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Abstract

Imperfect maintenance models are widely used in reliability engineering. This

paper discusses relevant asymptotic properties for the steady-state virtual age

processes. It is shown that the limiting distributions of age, the residual lifetime

and the spread that describe an ordinary renewal process can be generalized to

the stable virtual age process, although the cycles of the latter are not indepen-

dent. Asymptotic distributions of the virtual age at time t, as well as of the

virtual ages at the start and the end of a cycle containing t (as t tends to infinity)

are explicitly derived for two popular in practice imperfect maintenance models,

namely, the Arithmetic Reduction of Age (ARA) and the Brown-Proschan (BP)

models. Some applications of the obtained results to maintenance optimization

are discussed.
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1. Introduction

It is well known that the origin of the renewal theory (Feller (1968)) is in

numerous industrial applications. For instance, the renewal function in practice

can be interpreted as the mean number of replacements/perfect repairs for a

system operating in a given interval of time. Thus, the mean number of the

required spare parts can be estimated and the probability of the spare parts

shortage as well (the latter is usually performed only for some specific cases,

e.g., for the Homogeneous Poisson Process of renewals). Furthermore, when

describing the performance of, for example, repairable production systems, re-

newal processes are generalized to the corresponding renewal reward processes

that allow (among other things) for obtaining the optimal, long-run maintenance

policies (Cox & Isham (1980)).

As the cycles of an ordinary (standard) renewal process are i.i.d. random

variables, they naturally model the process of perfect repairs (with a negligi-

ble repair time). Thus, the perfect, or the As-Good-As-New (AGAN) repair,

restores a system to the state of a new system, whereas the minimal, or the As-

Bad-As-Old (ABAO) repair, restores it to the state it had just prior to failure.

It is well known that the latter type of repair processes can be described by

the non-homogeneous Poisson Process (NHPP) (Ascher & Feingold (1984)). In

reality, however, the efficiency of a repair action is often between the AGAN and

the ABAO repair, as a system can be effectively repaired without necessarily

being totally renewed. This action is usually referred to as an imperfect mainte-

nance/repair (Pham & Wang (1996)) and some basic modeling approaches are

reviewed in Lindqvist (2006). The maintenance optimization problems under

the imperfect repair has been studied from different perspectives: periodic pre-

ventive maintenance(PM) has been addressed in Zequeira & Brenguer (2006);

age-based PM was discussed in Huynh et al. (2012) and El-Ferik (2008); Gilar-

doni et al. (2016) showed that when the failure history is available, the failure-

limit PM policy could be more cost-efficient than the age-based PM; Yang et al.

(2019) and Wu et al. (2019) combined the imperfect repair with delayed time
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concept; Mullor et al. (2019) considered multiple failure modes. Applications to

the data-driven modeling of repair processes can be found in, e.g., Baker (2001)

and Dijoux & Gaudoin (2013),Wang & Pham (2006).

Virtual Age (VA) models (Kijima et al. (1988)) are the most common in

reliability practice imperfect maintenance models when the age of a repairable

system is assumed to depend not only on the time elapsed since the last repair

(as in the case of the perfect repair), but on some virtual age between zero

(perfect repair) and the corresponding calendar age (minimal repair). A virtual

age model is fully defined by the age reduction mechanism and by the Cdf of

the time to failure (or by the corresponding failure rate) of a new system that

is also called the baseline or initial Cdf (failure rate). Two popular virtual age

assumptions have been proposed in Kijima (1989), where the repair efficiency

is characterized by a random variable ρ, contained in the closed interval [0,1].

Kijima’s Type I model assumes that the reduced amount of virtual age after a

repair is proportional to the last inter-failure time, whereas in Kijima’s Type

II model, the reduction of the virtual age after a repair is proportional to that

just before the repair. These two models were generalized in Doyen & Gaudoin

(2004) by introducing the model of Arithmetic Reduction of Age of memory m,

denoted as ARAm. The values m = 1 and m =∞ correspond to Kijima’s Type

I and Kijima’s Type II models, respectively, with constant reduction factors.

Theoretical results on these models can be found in Malik (1979), Kijima &

Sumita (1986), Yevkin (2011), Kijima (1989), Doyen & Gaudoin (2004) and

Nguyen et al. (2017). The maintenance scheduling and optimization based on

these results have been reported in Dimitrakos & Kyriakidis (2007), Jiang et al.

(2001), Kijima et al. (1988), Love et al. (2000) and Makis & Jardine (1993).

Another widely-used imperfect maintenance model is the Brown-Proschan

(BP) model (Brown & Proschan (1983)). The repair action in this model can be

either AGAN with probability p or ABAO with probability 1 − p. This model

is relevant, e.g., in situations where some of the minor failures of a complex

system are minimally repaired, whereas other, more serious failures result in re-

placement of the failed system. Similar to the reduction factor in Kijima’s-type
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models, parameter p in the BP model determines the age reduction mechanism.

Theoretical results on the BP model and the corresponding statistical infer-

ence issues have been addressed in Whitaker & Samaniego (1989), Hollander

et al. (1992), Lim (1998) and Laurent (2011), whereas its industrial applications

have been studied in Block et al. (1985), Kumar & Klefsj (1992), Langseth &

Lindqvist (2003) and Finkelstein & Shafiee (2017), to name a few.

