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ABSTRACT
This short paper presents a novel method for steganography in
JPEG-compressed images, extended the so-called MiPOD scheme
based on minimizing the detection accuracy of the most-powerful
test using a Gaussian model of independent DCT coefficients. This
method is also applied to address the problem of embedding into
color JPEG images. The main issue in such case is that color chan-
nels are not processed in the same way and, hence, a statistically
based approach is expected to bring significant improvements when
one needs to consider heterogeneous channels together.
The results presented show that, on the one hand, the extension of
MiPOD for JPEG domain, referred to as J-MiPOD, is very competi-
tive as compared to current state-of-the-art embedding schemes.
On the other hands, we also show that addressing the problem of
embedding in JPEG color images is far from being straightforward
and that future works are required to understand better how to
deal with color channels in JPEG images.
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1 INTRODUCTION
Steganography is usually referred to as the techniques and meth-
ods that allow to hide information within an innocuous-like cover
object. The resulting stego-object resembles, as much as possible,
the original cover objet. Therefore it can be sent over an unsecured
communication channel that may be subject to wiretapping by an
eavesdropper. Nowadays, steganography has been mostly devel-
oped for digital images because of their massive presence over the
Internet, the universally adopted JPEG compression scheme and
its relative simplicity to be modified. A widely used scenario to
present steganography is the one of the prisoners’ problem [20],
in which the steganographers, referred to as Alice and Bob share
digital images that may, or may not, contain hidden data.
However, in this scenario, the communication channel is under
surveillance of a warden named Wendy whose goal is to perform
steganalysis, that is to get any information relative to possibly hid-
den data ; the most interesting knowledge being the very presence
of hidden data.

Over the past two decades, steganography and steganalysis has
been dramatically improved. On the one hand, steganography has
mainly benefited from advances in coding methods that allow the
same number of bits to be embedded with fewer modifications, and,
more importantly, enable to associate each cover element (pixels
for uncompressed images and coefficients for JPEG) with different
costs of modification. Syndrome-Trellis Codes [7] are typical exam-
ples of such codes with the added benefit of closely reaching the
efficiency of information-theoretical bounds.
As a result, steganography is essentially reduced to defining a func-
tion that assigns a cost to each and every element a given cover-
image is composed of.
There have been several attempts to design such a “cost map” ; for
spatial domain images, S-UNIWARD [14] as well as HILL [17] have
been widely adopted among the community ; for JPEG-compressed
images, UERD [12] and J-UNIWARD [14] are two representatives
state-of-the-art approach to capture cost of modifying pixels.

On the other hand, steganalysis has been widely developed with
increasingly large features sets, from 686 in 2010 [18] to 34, 671 in
2012 [8], which were able to detect hidden data more and more
efficiently. Roughly speaking, most of those features sets aim at
removing as much image content as possible and count adjacent
pixels values to detect artefacts left by data hiding. More recently,
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the Deep Learning methods have been adapted for applications in
steganalysis, see for instance [2, 25]. In both cases, steganalysis is
essentially a supervised machine learning method in which features
are extracted from sets of cover and stego-images and fed to a
learning algorithm whose goal is to find the best possible decision
rule based on the provided labeled examples.

As noted several times, steganography and steganalysis have
mostly been studied in academic contexts. For instance, steganaly-
sis is often used to benchmark steganography assuming, by Kerck-
hoffs’s principle, that the warden knows the embedding algorithm,
the length of hidden data.
The present paper focuses on steganography in which academic
studies differ from practical context. The most striking, example
pointed out in 2013 in [15], in that most current works focus on
uncompressed and grayscale images. More precisely, it was noted
in [3] that, between 2016 and 2019, only “33% of the papers deal with
JPEG steganography/steganalysis” and, most important, “84% deal
with gray-level images (steganalysis in color images was studied for
the first time in 2014 [11, 16])”.
In addition, there is a general lack of scientifically-sound method
for designing cost-maps in steganography. The most popular al-
gorithms, UNIWARD [14], HILL [17] and UERD [12] are based on
heuristic approaches whose parameters are often optimized to offer
the best performance on a reference dataset [1].
Nevertheless, alternative approaches have been proposed based
on a statistical model of pixels. The first attempt [9] was quickly
followed by improvements of the estimation of the statistical model
parameters [19, 24] which brought this approach up to state-of-the-
art performances. Recently, methods based on a statistical model
of the whole image processing pipeline have also been leveraged
to design steganography that is either able to capture local correla-
tions [10] or that mimics natural image noise [23].

