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Abstract: We propose an efficient and versatile optimization scheme, based on the combination
of multi-objective genetic algorithms and neural-networks, to reproduce specific colors through
the optimization of the geometrical parameters of metal-dielectric diffraction gratings. To
illustrate and assess the performance of this approach, we tailor the chromatic response of
a structure composed of three adjacent hybrid V-groove diffraction gratings. To be close to
the experimental situation, we include the feasibility constraints imposed by the fabrication
process. The strength of our approach lies in the possibility to simultaneously optimize different
contradictory objectives, avoiding time-consuming electromagnetic calculations.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The generation of structural colors using metallic, dielectric or hybrid nanostructures is currently
the subject of a significant amount of research works [1–3]. The interest on this mechanism
for color generation arises from its great potential for the design of ultra-thin color-tunable
devices, with high resolution and efficiency beyond the diffraction limit, for applications in optical
security, imaging and display technologies or color filtering [4–6]. Also, structural coloration is
an important complement to traditional colorant-based pigmentation mechanisms.
Very often, however, the chromatic response of the structures used for color generation is

characterized through parametric studies based on the systematic variation of their different
geometrical parameters. Although this approach has proven successful, it can be very time
consuming and does not necessarily provide the optimal solutions that best match the searched
colors. Several works making use of mono-objective optimization algorithms have been focused
on the solution of this kind of inverse problem [7,8]. Nevertheless, when the studied structures
are complex it is necessary to satisfy simultaneously several often contradictory objectives. In
that case there is not a single optimal solution but multiple trade-off solutions among the searched
objectives, making thus necessary to resort to more sophisticated strategies like multi-objective
optimization. This approach has been explored by Wiecha et al to design colour pixels based
on silicon nano-structures [9] and by J.Jung to simultaneously improve the performance and
robustness of a plasmonic wave-guide [10]. However, since several iterations are needed to
search for the optimal solutions, one strategy proposed to avoid time-consuming electromagnetic
calculations is to replace them with approximations based on meta-models. Meta-Modeling is
increasingly used due to the ongoing improvement of high-performance computer systems and
particularly the evolution of artificial intelligence tools, which not only have become a powerful
method for the modelling of physical phenomena, but also to understand, simulate and predict the
optical or resonant response of the interaction between light and matter at the nanoscale [11–16].

#379716 https://doi.org/10.1364/OE.28.003388
Journal © 2020 Received 8 Oct 2019; revised 20 Nov 2019; accepted 2 Dec 2019; published 24 Jan 2020

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.28.003388&amp;domain=pdf&amp;date_stamp=2020-01-24


Research Article Vol. 28, No. 3 / 3 February 2020 / Optics Express 3389

In this work, we propose an efficient multi-objective optimization (MOO) scheme, based on
the combination of Genetic Algorithms (GA) with a neural-networks-based meta-model, to tailor
the chromatic response of hybrid metal-dielectric gratings. We make use of the meta-model
to replace the time-consuming electromagnetic method, required to compute the spectral data
related to the colors generated with the grating.

This contribution is organized as follows: In Sect. 2 we describe the geometry of the diffraction
grating studied throughout this work. Also, we succinctly outline the rigorous electromagnetic
method used to generate the spectra from which the colors are generated. Furthermore, we
introduce and describe the meta-model used. In Sect. 3, we formulate the inverse problem to
be solved and introduce the variables of interest to be optimized together with the constraints
to be satisfied. We present our main results in Sect. 4, where we first illustrate the limitations
of mono-objective optimization through an example and then we show the optimal solutions
obtained with our MOO scheme. Furthermore, through a post-optimization procedure we discuss
robustness of the optimal solutions found and their sensitivity to fabrication errors. Also, we
study the influence of the grating’s geometrical parameters on the colors generated. Finally, in
Sect. 5 we present our concluding remarks.

