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This paper addresses a capacitated lot-sizing problem with pricing decisions. The considered problem consists of planning the production of dierent products during several time periods with setup costs. Unlike the classical version of the capacitated lot sizing problem, the demand for the products is not xed but price-sensitive in this problem. The demand function is assumed to be nonlinear. The decisions consist of establishing the best strategy for production and inventory, and the best price policy. We propose an improved mathematical formulation by extending some previous works using new lower and upper bounds to reduce the solution space. We also introduce new heuristic methods to provide near-optimal solutions. These methods are tested on several instances from previous studies. The obtained results illustrate the eciency of these methods.

Introduction

Dynamic pricing can be considered one of the most powerful features for companies to increase their prot and the adaptability of factories [START_REF] Kienzler | Value-based pricing and cognitive biases: An overview for business markets[END_REF]). The use of a pricing strategy associated with demand knowledge helps companies manage their production and optimize their inventory policy.

Dynamic pricing has been a subject of research for economists for more than 50 years. It became popular with companies after the success of yield management in the airline industry, increasing company prots in the sector (for instance, it increased the prots of American Airlines by 5% [START_REF] Smith | Yield management at American airlines[END_REF])). Yield management has been successfully applied to the hotel industry [START_REF] Bitran | An application of yield management to the hotel industry considering multiple day stays[END_REF], [START_REF] Bandalouski | An overview of revenue management and dynamic pricing models in hotel business[END_REF]) and passenger trains [START_REF] Bharill | Revenue management in railway operations: A study of the Rajdhani Express[END_REF]). It is also currently used by e-retailers (for example Amazon [START_REF] Chen | An empirical analysis of algorithmic pricing on amazon marketplace[END_REF])), but has yet to be applied to complex production and inventory systems.

Dierent surveys on dynamic pricing and inventory decisions were conducted: [START_REF] Bitran | An overview of pricing models for revenue management[END_REF], [START_REF] Elmaghraby | Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions[END_REF], and Chen and Chen (2015).

In addition, [START_REF] Chan | Coordination of pricing and inventory decisions: A survey and classication[END_REF] and Chen and Simchi-Levi (2012) considered problems dealing with inventory and dynamic pricing decisions with production considerations.

Dierences between monopolistic and competitive markets must also be considered.

A competitive market is generally modelized using game theory. In [START_REF] Adida | Dynamic pricing and inventory control: Uncertainty and competition[END_REF] and [START_REF] Lamas | Joint dynamic pricing and lot-sizing under competition[END_REF], problems with a company and multiple competitors are modelized. The main purpose of the studies was to nd the Nash equilibrium maximizing the total protability of their systems.

In studies on dynamic pricing with monopolistic companies, two main types of modelization have arisen. The rst considers a Markov or Poisson decision process. The demand for a product is then represented by an arrival rate of the customers, depending on the price. For instance, Chen et al. (2015) studied a make-to-order system with pricing and modelized the demand using a Poisson process. In [START_REF] Yu | Optimal production, pricing, and substitution policies in continuous review production-inventory systems[END_REF], a production and inventory system, in which certain products could be substituted by higher-quality products to fulll a demand, was studied. In the cited papers, the authors determined an optimal price and production policy based on the state of the system.

The second main type of modelization for monopolistic problems is mathematical programming. The majority of these mathematical formulations are in fact based on lot-sizing formulations. The main dierence with lot-sizing problems concerns a nonxed product demand. The demand is modelized by a closed-form function depending on the price. The study in [START_REF] Thomas | Price-production decisions with deterministic demand[END_REF] was one of the rst to deal with pricing and lot-size decisions, and the author derived an optimal price policy based on discrete values of the production and demand. [START_REF] Haugen | The prot maximizing capacitated lot-size (PCLSP) problem[END_REF] expanded the capacitated lot-sizing problem by introducing pricing considerations. This model may also be viewed as an expansion of Thomas' study. In [START_REF] Mahmoudzadeh | Robust optimal dynamic production/pricing policies in a closed-loop system[END_REF], a problem of the production of new products and a remanufacturing of old products was considered. They also proposed a deterministic and robust mathematical formulation. In Bajwa et al. (2016a), a model similar to that by [START_REF] Haugen | The prot maximizing capacitated lot-size (PCLSP) problem[END_REF] was proposed, although it allowed lost sales and applied an exact algorithm. The authors also compared the results obtained by the non-coordinated and the coordinated approach. [START_REF] Ouazene | Coordination and optimization of dynamic pricing and production decisions[END_REF] studied a problem with multiple selling channels for products. The authors compared the impact of dynamic and static pricing on the prots.

