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Abstract

The heat exchanger (HE) should be permanently monitored in order to detect

water or nitrogen leaking into a sodium circuit, which can affect the sodium-

cooled fast reactor (SFR) performance or safety. The HE must be shut down

in a few seconds after the beginning of the leak, even very small, and repaired.

The solution developed in the paper is based on the reliable detection of abrupt

changes in the spectral density of measured vibro-acoustic signals. The main

difficulty lies in the fact that the small HE leaks have to be detected in the pres-

ence of high normal operating noise coming from different equipment (pumps,

turbine, etc.). The records from experimental mock-ups dedicated to sodium-

gas HE studies and installed at the Commissariat à l’energie atomique et aux

energies alternatives (CEA) have been used to assess the proposed solution.

The significance of this research with respect to the previous works is twofold.

First, the proposed solution detects a small leak in the sodium-gas HE with the

signal-to-noise ratio SNR ≥ −30 dB provided that the detection delay is up-

per bounded by 60 sec, the probability of missed detection is upper bounded by
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10−5 and the probability of false alarm (per hour) is upper bounded by 10−5h−1,

which is much better than the usually requested SNR of −17 dB. Second, the

analytical formulas for calculation of the probabilities of missed detection and

false alarm have been proposed that guarantees the required statistical proper-

ties of the proposed test.

Keywords: Sodium-cooled fast reactors, Heat exchanger leak detection,

Accelerometer vibro-acoustic signal, Spectral analysis, Periodogram, Finite

moving average, Exponential distribution

1. Introduction and motivation

SFRs are used for supplying electricity, utilizing uranium resources better

and reducing the total radiotoxicity of nuclear waste, in comparison with the

commonly used light water nuclear reactors. The SFRs have to transfer energy

from the secondary to the tertiary circuit. In a sodium-water HE, if a leak5

occurs, the water comes into contact with the sodium and generates a violent

exothermic reaction which quickly compromises the integrity of the affected sec-

ondary circuit. Hence, leak detection is a crucially important task for ensuring

the safety of SFRs. In [1], the leak detection is achieved by using a chemical

hydrogen detection system. Unfortunately, the detection time is rather long.10

In order to realize long-time monitoring with a shorter response during the HE

leakage, the signal processing of accelerometer vibro-acoustic signals and differ-

ent statistical detection methods are discussed in [2, Ch. 10–13]. The prediction

of loss of coolant activity (LOCA) in a different but similar framework based

on the vibro-acoustic signal spectral analysis is proposed in [3]. The prediction15

of the leak rate in the framework of the leak before break (LBB) concept by ge-

netic neural network and genetic algorithms are studied in [4]. An experimental

small leak of steam into the sodium loop is considered in [5, 6]. According to

these papers, a leak in the HE leads to a change of the accelerometer vibro-

acoustic signal power spectral density (PSD). A leak detection algorithm based20

on the hidden Markov model (HMM) and the Gaussian mixture model (GMM)
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of the representation of the vibro-acoustic signal has been proposed. Because

the vibrations induced by a leak of steam into the sodium loop can be masked

by background noise, the increasing of the SNR by switching from a single

sensor to an array of sensors is an important and promising task. Another25

limitation of a single vibro-acoustic sensor is the difficulty to estimate the leak

position/orientation/flow rate by using a single sensor. In fact, the leak sound

intensity and/or the spectrum of vibro-acoustic signal cannot be directly linked

to the leak position/orientation/flow rate (see, for instance, [7]). The techniques

of beam forming and phased array applied to the outputs of the vibro-acoustic30

sensor array to increase the SNR has been studied in [8, 9] and to separate the

acoustic source from background noises in [10]. Another advantage of the sensor

array for improving the sodium-water HE safety is the estimation of the leak

position (see details in [8, 10]).

In order to avoid/minimize the risk of damage of the HE, a new type of35

HE is currently studied by the CEA through the ASTRID 1 project [11]. This

new HE includes the use of the sodium-gas pair (sodium-nitrogen). Even if

there is no risk of an exothermic chemical reaction using a sodium-nitrogen HE,

a leak of nitrogen into the sodium circuit will affect the reactor performance

and have to be reliably detected during 60 sec after a small leak appearance.40

It is considered that if the leak is not detected within the first 60 sec it can

lead to a degradation of the HE or SFR performance. The leak detection task

remains difficult due to the presence of high normal operating noise coming

from the process (water boiling, turbulence, etc.), different equipment (pumps,

turbine, etc.) and due to the change of the reactor operating mode. This45

problem remains largely unresolved. The only recent paper [12] devoted to this

problem considers the algorithm based on the HMM and GMM of the vibro-

acoustic signals coupled with the cumulative sum (CUSUM) algorithm and used

as a monitoring method for the sodium-gas HE. Unfortunately, none of the

previously mentioned papers investigate any analytical expression relating to50

1ASTRID means the advanced sodium technological reactor for industrial demonstration.
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the detection delay, the false alarm rate, and the missed detection probability,

which are crucially important for monitoring safety-critical systems required for

the SFR HE. This problem is especially significant because the conventional

Monte Carlo statistical simulation of detection algorithms is not efficient due

to the very small target values of the probabilities of false alarm and missed55

detection.

The statistical theory adapted to safety-critical system monitoring has re-

cently been developed for the reliable detection of abrupt changes in random

signals (see [13, 14, 15, 16]). The goal of this paper is to adapt this statistical

theory to the HE leak detection problem. Despite the fact that the current60

paper is devoted to the detection of leaks in sodium-nitrogen HEs, the obtained

results can be considered as the first step towards achieving a method of online

vibro-acoustic monitoring for a more general class of HE and other equipment.

To assess the performance of the SFR HE leak detection algorithm, the

experiments are often built to be more or less representative of a real leak. It65

is done by water, hydrogen or neutral gas injection through the side wall of a

real full scale or reduced HE [17, 18] or in another representative loop [19, 8].

To be able to test the method with various SNR values, either the pressure can

be decreased, often leading to a non-representative pressure, or the signal can

be numerically mixed with background noise [21, 22].70

The original contribution of this paper is threefold.

• The problem of HE leak detection is reduced to the reliable sequential

detection of changes in the spectrum of vibro-acoustic signals. The finite

moving average (FMA) test has been redesigned from the time domain to

the frequency domain.75

• The asymptotic equations for the probabilities of false alarm and missed

detection have been proposed to quantitatively predict the statistical prop-

erties of the FMA test in the frequency domain.