2. Direct problem: meta-model-based generation of spectral data

Throughout this work we consider, without loss of generality, the periodically corrugated hybrid
multilayered structure depicted in Fig. 1. The profile z = s(x) is assumed to be invariant along
the y direction and is piece-wise defined by Eq. (1) :

s(x) =


2h
x2−x1

��x − x1+x2
2

�� if x ∈ [x1, x2]

h otherwise,
(1)

where h is the amplitude of the grating. The aperture of the V-groove region is defined as
Rα = Tα/Λwith Tα = |x2−x1 | andΛ represents the grating’s period. The region s(x)<z<s(x)+eA
is filled with a uniform layer of aluminum (Al) whereas the region s(x) + eA<z<s(x) + es is filled
with Silicon Nitride (Si3N4), a high refractive index material. We denote the Al and Si3N4 layers’
thicknesses eA and eS, respectively.

Fig. 1. Geometry of the hybrid metal-dielectric V-groove grating considered in our
contribution.

The two semi-infinite regions z ≥ s(x) + eA + eS and z ≤ s(x) are assumed to be isotropic and
homogeneous media with refractive indices equal to 1.5. This configuration corresponds to the
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case in which the fabricated structure is protected from surrounding wear with a transparent
dielectric overlay.

For the sake of brevity, in our study we arbitrarily consider the TM polarization (p-polarization)
where the magnetic field is parallel to the V-groove axis (Oy) and we assume that the plane of
incidence is the plane (Oxz). Nevertheless, the TE polarization state could be also used.

2.1. C-Method

The theoretical spectral data related to the V-groove grating shown in Fig. 1 are computed using
the C-Method, also known as Chandezon Method, through the commercial software McGrating
[17]. The C-method is a well known and powerful tool especially suited for the computation of
diffraction efficiencies of shallow sinusoidal or pseudo-sinusoidal gratings. It solves Maxwell’s
equations using the following coordinates transformation [18,19]:

v = x;

w = y;

u = z − s(x)

(2)

where s(x) is the grating’s profile. Although this transformation complicates the functional
form of Maxwell’s equations, the surface roughness is flattened, thus making the matching of
boundary conditions simpler. In the new (u,v,w) coordinates system, the problem is reduced to
an eigenvalues problem whose resolution determines the propagative and evanescent modes of
the system.
Unlike other methods [20], it has been shown that the convergence of the C-method depends

weakly on the incident field’s polarization and material permittivities. Also, it is well suited for
multi-layer systems as the one studied in this contribution [21]. However, an important limitation
is the aspect ratio and the sharp edges of the profile, which may introduce discontinuities in the
profile’s derivative function that may generate numerical instabilities in Fourier space.
In our case, to insure fast convergence, to avoid spurious effects and to remove the hyper

singularities at the sharp edges [22] (marked with red circles in Fig. 2), we rounded them using a
spline function considering a radius of curvature of about 7 nm for the corners and 2 nm for the
tip end. These values were selected from convergence and computing time considerations. The
grating’s profile with rounded edges can be defined by means of a Fourier series. It is noteworthy
to mention that in a experimental situation this rounding effect is unavoidable.

Fig. 2. Variation of the V-groove angle. The insert Fig shows the rounded edges used for
better convergence when simulating the structure.
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It must be mentioned that depending on the V-groove’s depth and aperture it is necessary to
readjust the number of harmonics to ensure convergence. As a matter of fact, the smaller the
angle, the slower the convergence because the edges are steeper. For this reason, we introduced
a convergence loop in our process to generate the reflectance spectra and we set a stop error
criterion of 10−3 between two consecutive iterations. Figure 3 shows the evolution of the absolute
error |R0N − R0N−1 | calculated throughout the convergence loop as a function of the number of
harmonics. The red line defines the stop criterion. For example, for a V-groove grating defined
with Λ = 310nm and h = 120nm, we need 51 harmonics to ensure convergence for the grating
with Rα = 0.6, against 91 harmonics in the case of Rα = 0.2, corresponding respectively to
75.5°and 28.9°V-groove angles.

Fig. 3. Evolution of the absolute error calculated throughout the convergence loop as a
function of the number of harmonics. The red line defines the error stop criterion of 10−3.
For a V-groove grating defined with Λ = 310nm and h = 120nm, we need 51 harmonics to
ensure convergence for the one with Rα = 0.6, against 91 harmonics in the case of Rα = 0.2,
corresponding respectively to 75.5°and 28.9°V-groove angles.