In [START_REF] Huang | Demand functions in decision modeling: A comprehensive survey and research directions[END_REF], a survey of dierent methods for modelizing customer demand was presented. The two most widely used type of demand functions are linear and isoelastic functions. All the studies on lot-sizing cited here considered a linear demand. The survey also provided interesting variants for incorporating advertising, rebates, quality, and lead-time into the demand function.

Few problems are modelized through dierential equations. In [START_REF] Maihami | Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional eorts[END_REF], a generic, stochastic, and price-dependent demand was proposed. The authors proved the uniqueness of their solution and developed an algorithm to determine it. [START_REF] Feng | Dynamic joint pricing and production policy for perishable products[END_REF] proposed a model with an inventory level based on a dierential equation, where the production is controlled based on the production rate. The resolution approach used Lagrange multipliers, and was aimed at nding the optimal price and production rate for each model state. In [START_REF] Wu | Dynamic lot-sizing models with pricing for new products[END_REF], a lot-sizing and pricing problem was presented, which used the Bass diusion model for the demand of new products. The problem is modelized using a dierence equation (discretized dierential equation), and every state of the system is fully determined by its initial state.

Studies dealing with lead-time decisions and dynamic pricing have also been previously published. In [START_REF] Li | Pricing for production and delivery exibility in single-item lotsizing[END_REF], a model with lot-sizing decisions was developed, where the customer may accept a delayed delivery to earn a discount. In Öner-Közen and Minner (2017), a Markov decision process was designed based on price and lead-time dependent consumers, and considering a guaranteed lead-time decision. The authors derived optimal strategies for variable decisions. Finally, in [START_REF] Albana | Pricing decision and lead time quotation in supply chains with an endogenous demand sensitive to lead time and price[END_REF] a model for a supply chain with pricing and lead-time decisions was proposed. The author considered a decrease in production cost based on the lead-time.

Regarding the variety of models studied in the literature, a comparison of the dierent methods is not easy, and few benchmarks or data exist to test these methods. In addition, there has been a lack of real-world application studies in the literature, despite all advantages a company may earn by using dynamic pricing. For a company, achieving an accurate representation of product demand is complex, requiring numerous price changes to estimate the demand parameters. In den [START_REF] Boer | Dynamic pricing and learning: historical origins, current research, and new directions[END_REF], a survey on demand learning was provided, as well as a method for using it in a dynamic pricing problem.

The results illustrate the trade-o companies face between learning to have a reliable demand representation and using the results to create a prot. In [START_REF] Fisher | Competition-based dynamic pricing in online retailing: A methodology validated with eld experiments[END_REF], an example of successful demand learning is described. The methods applied to obtain real data are presented in their study. The authors worked with an e-retailer, experimented with random price changes over a one month timeframe and recorded daily changes in their competitors. They succeeded in obtaining an accurate demand function, and the use of this function in a dedicated algorithm increases the e-retailer revenue by 11% for the tested products. [START_REF] Herbon | Dynamic pricing vs. acquiring information on consumers' heterogeneous sensitivity to product freshness[END_REF] also considered an inventory problem with dynamic pricing decisions, and the author aimed to nd the optimal choice for a retailer between the development of a dynamic pricing model and the collection of customer purchase information.

In this study, we focus on a lot-sizing problem with pricing decisions. The problem considers multiple products and setup cost. The demand function is assumed to be isoelastic.

The main contributions of this paper can be summarized as follows.

• A new mathematical model is proposed.

• A heuristic method is developed, which provides high-quality solutions.

The remainder of this paper is organized as follows. Section 2 is dedicated to the mathematical formulation and its theoretical properties. In section 3, the resolution method based on two constructive heuristics is detailed. Section 4 compares the results of the heuristics on instances from the literature with results obtained using the LINGO solver. Finally, some concluding remarks and insights into future study are provided.

Problem formulation

The initial problem considered in this study is the same as the most general model addressed in Bajwa et al. (2016a). Their mathematical model is denoted in our study as (P 0 ). The problem represents a company producing and selling products. The company is also able to stock its products to sell them later. The seller decides during each period the quantity of products produced, the quantity stocked, and the quantity sold to maximize its prots.

The customer demand for each product is represented by a price-dependent function.

In our study, the considered demand function is an isoelastic one: D(P jt ) = γ jt α j P -βj jt , where γ is the seasonality parameter, α is the demand for a price equal to 1, and β is the price elasticity of the demand. The price of each product can be changed during each period (we assume here that the cost of changing the price is negligible).