The present paper aims at exploiting this approach based on a
statistical model of cover images in order to design distortion func-
tions that are relevant for JPEG colored images. As opposed to prior
works that require a precise knowledge of the image processing
pipeline [10, 23], this paper aims at providing practical solutions in
the most general case in which the steganographer is only given a
digital image already compressed (typically out-of-camera picture).

The contribution of the present paper is mainly two-fold:

(1) It presents an extension of MiPOD to design statistically-
founded distortion function for JPEG-compressed images;

(2) It proposes a method to address the problem of steganogra-
phy for colored JPEG images.

Numerical results contrast dramatically with prior works and show
possible important gains obtained by the proposed methods.

The present paper is organized as follows. Section 2 summarizes
the foundations of the MiPOD embedding scheme and present its
extension for JPEG compressed images. The problem of steganogra-
phy on color images is then stated in Section 3 which also details the
proposed approaches. Section 4 describes the experimental setup
and discusses the numerical results. Section 5 eventually concludes
the present paper and sketches possible future works.

2 J-MIPOD: STATISTICALLY-BASED
DISTORTION FUNCTION TO JPEG IMAGES

2.1 Notations and Reminders on MiPOD
Throughout this paper, wewill use let x for images in spatial domain
and letter u for DCT coefficients. We will use boldface letters x for
vectors and boldface capitals U for matrices. Grayscale images
will be denoted X =

(
xm,n

)
, m ∈ {1, . . . ,M} , n ∈ {1, . . . ,N }

and color images will be represented with a superscript in bracket
U(c) , c ∈ {Y,Cb,Cr} that represents the index of color channel.

The methodology presents in the present paper extends the
statistically-based design of distortion function from [19]. There-
fore, let us recall briefly that the MiPOD [19] embedding method is
based on a statistical model under which pixels are assumed to be
statistically independent, each following a Gaussian distribution
xm,n ∼ N

(
µm,n ,σm,n

2) . Based on this statistical model of pixels,
the embedding method essentially consists in finding the probabil-
ity of embedding in each pixel βm,n while minimizing the power
(true positive probability) of the most powerful likelihood ratio test
(LRT) which is can be expressed as:

ϱ2 =
∑
m,n

βm,n
2

σm,n4
. (1)

Assuming that the steganographer can estimate the variance σ 2
m,n ,

minimizing the power of the most powerful LRT consists in setting
the change rates βn in order to minimize the so-called deflection
coefficient ϱ (1) under the constraint the desire payload R can be
embedded.
Solving such an optimization problem can easily be carried out, see
details in [9, 19], using the method of Lagrange multipliers which
states that the solution must satisfy:

βm,n
2σm,n

−4 =
1
2λ

ln
1 − 2βm,n

βm,n
, (2)

R =
∑
m,n

H (βm,n ), (3)

where λ > 0 is the Lagrange multiplier and H (·) represents the
ternary entropy .
Academic works usually simulate embedding using information-
theoretical bounds in which case the previous description is enough.
In practice, if one wishes to embed real data, embedding probabili-
ties βm,n must be converted into costs ρm,n from which it can use
STC. This is described in [19] but not considered in the present
paper in which embedding is simulated in all cases we studied.

2.2 Extending MiPOD for JPEG Images
The main strength that makes MiPOD [19] lies in the estimation of
the pixels variances. In the present paper, we extend this method
for JPEG compressed images by simply (1) using the linearity of
Discrete Cosine Transform (DCT) and (2) exploiting the law of
linear transformation of Gaussian multivariate random variables.
First, let us recall that JPEG compression is mostly based on DCT,
especially for grayscale images. Pixels values are gathered into
blocks of 8×8 pixels, represented as vectors of 64 elements denoted
xi , i ∈ {1, . . . ,MN /64}, over which the DCT is applied to obtain
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the DCT coefficients denoted ui :

ui = D̃xi (4)

where matrix D̃ of size 64 × 64 is an orthnormal matrix whose
vectors represent each mode of the DCT.