Ordinary renewal processes are stationary in the sense that the correspond-

ing renewal density function tends to a constant as time tends to infinity. The

NHPP that describes minimal repairs is, obviously, non-stationary and if, e.g.,

its rate is increasing, the failures are arriving more frequently with time. Kijima

Type I and Geometric Process (Yeh (1988)), like NHPP, are non-stationary and

can be used to model the lifetime with trends. Although there are many publi-

cations on various applications of the virtual age models in reliability, not much

has been done so far in the literature on description of the relevant asymptotic

properties for the corresponding virtual age processes. For instance, Finkelstein

(2007) and Finkelstein (2008) have proven that under certain assumptions, there

exist some limiting distributions of the age at the start and the end of each cy-

cle. Furthermore, in Laurent (2011) the limiting distributions of the virtual

ages and of the cycle durations were obtained analytically for the specific case

of the Brown-Proschan (BP) repair process, whereas similar results have been

reported with respect to the ARA∞ process with Weibull baseline distribution

in Nguyen et al. (2017).

It should be noted that the limiting properties of the ordinary renewal pro-

cesses are especially important in various applications. For instance, obtaining

the corresponding renewal functions can be computationally difficult and simple

asymptotic values provided by the renewal-type theorems are very effective in

practice. Another example is the alternating renewal process. The stationary

availability in this case, which is usually of the main interest, is obtained in a

simple way via the mean up and down times of a system. The life cycles of many

industrial systems are quite long meaning that a large number of maintenance

actions are performed. Moreover, at many instances, the operational data is
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recorded only when a system enters its stable regime. Therefore, the impor-

tance of asymptotic methods in the described context is hard to overestimate.

The study of asymptotic properties of the imperfect repair processes that

more adequately than ordinary renewal processes describe maintenance of the

real-world systems, seems to be a natural and practically sound task that is

addressed in the current paper. For achieving this goal, we had to answer first

the following questions: can asymptotic results for the age, the residual life-

time and the spread for ordinary renewal processes be generalized (and under

what conditions) to the case of the imperfect repair processes? What are the

asymptotic distributions for these quantities? To answer these questions, cer-

tain theoretical results had to be obtained and illustrated afterwards by several

practical examples.

The rest of the paper is organized as follows: in Section 2, some general

properties of the relevant virtual age models are presented. Sections 3 and 4 are

devoted to generalization of the limiting distributions of the age, the residual

lifetime and the spread to the case of stable virtual age models. Finally, some

applications in maintenance optimization are discussed in Section 5, whereas

concluding remarks are given in Section 6.

2. Virtual age process

Denote by {Ti}, i ∈ N the successive failure/repair times of a system with

T0 = 0 and {Xi} the inter-failure times (also called intervals or cycles) with

X0 = 0 and Xi = Ti − Ti−1 for i ≥ 1. The cumulative number of observed

failures up to t is denoted by Nt =
∑∞
i=1 1{Ti≤t}. The failure process can be

defined by its stochastic intensity:

∀t ≥ 0, λt = lim
∆t→0

1

∆t
P (Nt+∆t −Nt− = 1|Ht−), (2.1)

where Ht− is the failure history.

Let the baseline/initial failure rate and the corresponding cumulative failure

rate of a new system be λ(t) and Λ(t) =
∫ t

0
λ(u)du, respectively. In practice,
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λ(t) is often given by the 2-parameter Weibull distribution, where the shape

parameter β determines whether λ(t) is increasing or decreasing.

∀t ≥ 0, λ(t) = αβtβ−1. (2.2)

Let a new system with a lifetime T described by the Cdf F (t) start operation

at t = 0. Then, at age x, the Cdf of the remaining lifetime is given by F (t|x) =

1−F (t+x)/F (x). Assume that after the instantaneous maintenance (corrective

or preventive) carried out at time t, the remaining lifetime is defined as the

lifetime of a new and unmaintained system having age y, where y < t. Then y

is called the virtual age, the calendar age after this operation is, obviously, still

t.

A repair with a negligible duration is carried out immediately after Ti, and

is supposed to reduce a system’s age to Ai, A0 = 0, which is called the virtual

age after the i-th failure. Then, the remaining lifetime of the repaired system

does not depend on the entire failure/repair history, but depends on the virtual

age of the system after the most recent repair. Mathematically, this is described

by

∀i ∈ N, ∀t ≥ 0, P (Xi+1 ≤ t|T1, T2 . . . Ti) = F (t|Ai). (2.3)

At a given time t, the total number of failures before t is denoted by Nt− .

Thus, ANt− is the latest virtual age, TNt− is the time of the last repair before t,

and TNt−+1 is the time of the next repair after t. The time elapsed since the last

repair before t, also called the backward recurrence time (Cox & Miller (1965)),

is denoted by Bt, with Bt = t−TNt− . The remaining lifetime at t or the forward

recurrence time, denoted δt, is the time till the next failure: δt = TNt−+1 − t.

The spread Yt is the total duration of a cycle that contains t: Yt = Bt + δt.