Notations

The decision variables used in the mathematical model are as follows:

• P jt : Price for product j during period t;

• S jt : Quantity of product j sold during period t;

• X jt : Quantity of product j produced during period t;

• I jt : Inventory of product j at the end of period t;

• Y jt : Binary, equal to 1 if there is a setup to produce j during period t; 0, otherwise.

The rst four variables are non-integer and greater than or equal to zero. The last one is a binary variable {0,1}.

The following sets and notations are used for the mathematical model:

• J: Number of products;

• T : Number of time periods;

• c jt : Production cost for product j during period t;

• h jt : Inventory cost for product j during period t;

• a jt : Setup cost to produce j during period t;

• C t : Production capacity during period t;

• v j : Production capacity used for one unit of product j;

• α j : Demand of product j for a price equal to 1;

• β j : Price elasticity of the demand for product j;

• γ jt : Demand seasonality of product j during period t .

Initial model

The initial model (P 0 ), is detailed below:

max z = J j=1 T t=1 (P jt S jt -c jt X jt -h jt I jt -a jt Y jt ) (1) such that S jt -γ jt α j P -βj jt ≤ 0, ∀j, t (2) J j=1 v j X jt ≤ C t , ∀t (3) 
S jt + I jt -I jt-1 -X jt = 0, ∀j, ∀t ∈ {2, ..., T -1} (4) S j1 + I j1 -X j1 = 0, ∀j (5) 
S jT -I jT -1 -X jT = 0, ∀j (6) v j X jt -C t Y jt ≤ 0, ∀j, t (7) X jt , S jt , P jt , I jt ≥ 0, Y jt ∈ {0, 1} , ∀j, t (8) 
Equation ( 1) represents the objective function dened as a prot maximization.

Constraints (2) ensure the sales for the products to be less than or equal to the demand for these products, where an inequality means that lost sales are allowed. Constraints

(3) are production capacity constraints. Constraints (4), ( 5), and (6) represent the stock conservation constraints, with the initial and nal inventory equal to zero. Finally, constraints (7) add a setup cost for each production period.

Discussion on the nonconvexity of the problem

This model (P 0 ) is a classical model already proposed in the literature. Owing to the constraints (2) and objective function, the model is nonlinear. In addition, the same constraints make the model nonconvex. The outer approximation algorithm was introduced by [START_REF] Duran | An outer-approximation algorithm for a class of mixed-integer nonlinear programs[END_REF] and consists of decomposing a model into a master problem with relaxed nonlinear constraints and several primal models. The results of the primal model are injected into the master problem to linearize the removed constraints. This algorithm was used by Bajwa et al. (2016a) to solve the problem with a linear demand, but is not usable for a model with an isoelastic demand function. This algorithm requires constraints expressed by g(x) ≤ 0, where g is a convex function, and

x is a real variable. In the studied model, constraints (2) do not satisfy those conditions.

For instance, the same conditions are also necessary to use the Benders decomposition of [START_REF] Georion | Generalized benders decomposition[END_REF]. Attempts at relaxing the convexity conditions have been proposed

by [START_REF] Kesavan | Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs[END_REF] and [START_REF] Bergamini | An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms[END_REF], although these methods were ineective at solving this problem.

The consequence of this nonconvexity is the inability to replicate the results obtained by Bajwa et al. (2016a) for the isoelastic case, which is why we chose to develop specic methods and compare them only with a commercial solver.

Prior to the use of this software to solve the model, it had to be modied to enhance its computational tractability. In its current state, the model cannot be solved eciently by a commercial solver.

The modied version of the model is constructed by adding new lower and upper bounds to limit the solution search space. A comparison of the eciency of LINGO software for the resolution of the model P 0 and the modied model P 1 is presented in section 4.

Proposed model

The results described in this section are based on the mathematical analysis of (P 0 )

and more specically on a reformulation with xed setup variables. The results consist of new bounds for the decision variables. These bounds cut o non-optimal values of the variables.

The rst bound developed limits the value of the sales variables S jt .

Proposition 1. :

The optimal quantity of each product j sold during period t is bounded as follows.

S * jt ≤ α j γ jt (1 -1 βj ) βj (min t0∈{1,..,t} (c jt0 + t-1 k=t0 h jk )) βj , ∀j, ∀t (9) 
Proof. The proof of this proposition is based on a reformulation of the model (P 0 ) with a xed setup conguration (xed values of the variables Y jt ). The reformulation replaces four 2-index variables by one 3-index variable. This is a reformulation of the initial model (P 0 ) with only one variable type. This new model is based on the notations introduced in the previous section and on the following notations:

• N = {(j, m, n), j ∈ {1, .., J}, m ∈ {1, ..., T }, n ∈ {m, ..., T }, Y jm = 1} • A jmn = c jm + n-1 t=m h jt , ∀(j, m, n) ∈ N • B jn = α j γ jn , ∀j, n
Here, X jmn represents the quantity of product j produced during period m and sold during period n.

