetrization, all 3D co-occurrences have the
dimensionality of 100 for spam type residuals and 196 for
min-max residuals. Because there are 7 spam type residu-
als and 24 min-max residuals, the final dimensionality of
the CRMQ1 model is thus 7 × 100 + 24 × 196 = 5404.

To summarize, the proposed feature set consists of
the 12,753 dimensional SRMQ1 model (that uses 4D co-
occurrences with T = 2 and quantization q = 1) merged
over the color channels and the 5,404 dimensional CRMQ1
model formed by 3D co-occurrences across color channels
with T = 3 and q = 1. We call this feature set the
SCRMQ1 model (’C’ for the Color version of the SRMQ1)
and its dimensionality is 12753 + 5404 = 18157.

IV. Experiments

The results of our first experiment are displayed in
Table I, which shows the average detection error P E for
one payload, and in Figures 2 and 3 showing P E as a
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Fig. 1. Average detection error of individual submodels in the SRMQ1 (top) and CRMQ1 (bottom) for WOW at 0.4 bpc in BOSSbasePPG.
The submodels are labeled as in [8]. The detection errors of SRMQ1, CRMQ1, and SCRMQ1 are 0.0225, 0.0117, and 0.0080, respectively.
Note that submodels with smaller kernels generally detect better than large kernels.

function of payload for LSBM and WOW in all three
databases. In particular, we wish to point out the following
quite interesting insights.

The table shows that concatenating the SRMQ1 fea-
tures as opposed to merging them (and saving a factor
of 3 on feature dimensionality) brings only a small im-
provement (≈ 2.5%). Also, as expected, steganalysis using
SCRMQ1 is easier in images with traces of demosaicking
than in resized images for both LSBM and WOW.

While for LSB matching in resized images the CRMQ1
model improves the detection only marginally, it is more
effective for the content-adaptive WOW (observe the dif-
ference between SRMQ1 and SCRMQ1 in top charts of
Figures 2 and 3). We explain this by noting that the
adaptive WOW is much more likely to modify more than
one channel in a given pixel than the non-adaptive LSBM
(see Table II), which is better captured by the CRMQ1
model. For both LSBM and WOW, the CRMQ1 features
are now much stronger than the SRMQ1 and are responsi-
ble for most of the detection power in SCRMQ1 apparently
capitilizing on demosaicking artifacts (see also Figure 1).
Moreover, WOW appears to be hurt by the power of the
CRMQ1 model significantly more than LSBM for the same
reason as stated above. This high detectability of WOW
is, of course, due to the naive way of applying WOW to
color images. The security of content-adaptive algorithms
in color images can likely be significantly improved by
properly designing the distortion function to consider
inter-channel dependencies.

The choice of the demosaicking algorithm between PPG
and AHD does not seem to play a significant role for
steganalysis using either feature set. The images demo-
saicked using the AHD algorithm appear slightly eas-

ier to steganalyze than the images obtained using the
PPG. Surprisingly, when converting the color images in
BOSSbaseRes to grayscale using Matlab’s ’rgb2gray’ the
detectability using the spatial SRMQ1 model appears
almost identical (the top graphs in Figures 2 and 3).
Apparently, the decrease in detectability due to the effect
of the square root law [5] when steganalyzing in three
times smaller images is almost exactly compensated by
the smoothing character of converting the three color
channels to grayscale. Of course, in images with traces
of demosaicking the difference between steganalyzing with
SRMQ1 in color and in the corresponding grayscale images
is much bigger because the conversion to grayscale largely
eliminates the color interpolation artifacts.

The detection in the individual color channels is the
easiest in the green and hardest in red. This is consistently
true for all image sources and both algorithms. This is
probably because the red channel is always the noisiest
channel. The root mean square (RMS) of the noise residual
obtained using the KB predictor [2] in the R, G, and B
color channels averaged across the entire database was
[26.5, 24.9, 24.8] in BOSSbaseRes and [16.9, 12.1, 16.5] in
BOSSbasePPG, confirming that the red channel is always
the noisiest. We attribute this increased noise level in the
red channel to a higher gain adjustment (white balance
coefficient) for the red channel. Since the white balance
gain used for each channel can be extracted from the EXIF
header, we confirmed this by computing the average ratio
of the gains gred/ggreen ≈ 2.03 and gblue/ggreen ≈ 1.47 over
the entire database.