• The assessment of the proposed test has been carried out by using the

mix of records of normal operating noise and the records of abnormal80
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noise (due to small leaks) from experimental mock-ups installed at the

CEA and obtained in the framework of the ASTRID project.

This paper is organized as follows. Section 2 states the problem of the HE leak

detection. Section 3 is devoted to the proposed solution. Here we briefly present

the theoretical background, the design of the leak detection algorithm and its85

asymptotic statistical properties. Section 4 describes the experimental data and

Section 5 uses the proposed algorithm and presents the results of simulation and

data processing. Some extensions of the proposed leak detection algorithm are

discussed in Section 6. Finally, conclusions are drawn in Section 7.

2. Problem statement90

The leak detection system uses accelerometers equipped with an analog-to-

digital converter, which converts continuous-time analog signals to discrete-time

digital signals. Let us define the discrete time vibro-acoustic signal {yn}n≥0.

The generative model of this signal is given by the following equation

yn =





xn if n < t0,

xn + sn if n ≥ t0,
(1)

where {xn}n≥0 is the vibro-acoustic signal corresponding to normal operating

noise coming from the HE and from other equipment (pumps, turbine, etc.),

{sn}n≥t0 is the vibro-acoustic signal corresponding to a small leak in the HE

and t0 is the unknown “change-point” (in the context of leak detection, t0 is the

instant of a leak appearance). In contrast to the Bayesian approach, no a priori95

information is available on the distribution of t0 in the context of leak detection.

For this reason the unknown “change-point” t0 is assumed to be non-random.

Following the preliminary experimental study, the distributions of the vibro-

acoustic signals {xn}n≥0 and {sn}n≥t0 can be approximated by a zero-mean

Gaussian law. The variances of {xn}n≥0 and {sn}n≥t0 vary due to different100

normal operating and leak conditions. The only distinguishable feature for the

detection of {sn}n≥t0 is the shape of the signal PSD at a certain interval of
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frequencies. To decide between the hypotheses {H0 : yn = xn} (normal oper-

ating noise coming from different equipment) and {H1 : yn = xn + sn} (normal

operating noise plus the signal corresponding to a leak), we need to estimate105

the PSD, which represents the distribution of signal energy as a function of

frequency. Two different methods of spectral analysis have been used : the pe-

riodogram (by using the fast Fourier transform (FFT)) and the autoregressive

(AR) model [23, 24, 25, 26, 27].

The periodogram is calculated by using the Bartlett-Welch method by

averaging multiple periodograms. The record (y0, . . . , yN−1) is subdivided

into K smaller disjoint segments of size L, where L is an even number, i.e.,

N = KL. The periodogram is calculated for the set of frequencies fk =
k

L
Fs,

k = 0, 1, 2, . . . ,
L

2
by using the

Ŝy(fk) =
1

K

K−1∑

i=0

Ŝi
y(fk), Ŝi

y(fk) =
1

FsL

∣∣∣∣∣

L−1∑

n=0

hnyn+iLe
−jn 2πk

L

∣∣∣∣∣

2

, (2)

where j is the imaginary number, j2 = −1, fk is the frequency measured in hertz

(Hz), Fs is the sampling frequency measured in Hz, h0, . . . , hL−1 is a normalized

window function. The periodogram is a consistent estimate of the PSD provided

that K → ∞ and L → ∞. The second method of spectral analysis is based

on the parametric approach. It is assumed that the observations {yn}n≥0 are

generated by the following AR(p) model of order p :

yn =

p∑

i=1

αiyn−i + ξn, ξn ∼ N (0, σ2
ξ ), (3)

where N (0, σ2
ξ ) denotes a zero-mean Gaussian distribution with variance σ2

ξ .

The parametric AR(p) estimation of the PSD is therefore given by

Ŝy (f) =
2σ̂2

ξ

Fs

∣∣∣1−
∑p

i=1 α̂ie
−j

2πfi
Fs

∣∣∣
2 , 0 ≤ f ≤ Fs

2
, (4)

where the estimations α̂i of the AR coefficients αi, i = 1, . . . , p and variance σ̂2
ξ110

are obtained by the resolution of maximum likelihood equations (either Yule-

Walker equations or by other methods) [23, 26, 27]. If the order p is correctly

defined then the estimation of the PSD is consistent.
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To detect a leak in the HEs, one has to design a detector which is sensitive to

the changes in the PSD related to the leak and, simultaneously, insensitive to the115

changes of the normal operating mode. The PSD function f 7→ Sy (f) contains

useful information (an informative parameter) related to the leak only at a

certain interval, for f ∈ [f1, f2], where 0 < f1 < f2 < Fs/2. The PSD at all other

frequencies f /∈ [f1, f2] is considered as a nuisance parameter and its negative

impact on the detector should be minimized. In such a situation, the usage of120

parametric models like AR (or even autoregressive - moving average (ARMA))

appears to be limited. Indeed, the shape of the parametric-based PSD f 7→
Sy (f) at the interval [0, Fs/2] is defined by all the parameters of AR or ARMA

model. It is tricky to find a subset of AR parameters α1, . . . , αp which defines

a prescribed shape for f ∈ [f1, f2] and, which is simultaneously independent125

of the parametric-based PSD at other frequencies f /∈ [f1, f2]. Moreover, the

covariance matrix of the AR vector is non-diagonal. This fact also leads to

additional problems in the separation of informative and nuisance parameters.

On the contrary, the periodogram Ŝy(fk) calculated at a set of frequencies

fk =
k

L
Fs, k = 0, 1, 2, . . . , L/2 represents a non-parametric model of the spec-

130

trum. Such a model is more flexible because Ŝy(fk) and Ŝy (fℓ), estimated at

different frequencies fk and fℓ with k 6= ℓ, are asymptotically independent when

L → ∞ [24, 25, 26, 27]. This justifies the statistical exclusion of a nuisance pa-

rameter. A set of frequencies fk, where k ∈ {k1, . . . , k2} and 0 ≤ k1 ≤ k2 ≤ L/2,

is used to design a leak detector. The PSD at all other frequencies fk such that135

k /∈ {k1, . . . , k2} is considered as an independent nuisance parameter and, hence,

excluded from the consideration. Finally, the leak detection based on the PSD

can be easily suitable to increase the SNR by using the technique of beam

forming, see, for instance, [8, 9, 28].

