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ABSTRACT

The current art in schemes using deflection criterion such as
MiPOD for JPEG steganography is either under-performing
or on par with distortion-based schemes. We link this lack of
performance to a poor estimation of the variance of the model
of the noise on the cover image. In this paper, we propose a
method to better estimate the variances of DCT coefficients
by taking into account the dependencies between pixels that
come from the development pipeline. Using this estimate,
we are able to extend statistically-informed steganographic
schemesto the JPEG domain while significantly outperform-
ing the current state-of-the-art JPEG steganography. An ex-
tension of Gaussian Embedding in the JPEG domain using
quantization error as side-information is also formulated and
shown to attain state-of-the-art performances.

Index Terms— Steganography, JPEG images, Statistical
model, Side-information, Covariance estimation.

1. INTRODUCTION

The current trend in the design of steganographic schemes
for JPEG images relies heavily on the use of so-called dis-
tortion functions which associate a cost of modification to
each DCT coefficient of the image. Such schemes work by
minimizing the sum of costs under the constraint of embed-
ding a given payload (the Distortion Limited Sender). This
framework is well exemplified by the current state of the art
in JPEG steganography, namely J-UNIWARD [1], which as-
signs costs based on directional noise residuals estimated with
a wavelet filter bank. The costs are heuristically linked to lo-
cal content complexity and the rational is thus to assign high
costs to smooth areas and low costs to areas which are “un-
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predictable” in every directions. The limitation of such an ap-
proach, however, is the lack of statistical interpretability since
the distortion function is always defined heuristically.

This problem has been addressed in the spatial domain
by the MiPOD steganographic scheme [2]. By modeling pix-
els of an image with independent Gaussian random variables,
MiPOD directly minimizes the power of the most powerful
detector under this model. This gives a direct interpretation of
the cost of modifying each pixel. Despite its state-of-the-art
performances in the spatial domain, the direct generalization
of this framework to the JPEG domain, dubbed J-MiPOD, had
little success competing with the current art [3].

Currently, the only competitive steganographic scheme
which relies on statistically defined costs in the JPEG do-
main uses so called side-information. Side-information can
refer to any knowledge to which the steganographer has ac-
cess related to a given cover which can be used to improve
the security of a steganographic scheme (e.g: another image
of the same scene, the RAW image, knowledge of rounding
errors, . . . ). In the case of JPEG images, a higher-resolution
version of the given cover (a.k.a. the precover) consists of the
non-rounded DCT coeffcients of the image. The state of the
art for distortion-based scheme, SI-UNIWARD [1], signifi-
cantly improves the security of J-UNIWARD by heuristically
modulating its costs by |0.5− ei| (ei ∈ ]−0.5, 0.5] being the
rounding error of the i-th DCT coefficient), embedding pref-
erentially in coefficients which are close to a bin boundary.
On the other hand, Model based SI-MiPOD [3], referred to as
MB-MiPOD in this paper, formally derives a modulation fac-
tor of |0.5− ei|2 by minimizing the KL-divergence between
the cover and the stego image conditioned on the realization
of the precover.

Two frameworks for statistically informed schemes cur-
rently exists: the aforementioned MiPOD and the recently
proposed Gaussian Embedding [4]. They both suppose an
independent Gaussian model of the noise residuals of pix-
els and as such, their performance relies on a proper esti-
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Fig. 1. Principle of steganography with side information com-
ing from the processing pipeline: the estimation of the covari-
ance matrix of the sensor-noise in the DCT domain enables to
compute reliable variance estimates and to derive meaning-
ful deflection coefficients, used to derive statistically founded
costs for JPEG images.

mation of the variances of those residuals. However, these
schemes estimate the variance in the spatial domain and, be-
cause of the independence assumption, the estimation of the
variance in the JPEG domain from those estimates (as it was
done for J-MiPOD) is extremely crude as it does not take into
account the dependencies introduced very early in the pro-
cessing pipeline during demosaicking. Consequently, better
estimation of the variances in the JPEG domain ought to rely
on the estimation of covariances of blocks of dependent pixels
in the spatial domain.

In this paper, we show how to use the knowledge of the
processing pipeline to obtain precise estimates of those co-
variances to make these two frameworks competitive in the
JPEG domain. At the same time we propose a new side in-
formed extension of the Gaussian embedding scheme into the
JPEG domain. We show that our estimation method allows us
to significantly outperform the current state of the art in JPEG
steganography.