Since pixels in spatial domain are modeled as Gaussian random
variables, the block of 64 pixels xi can be modeled as a multivariate
normal distribution:

xi ∼ N (µ, Σ) . (5)
Raw pixels can modeled as independ realiazations and for simpliity,
we will adopt this model in present paper which leads to consider
that Σ is a diagonal matrix [22]. In practice, one should note that
after developement, various image processing operations (demo-
saicing, denoising, sharpening, etc. . . . ) make the pixels correlated
with each other but this phenomenon is neglected in the paper
work since it would make the assessment of most-powerfull test
statistical performance hardly possible [10, 23].
Thanks to the law of linear transformation of Gaussian random
vectors, the DCT coefficients ui can be modeled as:

ui ∼ N

(
D̃µ, D̃ΣD̃⊤

)
. (6)

The last step in JPEG compression is the quantization of the DCT
coefficient which essentially consists of a division, by a quantization
step that depends on the DCT mode, followed by rounding:

ūi = round (ui ⊘ q) (7)

where ⊘ represents the element wise division by the vector that
contains quantization steps q. Obviously, the distribution of ūi is
not straightforward to express in a close form due to the rounding
operation.
In the present paper we extend the MiPOD approach by minimizing
the detectability through the deflection coefficient ϱ, as defined
in (1), over all DCT coefficients by computing their variance. For
the sake of simplicity, we will assume that the rounding operation
only adds independent quantization noise from which the variance
of DCT coefficients can be simplified to:

D̃ΣD̃⊤ ⊘ q2. (8)

Note that in the present paper we will only consider the variance
of DCT coefficients, i.e. the diagonal elements, first, for simplic-
ity when minimizing the power of LRT, and second because off-
diagonal elements are very small. In addition, one should to take
into account the quantization noise in (8). Usually, “statistical-based”
approach in steganalysis focus on the case of fine quantization limit.
For JPEG compressed images we noted that it is important, to en-
sure efficiency of the method, neither to threshold the variance (as
proposed in [19]) nor to add the factor 1/12 because for low QF this
would lead to allow embedding in DCT coefficients that should not
be modified (with very low variance).

It follows from Equations (1)-(8) that the extension of MiPOD to
grayscale images compressed using JPEG format is rather straight-
forward since it only requires estimating the variance of pixels
in spatial domain. Such an estimation has been one of the main
contribution of [19].
In the present paper, themethod proposed for extending detectability-
based steganography for JPEG images is summarized by Algo-
rithm 1. In brief, it essentially consists of (1) decompressing DCT

Algorithm 1 : J-MiPOD Algorithm for Grayscale Images

1: X = iDCT (U ⊙ q) ▷ Apply inverse DCT to obtain pixels in
spatial domain

2: Estimate pixel residual variances σm,n
2 using the estimator

described in [19, Sec. V] ;
3: Over blocks of 8 × 8 computes ensuing variance of DCT coeffi-

cients as in Eq. (8) ;
4: Numerically solve Eqs. (2) and (3) determine the change rates

βn , n = 1, . . . ,N and the Lagrange multiplier λ.

coefficients into spatial domain (2) estimating variance of pixels
(3) applying linear transformation to compute variance of DCT
coefficients (4) minimize power of most powerful LRT based on
these variances of DCT coefficients.

Two important comments are important. While this extension
seems straightforward, it has been presented to the best of our
knowledge in a single prior-work only [6] which does not focus
on such extension but mostly attempt to apply the method in the
context of side-informed (SI) steganography. Interestingly, it is
shown in [6] that SI-J-MiPOD, that can access the pre-cover, works
very well but not J-MiPOD.
We also note that extending detectability-based steganography
for JPEG images open new ways to tackle the problem of how to
spread the payload among several different images. This is the main
contribution which proposes to apply such method for the problem
of spreading message among several color channels.