Therefore, as of now it is assumed that the discrete time vibro-acoustic signal

{yn}n≥0 is sequentially subdivided into segments of size L, where L is an even

number. The sequence of segments {Yi}i≥1 is considered. The i th segment

is defined as Yi = (y(i−1)L, . . . , yiL−1). Let us rewrite the generative model of
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observations given by (1). First of all :

Si
y(f) =





Sx(f) if i < i0,

Sx+s(f) if i ≥ i0
for f ∈ [f1, f2], (5)

where i0 is the change-point expressed in number of segments, Si
y(f) is the PSD

of the i th segment Yi, Sx(f) is the PSD of normal operating noise and Sx+s(f)

is the PSD of the additive sum of normal operating noise and the signal due to

a leak. It follows from [24, 25, 26, 27] that asymptotically

Ŝi
y(fk) ∼ Exp

(
Si
y(fk)

)
for fk =

k

L
Fs and k = 0, 1, 2, . . . ,

L

2
, (6)

where Ŝi
y(fk) is the periodogram calculated for the i th segment Yi and Exp(µ)

is an exponential distribution with mean µ. Finally, the generative model of

segments is given by

Ŝi
y(fk) ∼





Exp (Sx(fk)) if i < i0,

Exp (Sx+s(fk)) if i ≥ i0
for fk =

k

L
Fs and k = k1, . . . , k2,

(7)

where 0 ≤ k1 ≤ k2 ≤ L/2. Obviously, the subdivision of the initial sequence140

{yn}n≥0 into the sequence of segments induces an additional detection delay

which is upper bounded by L. In the current study Fs = 51.2 kilohertz (kHz)

and L = 8192, then the duration of one segment is 0.16 sec and the worst

case additional delay caused by the segmentation is equal to 0.16 sec, which is

negligible with respect to (w.r.t.) the required time-to-alert of 60 sec. Therefore,145

the HE leak detection is reduced to the sequential detection of abrupt changes

in the distribution of the vector of peridodogram
(
Ŝi
y(fk1

) . . . , Ŝi
y(fk2

)
)
of the

observed sequence of segments.

3. Proposed solution : reliable detection of abrupt changes

3.1. Sequential detection of abrupt changes150

The goal of this section is to briefly introduce the sequential detection of

abrupt changes in random signals [29, 30, 31, 32]. We begin with the classical
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optimality criterion, which involves the minimization of the (worst-case) mean

detection delay provided that a prescribed level of false alarms is satisfied. The

Bayesian approach to this problem and its optimal solution have been proposed

by Shiryaev [33, 34]. Let us consider the non-Bayesian framework, where the

“change-point” t0 is unknown but non-random. Let {yn}n≥1 be the sequence

of independent random variables and let t0 be the index of the first post-change

observation:

yn ∼





F0 if n < t0,

F1 if n ≥ t0,
(8)

where F0 is the pre-change cumulative distribution function (CDF) and F1 is

the post-change CDF. Let Pt0 be the joint distribution of the observations

y1, y2, · · · , yt0 , yt0+1, · · · when t0 < ∞. Let P0 denote the same when t0 = ∞,

i.e., there is no change and all the observations y1, y2, · · · are i.i.d. with CDF F0.

Let Et0 (resp. E0) and Pt0 (resp. P0) be the expectation and probability w.r.t.

the distribution Pt0 (resp. P0). Lorden [35] proposed an optimality criterion,

which involves the minimization of the worst-case mean detection delay:

inf
T∈Cη

{
E(T )

def
= sup

t0≥1
esssupEt0

[
(T−t0+1)

+ |y1, . . . , yt0−1

]}
, (x)+

def
= max(0, x),

(9)

where T ∈ {1, 2, . . .} is a stopping time w.r.t. the sequence of random variables

{yn}n≥1, i.e., an integer random variable such that, for every n ≥ 1, the event

{T = n} depends only on the variables y1, y2, ..., yn, among all stopping times

T belonging to the class

Cη = {T : E0(T ) ≥ η} , (10)

where η > 0 is a prescribed value of the average run length (ARL) to a false

alarm. Lorden proved that the CUSUM test, previously introduced by Page

[36], is asymptotically optimal w.r.t. criterion (9) – (10). A non asymptotic

optimality of the CUSUM test has been established by Moustakides [37]. The

stopping time (the time of decision) TCS of the CUSUM test is given by

TCS = inf

{
n≥1 : max

1≤k≤n

n∑

i=k

log
p1(yi)

p0(yi)
≥ h

}
, (11)
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where p0 denotes the pre-change probability density function (PDF), p1 denotes

the post-change PDF and h is the threshold. Recent results on the application

of the CUSUM test to more general statistical models (ARMA model,...) can

be found in [38, 39, 40, 32].

The traditional criterion, like (9) – (10), which involves the minimization of155

the (worst-case) mean detection delay provided that the ARL to a false alarm

is lower bounded by a given constant, is based on the idea initially proposed by

Wald [41]. This idea is motivated by the economic criterion in quality control

when the price of each new observation is constant. Using criterion (9) – (10),

we accept that some run lengths will be very long, some other – very short, but,160

in the mean, the detection delay will be acceptable. Unfortunately, the criterion

(9) – (10) is unacceptable for safety-critical applications. The price of each new

observation depends on the detection delay in safety-critical applications. If the

delay for detection is greater than the required time-to-alert N , the price of each

new observation is infinitely higher than the price of observation if the delay for165

detection is less than or equal to N . For this reason, we propose using another

criterion of reliable detection, which involves the minimization of the worst-case

probability of missed detection provided that the worst-case probability of false

alarm per a given reference period mα is upper bounded [13, 14, 15, 16].