2. STATISTICAL MODEL OF THE SENSOR NOISE
IN THE JPEG DOMAIN

In this section we describe the cover model that will be used
in the rest of the paper as well as the method to estimate its
parameters. We assume that the steganographer has both ac-
cess to the original RAW image of a given cover, and to the
knowledge of the processing pipeline that generates the cover.
We also make the assumption that the operations of the pro-
cessing pipeline can be approximated by a linear operator on
blocks of pixels of the image. This last assumption might
seem to reduce the range of potential image usable with our
method, yet we show in Section 4 that it is robust to nonlinear
processing pipelines.

Following [5, 6], we model the photo-site values as inde-
pendent random variables following the heteroscedastic noise
model:

XRAW
i,j ∼ N (µi,j , σi,j) ; σi,j = c1µi,j + c2, (1)

where µi,j is the value that would be registered by the
i, j-th photo-site if no sensor noise was present. In what fol-

lows, it will be easier to phrase the model in terms of (8M +
k) × (8M + k) block of photo-sites following a multivariate
Gaussian with diagonal covariance:

XRAW
a,b ∼N (µa,b,σa,bI) , (2)

where XRAW
a,b corresponds to the (a, b)th 8 × 8 block of

RAW image together with itsM−1 neighboring 8×8 blocks
and 16Mk + k2 coefficients at the margins.

We model the processing pipeline up to the DCT trans-
form (i.e. demosaicking, white balancing, denoising, etc. . . )
as a linear operator represented as a matrix H of dimension
(8N)2 × (8M + k)2. Since the processing pipeline intro-
duces dependencies between pixels, we can model 8N × 8N
blocks of dependent DCT coefficients of the developed image
as multivariate Gaussian random variables [7]:

Xdev
a,b ∼N

(
µ′
a,b,Σa,b

)
; Σa,b = H (σa,bI)H

T . (3)

Note that the constants M ,N and k must be chosen de-
pending on the range of dependencies introduced by the pro-
cessing pipeline. For example, in the case of a purely linear
processing pipeline consisting of bilinear demosaicking, RGB
to greyscale conversion and DCT transform, one must choose
M = N = 3 and k = 2 to take all the dependencies for one
block into account (see [8] for details and explanations re-
garding the dependencies introduced by bilinear demosaick-
ing followed by JPEG compression).

Since the embedding schemes presented in Section 3 sup-
pose independent DCT coefficients, we eventually neglect
those dependencies: only the diagonal of the covariance ma-
trix is kept for each block and the DCT coefficients are then
considered independent. We would like to emphasize to the
reader that despite reintroducing the independence assump-
tion, the estimation of the diagonal terms takes into account
the dependencies between pixels, which is not the case for
J-MiPOD.

In the rest of this section, we explain how to estimate µi,j
and Σa,b. The method is summarized in Figure 1.

2.1. RAW model estimation and covariance estimation

To be able to estimate the covariances Σa,b, we need to es-
timate the variances associated to each photo-site which are
themselves function of the true value of each photo-site µi,j .
To that end, we denoise the RAW image using the method
in [9] based on the inverse Anscombe transform and the
BM3D algorithm [10]. The heteroscedastic model parame-
ters c1 and c2 are then estimated using the method detailed
in [5, 6]. In practice the RAW model has to be estimated
only once for each camera and each ISO among images in a
given dataset. Once the parameters of the RAW model are
estimated, the covariance matrix of each block Σa,b can be
estimated as:

Σa,b = H (σa,bI)H
T . (4)



Depending on the processing pipeline, H can be com-
puted analytically such as in [8] for bilinear demosaicking.
In our case, since the processing pipeline is assumed linear,
we can blindly estimate H using a linear regression between
the photo-site blocks and the developed blocks, that is, solv-
ing for H:

Xdev
a,b = HXRAW

a,b + C. (5)

where C is the constant (a.k.a intercept) term.

2.2. Quantization

The covariance matrix has to take into account the quantiza-
tion of the DCT coefficient according to a quantization table
specific to each JPEG quality factorAs the covariance matrix
is first estimated on non-rounded DCT coefficient (just before
rounding, that is when each coefficient has already been di-
vided by its corresponding entry in the quantization matrix),
the quantization step is equivalent to a uniform quantizer with
quantization step 1. When the diagonal variances are “high-
enough”, this is equivalent to adding 1

12 on the diagonal terms
of the covariance matrix [11] while “small” variances as well
as their associated covariances should be set to zero. We de-
fine “small” variances heuristically as variances σ2 associated
to a given coefficient where the first bin boundary of the quan-
tized value is at a distance of at least 3σ from the mean value
of the coefficient (that is where the probability that its realiza-
tion lies in the average bin is at least 99.7%). Such variances,
as well as all their covariances are thus set to 0.

