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SELECTION-CHANNEL-AWARE REVERSE JPEG COMPATIBILITY
FOR HIGHLY RELIABLE STEGANALYSIS OF JPEG IMAGES

Rémi Cogranne

ROSAS Dept. - LM2S Lab. - FRE 2019 CNRS - Troyes University of Technology

ABSTRACT
This paper deeply studies the principle of the recent reverse JPEG
compatibility attack [1]. This analysis allows us to cast the problem
of hidden data detection in DCT coefficients within hypothesis test-
ing theory. The optimal LR test, thought efficient, is rather computa-
tionally expensive. Therefore, mild assumptions are used to simplify
the detection problem dramatically and design a test that is simple
yet extremely efficient and reliable. It is shown that the proposed
detector is way more efficient than the original test [1], and allows
highly reliable detection of data hidden within JPEG images.

Index Terms— Steganalysis, Hypothesis testing, JPEG com-
pression, Statistical methods, Reliable Detection.

1. INTRODUCTION

Steganography and steganalysis form a cat-and-mouse game in
which steganography aims at hiding data within innocuous-looking
digital images. On the opposite, steganalysis aims at detecting im-
ages that contain hidden data. Over the past decades, steganography
has been improved by the use of coding methods [2] that allows
the hiding of a secret message almost as efficiently as the optimal
rate-distortion bound. On the other hand, steganalysis has been de-
veloped by the use of machine learning method. Very large features
sets [3] along with dedicated machine learning algorithms [4, 5]
have been specifically designed to perform hidden information de-
tection. However, it has also been observed that those machine
learning methods may be dramatically impacted by the so-called
cover-source mismatch: when the dataset used for learning only
slightly differ from the (testing) dataset of interest, the performance
may significantly drop.
This phenomenon poses a severe issue in an operational context
where a highly reliable detection is crucial in order to avoid false
alarm. The problem of reliable steganalysis has been a topic of
research since almost two decades [6]: supervised learning methods
have been designed with this goal [5, 7]. On the opposite to tackle
this open problem of (highly) reliable steganalysis, a few attempts
have been proposed using hypothesis testing theory [8]. However
such methods usually have much lower statistical performances than
those achieved by supervised learning techniques because a very ac-
curate yet simple model of the cover signal is very difficult to obtain.
Very recently, a promising test has been proposed for JPEG images
compressed with high quality factor based on the so-called Reverse
JPEG compatibility [1]. While extremely efficient, such test is not
very reliable since (1) it does not achieve a high detection accuracy
for a very low false-alarm rate and (2) its statistical performance
remain analytically unknown. Based on the very same approach,
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the present paper extends the prior work [1] in order to address the
aforementioned limitation regarding reliability.

The rest of the paper is organized as follows: Section 2 recalls
the principle of JPEG compression and Reverse JPEG compatibil-
ity attack [1]. Then Section 3 formally states the problem of hidden
data detection within hypothesis testing theory to derive the Most
Powerful Likelihood Ratio Test (LRT). This test is hardly applica-
ble in practice and, hence, simplified in Section 4 which leads to
a selection-channel aware detector. Eventually, Section 5 presents
numerical results that support the relevance of the present approach
and the sharpness of the proposed detector.