The virtual age at the start of the cycle containing t, denoted by V st , is

the virtual age after the latest repair: V st = ANt− . The virtual age at time t,

Vt, is obtained from the latest virtual age and the time since the last repair:

Vt = ANt−+t−TNt− . Finally, the virtual age at the end of the cycle containing t,

denoted by V et , is the virtual age just before the next repair after t: V et = Vt+δt.

For convenience, the above defined notations are listed in table 1.
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Table 1: Notations in stable Virtual Age models

Notation Interpretation Expression

Xn duration of the n-th cycle Xn = Tn − Tn−1

An virtual age after the n-th repair

X∞ duration of the asymptotic cycle X∞ = limn→∞Xn

RX∞ limiting survival function of X∞ RX∞(t) = P (X∞ > t)

fX∞ limiting pdf of X∞ fX∞(t) = − d
dtRX∞(t)

A∞ asymptotic virtual age at the start of a cycle A∞ = limn→∞An

RA∞ limiting survival function of A∞ RA∞(t) = P (A∞ > t)

fA∞ limiting pdf of A∞ fA∞(t) = − d
dtRA∞(t)

µ mean cycle duration in stationary state µ = E(X∞) =
∫∞

0
RX∞(x)dx

Bt backward recurrence time at t Bt = t− TNt−
δt remaining lifetime (forward recurrence time) at t δt = TNt−+1 − t

Yt spread at time t Yt = Bt + δt

V st virtual age at the start of the cycle containing t V st = ANt−

Vt virtual age at time t Vt = ANt− + t− TNt−
V et virtual age at the end of the cycle containing t V et = Vt + δt
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It is well known (Ross (1995)) that the backward recurrence time Bt, the

remaining lifetime δt and the spread Yt for ordinary renewal processes are de-

scribed by some limiting (as t tends to infinity) non-dependent on t distributions.

We will show that under certain assumptions, the similar results hold for some

virtual age processes. Specifically, Bt, δt and Yt for these processes will be also

described by some limiting distributions. Based on these results, we can further

derive the limiting distributions of virtual ages related to t, i.e., V st , Vt and V et .

In what follows in this section, two important imperfect repair models,

namely, the ARA∞ and the BP models, are briefly introduced. We are in-

terested particularly in these models as they are intensively used in various

reliability applications and because they have different age reduction mecha-

nisms. As a result, the limiting distributions of V st , Vt and V et for these two

processes have different forms.

2.1. ARA∞ model

The Arithmetic Reduction of Age with infinite memory model (Doyen &

Gaudoin (2004)) assumes that when a repair is carried out, the VA is reduced

proportionally to that just before the maintenance:

Ai = (1− ρ) (Ai−1 +Xi) , i = 1, 2, . . . , (2.4)

where ρ ∈ [0, 1] is called the restoration/reduction factor representing the effi-

ciency of maintenance. The values, ρ = 1 and ρ = 0 correspond, respectively,

to the perfect maintenance (AGAN) and the minimal repair (ABAO). Nguyen

et al. (2017) have considered the ARA∞ model for the Weibull baseline distri-

bution, i.e.,

F (t) = 1− e−αt
β

, α > 0, β > 0. (2.5)

Thus, the corresponding VA process is fully determined by the triple (α, β, ρ).

The distributions of Xn and An can be found in Nguyen et al. (2017). The

limiting distributions as n tends to infinity, denoted RX∞ and RA∞ , are given

below:

RA∞ (t) =

∞∑
k=1

1

(q, q)∞

(
1
q ,

1
q

)
k−1

e
−αtβ

qk , (2.6)
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RX∞ (t) =

∞∑
k=1

1

qk (q, q)∞

(
1
q ,

1
q

)
k−1

∫ ∞
0

αβxβ−1e−α(x+t)β+α(1−q−k)xβdx,

(2.7)

where q = (1− ρ)β and (a, q)k =
∏k−1
j=0

(
1− aqj

)
is the q-Pochhammer symbol.

2.2. Brown-Proschan model

The BP model assumes that the repair after a failure is perfect with prob-

ability p and is minimal with probability (1 − p). Therefore, suppose that the

repair effects are unknown and can be defined by the variables Bn:

Bn =

 1 if the n-th repair is AGAN

0 if the n-th repair is ABAO.
(2.8)

Define An as the time elapsed between Tn and the last perfect repair. Thus,

An = (1−Bn)(Xn +An−1). (2.9)

The distribution and expectation of A∞ and of X∞ are given by Laurent (2011):

FA∞(x) = 1− (1− p)e−pΛ(x), E(A∞) = (1− p)
∫ ∞

0

e−pΛ(x)dx, (2.10)

RX∞(x) = p

∫ ∞
0

λ(x+ v)e−Λ(x+v)+(1−p)Λ(v)dv, E(X∞) = p

∫ ∞
0

e−pΛ(x)dx.

(2.11)

3. Asymptotic distributions of backward recurrence time, residual

lifetime and spread in stable virtual age processes

Various generalizations of the ’standard renewal theory’ were addressed in

the literature in a number of publications. With relevance to our topic, the

following papers (to name a few) can be of interest. For example, Chow &

Robbins (1963) considered the renewal theory in sequences with dependent and

non-identically distributed intervals; Dagpunar (1997) studied the renewal-type

equations for a generalized Kijima type II process (see also Finkelstein (2007)

and Finkelstein (2008)). Lam & Lehoczky (1991) considered the generalizations

of renewal theory to the superposition of renewal processes.