0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.05

Payload (bpc)

P
E

(B
O

S
S
b
a
se

R
es

)

SRMQ1
CRMQ1
SCRMQ1
SRMQ1 grayscale

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.05

Payload (bpc)

P
E

(B
O

S
S
b
a
se

P
P

G
)

SRMQ1
CRMQ1
SCRMQ1
SRMQ1 grayscale

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.05

Payload (bpc)

P
E

(B
O

S
S
b
a
se

A
H

D
)

SRMQ1
CRMQ1
SCRMQ1
SRMQ1 grayscale

Fig. 2. Detection error P E as a function of payload for LSBM. From
top to bottom: BOSSbaseRes, BOSSbasePPG, and BOSSbaseAHD.

While in resized images the best submodels are those
with large supports, in images with traces of demosaick-
ing, the tendency is the opposite (note the detection of
WOW at 0.4 bpc in BOSSbasePPG using the individual
submodels of SCRMQ1 in Figure 1). This is most likely
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Fig. 3. Detection error P E as a function of payload for WOW. From
top to bottom: BOSSbaseRes, BOSSbasePPG, and BOSSbaseAHD.

due to the fact that each color channel is an interlaced
union of four types of pixels based on their position w.r.t.
the Bayer CFA. Residuals with a larger support mix these
heterogeneous signals more than residuals with a smaller
support, resulting in a weaker detection.



V. Conclusion

This paper proposes an extension of the spatial rich
model (SRM), which was designed for grayscale images,
to allow for more accurate detection of steganography in
color images. The SRMQ1 features are augmented by a
collection of symmetrized 3D co-occurrences of residuals
between color channels – the Color Rich Model (CRMQ1)
of dimension 5404. While these additional features help de-
tection only marginally in color images that do not exhibit
traces of color interpolation, when these traces are present
the CRMQ1 features become responsible for the majority
of the detection power independently of the two tested de-
mosaicking algorithms and the steganographic algorithms.
Curiously, in demosaicked images the difference between
the security of the LSB matching and the content-adaptive
WOW when naively applied independently to each color
channel becomes rather small due to the fact that WOW
concentrates the embedding changes in textured regions
and thus more often modifies two or more color channels of
any given pixel. Content-adaptive steganography for color
images obviously needs to use distortion functions that can
capture dependencies across the color channels.

We note that further obvious improvements in detection
are possible by investigating the best choice of the quan-
tization step in SRM with a single quantization step, by
utilizing the full version of SRM with all three quantization
steps, or by employing the projection SRM (PSRM) [11].
Additionally, the rich model could be compactified to a
lower dimension and more powerful classifiers, such as
the Gaussian SVM can be utilized to further boost the
detection. The SRM part of the model could be com-
pactified by feature selection or by employing variable co-
occurrences [4]. We observed that the CRMQ1 features’ di-
mensionality can be decreased from 5404 to 2074 by using
a smaller threshold T = 2 with only a small performance
penalty. We do not explore these directions in this paper
due to the limited space and because we prefer to focus
on introducing qualitatively new types of features and on
revealing interesting phenomena in steganalysis of color
images rather than on the best achievable performance.

In images with demosaicking artifacts, steganogra-
phy detection greatly benefits from the proposed co-
occurrences between the residuals of individual color chan-
nels. The residuals, though, are still computed from each
color channel from all pixels and are thus “blind to the
CFA.” In our future effort, we plan to investigate the idea
of making the residuals themselves aware of the underlying
structure of the CFA to better separate the signals with
different statistical properties and thus further improve
detection. Since color interpolation artifacts in digital
images can be rather reliably detected [14], the steganalyst
may use a preclassifier when testing a given image and
send it to the appropriately trained classifier.

The code for SRMQ1 and CRMQ1 is available from
http://dde.binghamton.edu/download/.
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