2. REVERSE JPEG COMPATIBILITY TEST

In order to understand reverse JPEG compatibility [1], let us briefly
recall how JPEG compression works. The main steps of JPEG com-
pression are recalled in Figure 1; the reader is referred to [9] for
details. In brief a color image is first converted into the so-called
YCbCr color space which separates luminance (Y channel) and
chrominance (CbCr). Then the Discrete Cosine Transform (DCT) is
applied block-wise on each color channel independently over blocks
of size 8 × 8. The ensuing DCT coefficients are eventually quan-
tized adaptively using a quantization matrix; each DCT coefficient
is divided with a different factor prior to the rounding operation.
The DCT coefficients are eventually lossless compressed (typically
using Huffman coding). It is important to note that all those oper-
ations can be implemented on floating point variables at a price of
slower computation. Therefore, DCT is applied on integers which
implies that pixels values in YCbCr spatial domain are rounded to
the nearest integer prior application of the DCT. The very fact that
standard JPEG compression libraries accept integer-valued variable
has been recently exploited in image forensics [10,11] yet remained
unnoticed in steganalysis.
During decompression, DCT coefficients are lossless decompressed
then each block values are “scaled”, or more precisely multiplied
with the quantization factor; the inverse DCT is used to convert
coefficients back into the spatial domain before ultimate conversion
from YCbCr to RGB color space to get the final decompressed
image.

The rounding of the value right before the application of DCT
is extremely important in the present work. Indeed, the very last
lossy steps of JPEG compression are roughly, rounding (in spatial
domain), DCT and quantization (division and rounding in DCT do-
main). As already explained, the DCT works on blocks of 8 × 8;
hence, let us denote X1, . . . ,XN the N blocks from an image. The
DCT can be denoted as a linear change of basis:

Zn = D>XnD, (1)

where matrix D is made of orthonormal vectors: D>D = I ;
For simplicity and clarity, first we will focus on a single block and
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Fig. 1. Illustration of the main steps from JPEG compression and
decompression; the quantization on which this paper focuses is high-
lighted in red.

drop the index n and, second, we will rewrite the DCT linear trans-
formation, putting both matrices Z, X into column vectors of 64
elements, as:

z = D?x, (2)

where z and x correspond to Z and X put into column vectors and
D? is a matrix of size 64× 64 whose rows are given by the product
of rows of D.

The ultimate step of quantization can be expressed as two steps,
division and rounding:

z = Round (z� q) , (3)

with z the quantized DCT coefficients, q the vector that contains the
quantization factor (that generally differ for each coefficient) and the
operation � stands for the element-wise division.

During the decompression, the DCT coefficients are scaled be-
fore applying the inverse DCT coefficients:

x̃ = D?−1
(z� q) , (4)

where x̃ is the decompressed pixels value, D?−1 is the matrix that
represents the inverse DCT transform, made in a similar fashion as
D? and � represents the operation of element-wise multiplication.

It is obvious that neglecting the rounding error the JPEG com-
pression is reversible:

D?−1

((
D?x� q

)
� q

)
= x. (5)

Our ultimate goal is to model statistically the impact of JPEG
compression in spatial domain; to this end, let us define the quanti-
zation noise ε by:

ε = Round (z� q)− (z� q) = z− (z� q) (6)

such that one can redefine the quantized DCT coefficients z as cor-
rupted by an additive noise:

z = Round (z� q) = z� q + ε. (7)

Using the previous notations for quantization (7) and DCT (3)
into pixel decompression (4), it is straightforward to write:

x̃ = x + D?−1
(
ε� q

)
. (8)

Assuming that the rounding error of DCT coefficients ε can be mod-
eled as a uniform noise the error in spatial domain x̃ − x can be
modeled, in virtue of Lindeberg’s Central Limit Theorem (CLT) [12,
Theorem 11.2.5], as a Gaussian random variable.
The reverse JPEG compatibility as proposed in [1] is based on this
observation. While the pixels before quantization x are not available,
one can instead use the difference between x̃ and Round (x̃) which

hence follows a so-called “folded” Gaussian distribution. When the
quantization steps q are important, the distribution of rounding er-
ror in spatial domain tends to become uniform; However, for small
quantization steps q (typically JPEG quality factors 100 and 99) the
distribution of rounding error in spatial domain allows the detection
of increase of variance due to data hiding. This simple observation
leads to the following detection statistics in [1]:

Λ(x1, . . . ,xN ) =
1

64N

N∑
n=1

∥∥∥x̃n − Round (x̃n)
∥∥∥2
2
, (9)

which corresponds, with N the number of blocks from the given
image, to the estimated variance of rounding error in spatial domain.