3. EMBEDDING

Once the parameters of the cover model are estimated, em-
bedding using statistically defined costs becomes possible.
We propose here two approaches. The first one, which we
will refer to as Σ−MiPOD, uses only the estimated cover
model while the second, referred as Σ-SI-Gaussian, also uses
the knowledge of the rounding errors in the DCT domain
as side-information. The first approach is a straightforward
expansion of MiPOD to the JPEG domain.The second ap-
proach is similar to the recently proposed Gaussian Embed-
ding scheme [4], but here the embedding is performed in the
JPEG domain and the development pipeline is taken into ac-
count. Due to space constraints, we only present the opti-
mization problem to be solved for each embedding scheme
and refer the reader to the original publications for the imple-
mentation details such as the optimization solving or the use
of the Syndrome-Trellis Codes [12] for efficient implementa-
tion.

3.1. Embedding in the quantized DCT domain

Following Section 2, let the cover be modeled as a sequence
of n independent random variables with the following pmf:

pσn (k) =
1

σn
√

2π
exp

(
− k2

2σ2
n

)
. (6)

The embedding is carried out independently on each DCT
coefficient, changing their value by at most±1 with probabil-
ity βn.

It can be shown that minimizing the power of the most
powerful detector of this embedding scheme is equivalent to
minimizing the so called deflection coefficient which is well
approximated by (see [2] for details):

% =

n∑
i=0

β2
i σ
−4
i . (7)

This quantity must be minimized under the constraint of a
given payload size M which leads to following optimization
problem: 

min
βi

% =

n∑
i=0

β2
i σ
−4
i

M =

n∑
i=0

H3 (βi)

(8)

with H3 (x) = −2x log (x)− (1− 2x) log (1− 2x).
In the JPEG domain, we will call this embeddings scheme

Σ−MiPOD when using our method for estimating the vari-
ance and J-MiPOD for the classic version presented in [3].

3.2. Embedding with Side-Information from the pre-
Cover

To use the side-information coming from the quantization er-
ror, we propose to recast the Gaussian embedding framework
in the continuous domain. Let the pre-cover in the unquan-
tized DCT domain be modeled as a sequence of n indepen-
dent random variables X = (X1, . . . , Xn) with:

Xi ∼ N (µi, σ
c
i ). (9)

The embedding is carried out independently on each DCT
coefficient by adding to it a realization of a zero-mean Gaus-
sian N (0, εi) resulting in a “pre-stego” which is a sequence
of n independent random variables Z = (Z1, . . . , Zn) with

Zi ∼ N
(
µi, σ

s
i
2
)

; σsi =

√
(σci )

2
+ ε2i . (10)

We want to minimize the KL-divergence between the pre-
cover and the pre-stego under the constraint of embedding a
given payload size M . Since the final stego image must even-
tually be quantized, the constraint has to be expressed in the



quantized domain. This leads to the following optimization
problem:


min
εi

DKL(P ||Z) =

n∑
i=0

ln(
σsi
σci

) +
(σci )

2

2(σsi )
2
− 0.5

M =

n∑
i=0

∑
k∈Z

βki log
(
βki
) (11)

with βki = φ(k−eiεi
+0.5)−φ(k−eiεi

−0.5) being the probability
of modifying the i-th coefficient by +k, φ being the cumula-
tive distribution function the standard normal distribution and
ei = xi − [xi] being the rounding error of i-th DCT coeffi-
cient. In practice the alphabet size of the embedding scheme
must be finite, k is thus constrained to finite range and the βki
renormalized accordingly. For a fair comparison with other
embedding schemes, we set k ∈ {−1, 0, 1} for the rest of this
paper. We will call this embedding scheme Σ-SI-Gaussian.

4. RESULTS

To correctly study the performance of our approach, it is
necessary to separate the effect of the acquisition parame-
ters, in particular the camera and ISO which determine the
noise model of each image, and the effect of the processing
pipeline. We thus chose to work on datasets with one camera
sensor, and constant ISO sensitivity and constant processing
pipeline. To that end we used two different RAW databases.
The first, dubbed E1Base and used for Natural Steganog-
raphy [13], is composed of 200 RAW images taken with a
E1 Camera at ISO100 while the second, dubbed CanonBase
is composed of 119 RAW images taken with a Canon EOS
500D at ISO1600. Those images were then developed using
the rawpy library and either cropped to 256× 256 or cropped
to 512×512 then down-sampled to 256×256 without overlap
using the Pillow python library. Bases of 5000 JPEG images
were produced with a fixed sensor, and constant ISO and pro-
cessing pipeline, which consists only of demosaicking, RGB
to grayscale conversion, downscaling in the form of cropping
or down-sampling and JPEG compression.