3 STRATEGIES FOR EMBEDDING INTO
COLOR IMAGES

The problem of steganography in color images is somewhat simi-
lar to the one of batch steganography. Roughly speaking, it can be
summarized as below: let us consider a set of I images within which
it is aimed to hide B bits. The problem is to find how to determine
the number of bits to be hidden in each image b1, . . . ,bI . Of course
it is desirable to remain as undetectable as possible. However, there
is not known general methodology to address such a problem for
heterogeneous color channel. In addition, in the present paper we
wish to avoid tailoring to a specific detection technique and or a
specific dataset.
In the present paper we study a specific aspect of batch steganog-
raphy to address the problem of spreading payload among color
channels that can be considered as three different images.

This problem of batch steganography has already been studied
for uncompressed images [4]. The application for color channels
seems obvious because uncompressed color images are composed of
three color channels (RGB for Red, Green and Blue) that share very
similar properties. Color channels vary in terms of local correlation
(mostly due to the demosaicing) yet they are strongly correlated
and exhibit very similar properties.

However, when it comes to JPEG compressed images, colors are
converted from RGB to YCbCr luminance/chrominance color space.
By design, information is concentrated into the luminance channel
(Y) which, hence, exhibits a much larger variability than the chromi-
nance channels (Cb and Cr). In addition those channels are treated
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Figure 1: Evolution of PE as a function of the embedding payload for BOSSbase grayscale images

differently: the quantization step applied onto the coefficients re-
sulting from Discrete Cosine Transform (DCT) is different and the
chrominance may be subjected to sub-sampling. In this context,
it is easily understandable that methods for batch steganography
over uncompressed images are not relevant anymore. In addition,
as already discussed, cost-maps in JPEG has always been designed
for grayscale images, hence without considering peculiarities of
color channels. Most of steganographic schemes were also designed
in a heuristic manner, which prevents taking into account the het-
erogeneity between the different color channels.

Breaking with these approaches, the present paper proposes a
statistically-founded method for embedding in JPEG compressed
images that takes into account both the quantization and the vari-
ance of coefficients. Therefore, there is no reason that this approach
could not be applied for color images.
To this end, it is simply proposed to estimate the variance of all DCT
coefficients (in all three color channels) as proposed in 2 before
embedding a given message length while jointly minimizing the
detectability over the color channels.

In order to assess the relevance of the proposed methodology, it
is proposed to evaluate also the efficiency of several alternatives
approach. For all of them, we extracted the cost maps for each color
channel independently denoted ρ(c) with c the index of color chan-
nel c ∈ {Y ,Cb,Cr }, representing luminance Y and chrominance
channels Cb and Cr respectively. Using the cost-maps for the three

different color channels, we proposed the four following strategies
for payload spreading:

• “Color channels Fixed repartition” (CCFR) , referred to as
“Arbitrary repartition of the payload between the 3 channels”
in [21], consists in setting a fraction γ of the payload R in
bits per non-zero AC coefficient (bpnzAC) to be embedded
chrominance channels ; The payloads in color channels (in
bpnzAC) are thus determined by setting:

RY = δ (1 − γ )R ; RCb = RCr = δγR (9)

where δ is a scaling factor that enforces the payload con-
straint.

• Concatenated, or CCM for “Color Channels Merging” Strat-
egy, consists in minimizing the additive distortion

arдminβD =
∑

c ∈{Y ,Cb,Cr }

∑
m,n

β
(c)
m,nρ

(c)
m,n . (10)

• Detectability Limited Sender (DeLS) uses a Newton-Raphson
method to equalize the detectability, measured as the deflec-
tion coefficients, for each channel:

ϱ(c) =
∑
m,n

β
(c)
m,n

2

σ
(c)
m,n

4 , (11)
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J-MiPOD J-UNIWARD UERD
Grayscale images 6.38 11.27 1.43
Color CCFR γ = 0.2 9.01 9.82 1.22
Color CCM 9.05 9.86 1.10
Color DeLS 12.98 12.69 10.09
Color DiLS 10.57 12.93 1.71

Table 1: Comparison of average embedding time for the
three different embedding schemes and different use cases.
Note that DiLS requires the (time-consuming) estimation of

variance σ (c)
m,n

2
as proposed in [19].

where the probabilities of embedding β
(c)
m,n are computed

by adjusting the payload in each channel. Note that the
variances are estimated using the proposed J-MiPOD while
embedding probabilities are computed for any algorithm
using the associated cost map.