3. STATEMENT OF REVERSE JPEG COMPATIBILITY
WITHIN HYPOTHESIS TESTING

In order to model the impact of hidden data into DCT coefficients z
on the value of pixels decompressed into the spatial domain x̃, let us
define the distribution of the rounding errors:

x̃− Round (x̃) ∼ NF (0,Σs), (10)

whereNF denotes the folded Gaussian distribution [1] whose prob-
ability density function (pdf) is given by:

fµ,σ(x) =

{∑
k∈Z

1

σ
√

2π
exp

(
(x−k−µ)2

2σ2

)
∀x ∈ (−0.5, 0.5),

0 ∀|x| > 0.5.
(11)

It follows from (8) that the covariance matrix Σs is diagonal whose
element at location (i, i) is

∑64
k=1 d

?
i,k
−2 × q2k/12 with d?i,k and qk

the elements from D? and q respectively.
Denoting s the additive stego-signal into DCT coefficients, the

rounding error into spatial domain becomes, after data hiding:

x̃− x = D?−1
(
ε� q

)
+ D?−1

(
s� q

)
. (12)

It thus follows that the rounding errors of a stego-image follows a
shifted Gaussian folded distribution defined by:

x̃− Round (x̃) ∼ NF (D?−1
s� q,Σs). (13)

Since, during the JPEG compression, the DCT is carried out over
each and every blocks of 8 × 8 pixels separately, one can assume
that those blocks are statistically independent. On the top of this
model, recent steganographic methods are content adaptive, which
means that each and every DCT coefficients have a different prob-
ability of being used to hide data. Denoting βk the probability of
modifying k-th DCT coefficient in n-th block, the joint probability
of modifying together DCT coefficients within a block is given by
P[s = (s1, . . . , s64)] = βs11 (1−β1)1−s1×. . .×βs6464 (1−β64)1−s64

where sk is a binary variable that indicates a change at k-th DCT co-
efficient. Even assuming that each DCT coefficient can be changed
in only one direction, the probability distribution of the rounding
errors in the spatial domain after embedding becomes:

fβ
µ,σ(x) =

∑
s?∈S

P[s = s?]fµ,σ
(
x+ D?−1

s? � q
)
. (14)

Unfortunately, the exact statement (14) of such probability distribu-
tion involved a sum over the set S all possible changes whose car-
dinality is 264 terms; which becomes 364 if we assume that DCT



coefficients can be changed in both directions ±1 (at a cost of more
complex notations).

The present paper focuses on reliable detection in the sense that
the probability of false-alarm must be controlled and possibly set to
a very low value. To this end one can note that in the case where all
parameters are known to the detector, the problem is reduced to a test
between simple hypotheses: H0 : {x̃− Round (x̃) ∼ NF (0,Σs)}
andH1 :

{
x̃− Round (x̃) ∼ Nβ

F (0,Σs)
}

. The pdf of those distri-
butions are respectively given in Eq. (10) and (14). In such a context,
that Neyman-Pearson lemma, see [12, Theorem 3.2.1], states that
among the tests δ with a probability of false-alarm (PFA) bounded
by α0:

P[δ(x) = H1|H0] ≤ α0, (15)

the most powerful test, which achieves the highest possible detection
power (often also referred to as the detection accuracy), defined as:

P [δ(x) = H1|H1] , (16)

is the Likelihood Ratio (LR) test defined, from the independence of
DCT blocks, by:

Λ(x1, . . . ,xN ) =

N∑
n=1

Λ(xn) =

N∑
n=1

fβ
µ,σ(xn)

fµ,σ(xn)
≷H1
H0

τ, (17)

where the decision threshold τ is set, to satisfy the false-alarm con-
straint (15), as the solution of the equation P[Λ(X) > τ |H0] = α0.