2.2. Meta-model

To better understand how the meta-model is used in this work, let us consider two sets X and Y of
N elements xi and yi i ∈ [1 · · ·N], respectively. Each element xi can be interpreted as a vector
whose components are the geometrical parameters (Rα,Λ, h, eA, eS)i of a diffraction grating, that
from now on we write in a more compact form as (pl)i ; l ∈ [1 · · · 5]. On the other hand, yi is a
vector whose components are the CIE L*a*b* chromatic coordinates associated to each grating
belonging to X. The CIE L*a*b* space is a perceptually uniform color space particularly suited
to human perception [23].
The meta-model can thus be interpreted as an approximation of the non trivial relationship,

noted yi = f (xi), between the geometry of the grating and the color it generates. Mathematically,
the meta-model can be written as

f̃ : R5 → R3 [CIE L∗a∗b∗];

ỹi = f̃ (xi); i = 1..N;
(3)

which, in continuity with our previous work [12], was obtained using an artificial neural network
(ANN) as intensive learning meta-model [24,25]. In this contribution we consider three hidden
layers with 100 neurons each. The weights are determined through the minimization of the mean
square error on the training set and the learning method employed is the gradient descent, which
is calculated by the back-propagation principle.
To train the meta-model we generated a color database, composed of 14000 elements, using

the spectra numerically obtained with the C-method, considering TM-polarized light and zeroth
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order diffraction in reflection configuration. Throughout our numerical experiments we found
that this size of the database was enough to minimize the average prediction error and, at the
same time, to have a sufficient number of elements to generate the database in a reasonable time.
Each geometrical parameter (pl)l=1..5 lies within the lower and upper bounds shown in Table 1.
These values were chosen taking into account industrial feasibility considerations.

Table 1. Upper and lower bounds of each parameter used to generate the database.

parameter lower bound upper bound

p1 (Rα) 0.2 0.9

p2 (Λ) 230nm 310nm

p3 (h) 40nm 120nm

p4 (eA) 5nm 35nm

p5 (eS) 0nm 135nm

The chromatic response of each structure in the database was calculated using the CIE 2deg
color matching functions and the standard illuminant D65. The related perceived colors are
depicted in Fig. 4 in the CIE L*a*b* space. We can notice that by adjusting the structure’s
parameters, we can reach a wide and vivid visible color gamut.

Fig. 4. Color data base obtained with electromagnetic simulations and shown in CIE L∗a∗b∗
space.

The difference between the initial color database and the predicted one is shown in Fig. 5(a).
We quantify the prediction error through the color difference ∆Ef ,̃f = ∆E(f (xi), f̃ (xi)) with the
formula given by CIEDE2000 [26]. The histogram in Fig. 5(b) illustrates the performance of the

Fig. 5. (a) Difference in the CIE L∗a∗b∗ space between the initial color database and the
predicted one using the trained ANN; (b) Histogram of color difference ∆Ef ,̃f between the
initial database and the predicted one.
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meta-model prediction, we notice that 78% of the initial elements of the database are predicted
with a ∆Ef ,̃f<2 and more than 98% with a ∆Ef ,̃f ≤ 4, a difference that is barely perceptible to the
human eye. This result provides confidence on the accuracy of the meta-model and its use to
replace the C-Method.

3. Inverse problem: color reproduction

In some applications where the goal is to generate true color images like, for example, in
displays technologies or zero order devices (ZOD) for hologram security authentication images,
a convenient approach often used is to define the requested colors and then to design the optimal
structure that produces them (inverse problem). In this study, we aim at finding the optimal
geometrical parameters of a structure, composed of three adjacent V-groove gratings, to best
match the target color pixels labelled A, B and C in Fig. 6.

Fig. 6. Target colors.

An important fabrication constraint is that the three gratings must be simultaneously optimized
on the same structure. Although each of them may have different geometrical parameters, they
must share the same thicknesses of deposited materials, Al and Si3N4 in the present work. The
reason for this restriction is that during the fabrication process it is easier to deposit one or several
uniform layers all over the sample, for example by thermal evaporation, than layers of different
thicknesses.
Very often, this kind of V-shape gratings is fabricated through the replication of a pattern

into a polymer film. The hard master stamp (rigid mold) can be manufactured, for example, by
focused ion beam (FIB) milling process [27] or by the combination of photolithography with
anisotropic etching [28]. During the replication process, the transfer of the master pattern to the
polymer film can be done by roll to roll or UV casting nano-imprint methods [29].