• Distortion Limited Sender (DiLS), uses a similar Newton-
Raphson method for equalizing the distortion for each chan-
nel:

d(c) =
∑
m,n

β
(c)
m,nρ

(c)
m,n . (12)

The last three methods are inspired from [4]. The first method
is directly inspired by [21] which also adopts the Color Channel
Merging strategy.

4 NUMERICAL RESULTS
The results presented in this paper have been obtained using the
10 000 images of size 512 × 512 from BOSS base [1]. We have
slightly modified the original development in order to store im-
ages into color (original BOSS base is made of grayscale images)
and compressed those images in JPEG using convert command
from imagemagick. Two steganographic schemes, among the state
of the art, have been compared with the method proposed in the
present paper, referred to as J-MiPOD; those are J-UNIWARD [14],
UERD [12]. All the detection results were obtained using the con-
catenation of DCTR features [13] for each color channel and with
the low-complexity linear classifier [5] which uses 5 000 images for
training (as well as validation) and 5 000 images for testing.

First of all, Figure 1 presents a comparison in terms of security,
or more precisely, in terms of detection accuracy measured as the
minimal total classification error rate under equal priors PE . Those
results present a comprehensive comparison with the payload rang-
ing from 0.05 to 0.5 and four different JPEG quality factors.
As opposed to what was claimed in [6], those results show that J-
MiPOD is very competitive, performing almost aswell as J-UNIWARD
in a vast majority of cases. In addition, one should note that the
method behindMiPOD and J-MiPODwas designed to be efficient for
grayscale uncompressed images. In the present paper the method-
ology is extended with the very same variance estimator applied
over chrominance channel while applying simple transformation
to obtained variance of DCT coefficients. In other words, it is very
likely that there is room for improving the estimation of variance
of DCT coefficients used in the present paper.
In addition, Table 1, which compares the average embedding time

in grayscale images, shows that J-MiPOD is almost twice as fast as
J-UNIWARD, yet more than four time slower than UERD.

Regarding color images, the Figure 2 shows a comparison of the
four strategy studied for all the three same embedding schemes.
Those results are presented for different quality factors (QF =
{75, 95, 100}) and for different payloads (R = {0.2, 0.4}).
Those results are more difficult to analyze generally because it
highly depends on quality factors. Obviously, forQF = 75 J-MiPOD
associated with DeLS or DiLS strategies performs much better than
all other alternatives.
For QF = 100 J-MiPOD also achieves a very high practical security
which exceeds the one of J-UNIWARD while roughly equalizing
UERD’s. More importantly one can note that for those two quality
factors, the Detectability Limited Sender strategy for spreading
the payload across color channels is the most efficient for both
J-MiPOD and UERD and works very efficiently for J-UNIWARD.
However, the situation is quite different for QF = 95. Indeed, J-
UNIWARD performs significantly better for this payload. In addi-
tion, neither DeLS nor DiLS work very well for J-MiPOD while one
would expect this statistically-based embedding scheme to work
well with detectability-based spreading strategies. For color images,
the different in terms of computational time between J-UNIWARD
and J-MiPOD becomes smaller. This especially holds true for DeLS
which requires computating the variance of each pixel σ (c)

m,n
2
, or

the Fisher-Information, using the method proposed in [19]; this
step represents an important overhead cost, especially for UERD.

We tried to understand those results better by analyzing the
detection accuracy for each color channels independently. Such
results are shown in Figure 3 and clearly shows that some ques-
tions remain to be answered. The Figures 3a-3b show what can be
observed in a vast majority of the cases: the detection accuracy is
mostly given by the channel(s) in which PE is the lowest. Conse-
quently, one should find the right payload distribution in order not
to observe one of the channels being easily detectable.
However, what can be observed in Figures 3c-3d is much more
counterintuitive. Indeed in both cases one can observe that, in a few
cases, jointly analyzing the color channels brings a significant im-
provement in detection accuracy: this suggests that some features
must be analyzed together. On the opposite, some results show
the exact opposite: in some cases the detection accuracy obtained
with only one channel is way higher than when merging features
from all channels. Even more surprising, those results are from the
same QF and the same spreading strategy, only the overall payload
changes.