4. SIMPLIFICATION FOR SELECTION CHANNEL
AWARE REVERSE JPEG COMPATIBILITY

The statement of hidden data detection problem, as described in Sec-
tion 3, clearly shows that the exact formulation of the LR test must
be simplified. This section aims at describing a few simplifications
that allow the applying of the detection method in a fast and effi-
cient way. The first simplification that we propose is to ignore the
“folded” aspect of the distribution; Indeed, this very matter makes
the distribution in the LR test (17) very complex to deal with. By
assuming that rounding error in spatial domain follows a Gaussian
distribution:

x̃− Round (x̃) ∼ N
(

Round
(
D?−1

s� q
)
,Σs

)
, (18)

the distribution of rounding error from steganographic images can
be modeled separately for each possible DCT coefficient due to the
orthnonormality of DCT transform. Using this simplification, one
can show that the LR test (17) becomes:

Λ?(xn) =

64∑
k=1

βk
2

(∥∥x̃− Round (x̃)
∥∥2
2
− (19)

∥∥∥x̃ + D?−1
1k � q− Round

(
x̃ + D?−1

1k � q
)∥∥∥2

2

)
,

with 1k the vector made of 0 except k-th element whose value is 1;
Note that test (19) corresponds to a matched subspace detector [13].

One can note that the LR test (19) weights all possible changes
of DCT coefficients by the probability that this coefficient is used
during embedding, see proof in [14]. This is known in steganaly-
sis as a “Selection-Channel” approach which consists in taking into
account knowledge from the embedding during the detection.

The last simplification we proposed is similar to the one adopted
in [1]. It essentially consists in assuming that the quantization step is

small with respect to the noise, in which case it has been proved [5,
15] that the above test (19) is asymptotically equivalent to a test (9)
on the variance, as originality proposed in [1]. However, when using
this approach, the test (19) should be weighted by the probability
of using each pixel. This is not straightforward since the test (9)
operates on a block, of 64 pixels and DCT coefficients, while each
DCT coefficient has a different probability of embedding. To this
end, it is proposed to approximate the Selection-Channel approach
by the expected number of changes into each block. Such simplified
Selection-Channel Aware (sca) test is given by:

Λsca(x1, . . . ,xN ) =

N∑
n=1

(
64∑
n=1

βk,n

)∥∥∥x̃n − Round (x̃n)
∥∥∥2
2
.

(20)
Last, we wish to improve this test which requires the knowledge

of the embedding scheme. To tackle this lack of knowledge, we seek
at finding a Seletion-Channel Aware approach that approximates the
probabilities of using the DCT coefficient that is quite accurate for a
vast range of embedding schemes. To this end, we have noted that
adaptive steganographic schemes embed more in DCT blocks whose
values are large, as opposed to DCT coefficients made of small val-
ues that represents generally smooth and simple blocks. Therefore
we propose the following weighted test:

Λw(x1, . . . ,xN ) =

N∑
n=1

wn

∥∥∥x̃n − Round (x̃n)
∥∥∥2
2
, (21)

in which the weights wn represents the sum of absolute value of
DCT coefficients: wn =

∑64
k=1 |zn,k| = ‖zn‖1.

Last, but not the least, the present work aims at providing a re-
liable test, whose statistical performance can be established analyti-
cally. To this end, we propose to normalize the above test (20)-(21)
as:

Λ
w

(x1, . . . ,xN ) =, (22)

with µ0 ≈ 0.0657 the expected value of the decision statistics ‖x̃−
Round (x̃)‖22, under hypothesisH0, and σ2

0 ≈ 0.0625 its variance.
It is straightforward from the CLT that the normalized test (22) fol-
lows a zero-mean Gaussian distribution with unit variance:

Λ
w

(x1, . . . ,xN ) ∼ N (0, 1). (23)

This statistical distribution allows us to guarantees a prescribed
false-alarm rate α0:

P
[
Λ

w
(x1, . . . ,xN ) > τ

]
= α0, (24)

by setting the decision threshold as follows:

τ = Φ−1 (1− α0) , (25)

with Φ−1 the inverse of the normal cdf. As we shall see in Section 5,
the setting of a PFA is extremely accurate in practice.