An optimal structure, noted sk, should then be composed of the combination of three adjacent
gratings [xA, xB, xC]k, each of themcharacterized by 5 geometrical parameters [p1j, p2j, p3j, p4, p5]k; j =
A,B,C as shown in Table 2, subject to the constraints

p4A = p4B = p4C = p4

p5A = p5B = p5C = p5
(4)

Table 2. Definition of a structure composed of three pixels A,B,C sharing the fourth and fifth
parameters.

pixel A pixel B pixel C

Rα p1A p1B p1C
Λ p2A p2B p2C
h p3A p3B p3C
eA p4
eS p5
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In order to relate the geometrical parameters of a grating with the searched color, we defined
the objective functions gA, gB and gC in terms of the CIE2000 color difference formula [26]

gi = ∆E(TargetPixeli, f̃ (xi))i=A,B,C (5)

These objective functions measure the closeness between each target color A,B or C and
each pixel’s color computed with the meta-model. At first sight, one may intuitively think to
formulate this multi-objective optimization problem as a mono-objective one to search for a
single optimized solution, based on a weighted combination of all the objectives. Another more
rigorous approach would be to take into account the different objective functions gA, gB and gC
making use of a dedicated multi-objective optimization method.

It should be noted that the presence of multiple objectives in a problem gives rise, in principle, to
a set of optimal trade-off solutions (known as Pareto-optimal solutions) instead of a single optimal
solution. The Pareto front fully determines the whole set of potential choices that optimally
satisfy the trade-offs among the different objective functions. Basically, in a multi-objective
optimization scheme each structure si is ranked by non-domination relationships based on its
performance (gA, gB, gC)si . In our case, it was established that a structure s1 dominates a structure
s2 if gi(s1) ≤ gi(s2); i = A,B,C and gi(s1)<gi(s2) for at least one function gi. In the absence of
any further information, one of these Pareto-optimal solutions cannot be said to be better than the
others. In this case, a further processing is required to arrive at a single preferred solution. In
general, from the set of optimal structures, one can select the solution that best fits the current
design needs or provides insightful information on the physical phenomenon studied.

4. Results

At this stage it is convenient to illustrate the performance of our meta-model-based MOO scheme
through some examples.

4.1. Limits of the mono-objective optimization

Let us define the objective functional h1 to be minimized as

h1 = min(gA + gB + gC) (6)

where gA, gB and gC are the color differences described in Sect. 3. Although, for the sake of
brevity we only present in Fig. 7 some typical results obtained when Eq. (6) is minimized. The
optimal geometrical parameters are retrieved with a numerical precision of 0.1 nm. Although
this resolution is hardly reachable during the fabrication, the results of extensive numerical
experiments showed that neither the spectra nor the colors are significantly modified at this
scale. It should be noted that any other combination of these functions could be used as well.
However, we found throughout our numerical simulations that the optimization algorithm, which
was the Particle Swarm Optimization (PSO) [30] coupled with the meta-model presented earlier,
converged to similar results. That is, the convergence strongly depends on the form of the
functional chosen and the colors reproduced are far from the target ones, as it can be seen in
Fig. 7 for the color pixel B. We used the PSO and ANN numerical implementations respectively
provided by Python through the libraries PySwarm and Keras [31,32].

4.2. Meta-model based optimization scheme (MOMmBO)

As mentioned in Section 3, one way to avoid the situation illustrated by the previous example is
to use multi-objective optimization, where the objective functions constitute a multi-dimensional
space. Our goal thus is to retrieve the geometrical parameters of the structure in Fig. 1 that
produce the target colors depicted in Fig. 6. That is, we aim at finding a trade-off among the
objective functions gA, gB and gC to be minimized (Section 3), subject to the constraints given
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Fig. 7. Optimal solution obtained by minimizing the objective functional h1 defined in
Eq.(6).

by Eq. (4) and set to guarantee physically feasibility. Also, the upper and lower bounds of the
searched geometrical parameters are shown in Table 1.