8



Our interest lies in the virtual age processes with cycles Xn converging in

distribution to X∞ as n tends to infinity. This property guarantees that the

cycles are asymptotically identically distributed. The following theorem defines

distributions of the backward recurrence time Bt, the residual lifetime δt and

the spread Yt for these stable virtual age processes.

Theorem 3.1. In a stable virtual age processes with asymptotically identically

distributed cycles, the limiting distributions of Bt and δt , similar to the standard

renewal processes, are given by the following equilibrium distributions:

lim
t→∞

P (Bt ≤ x) = lim
t→∞

P (δt ≤ x) =
1

µ

∫ x

0

RX∞(s)ds, (3.1)

whereas the limiting distribution of the spread Yt is

lim
t→∞

P (Yt ≤ x) =
1

µ

∫ x

0

s · fX∞(s)ds. (3.2)

Proof. Denote by m′(t) the generalized renewal density function for the virtual

age process. Thus, m′(t) can be interpreted as the rate of the corresponding

point process (similar to the ’standard’ renewal density, which is the rate of

the ordinary renewal process). Denote by F (x, u) the Cdf of a cycle that had

started at the calendar time u. Then, the Cdf of Bt, denoted by FBt(x), can be

written as the following integral

FBt(x) =


∫ t

t−x
F (t− u, u)m′(u)du, 0 ≤ x ≤ t

1, x > t,

(3.1.1)

where u is the time of the last repair before t and, accordingly, m′(u)du is the

probability that the cycle starts in [u, u+ du). The corresponding pdf is

fBt(x) =

F (x, t− x)m′(t− x), 0 ≤ x ≤ t

0, x > t.
(3.1.2)

Let x be fixed. Then for t→∞

lim
t→∞

fBt(x) =
RX∞(x)

µ
, (3.1.3)
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because

F (x, t− x)→t→∞ RX∞(x), ∀x ≥ 0, (3.1.4)

as the cycles converge in distribution to X∞ and

m′(t− x)→t→∞
1

µ
, (3.1.5)

which results from the convergence of the cycles of the virtual age process and

was shown in Dagpunar (1997) (equation 22) and Chow & Robbins (1963) (The-

orem 1).

The foregoing reasoning was with respect to the backward recurrence time.

The similar approach can be applied to the remaining lifetime δt and the spread

Yt. Thus, asymptotically, as t → ∞, it is not necessary that the cycles are

independent, as in the standard renewal theory, and it is sufficient that they

are identically distributed. Moreover, in this case, the limiting distributions

of Bt, δt and Yt can be also proved similar to how it is elegantly performed in

Ross (1995) using the corresponding alternating renewal process. The backward

recurrence time is interpreted then as the on-time, whereas the remaining life

time, as the off-time of the generalized alternating renewal process.

Due to the theorem 3.1 and, similar to the standard renewal theory, it holds

asymptotically in our case that (the inspection paradox)

∀s ∈ [0,∞), lim
t→∞

RYt(s) ≥ RX∞(s) (3.3)

and

lim
t→∞

E(Yt) =
E(X2

∞)

µ
, (3.4)

lim
t→∞

E(Bt) = lim
t→∞

E(δt) =
E(X2

∞)

2µ
. (3.5)

Note that limiting distribution of X∞ for the specific VA processes are given

in the previous section, whereas the existence of such distributions for a general

ARA∞ model is proved, e.g., in Finkelstein (2007). It is also worth mentioning
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that we have conducted numerous numerical experiments (simulation) for the

stable VA models considered in this paper that had also illustrated asymptotic

equalities of this theorem.

4. Limiting distributions of V s
t , Vt and V e

t

As defined in Section 2, F (t) is the Cdf of the baseline distribution and

F (t|a) is the Cdf of a cycle that starts with age a. The corresponding survival

function is thus denoted by F (t|a), whereas the mean residual life function is

µa =
∫∞

0
F (t|a)dt. The pdf of a cycle that starts with age a is denoted as

f(t|a) = F ′(t|a). For stable VA processes (i.e., with asymptotically identically

distributed cycles), it is important both from theoretical and practical points

of view to obtain limiting distributions of the virtual age. This can be done for

the two imperfect repair models considered in this paper.

4.1. ARA∞ model

The limiting distributions of V st , Vt and V et for the ARA∞ virtual age process

are given by the following theorems

Theorem 4.1. Let V s∞ = limt→∞ V st . The asymptotic pdf of V st is

fV s∞(a) := lim
t→∞

fV st (a) =
µa
µ
· fA∞(a). (4.1)

Proof. Conditioning the asymptotic distribution of Bt on V st :

1

µ

∫ y

0

RX∞(s)ds = lim
t→∞

P (Bt ≤ y) =

∫ ∞
0

lim
t→∞

P (Bt ≤ y|V st = a)fV st (a)da.