5. NUMERICAL RESULTS

In order to show the relevance of the proposed approach, we have
carried out extensive numerical evaluations using both BOSS-
base [16] and ALASKA base [17] respectively made of 10, 000
and 80, 000 images. We have used four different embedding
schemes, from rather rusty nsF5 [18] to state-of-the-art adaptive
J-UNIWARD [21] including EBS [19] (in its non-side-informed
version) and UED [20].



Payload Test [1] Λsca (20) Λw (21) LR (19)
0.1 (4055) 0.8819 1.0000 1.0000 1.0000
0.06 (2339) 0.8326 0.9999 0.9991 0.9999
0.04 (1512) 0.7824 0.9991 0.9968 0.9987
0.025 (913) 0.7058 0.9975 0.9931 0.9968
0.015 (527) 0.5902 0.9930 0.9796 0.9830
0.01 (340) 0.4352 0.9728 0.9441 0.8876
0.006 (196) 0.1560 0.8374 0.7288 0.5502

Table 1. Comparison of efficiency of prior work and proposed ste-
ganalysis tests over BOSSbase [16], compressed with quality factor
100, against UED embedding scheme. Test performance is measured
using detection power (16), i.e. true positive rate, for PFA of 0.1%.

Embedding Test [1] Λsca (20) Λw (21) LR (19)
UED (822) 0.0994 0.5973 0.4998 0.5624
EBS (509) 0.0428 0.2356 0.1854 0.0894

J-UNIWARD (606) 0.0489 0.3728 0.2108 0.2653

Table 2. Comparison of efficiency of prior work and proposed ste-
ganalysis tests over BOSSbase [16], compressed with quality factor
99, for various embedding scheme with payload 0.025 bpnzAC. Test
performance is measured using detection power (16), i.e. true posi-
tive rate, for PFA of 0.5%.

Embedding Test [1] Λsca (20) Λw (21) LR (19)
UED (1364) 0.1297 0.7214 0.6352 0.6580
EBS (886) 0.0513 0.3825 0.2923 0.1074

J-UNIWARD (1020) 0.0553 0.4744 0.3068 0.2892

Table 3. Comparison of efficiency of prior work and proposed ste-
ganalysis tests over BOSSbase [16], compressed with quality factor
99, for various embedding scheme with payload 0.04 bpnzAC. Test
performance is measured using detection power (16), i.e. true posi-
tive rate, for PFA of 0.1%.

First of all, to show the improvement in terms of detection ac-
curacy, Tables 1-3 contrast the detection power (16) of the original
detector, as proposed in [1], and the test proposed in Section 4. Ta-
ble 1 shows the empirical detection power at PFA set to α0 = 0.001
obtain with UED [20] embedding scheme at various embedding pay-
load over BOSSbase [16]. First, one can note that the proposed de-
tectors dramatically improve the detection accuracy, especially for
very low embedding payload; note that numbers in bracket represent
the mean number of DCT coefficients changed. The proposed de-
tectors maintained a very high detection power around or above 0.9
for as low as 340 changed DCT coefficients. Surprisingly, the sim-
plified LR test (19) has a lower detection accuracy despite a much
larger computational cost.

Next, Tables 2-3 show similar results, in terms detection power,
for JPEG quality factor 99 and for several embedding schemes. Ta-
ble 2 shows the detection accuracy for PFA of α0 = 0.005 and em-
bedding rate of 0.025 bpnzAC (bits per non-zero AC coefficients).
Table 3 shows the detection accuracy for PFA set to α0 = 0.001 and
embedding rate of 0.04 bpnzAC. Again one can note the very large
improvement especially for lowest number of changed DCT coeffi-
cients. One can also note that the Selection-Channel Aware detec-
tor (20) always reaches the highest accuracy; however, the proposed
weighted detector achieves very competitive detection performance
and has the advantages of not depending on the embedding scheme.