Such phenomenon clearly highlights two things. First, embed-
ding across the three-color channels of JPEG images is far from
being straightforward. Depending on the embedding scheme, the
payload and the quality factor, a method for spreading the payload
may perform well or not. Second, a lot remain to be done along
that direction, not only to design a method that would work well
in general for color JPEG images, but also to get understand how
detectability changes for those channels.

5 CONCLUSION AND FUTUREWORKS
This short paper addresses two problems; the first is related to exten-
sion of MiPOD embedding scheme for JPEG images and the second
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Spreading strategy J-MiPOD J-UNIWARD UERD
CCFR γ = 0.2 0.269 0.301 0.245
CCM Strategy 0.265 0.297 0.230
DeLS Strategy 0.321 0.296 0.250
DiLS Strategy 0.292 0.220 0.185

(a) QF = 75, Payload R = 0.2.

Spreading strategy J-MiPOD J-UNIWARD UERD
CCFR γ = 0.2 0.086 0.120 0.092
CCM Strategy 0.084 0.108 0.085
DeLS Strategy 0.218 0.108 0.096
DiLS Strategy 0.180 0.047 0.051

(b) QF = 75, Payload R = 0.4.

Spreading strategy J-MiPOD J-UNIWARD UERD
CCFR γ = 0.2 0.397 0.413 0.349
CCM Strategy 0.393 0.416 0.325
DeLS Strategy 0.383 0.415 0.359
DiLS Strategy 0.380 0.373 0.300

(c) QF = 95, Payload R = 0.2.

Spreading strategy J-MiPOD J-UNIWARD UERD
CCFR γ = 0.2 0.205 0.234 0.170
CCM Strategy 0.197 0.240 0.140
DeLS Strategy 0.176 0.235 0.183
DiLS Strategy 0.170 0.157 0.163

(d) QF = 95, Payload R = 0.4.

Spreading strategy J-MiPOD J-UNIWARD UERD
CCFR γ = 0.2 0.317 0.294 0.311
CCM Strategy 0.330 0.324 0.269
DeLS Strategy 0.348 0.315 0.330
DiLS Strategy 0.322 0.274 0.330

(e) QF = 100, Payload R = 0.2.

Spreading strategy J-MiPOD J-UNIWARD UERD
CCFR γ = 0.2 0.180 0.157 0.171
CCM Strategy 0.187 0.179 0.152
DeLS Strategy 0.199 0.168 0.205
DiLS Strategy 0.167 0.142 0.198

(f) QF = 100, Payload R = 0.4.

Figure 2: Comparison of the security of the different method for spreading payload in color images. The security is measured
here of the detection accuracy PE for three embedding schemes, three JPEG quality factors and two payloads.

leverage this novel methodology for embedding into color images.
On the one hand, it has been shown that one can successfully ex-
tend the method of embedding that seeks to minimize the power
of most powerful LRT in JPEG domain using the same Gaussian
independent model. On the opposite, when it comes to address-
ing the problem of spreading the payload across color channels of
JPEG images, with the same method or with practical strategies,
the results are much less impressive. On the one hand, J-MiPOD
and Detectability Limited Sender strategy overall seems to perform
very well. On the other hand, the results largely depend on the
JPEG quality factor.

This short paper is a first step into the practical direction of
embedding into JPEG color images. It opens the door to several
questions and improvements that we will be addressing future
works. First and most straightforward steps include improving J-
MiPOD, in terms of both security and computational complexity,
as well as assessing its performance in different cases, especially
on the ALASKA dataset [3]. Second and most interesting steps
are related to embedding in color images. We wish to understand
the relationship between channels and overall detectability. We
also would like to verify that the deflection coefficient is indeed
related to the detectability measured with practical steganalysis.
Eventually, we would like to extend the present work to the more
general problem of spreading the payload over several color images
(possibly compressed with different quality factors).
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