(4.1.1)

Fixing a, we arrive at the standard renewal process. Therefore,

lim
t→∞

P (Bt ≤ y|V st = a) =
1

µa

∫ y

0

F (s|a)ds. (4.1.2)

The left hand side of equation (4.1.1) can be alternatively expressed by condi-

tioning on the virtual age at the start of a cycle:

1

µ

∫ y

0

RX∞(s)ds =
1

µ

∫ y

0

∫ ∞
0

F (s|a)fA∞dads, (4.1.3)
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which results in

1

µ

∫ y

0

∫ ∞
0

F (s|a)fA∞dads =

∫ ∞
0

∫ y

0

1

µa
F (s|a)fV s∞(a)dsda. (4.1.4)

Thus, obtaining the derivatives with respect to y,

1

µ

∫ ∞
0

F (y|a)fA∞(a)da =

∫ ∞
0

1

µa
F (y|a)fV s∞(a)da. (4.1.5)

Therefore, an evident solution of the pdf of V s∞ is

fV s∞(a) =
µa
µ
· fA∞(a). (4.1.6)

However, the equality in integral does not guarantee the equality in the inte-

grand. So we need to prove the uniqueness of fV s∞(a). Assume that a function

g(t) is the limiting pdf of V s∞, with
∫∞

0
g(t) = 1 and

fV s∞(a) = g(a) 6= µa
µ
· fA∞(a). (4.1.7)

Reformulating equation (4.1.5) as:

1

µ
RX∞(y) =

∫ ∞
0

1

µa
F (y|a)g(a)da, (4.1.8)

and considering the right hand side of above equation, we see that assuming

g(a) 6= µa/µ · fA∞(a) implies that the integrand could not be further simplified.

Using the mean value theorem for integrals, there exists some a∗ ∈ [0,∞) such

that
1

µ
RX∞(y) =

1

µa∗
F (y|a∗)

∫ ∞
0

g(a)da =
1

µa∗
F (y|a∗), (4.1.9)

resulting in
F (y|a∗)
RX∞(y)

=
µa∗

µ
= const. (4.1.10)

This ratio cannot be a constant on all the points of R+ unless two survival

functions are identical, which in our case, contradicts the assumption. Thus,

the corresponding solution is unique, as given in (4.1).

Interpretation of equation (4.1) depends on the baseline failure rate. For

the, e.g., IFR Weibull distribution, µa is a decreasing function of a and satisfies:
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Figure 1: fA∞ , limt→∞ fV st and µa/µ, with ARA∞ configuration: α = 1, β = 2, ρ = 0.5

µ0 > µ and lima→∞ µa = 0. The pdf of V s∞ is formed by shifting fA∞ to the

left, and the two curves intersect at the point a = Ã with µÃ = µ. An example

is showed in Figure 1.

In what follows, we are using the notion of the usual stochastic order. For

convenience, its definition (Shaked & Shanthikumar (2007)) is given below.

Definition 4.1. A random variable X is said to be stochastically less (or equal

to) Y , written X ≤ST Y , if the upper tail probability satisfies:

P (X > t) ≤ P (Y > t), −∞ < t <∞.

Remark. Consider now some aging notions related to stable states. Finkelstein

(2007) has defined the equilibrium age A∗ that satisfies, if a cycle starts with age

A∗, then the next cycle will also start with A∗ but in expectation: E(Ai+1|Ai =

13



A∗) = A∗. As defined previously, Ã satisfies µÃ = µ, meaning that a cycle

starting with age Ã has the mean µ. Let E(A∞) be the expected value of A∞.

Then, for the IFR baseline distributions,

Ã ≤ A∗ ≤ E(A∞).

The proof is based on Jensen’s inequality and is omitted here.

Theorem 4.2. The limiting distributions of Vt and V et are given, respectively,

by

lim
t→∞

P (Vt ≤ y) =
1

µ

∫ y

0

∫ y−a

0

F (s|a)fA∞(a)dsda, (4.2)

lim
t→∞

P (V et ≤ y) =
1

µ

∫ y

0

∫ y−a

0

s · f(s|a)fA∞(a)dsda. (4.3)

Proof.

limt→∞ P (Vt ≤ y) =
∫ y

0
limt→∞ P (Vt ≤ y|V st = a)fV st (a)da

=
∫ y

0
limt→∞ P (Bt ≤ y − a|V st = a)fV st (a)da

=
∫ y

0
1
µa

∫ y−a
0

F (s|a)fV st (a)dsda

= 1
µ

∫ y
0

∫ y−a
0

F (s|a)fA∞(a)dsda.

limt→∞ P (V et ≤ y) =
∫ y

0
limt→∞ P (V et ≤ y|V st = a)fV st (a)da

=
∫ y

0
limt→∞ P (Yt ≤ y − a|V st = a)fV st (a)da

=
∫ y

0
1
µa

∫ y−a
0

s · f(s|a)fV st (a)dsda

= 1
µ

∫ y
0

∫ y−a
0

s · f(s|a)fA∞(a)dsda.