To search for the trade-off solutions, we used the Non-Dominated Sorting Genetic Algorithm
(NSGA-II) for MOO [33], combined with meta-model described in Section 2. The NSGA-II
is one of the most popular population-based algorithms used for evolutionary multi-objective
optimization (EMO). It is a very efficient method for solving problems with a small number of
objective functions. We used the implementation of NSGA-II provided in Python via the library
Platypus [34] with 1000 initial individuals and 50000 iterations, the optimal 3D-Pareto front
obtained is shown in Fig. 8(a).

Fig. 8. (a) 3D Pareto-fronts obtained by minimizing (gA, gB, gC), two realizations with
different initial random population are reported; (b) 3D-Pareto front shown in the projected
a∗b∗ plane.

In order to assess the convergence behavior of the NSGA-II, we searched for the target colors in
Fig. 6 considering different randomly generated initial populations. To facilitate the visualization,
we show in Fig. 8(a) only two of the 3D-Pareto fronts obtained. This result suggests that the
NSGA-II is not sensitive to initialization and presents a good reproducibility. Furthermore,
despite the large number of evaluations needed because of the population size, the meta-model f̃
makes possible to obtain a 3D-Pareto front in about 311 seconds.
We see that there are off-center solutions which favor two objective functions while giving

poor performances to the third one. Nevertheless, at this stage, the solutions that will be retained
will be mainly those which minimize the three functions simultaneously as gA, gB, gC<30. We
display in Fig. 8(b), using the projected CIE a∗b∗ plane space, the 1000 solutions obtained in the
3D-Pareto front. We see that the resulting front does not give completely aberrant solutions, as
these remain about potentially acceptable colors.
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In Fig. 9(a), we show an example of solution found in the Pareto front obtained with
gA = 13.02, gB = 11.42 and gC = 9.76 with the corresponding specular reflexion spectra in
Fig. 9(b).

Fig. 9. (a) One of the solutions found on the 3D Pareto-front obtained with gA = 13.02, gB =
11.42, gC = 9.76 ; (b) Reflexion spectra of the optimal structure presented in Fig. 9(a).

The retrieved colors are by far closer to the target ones than those depicted in Fig. 7 obtained
using the mono-objective optimization.

4.3. Robustness

An important issue in our study is to obtain robust solutions insensitive to the variations of
the design variables, which correspond to the potential error introduced when the samples
are fabricated. To identify the most robust solutions, noted s∗k, among those located in the
Pareto front, we defined a 5-dimensional hyper volume centered on s∗k and with a radius
of ε , where ±ε is the accuracy of the fabrication process. In our case, we fixed arbitrarily
ε = [0.025, 2nm, 2nm, 2nm, 2nm]. This parameter is to be adjusted according to the estimated
accuracy of the used manufacturing technology.

In this hyper-volume, we chose randomly M elements s∗kl ; k = 1..P and l = 1..M, where P and
M respectively represent the number of Pareto optimal solutions and the number of robustness
testing points about each solution of the Pareto set. In our case, P = 1000 corresponded to the
population size chosen for the optimization process and M was arbitrarily fixed to 500. We then
calculated the predicted colors f̃ (s∗kl) using the meta-model.
A robust solution s∗k will be therefore a solution with a small color difference Dvkl =
∆E(̃f (s∗kl), f̃ (s

∗
k));∀l ∈ 1..M with respect to each structure within the hyper-volume.

Each individual s∗kl within the hyper-volume was then ranked based on its performance Dvkl.
We chose then to analyse the distribution of individual performances by calculating the mean
of the best and the worst ranked elements. This analysis guarantees that during the fabrication
process, independently of where the error is between ±ε , even in the worst configuration, the
color will not change significantly. We show in Fig. 10 (yellow dots), the most robust optimal
solutions. It remains to choose from this set the easiest solution to manufacture.
Before closing this section we emphasize, once again, the importance of the meta-model on

the significant reduction of the computing time required in the robustness study.
This can be better visualized computing the number of required electromagnetic simulations,

which is given by the product PxM, where P and M are the parameters previously defined. Since
the estimated time required for one simulation is about 42 s and PxM= 500000 simulations, one
easily finds that 243 days would be necessary to perform all the numerical simulations. It is
important to notice that, at least for the present application, these computing times were enough
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Fig. 10. Optimal 3D-Pareto front (red points) and robust optimal solutions (yellow dots).

to obtain the expected results. However, this should no be necessarily the case for problems in
which a larger number of iterations may be required.