The reliable detection of (transient) changes is motivated by two possible170

scenarios. The first scenario corresponds to the situation when the observed

phenomena (say, underwater acoustic signal) is of short and maybe unknown

(and random) duration Γ. It is called a transient change detection problem

[42, 43, 44, 45, 46, 47]. Sometimes even the “latent” detection (i.e., the detection

after the end of transient change) is acceptable. The second scenario arises when175

the observed anomaly (navigation equipment fault, leak in the HE,...) leads to

serious degradation of the system security when the change is detected with the

delay greater than the required time-to-alert N , i.e., T − t0+1 > N . It is called

a reliable detection of (transient) changes. In the framework of this second

scenario, the duration Γ of the transient change is assumed to be sufficient, at180

least Γ ≥ N . If the transient change is detected with the detection delay greater
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than N , it is assumed to be missed [13, 14, 15, 16]. On the other hand, if the

true duration Γ of the transient change is smaller than the required time-to-

alert N , i.e., Γ < N then such a transient change is considered as less dangerous

because its impact on the system is limited or negligible.185

Let us formalize the reliable detection problem. We consider the sequence

of random variables {yn}n≥1. Let t0 be the index of the first post-change ob-

servation (unknown and non random). The latest but still acceptable detection

happens when the stopping time is T = n = t0 +N − 1. It doesn’t matter what

happens after the instant n = t0 + N − 1, the transient change is missed. For

this reason the duration of the transient change (post-change period) is assumed

to be Γ = N :

yn ∼





F0 if 1 ≤ n < t0

F1 if t0 ≤ n ≤ t0 +N − 1
(12)

where F0 is the pre-change CDF and F1 is the post-change CDF during the

transient change period. As previously, it is assumed that Pt0 is the joint distri-

bution of the observations y1, · · · , yt0 , yt0+1, · · · when t0 < ∞. Because the con-

sidered subclass of stopping times is based on the variable-threshold truncated

sequential probability ratio tests (SPRT), the existence of a short “pre-heating”

period N is assumed. This short period is necessary to accumulate the first N

observations y1, y2, ..., yN in order to avoid the situation where the truncated

SPRT performs by using an insufficient number of observations. The quality of

a statistical decision cannot be guaranteed if the number of observations is less

than the required time-to-alert N . Finally, the optimality criterion used in this

paper is given by [14, 15, 16]. It involves the minimization of the worst-case

probability of missed detection Pmd(T ) :

inf
T∈Cα

{
Pmd(T )

def
= sup

t0≥N

Pt0(T − t0 + 1 > N | T ≥ t0)

}
, (13)

among all stopping times T ∈ Cα satisfying

Cα=

{
T : Pfa(T ;mα)

def
= sup

ℓ≥N

P0(ℓ≤T <ℓ+mα) ≤ α

}
, (14)

where Pfa(T ;mα) is the worst-case probability of false alarm during the reference

period mα measured in discrete time.
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The design of the transient change detector is discussed in [14, 15, 16]. Let

us briefly define the FMA test obtained from a more general variable threshold

window limited (VTWL) CUSUM test. As it follows from [16, Theorem 3], the

optimization of the VTWL CUSUM test in a subclass of truncated SPRT leads

to the FMA test. The stopping time TFMA of the FMA test is given as follows

TFMA = inf
{
n ≥ N : Λn

n−N+1 ≥ h
}
, Λn

n−N+1 =

n∑

i=n−N+1

log
p1(yi)

p0(yi)
, (15)

where Λn
n−N+1 is the log-likelihood ratio (LLR). To get the upper bounds for the

probabilities Pmd(TFMA) (13) and Pfa(TFMA;mα) (14), it is necessary to meet

some technical conditions and define several probabilities and their bounds.

The details can be found in [15, 16]. Following [16, Theorem 1], the worst-case

probability of missed detection Pmd(TFMA) is upper bounded as follows

Pmd(TFMA) ≤G(h)
def
= Pt0

(
ΛN+t0−1
t0

< h
)
, t0 ≥ N, (16)

where Pt0

(
ΛN+t0−1
t0

< h
)
corresponds to the probability of missed detection of

the Neyman-Pearson LLR test calculated for the time window [t0, t0 + N − 1]

and the threshold h.190

Let us assume that the CDF of the LLR Λn
n−N+1

x 7→ F (x)
def
= P0

(
Λn
n−N+1 ≤ x

)
(17)

is a continuous function on ] − ∞;∞[ under the measure P0 and that the

LLRs are associated under the probability measure P0 [16, Theorems 2 and

3]. Following [16, Theorems 2 and 3], the worst-case probability of false alarm

Pfa(TFMA;mα) for a given pre-changed period mα is upper bounded by

Pfa(TFMA;mα) ≤ H(h)
def
= 1− [F (h)]

mα . (18)

Provided that the upper bound for the worst-case probability of false alarm

H(h) is equal to a pre-assigned value α0, the smallest value α1 of the upper

bound G(h) is given by [15, 16]

α1 = G
[
F−1

(
(1− α0)

1

mα

)]
. (19)
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Finally, the optimal threshold is given by [15, 16]

h = F−1
(
(1− α0)

1

mα

)
. (20)

3.2. Sequential detection of spectral changes

The generative model of vibro-acoustic signals with an abrupt change has

been defined in (1), (5) and (7). This model describes the spectral changes of

the observed signal {yn}n≥0 related to the HE leaks. It follows from (7) that

the null and alternative hypotheses are defined for each segment i of size L and

for each frequency fk as :

H0 : Ŝi
y(fk) ∼ Exp (Sx(fk)) against H1 : Ŝi

y(fk) ∼ Exp (Sx+s(fk)) (21)

where fk = Fsk/L, k ∈ {k1, . . . , k2}, 0 ≤ k1 ≤ k2 ≤ L
2 . Let us rewrite the LLR

(15) by taking into account the asymptotic assumptions that the estimations

Ŝi
y(fk) and Ŝi

y (fℓ), k 6= ℓ, are independent and the estimations Ŝi
y(fk) and

Ŝj
y(fk) calculated by using the i-th and j-th segments of size L, i 6= j, are

asymptotically uncorrelated when K → ∞ and L → ∞ [23, 24, 25, 26, 27].

Following the definition of the exponential law Exp(µ), its PDF is given by

pµ(x) =





1
µ
e−

x
µ if x ≥ 0,

0 if x < 0,
(22)

where µ is mean. The LLR between the hypothesesH0 and H1 for the frequency

fk and for the record (y0, . . . , yN−1) subdivided into K segments of size L, i.e.,

N = KL, is written as follows

ΛK
1 (fk) =

K∑

i=1

Λi(fk), Λi(fk) = log
Sx(fk)

Sx+s(fk)
+

[
1

Sx(fk)
− 1

Sx+s(fk)

]
Ŝi
y(fk),

(23)

where i is the number of a segment of size L, i = 1, 2 . . . ,K, Ŝi
y(fk) is the peri-

odogram corresponding to the frequency fk and calculated for the i-th segment

of the record (y0, . . . , yN−1).
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Ŝm
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m ≥ K

Sx Sx+s

Calibration and/or
adaptation

Figure 1: The flowchart of the leak detection algorithm. The flowlines show the process’s order

of operation and the dashed lines with arrowheads show the transmission of information.