4.2. Brown-Proschan model

Distinct from the ARA∞ model, the virtual age just after the repair in the

BP process is not a continuous random variable, as it has a mass in the origin

(Laurent (2011)). Therefore, our results formulated in equations (4.1), (4.2)

and (4.3) cannot be directly applied and the corresponding theorems should be

proved in a different way. It should be also noted that it is practically important

to obtain the mass for V st in the origin, as it shows with what probability the

last repair was perfect.
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In accordance with our previous notation, let µ0 be the mean duration of

the first cycle, i.e., µ0 =
∫∞

0
F (t)dt.

Theorem 4.3. As t tends to infinity, V st equals to 0 with probability

lim
t→∞

P (V st = 0) =
pµ0

µ
, (4.4)

and its density on (0,∞) is given by:

lim
t→∞

fV st (a) =
µa
µ
fA∞(a). (4.5)

Proof. The event {V st = 0 as t→∞} is equivalent to {the last repair before t as

t→∞ is perfect}. Let Tp be the waiting time between two perfect repairs in the

corresponding BP process and Fp be its Cdf. By analogy with the alternating

renewal process,

lim
t→∞

P (V st = 0) =
E(X1)

E(Tp)
=

µ0∫∞
0
F p(s)ds

. (4.4.1)

Following Lemma 2.1 in Brown & Proschan (1983), F p(t) = F
p
(t), leading to∫ ∞

0

F p(s)ds =

∫ ∞
0

e−pΛ(s)ds =
µ

p
, (4.4.2)

which completes the proof of equation (4.4).

To prove equation (4.5), condition the right hand side of equation (3.1) on V st :

lim
t→∞

P (Bt ≤ y) = lim
t→∞

P (Bt ≤ y|V st = 0)P (V st = 0)+ lim
t→∞

∫ ∞
a=0+

P (Bt ≤ y|V st = a)fV st (a)da,

(4.5.1)

whereas conditioning of the left hand side on the virtual age at the start of a

cycle, results in

1

µ

∫ y

0

RX∞(s)ds =
1

µ

∫ y

0

F (s|0)P (A∞ = 0)ds+
1

µ

∫ y

0

∫ ∞
a=0+

F (s|a)fA∞(a)dads.

(4.5.2)

The first term of the r.h.s of (4.5.1) is equal to that of (4.5.2), because, using

the corresponding alternating renewal process,

lim
t→∞

P (Bt ≤ y|V st = 0) =
E(min(y,X1))

E(X1)
=

∫ y
0
F (s)ds

µ0
, (4.5.3)
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thus,

lim
t→∞

P (Bt ≤ y|V st = 0)P (V st = 0) =
p

µ

∫ y

0

F (s)ds, (4.5.4)

which obviously equals to the first term of the r.h.s of equation (4.5.2). This also

guarantees that the second terms of the r.h.s of equations (4.5.1) and (4.5.2)

are equal. Equation (4.5) can, therefore, be proved in the same way as for the

ARA∞ model.

Corollary 4.1. For the Weibull baseline distribution, µ = E(X∞) = p1−1/βµ0

(Laurent (2011)), which results in

lim
t→∞

P (V st = 0) = p
1
β . (4.6)

Theorem 4.4. The limiting distributions of Vt and V et are given by:

lim
t→∞

P (Vt ≤ y) =
p

µ

∫ y

0

F (s)ds+
1

µ

∫ y

0+

∫ y−a

0

F (s|a)fA∞(a)dsda, (4.7)

lim
t→∞

P (V et ≤ y) =
p

µ

∫ y

0

s · f(s)ds+
1

µ

∫ y

0+

∫ y−a

0

s · f(s|a)fA∞(a)dsda, (4.8)

respectively.

Proof. Consider first Vt.

lim
t→∞

P (Vt ≤ y) = lim
t→∞

P (Vt ≤ y|V st = 0)P (V st = 0)+ lim
t→∞

∫ y

0+

P (Vt ≤ y|V st = a)fV st (a)da.

(4.7.1)

The first term of the right hand side of the above equation can be further

developed as:

limt→∞ P (Vt ≤ y|V st = 0)P (V st = 0)

= limt→∞ P (Bt ≤ y|V st = 0) limt→∞ P (V st = 0)

= 1
µ0

∫ y
0
F (s)ds · µ0

µ p

= p
µ

∫ y
0
F (s)ds,

whereas the second term of the right hand side of (4.7) can be derived in the

same way as for the ARA∞ model.
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Consider now V et .

lim
t→∞

P (V et ≤ y) = lim
t→∞

P (V et ≤ y|V st = 0)P (V st = 0)+

∫ y

0+

lim
t→∞

P (V et ≤ y|V st = a)fV st (a)da.

(4.8.1)

The first term of the right hand side of the above equation can be further

developed as:

limt→∞ P (V et ≤ y|V st = 0)P (V st = 0)

= limt→∞ P (Yt ≤ y|V st = 0) limt→∞ P (V st = 0)

= 1
µ0

∫ y
0
s · f(s)ds · pµ0

µ

= p
µ

∫ y
0
s · f(s)ds,

whereas the second term of the right hand side of (4.8) can be derived in the

same way as for the ARA∞ model.

5. Application in maintenance: Optimal degree of imperfect repair

In this section, we focus particularly on the repair process of the ARA∞- type

with the increasing baseline failure rate. Finkelstein (2015) has considered the

optimal degree of imperfect repair that achieves the minimal, expected long-run

cost rate for the repaired accordingly system. In the following, we shall make

two extensions of this optimization problem. But first, let us recall the setting.