4.4. Pareto solutions analysis

The set of optimal solutions is used not only to achieve an optimal design, but also to obtain
and extract additional information to better understand how the geometrical parameters affect
the observed spectral variations. It also serves as a guide to understand the physical phenomena
underlying the generation of colors.
We show in Fig. 11 the distribution of the optimal geometrical parameters pll=1..3 obtained on

the Pareto front for fixed values of the thickness eA and eS. We see in Fig. 11(a) and Fig. 11(b)
that, even though it depends on the period Λ and the amplitude h, Rα seems to be the geometrical
parameter that introduces the most significant spectral differences between the three pixels.
That is, for example, two structures belonging to the 3D-Pareto front can have the same period
(Λ = 265nm for example) but two different colors (pixel A and B) if the parameter Rα is different
(Fig. 11(a)). Furthermore, the grating depth h does not vary drastically between the three pixels
(Fig. 11(b)). Thus, at constant h and Λ, different colors can be obtained just by modifying the
groove angle.

Fig. 11. Parameters distribution (Rα,Λ, h) of the optimal structures of each pixel obtained
on the Pareto front.

This fact suggests that the angle of the V-groove governs the origin of the spectral variations
observed between the three pixels. It has been shown that gap surface modes (GSPs) confined
laterally between the tapered groove sidewalls can be excited in such structures. As it can be seen
in Fig. 12, where near-field intensity maps have been computed for resonance wavelengths of
the three optimal pixels’structures presented in Fig. 9(b), there is a strong field confinement in
the z direction especially when decreasing the groove’s angle (Fig. 12(c)). The tapered groove
can be seen as a stack of infinitesimally thick metal-insulator-metal structure, with a variable
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insulator thickness along the z direction. Then, the lower the thickness, the more the effective
refractive index and the confinement of the field are important [35,36]. However, if the V-groove
angle is large, these GSPs modes can leak into surface plasmons on the side of the groove. It has
been previously shown, for the case of V-grooves milled in a semi infinite metallic surface, that
these resonant peaks are related to the formation of standing waves due to interference of counter
propagating GSPs reflected by the groove bottom and opening [37,38]. Nevertheless, further
studies are needed for the case of hybrid thin films as the ones considered in this contribution.
However, this is out of the scope of the present work and it will be subject of a future publication.

Fig. 12. Time averaged (colormap) and dispacement (black arrows) of the electric field
at resonance wavelengths (a),(b),(c) of respectively the pixels A,B and C of the optimal
structure presented in Fig. 9(a).

5. Concluding remarks

The research evidence presented in this contribution clearly shows that the use of modern
optimization tools, prior to fabrication, provides an efficient way to tailor and to optimize the
optical or resonant response of an optical device for a particular application. In this sense, within
the frame of the present work, the use of a multi-objective approach, which clearly outperforms
mono-objective strategies, opens the possibility to increase the complexity of the diffractive
structures employed for color reproduction, thus leading to chromatic effects useful for the design
of optically variable devices like those used for optical documents security, to give an example.
In the present work, a post-optimization study served to find those optimized diffraction

gratings less sensitive to variations of the geometrical parameters, which is an unavoidable
situation when the structure is fabricated even with modern laboratory equipment. Furthermore,
the post-optimization stage made evident that among the geometrical parameters optimized, the
groove’s angle of aperture had the strongest effect on the generation of color.
The inclusion of a meta-model in the optimization process is a practical way to significantly

decrease the computing time. As it has been shown throughout this work, the iterative nature of
the multi-objective approach makes the optimization of the diffraction gratings extremely long
when done with the rigorous electromagnetic method. It should be noted that generating the
database to train and validate the neural network can be time consuming; however, this is done
just once. Afterwards, the meta-model can be used without being necessarily included it in an
optimization process.
At last, the modular structure of the optimization scheme presented in this work not only

facilitates its numerical implementation, but it also makes of it a generic and suitable tool that
could be easily used for the solution of inverse or optimization problems in other branches of
optics and photonics.
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