Therefore, the total LLR is obtained by summing the LLR ΛK
1 (fk) (23) over

the set of all frequencies fk1
, . . . , fk2

under consideration

ΛK
1 = K

k2∑

k=k1

log
Sx(fk)

Sx+s(fk)
+

k2∑

k=k1

[
1

Sx(fk)
− 1

Sx+s(fk)

] K∑

i=1

Ŝi
y(fk). (24)

Finally, let us adapt the stopping time TFMA (15) of the FMA test to the

detection of spectral changes. Now, the LLR (24) is calculated for the moving

14



window of vibro-acoustic signal (ymL−KL, . . . , ymL−1) of size N = KL, where

m = K,K + 1,K + 2, . . .. This moving window is subdivided into K segments.

Hence, the stopping time (i.e., the decision time) is a multiple of L and it is

natural to re-write the LLR and stopping rule (15) as a function of the current

number m of a segment of size L :

TFMA = inf
{
m ≥ K : Λm

m−K+1 ≥ h
}
. (25)

The flowchart of the leak detection algorithm is shown in Figure 1. The algo-195

rithm is represented by an iterative loop with a stopping condition (realizing

the stopping rule defined in (25)). The variable of the loop m denotes the num-

ber of the current vibro-acoustic signal segment. The FFT is applied to the

m-th segment of the record at each step m. The last m−m1 +1 periodograms

Ŝm1

y , . . . , Ŝm
y are stored in a data buffer of maximum size K (see Figure 1).200

Next, the LLR Λm
m−K+1 is calculated for m ≥ K. This iterative loop is stopped

when the condition
{
Λm
m−K+1 ≥ h

}
is true for the first time.

3.3. Asymptotic properties of the finite moving average detector

Following equations (16) – (20), to compute the relation between the prob-

abilities α0, α1 and the threshold h, it is necessary to know the distributions205

F and G. The total LLR Λm
m−K+1 represents a double weighted sum of expo-

nential random variables Exp(µk,i) with different means µk,i. Hence, Λm
m−K+1

is distributed following a hypoexponential distribution (or a generalized Erlang

distribution) under the hypotheses H0 and H1. It can be approximated by a

Gaussian distribution for large K and L with negligible approximation errors.210

Such asymptotic Gaussian approximations for the CDF functions F and G are

used in this paper for rough calculation of α0, α1 and h.

Putting equation (24) together with the expectation Sy(fk) and variance

S2
y(fk) of the exponential law Exp (Sy(fk)), we get the expectation and variance

of the total LLR

ES [Λ
K
1 ] = K

k2∑

k=k1

log
Sx(fk)

Sx+s(fk)
+K

k2∑

k=k1

[
1

Sx(fk)
− 1

Sx+s(fk)

]
Sy(fk). (26)
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and

varS [Λ
K
1 ] = K

k2∑

k=k1

[
1

Sx(fk)
− 1

Sx+s(fk)

]2
S2
y(fk) (27)

provided that the true PSD is given by f 7→ Sy(f). If the hypothesis H0 is

true, then Sy(f) = Sx(f). If the hypothesis H1 is true, then Sy(f) = Sx+s(f).

Specifically, let us denote by µ0 (resp. µ1) the expectation of the total LLR

ES [Λ
K
1 ] under hypothesis H0 (resp. H1). We also denote by σ2

0 (resp. σ2
1) the

variance varS [Λ
K
1 ] of the total LLR under hypothesis H0 (resp. H1). It follows

from equations (16) – (20) that

α1 = Φµ1,σ
2

1

[
Φ−1

µ0,σ
2

0

(
(1− α0)

1

mα

)]
, (28)

where x 7→ Φµ,σ2 (x) is the CDF of the Gaussian distribution N (µ, σ2). Finally,

the optimal threshold is given by

h = Φ−1
µ0,σ

2

0

(
(1− α0)

1

mα

)
. (29)

It is worth noting that the required number of segments to alert K and the

reference period mα, used in equations (26) – (29), are measured in number

of segments of size L per the required time-to-alert and per reference period215

measured in sec. Let us assume that the sampling frequency is Fs = 51.2 kHz

and the segment size is L = 8192. For example, if the required time-to-alert

is 60 sec and the reference period for false alarm is 3600 sec then the required

number of segments to alert is K = 375 and the reference period for false alarm

measured in number of segments is mα = 22500.220

It is also worth noting that the impact of a transient segment of size L

which is composed of pre-change and post-change periodograms is assumed to

be negligible as it has been shown in Section 2. In the case when this impact is

not negligible, the developed theory [16, Theorems 1, 2 and 3] allows to easily

adopt the LLR Λm
m−K+1 to the presence of such a transient segment (see also225

Section 6 for further discussion).
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4. Experimental data

The experimental data used in this study come from two different installa-

tions at CEA/Cadarache : IKHAR and DIADEMO. The IKHAR experimental

installation at CEA/Cadarache is designed to obtain the vibro-acoustic signals230

corresponding to the nitrogen injection (simulation of a leak) under different

pressure in a HE channel. The IKHAR installation uses water instead of sodium

for several practical reasons (safety, simplicity, efficiency, etc.). As the leak jet

pushes away the liquid outer the concerned channel the obtained noise of nitro-

gen jet in the nitrogen filled channel is representative (except for temperature).235

This experiment is further described in [20]. The records coming from this ex-

periment also include the background noise corresponding to water flow without

leakage than can be used as a generic background noise. But these signals do

not contain normal operating noise coming from a sodium-gas HE and from

other equipment (pumps, turbine, etc.) For this reason, the data from another240

installation, i.e., the DIADEMO sodium loop at CEA/Cadarache, have been

used in order to get a condition representative to a real-life nominal operating

noise. In the DIADEMO loop, the accelerometer is placed on a flange outside

of the sodium-gas HE. At this position, the accelerometer was at a distance of

about 0.5 m from the HE but mechanically coupled to it.245

In this study, it has been assumed that the null hypothesis H0 (no leak)

is defined as a weighted sum of two vibro-acoustic signals coming from the

installations IKHAR and DIADEMO

H0 : (y0, . . . , yN−1) = (x0, . . . , xN−1)

=
w1

σx,1
(x0,1, . . . , xN−1,1) +

w2

σx,2
(x0,2, . . . , xN−1,2) ,(30)

where x0, . . . , xN−1 is the vibro-acoustic signal corresponding to H0,

x0,1, . . . , xN−1,1 is the vibro-acoustic signal coming from the installation

IKHAR corresponding to background noise of water flow without leakage,

x0,2, . . . , xN−1,2 is the vibro-acoustic signal coming from the installation DI-

ADEMO, w1 and w2 are weighted coefficients of vibro-acoustic signals, w2
1 +250
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w2
2 = 1, σx,1 is the standard deviation (SD) of the signal {xn,1}n≥0 and σx,2

is the SD of the signal {xn,2}n≥0. It follows from (30) that the variance of the

weighted sum {xn}n≥1 is σ2
x = 1.