Assume that the cost of an imperfect maintenance action at any cycle de-

pends only on the degree of repair ρ. Denote by C(ρ) this cost. It is natural to

assume that it is an increasing function of ρ and

Cm = C(0) ≤ C(ρ) ≤ C(1) = Cp, (5.1)

where Cm and Cp are the costs of minimal and perfect repairs, respectively.

Consider now the long-run average maintenance cost rate. The ARA∞ process

enters its steady state and the mean cycle length for the corresponding Weibull

IFR baseline distribution, µ(ρ) = E(X∞|α, β, ρ), is an increasing function of ρ
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and can be obtained by integrating (2.7). Based on the renewal reward theory

reasoning, the expected long-run cost per unit of time cρ is given by:

c(ρ) =
C(ρ)

µ(ρ)
. (5.2)

Assume a rather flexible functional form for C(ρ)

C(ρ) = Cm + (Cp − Cm)ρu, u > 0. (5.3)

Existence of an optimal maintenance degree ρ∗, which minimizes the long-run

average cost rate c(ρ) has been addressed in Finkelstein (2015). Basically, it

requires that c(ρ) be increasing as ρ tends to 1.

5.1. Recycling: reward based on backward recurrence time or on virtual age at

retirement

The above reasoning considers the expected cost for an infinite horizon. In

practice, however, systems are not operating forever, i.e., a ’retirement’ thresh-

old Tr is often predefined in a way that once the total working time exceeds

Tr, system’s operation is terminated (and it is usually replaced by a new one).

The replaced system can be sometimes recycled and the corresponding gain is

generated in accordance with its condition, i.e., the better the condition, the

larger the gain. A typical example is the garage of the used cars, where the

status of the used car, as well as its accidents history, are carefully examined to

determine an appropriate price.

The optimization problem is formulated as follows: a system is under im-

perfect repair and is planned to ’retire’ at time Tr. The expected lifetime in

the steady-state regime, µ(ρ) is a function of the repair degree ρ and satisfies

µ(1) << Tr. The cost of the repair actions is defined by equation (5.3). At

time Tr, the system is recycled and a reward, Rw, is assigned based on the state

variable Y that can either be the backward recurrence time, BTr or the virtual

age, VTr . Assume that the relation between the reward and Y is given by the

following functional form:

Rw = re−νY , r > 0, ν > 0, (5.4)
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where r defines the maximal reward that could be obtained if the system is in

the state ”Good as New” at Tr. Under the condition µ(1) << Tr, the expected

long-run cost per unit of time can, therefore, be defined, for instance, as

cr(ρ) =
C(ρ)

µ(ρ)
− r

Tr
E(e−νY ), (5.5)

We are now interested in obtaining the optimal degree of repair ρ∗r that min-

imizes the cost rate defined by equation (5.5). In practice, the corresponding

decisions can be made either based on the virtual age of a system or on the time

since the last repair (backward recurrence time). The latter, although giving

less information on the state of a system, can be easier obtained, whereas Vt

needs more information on the history of the repair process, which often can

be unavailable. For ordinary renewal processes, these quantities are the same,

whereas for the imperfect repair process they are, obviously, different.

5.1.1. Reward based on backward recurrence time: Y = BTr

Since Tr >> µ(1), the distribution of the backward recurrence time at re-

tirement can be described by equation (3.1). The expected long-run cost rate

is, therefore,

cr(ρ|Y = BTr ) =
C(ρ)

µ(ρ)
− r

Trµ(ρ)

∫ ∞
0

e−νxRX∞(x|ρ)dx. (5.6)

Consider the effect of a repair efficiency ρ on the expected value of the reward

Rw. It can be seen from the definition (5.4) that for the IFR baseline distri-

butions, this expected value is decreasing when ρ is increasing (as the cycles of

the corresponding steady-state virtual age process are stochastically increasing

with ρ). Thus, given the parameters of the model, there can exist an optimal

degree of repair that minimizes (5.6). This is illustrated by the lowest curve in

Fig.2

5.1.2. Reward based on virtual age: Y = VTr

Assume now the reward is defined according to the virtual age VTr at the

retirement time. As Tr >> µ(1), the virtual age tends to its asymptotic value
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and its distribution is given by equation (4.2). Given the Weibull baseline

distribution, the expected long-run cost rate is then defined as

cr(ρ|Y = VTr ) =
C(ρ)

µ(ρ)
− r

Trµ(ρ)

∫ ∞
0

∫ x

0

e−νx−αx
β+αaβfA∞(a|ρ)dadx. (5.7)

It can be shown that the virtual age Vt as t tends to infinity is decreasing in

ρ. Specifically, it tends to infinity when ρ tends to 0 (minimal repair) and then

decreases to the asymptotic virtual age of the ordinary renewal process (which

is just the corresponding backwards recurrence time) when ρ tends to 1 (perfect

repair). This behavior dramatically differs from that for BTr in the previous

subsection (it was increasing in ρ), which is a meaningful fact. Eventually, it

results in a larger optimal value of ρ than that defined by the cost rate function

(5.6). Moreover, the optimal ρ for the case without recycling (see (5.2)) lies

between these two values (Fig.2). The following numerical example illustrates

our reasoning.

Example 5.1. Let α = 1, β = 3. Thus, the baseline survival function is

R(t) = e−t
3

. Let Cp = 1, Cm = 0.3, u = 4. Then the long-run expected cost per

unit of time without the recycling reward, is plotted by the solid line in Fig2. The

optimal repair degree ρ∗ ≈ 0.57 with a minimal expected cost c(ρ∗) = 0.6966.