The H matrix is estimated once for each camera and each
processing pipeline using simple least square regression. To
that end, we use a synthetic constant RAW image to which
sensor noise is added. This image is then processed using
the relevant processing pipeline for each datasets. The RAW
and developed image are then reshaped as arrays of 10 × 10
and 8× 8 blocks respectively. We eventually compute H us-
ing Eq (5). This implies that the covariance matrix of each
block was estimated without using neighboring blocks. Even
though the estimation for one block should theoretically be
carried out with all its neighboring blocks as shown in the
Natural Steganography approach [8], extensive experiments
with the E1Base showed no observable gain in security when
using those neighboring blocks for the estimation.

Embedding is simulated using our approaches, Σ-SI-
Gaussian and Σ−MiPOD as well as J-UNIWARD [1],
SI-UNIWARD [1] and MB-MiPOD [3] using our method
for estimating the variances. J-MiPOD and MB-MiPOD
using J-MiPOD’s estimated variances were also tested but
the resulting PE was always worse than J-UNIWARD and
SI-UNIWARD respectively by more than 10% on average.
Consequently we do not present those results for readabil-
ity’s sake. Steganalysis was carried out using the DCTR [14]
feature set and the Low Complexity Linear Classifier [15]
with 2500 images in the training and testing sets using 5-
folds cross-validation for finding the optimal regularization
parameter. The empirical security of the schemes are evalu-
ated using the minimal total probability of error under equal
priors: PE = minPFA

(PFA + PMD) /2

The results are summarized in Figure 2 to 4, they confirm
that using our method to estimate the variances consistently
improves the security of the tested schemes independently
of the processing pipelines. For example, PE when using
Σ-SI-Gaussian is, on average 1.5 times higher on the differ-
ent E1Bases, up to 2 times higher on average on CanonBase
QF95 when compared to SI-UNIWARD. This is true even for
pipelines which use non-linear operations, such as the VNG
or DCB demosaicking algorithms, demonstrating the robust-
ness of our approach despite the linearity assumption. Despite
using our method for estimating the variances, MB-MiPOD is
still less secure than Σ-SI-Gaussian yet more secure than SI-
UNIWARD. A similar gain in performance can be observed
with Σ−MiPOD when compared to J-UNIWARD, though
it should be noted that the comparison is not completely
fair as J-UNIWARD does not use any side-information while
Σ−MiPOD uses it in the form of the knowledge of the sensor
noise parameters and of the development pipeline. Notwith-
standing this caveat, it corroborates our claim that precise
estimation of the variances in the JPEG domain would al-
low significant gain in security for steganographic schemes
especially when compared to J-MiPOD’s methodology.

5. CONCLUSION AND PERSPECTIVES

In this paper, we presented a new method to estimate the vari-
ances of the DCT coefficients using the knowledge of the pro-
cessing pipeline. We also proposed an extension of the Gaus-
sian Embedding scheme in the JPEG domain that also uses the
quantization error as side-information. Using this approach,
we show a significant increase of performance with current
state-of-art schemes, side-informed or not. As future works,
we will study how to remove the independence assumption in
the cover model in order to fully use the covariance matrix of
each block. Another line of work will pay attention to making
the method more practical by allowing the estimation of the
covariance matrix without the knowledge of the RAW image.
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[3] Tomáš Denemark and Jessica Fridrich, “Model based
steganography with precover,” Electronic Imaging, vol.
2017, no. 7, pp. 56–66, jan 2017.

[4] Mehdi Sharifzadeh, Mohammed Aloraini, and Dan
Schonfeld, “Quantized gaussian embedding steganog-
raphy,” in ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). may 2019, IEEE.

[5] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian,
“Practical poissonian-gaussian noise modeling and fit-

ting for single-image raw-data,” IEEE Transactions on
Image Processing, vol. 17, no. 10, pp. 1737–1754, oct
2008.

[6] Thanh Hai Thai, Remi Cogranne, and Florent Re-
traint, “Camera model identification based on the het-
eroscedastic noise model,” IEEE Transactions on Image
Processing, vol. 23, no. 1, pp. 250–263, jan 2014.

[7] Thanh Hai Thai, Remi Cogranne, and Florent Retraint,
“Statistical model of quantized DCT coefficients: Ap-
plication in the steganalysis of jsteg algorithm,” IEEE
Transactions on Image Processing, vol. 23, no. 5, pp.
1980–1993, may 2014.
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