The proposed leak detection method is generic but in the case of a real SFR

HE, a calibration phase should be considered. The normal operating noise cor-255

responding to H0 can be obtained during the first minutes at full power. During

this time, the passive acoustic detection is not operational, and hence this period

is a natural candidate as a calibration phase. The vibro-acoustic detection can

only be used in addition to another detection media (electro chemical hydrogen

meter for water or spectral analysis in a pressurized tank for nitrogen) and the260

other media confirms that there is no leak during recording time. Thanks to this

other detection media, it is possible to delicately extend operating conditions or

update H0 by using the recordings done a few minutes (or a long time) earlier.

The alternative hypothesis H1 (there is a leak) is defined as a weighted

sum of normal operating noise defined in (30) and the vibro-acoustic signals

coming from the installations IKHAR corresponding to the nitrogen injection

(simulation of a leak) under different pressure

H1 : (y0, . . . , yN−1) = (x0, . . . , xN−1) +

√
SNR

σs

(s0, . . . , sN−1) , (31)

where s0, . . . , sN−1 is the vibro-acoustic signal coming from the installation

IKHAR with the nitrogen injection, σs is the SD of the signal {sn}n≥0 and SNR265

is the signal-to-noise ratio. Because the accelerometer position and the vibro-

acoustic environment in the real-life situation can be different from the position

and environment of mock-ups IKHAR and DIADEMO, the SNR coefficient

permits to vary the complexity of the leak detection problem.

In the absence of the theoretical PSD corresponding to normal operating

noise and to the signal (a small leak simulated by the nitrogen injection), we

have to use the parametric AR model extracted from the data. Following the

definition of the null H0 and alternative H1 hypotheses (30) – (31), the PSD of

18
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Figure 2: The estimated PSD Ŝy(f) corresponding to normal operating noise and to the signal

(there is a leak in the HE).

H0 and H1 hypotheses are given as follows

H0 : Sy(f)=Sx(f)= Ŝx(f) against H1 : Sy(f)=Sx+s(f)= Ŝx(f)+
SNR

σ̂2
s

Ŝs(f),

(32)

where 0 ≤ f ≤ Fs/2, Ŝx(f) is the AR(200) model-based estimated PSD of270

normal operating noise records simulated by using the mixture (IKHAR and

DIADEMO) defined by (30) with the weighted coefficients w1 =
√
0.7 and

w2 =
√
0.3, σ̂x is the SD of this mixture, Ŝs(f) is the AR(200) model-based

estimated PSD by using a signal record (IKHAR with the nitrogen injection at

36 bar pressure) and mixed with the PSD of normal operating noise following275

the SNR, as defined in (31), and σ̂s is the SD of the recorded signal. The

estimated PSD of pure noise Ŝx(f) and signal Ŝs(f) are shown in Figure 2. The

PSD Sx(f) (resp. Sx+s(f)) defining the hypothesis H0 (resp. H1) are shown in

Figure 3 for SNR = −13 dB and −23. The PSD Sy,1(f) defining the hypothesis

H1 with SNR = −30 dB is not shown because the difference between H0 and280

H1 is invisible to the eye for SNR = −30 dB.
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Figure 3: The PSDs Sx(f) and Sx+s(f) defining the hypotheses H0 and H1 with SNR = −13

dB and −23.

5. Results of simulation

This section is devoted to two tasks. The first task is to compute the upper

bound α1 for the worst-case probability of missed detection Pmd(TFMA) as a

function of the upper bound α0 for the worst-case probability of false alarm285

Pfa(TFMA;mα) and to verify the asymptotic equations (26) – (28) by using the

Monte-Carlo simulation. The second task is to test the FMA detector by using

the records of real signals coming from the installations IKHAR and DIADEMO.

Because the target values of α0 and α1 are very small, it seems to be un-

realistic to estimate the probabilities Pmd(TFMA) and Pfa(TFMA;mα) by using290

a conventional Monte-Carlo simulation. Instead, a 2 · 103 Monte-Carlo simula-

tion has been performed to estimate the expectation and variance of the LLR

given by (24). Next, the bound α1 has been calculated as a function of α0

by using equation (28) under asymptotic assumption of the LLR Gaussianity.

The null hypothesis H0 is defined by the PSD (32) of normal operating noise295

simulated by the weighted sum (30) of the IKHAR (without nitrogen injection)

and DIADEMO records. The alternative hypothesis H1 is defined by the PSD
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(32) estimated from the weighted sum of three signals. Two first signals are the

IKHAR (without nitrogen injection) and DIADEMO. They produce a weighted

sum (30), corresponding to the hypothesis H0. The third signal, simulating the300

HE leak, is represented by another IKHAR record with the nitrogen injection

at 36 bar pressure and it is added to the previous signals with a given SNR (see

(31)).

10-5 10-4 10-3 10-2 10-1
10-10

10-9

10-8

10-7

10-6

10-5

Theoretical moments
Empirical moments

α
1

α0 (h−1)

Figure 4: The probability α1 as a function of α0 for SNR −30 dB calculated by using theoret-

ical moments (26), (27) and empirical moments obtained by a 2 · 103 Monte-Carlo simulation.