Consider now the reward policy defined as Tr = 20, r = 20, ν = 2. The

expected maximal reward defined by r/Tr equals one, and is of the same order of

magnitude as Cp. It is, therefore, necessary to take into account the reward when

optimizing the maintenance degree. When the reward is based on the backward

recurrence time at retirement, ρ∗r = 0.52 with the corresponding expected cost

rate c(ρ∗r) = 0.1363 (dashed line) and when the reward is given according to

the corresponding virtual age, then ρ∗r = 0.65 with the expected cost rate c(ρ∗r) =

0.4195 (dash-dotted line). These results are consistent with our previous analysis

showing that Bt and Vt have an opposite impact on the value of ρ∗r.
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Figure 2: Optimal repair degrees

5.2. Minimization of the long-run expected failure frequency of a series system

under constrained budget

In this section, as another example, we deal with the constrained optimal

imperfect maintenance problem (Pham & Wang (1996)) of the following type.

We consider a series system of n independently operating and instantaneously

maintained/repaired components with imperfect repair of the ARA∞ type. The

first interval of the repair process of the ith component is Weibull-distributed

with parameters (αi, βi), accordingly. The repair degrees of each component,

~ρ = {ρ1, ρ2...ρn} form the vector of decision variables. The repair cost, Ci(ρi)

depends only on the repair degree and is independent from the initial lifetime

distribution. It is defined by equation (5.3) with different parameters for com-

ponents. The expected long-run repair cost per unit of time of the system must

not exceed the predefined cost threshold, Cmax, i.e.,

n∑
i=1

Ci(ρi)

µ(αi, βi, ρi)
≤ Cmax, (5.8)
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Figure 3: Optimal repair degrees determined by the contours that are tangent to each other

By the ”long-run”, as previously, we mean the steady-state case, therefore,

the denominator µ(αi, βi, ρi) is the mean duration of the asymptotic cycle of

the component i given αi, βi and ρi.

Under the constraint (5.8), we would like to minimize the steady-state failure

frequency for the system. Thus, the corresponding objective function is defined

as:

λs =

n∑
i=1

1

µ(αi, βi, ρi)
. (5.9)

In the following, for illustration, we will consider the simplest case of two com-

ponents in series that differ only in the shape parameter β. Assume also that

the cost function is the same for each component, i.e. C1(ρ) = C2(ρ) = C(ρ).
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Figure 4: Expected failure frequency of the system

Example 5.2. Parameters of the Weibull distributions for the components are

chosen as α1 = α2 = 1, β1 = 1.5, β2 = 3, whereas parameters of the cost

function are: Cp = 1, Cm = 0.3 and u = 2. ~ρ = (ρ1, ρ2) is the decision vector.

Obviously, without the constraint, the optimal repair degree is just ~ρ∗ = (1, 1).

However,when the maintenance cost threshold Cmax is not large enough, we may

not have enough resources to perform perfect repairs.

The optimal repair degrees vector ~ρ∗ = (ρ∗1, ρ
∗
2) is defined by the points

where the contour of the expected cost and that of the system’s expected fail-

ure frequency are tangent to each other (figure 3). When, for instance, Cmax =
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[1.7, 1.8, 1.9, 2.0], the corresponding optimal degrees are

(ρ∗1, ρ
∗
2) = [(0.39, 0.67), (0.47, 0.89), (0.58, 0.98), (0.71, 1)],

accordingly, and the resulting minimal expected failure frequency of the series

system are [3.36, 2.87, 2.62, 2.47]. Additionally, Fig 4 shows the corresponding

pattern for the expected failure frequency of the system in the unconstrained case

(no costs involved).

6. Concluding remarks

This paper studies asymptotic distributions for stable virtual age processes.

We first show that the limiting distributions of the backward recurrence time,

the remaining lifetime and the spread that characterize an ordinary renewal

process can be generalized to the case of the virtual age processes with asymp-

totically identically distributed cycles. Then we derive new analytical expres-

sions for all limiting distributions of interest. We also discuss the importance of

the age reduction mechanism for the obtained results. The provided examples

highlight the practical value of our findings in reliability engineering.

We plan to continue with this topic in the future in several directions. For

instance, asymptotic distributions in stable virtual age models involving im-

perfect preventive maintenances can be considered. A typical example is the

ARA1CM-ARA∞PM process described in Doyen et al. (2019): corrective main-

tenances of the ARA1 type are unable to keep the repaired system in a steady

state, whereas stationarity can be achieved by the periodic PMs of the ARA∞

type. Therefore, it could be of interest to look at the asymptotic distribution of

the virtual age just after the PM in this case. Limiting distributions in other im-

perfect maintenance models such as the Arithmetic reduction of intensity with

infinite memory (ARI∞) model (Doyen & Gaudoin (2004)) can also be worth

of further investigation.

Another related typical problem of interest is the statistical inference using

the incomplete failure history. The repair process is observed at an arbitrary
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time t when a system has already entered its steady state. Our results give the

distribution of the virtual age at the start of observation, and therefore, can

result in better parameter estimation.
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