To conclude with the comparison of detectors’ accuracy, Fig-
ure 2, proposes a ROC curve including results from prior work [1]
along with Selection-Channel aware (20) and weighted detec-
tors (21). Those results have been obtained with UED embedding
scheme [20] (straight lines) and J-UNIWARD [21] (dashed lines)
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Fig. 2. Comparison of detectors performance through ROC curves;
results obtained with UED (solid lines) [20] and J-UNIWARD
(dashed lines) [21] embedding schemes over ALASKA base [17].
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Fig. 3. Comparison between theoretical and empirical false alarm
rate as a function of decision threshold for BOSSbase [16] and
ALASKA base [17]

with payload 0.01 bpnzAC over the 80, 000 images from ALASKA
base [17]. This large dataset of images allows us to draw with higher
accuracy detection power for very low false alarm rate (typically
up to 10−4). Again, one can note that the proposed detectors allow
achieving up to twice higher detection accuracy over prior work [1].

Eventually, besides improvements of detection accuracy, the
second main contribution of present paper lies in the control of the
false-alarm probability (22). To show the relevance of the proposed
methodology, Figure 3 contrasts the theoretical false alarm rate and
the empirical ones over two different datasets of images, BOSS-
base [16] and ALASKA base [17]. One can note that the theoretical
false-alarm rate deduced from CLT matches very well with empiri-
cal false-alarm rate up to below 10−4. Those results show both the
relevance of the proposed approach, which allows setting a decision
threshold as a function of the desired false-alarm rate, as well as the
sharpness of the statistical model.

6. CONCLUSION

The present work aims at extending the recent Reverse JPEG com-
patibility [1] for steganalysis of JPEG images compressed with high-
est quality factor. We have proposed an approach based on hypoth-
esis testing theory. The present work shows the relevance of the ap-
proach proposed in [1] since highest detection accuracy is obtained
using the same approach, which subpar the results obtained using
simplified LR test. We show, however, that testing theory allows the
designing of a Selection-Channel Aware test that achieves a much
higher detection performance as well as a false alarm rate that can
be controlled with high accuracy, which is of crucial importance in
an operational context.



7. REFERENCES

[1] J. Butora and J. Fridrich, “Reverse JPEG compatibility at-
tack (DOI:10.1109/TIFS.2019.2940904, available as Early
Access),” IEEE Transactions on Information Forensics and Se-
curity, 2019.

[2] T. Filler, J. Judas, and J. Fridrich, “Minimizing additive distor-
tion in steganography using syndrome-trellis codes,” Informa-
tion Forensics and Security, IEEE Transactions on, vol. 6, no.
3, pp. 920–935, Sept 2011.

[3] T. Denemark, V. Sedighi, V. Holub, R. Cogranne, and J.
Fridrich, “Selection-channel-aware rich model for steganal-
ysis of digital images,” in Information Forensics and Security
(WIFS), IEEE 6th International Workshop on, December 2014,
pp. 48–53.

[4] R. Cogranne, V. Sedighi, J. Fridrich, and T. Pevný, “Is ensem-
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tem — the ins and outs of organizing BOSS,” in Information
Hiding, 13th International Workshop, Prague, Czech Repub-
lic, May 18–20, 2011, Lecture Notes in Computer Science, pp.
59–70, LNCS vol.6958, Springer-Verlag, New York.

[17] R. Cogranne, Q. Giboulot, and P. Bas, “The alaska steganaly-
sis challenge: A first step towards steganalysis into the wild,”
in Proceedings of the ACM Workshop on Information Hid-
ing and Multimedia Security, New York, NY, USA, 2019,
IH&MMSec’19, pp. 125–137, ACM.
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