The required time-to-alert is 60 sec, Fs = 51.2 kHz, K = 375, L = 8192,

N = KL, the reference period for false alarm is 3600 sec or 1 h, mα = 22500,305

fk1
= 6 kHz and fk2

= 13 kHz. The probability of false alarm is measured per

hour (h−1). The results of asymptotic equations and Monte-Carlo simulations

for the FMA test provided that SNR = −30 dB and SNR = −33 dB are shown

in Figures 4 and 5. The upper bound α1 for the worst-case probability of missed

detection Pmd(TFMA) as a function of the upper bound α0 for the worst-case310

probability of false alarm Pfa(TFMA;mα) calculated by using the asymptotic

equation (28) with theoretical moments (26) – (27) of the LLR are shown by

solid lines with plus symbols. The same functions calculated with empirical
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Figure 5: The same functions as in Figure 4 for SNR −33 dB.

moments of the LLR obtained by a 2 · 103 Monte-Carlo simulation are shown

by solid lines with diamond symbols.315

Let us briefly discuss the results of the comparison between the asymptotic

equations and Monte-Carlo simulations. First of all, it is worth noting the

existence of some difference observed between the curves representing α1 as a

function of α0 calculated by using the theoretical moments and the same curves

calculated by using the empirical moments of the LLR given by equations (26)320

– (27) (see Figures 4 and 5). The reason for this difference is explained by non-

asymptotic properties of the vector Ŝi
y (fk1

) , . . . , Ŝi
y (fk2

) for K = 375 and L =

8192. As it follows from [25, Ch 10.3] and [26, Ch 8.2.2], Ŝi
y (fk) and Ŝi

y (fℓ) with

k 6= ℓ are independent and exponentially distributed only asymptotically. For

finite values of L there are small additional terms to the expectation E

[
Ŝi
y (fk)

]
,325

variance var
[
Ŝi
y (fk)

]
and covariance cov

[
Ŝi
y (fk) , Ŝ

i
y (fℓ)

]
with k 6= ℓ. These

additional terms cannot be easily estimated but they lead to additional biases in

the empirical moments (26) – (27) of the LLR. Finally, the theoretical moments

lead to some overestimation of α1 as a function of α0 (see the solid lines with

plus symbols in Figures 4 and 5).330
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Figure 6: The mixture of the IKHAR and DIADEMO records following (30) – (31). The leak

of the HE is simulated by the nitrogen injection at 36 bar pressure starting from t0 = 120 sec.

The SNR is −23 dB.

Second, the very weak signals (with SNR = −30 dB) of the nitrogen injection

at 36 bar pressure can be detected with low probabilities of missed detection

Pmd(TFMA) ≤ α1 ≤ 10−5 and false alarm Pfa(TFMA;mα) ≤ α0 ≤ 10−5h−1.

But if the SNR will be even more reduced from −30 dB to −33 dB, then the

missed detection probability drastically increases to an unacceptable level, i.e.,335

Pmd(TFMA) ≤ α1 ∈ [0.2, 0.7] for Pfa(TFMA;mα) ≤ α0 ∈ [10−5, 10−1]h−1. Hence,

SNR = −30 dB represents a minimal SNR value detectable with acceptable

probabilities Pmd(TFMA) and Pfa(TFMA;mα) by using the proposed FMA de-

tector.

Let us discuss the test of the FMA detector by using the real data coming340

from the mock-ups IKHAR and DIADEMO. The length of the IKHAR record is

not large enough to cover the records DIADEMO. For this reason, the IKHAR

record has been repeated each 11 sec to prepare the mixture of the IKHAR

and DIADEMO records. As previously, for tuning the FMA test, the null

hypothesis H0 (normal operating noise) is defined by the PSD estimated from345

the weighted sum of the IKHAR (without nitrogen injection) and DIADEMO
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Figure 7: The LLR of FMA test as a function of elapsed time.

record and the alternative hypothesis H1 is defined by the PSD estimated from

the weighted sum of pure noise and the signal represented by the IKHAR record

corresponding to the nitrogen injection at 36 bar pressure. In both cases, the

duration of records used for tuning is 11 sec. The required time-to-alert now350

is 32 sec, Fs = 51.2 kHz, K = 200, L = 8192, N = KL, fk1
= 9.5 kHz and

fk2
= 12.5 kHz.

The results of real data processing are shown in Figures 6 and 7. The change-

point or the instant of nitrogen injection (simulation of a leak) is t0 = 120 sec

(shown by the solid red vertical line in Figure 6). The SNR is equal to −23 dB.355

The picture on the left attests that the presence of the vibro-acoustic signal

simulating a leak is invisible to the eye. The picture on the right shows that

the total LLR begins to grow from t0 = 120 sec to t = 152 sec. After this

time, the LLR remains stable. The theoretical values µ0 and µ1 of the total

LLR expectation obtained by tuning on 11 sec duration records are shown by360

two horizontal dash-dotted lines. It can be concluded that the total LLR values

Λm
m−K+1, m ≥ K, are in concordance with the asymptotic LLR expectations
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µ0 and µ1 before the instant t0 = 120 sec and after the instant t = 152 sec.

Some deviations from the asymptotic LLR expectations are explained by the

non-stationarity of the processed signals.365

6. Discussion of some possible extensions

The solution to the problem of the HE leak detection proposed in Section 3

and examined in Section 5 is based on the assumption that the PSD of normal

operating noise f 7→ Sx(f) and the PSD of the additive sum of normal oper-

ating noise and the signal due to a leak f 7→ Sx+s(f) are perfectly known and370

constant. These working hypotheses correspond to the main goal of this paper

to check the feasibility of the proposed leak detection algorithm. Nevertheless,

the application of this technique to the vibro-acoustic signals coming from a

real HE necessitates some potential extension of such working hypotheses.

First of all, let us discuss the reliable leak detection during the transition375

from one normal operating condition of the HE to another one. As it follows

from the FMA detector definition (23) – (25) and its flowchart shown in Figure 1,

the detector is uniquely defined by the PSDs f 7→ Sx(f) and f 7→ Sx+s(f) of

the pre-change and post-change signals. Hence, if the leak detection system is

equipped with a mechanism of adaptation to the current normal operating noise380

PSD, the FMA detector reloads the current PSDs f 7→ Sx(f) and f 7→ Sx+s(f)

at each step m of leak detection (see the flowchart shown in Figure 1). It is

worth noting that some a priori information about the shape of the signal PSD

f 7→ Ss(f) corresponding to a small leak in the HE and the minimum required

SNR should be available to calculate f 7→ Sx+s(f) in the real time. The idea385

to associate a change detection algorithm to an adaptive estimation algorithm

has been initially considered in [49, 50]. For the time-variant (non-stationary)

system, it is necessary to have a prior model of system dynamics to design an

optimal estimation algorithm. In the case when such a priori information is

absent, the tracking properties of the adaptive RLS estimator of AR model390

and its PSD is defined by a single tuning parameter, i.e., the forgetting factor
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0 < λ < 1 (for details see [48, 50, 27]).

Second, let us discuss an extension of the proposed FMA detector to the

case of the gradual spectral changes developing in time. In other words, the

generative model of segments (7) is re-written as follows :

Ŝi
y(fk) ∼





Exp (Sx(fk)) if i < i0,

Exp
(
Si−i0+1
x+s (fk)

)
if i ≥ i0

for fk =
k

L
Fs and k = k1, . . . , k2,

(33)

where 0 ≤ k1 ≤ k2 ≤ L/2. Therefore, the detection of gradual spec-

tral changes is reduced to the sequential detection of gradual changes in the

distribution of the vector of peridodogram
(
Ŝi
y(fk1

) . . . , Ŝi
y(fk2

)
)

of the ob-395

served sequence of segments. These gradual changes are defined by the profiles

S1
x+s(fk), . . . , S

K
x+s(fk) for each frequency fk, where K is the required number

of segments to alert.

Let us adopte the LLR (23) to the case of gradual changes. The LLR between

the hypotheses H0 and Hi−i0+1
1 for the frequency fk is written for the i-th

segment as follows

Λi(fk) = log
Sx(fk)

Si−i0+1
x+s (fk)

+

[
1

Sx(fk)
− 1

Si−i0+1
x+s (fk)

]
Ŝi
y(fk) for i ≥ i0, (34)

The LLR in the moving window of K segments Ym−K+1, . . . , Ym is given by :

Λm
m−K+1(fk) =

m∑

i=m−K+1

log
Sx(fk)

Si+K−m
x+s (fk)

+

[
1

Sx(fk)
− 1

Si+K−m
x+s (fk)

]
Ŝi
y(fk), (35)

where i is the number of segment of size L, Ŝi
y(fk) is the periodogram corre-

sponding to the frequency fk and calculated for the i-th segment Yi. Therefore,

the total LLR for all the frequencies fk1
, . . . , fk2

is obtained by summation

equation (35) and the FMA stopping rule is given as follows

TFMA = inf
{
m ≥ K : Λm

m−K+1 ≥ h
}
, Λm

m−K+1 =

k2∑

k=k1

Λm
m−K+1(fk). (36)

Finally, let us briefly discuss how the proposed HE leak detection algorithm

can be coupled with other algorithms predicting the accidents such as LOCA400

26



[3, 4]. As it is advocated in [3], the early and reliable detection of even a small

HE leak is an important task for the subsequent successful processing of such an

accident. On the other hand, a method of the leak rate prediction before break

(in the framework of the LBB concept) by using two types of the artificial neural

network (ANN): three-layer back propagation network (BPN) and genetic neural405

network (GNN) has been considered in [4]. By using these ANNs, a model is

designed to explain the output parameter (Reynolds number) with the aid of six

dimensionless inputs by minimizing the quadratic criterion. These inputs are

the thermodynamic properties and crack morphologies. The proposed HE leak

detection algorithm can be coupled to the LBB leakage prediction as a kind410

of trigger. Such a trigger will switch the nominal regime mode of a periodic

application of the ANN-based LBB leakage prediction to a reinforced regime

when the risk of break becomes too important and, hence, the application of

the ANN-based LBB leakage prediction should be very frequent.

7. Conclusion415

The detection of leaks in a prototype of a sodium-gas SFR HE has been

considered in the paper. The HE should be permanently monitored in order

to detect a leak of nitrogen into the sodium circuit, which can affect the SFR

performance or safety. The records coming from two experimental mock-ups in-

stalled at CEA/Cadarache for simulating normal operating noise and abnormal420

noise (with leaks) have been used to assess the proposed solution.

The significance of this research with respect to the previously published

works is twofold. First, the proposed solution allows reliable detection of a

small leak with the minimal SNR of −30 dB provided that the detection delay,

the missed detection probability and the false alarm probability are respected,425

which is much better than the usually requested SNR of −17 dB. Second, an

analytical method for calculation of the probabilities of missed detection and the

false alarm has been proposed. This method guarantees the required statistical

properties of the proposed test. The following detailed conclusions can be drawn.
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1. The spectral analysis of the records coming from two mock-ups at430

CEA/Cadarache permits to establish the descriptions of the null hypothe-

sis H0 (normal operating noise coming from the HE and other equipment

like pumps, turbine, etc.) and alternative hypothesis H1 (an additive sum

of normal operating noise and the useful signal corresponding to a leak of

the HE).435

2. The proposed leak detection solution is based on the adaptation of the

FMA test applied to the periodogram to reliably detect an abrupt change

in the spectral density of measured signals.

3. Asymptotic equations for the calculation of the relation between the upper

bound α1 for the worst-case probability of missed detection Pmd(TFMA)440

and the upper bound α0 for the worst-case probability of false alarm

Pfa(TFMA;mα) during the reference period mα have been proposed. These

equations can be used as a preliminary approximate method to quantita-

tively predict the statistical properties of the FMA test.

4. Without taking into account the impact of signal non-stationarity under445

the null hypothesis H0, the FMA test is able to detect a leak in the HE

with SNR ≥ −30 dB with low probabilities of false alarm Pfa(TFMA;mα) ≤
α0 ≤ 10−5h−1 and missed detection Pmd(TFMA) ≤ α1 ≤ 10−5 provided

that the detection delay is upper bounded by 60 sec. It is worth noting

that 10−5h−1 corresponds to the level “one false alarm per 11 years”. In450

these basic conditions, the FMA test detection capability is much better

than the usually requested SNR of −17 dB, which is expected for 1 g/sec

leaks, see [21].

5. The impact of non-stationarity on the minimal detectable SNR and the

precision/applicability of asymptotic equations for α0 and α1 will be ex-455

amined in a future study.

6. Testing the detection performance of the FMA test coupled with the pe-

riodogram by using the real data coming from the mock-ups simulating

the sodium-water HE will be considered in a future study.
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In parallel to the improvement of the detection methods, the obtaining of leak460

detector performances in fully representative SFR HE leak conditions is a topic

for consideration.
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[15] Guépié B. K., Fillatre L., and Nikiforov, I. (2012). Sequential detection of520

transient changes. Sequential Analysis, vol. 31, no. 4, pp. 528–547.
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