The initial variables X jt , S jt , and I jt from model (P 0 ) are replaced by the variables X jmn . The relationships between these variables are given as follows:

• X jt = T n=t X jtn , ∀j, t • S jt = t m=1 X jmt , ∀j, t • I jt = t m=1 T n=t+1 X jmn , ∀j, t
The mathematical model, denoted as (RP 1 ), is as follows:

maximize z P = (j,m,n)∈N (X jmn ((B jn ) 1 β j ( n l=1 X jln ) -1 β j -A jmn )) - J j=1 T m=1 a jm Y jm (10) such that J j=1 T n=m v j X jmn ≤ C m , ∀m ∈ {1, ..., T } (11) X jmn ≥ 0 , ∀(j, m, n) ∈ N (12)
The formulation of equation ( 10) is based on theorem 1 from Bajwa et al. (2016a) assuming that there are no lost sales for the optimal solution. This means that inequalities

(2) are replaced by equalities. Then,

P jt = ( Sjt αj γjt ) -1 β j = ( t m=1 Xjmt αj γjt ) -1 β j
. By replacing P jt with this expression in the objective function (1), we are able to formulate the entire equation as a function depending only on X jmn .

In the case of a non-limiting capacity (i.e., constraint ( 11) is always veried), the optimal value of X jmn is obtained by dierentiating the objective function with respect to X jmn , setting this function to 0, and solving for X jmn . The value obtained is as follows:

X * jmn = α j γ jn 1 -1 βj c jm + n-1 t=m h jt βj - n l=1,l =m X jln . (13) 
Without a loss of generality, we may suppose that all of the products sold during a period are made during only one previous period. Then, because the relationship between the S jt and X jmn variables is given by S jt = t m=1 X jmt , the optimal quantity sold during a period n depends only on one value over all m periods of X jmn . This production period is denoted by m * . It follows then that

S * jt (m * ) = α j γ jt 1-1 β j c jm * + t-1 n=m * hjn βj .
Finally, its maximal value over all possible values of m * is given as follows:

max m * S * jt (m * ) = α j γ jt 1 -1 βj min t0∈{1,..,t} (c jt0 + t-1 k=t0 h jk ) βj . ( 14 
)
The following properties are derived from this inequality.

Corollary 1. For each product, the total optimal quantity produced is bounded as follows.

T t=1

X * jt ≤ T t=1 α j γ jt (1 -1 βj ) βj (min t0∈{1,..,t} (c jt0 + t-1 k=t0 h jk )) βj , ∀j (15) 
A lower bound for the optimal price of each product at each period is also provided.

P * jt ≥ (min t0∈{1,..,t} (c jt0 + t-1 k=t0 h jk )) 1 -1 βj , ∀j, ∀t (16) 
Proof. For the rst part of the corollary, we start by adding equations (4), ( 5), and (6)

∀t ∈ T , and the result of this sum is T t=1 X jt = T t=1 S jt , ∀j. Finally, with the inequality from proposition 1, the following result is obtained.

T t=1 X * jt = T t=1 S * jt ≤ T t=1 α j γ jt (1 -1 βj ) βj (min t0∈{1,..,t} (c jt0 + t-1 k=t0 h jk )) βj (17)
For the second part, the proof starts from S * jt = γ jt α j (P * jt ) -βj (the optimal solution does not include any lost sales).

By replacing S jt by its closed-form into (9), we obtain the following:

γ jt α j (P * jt ) -βj ≤ α j γ jt (1 -1 βj ) βj (min t0∈{1,..,t} (c jt0 + t-1 k=t0 h jk )) βj (18)
Finally, we have the following:

P * jt ≥ (min t0∈{1,..,t} (c jt0 + t-1 k=t0 h jk )) 1 -1 βj (19)
Remark. Within equations ( 9), (15), and ( 16), the term (min t0∈{1,..,t} (c jt0 + t-1 k=t0 h jk )) may be replaced by c jt if parameters c jt are constant over time or more generally when equation c jt ≤ c jt0 + t-1 k=t0 h jk , ∀t, ∀t 0 ∈ {1, ..., t} is veried.

In the following section, the model considered is denoted by (P 1 ) and is made up of model (P 0 ) with the addition of equations ( 9), ( 15), and ( 16).

Optimization approaches

Using LINGO software to obtain optimal or near-optimal solutions is appealing. However, it is unsustainable as the solver quickly reaches its limits with an increase in the size of the instance. In addition, a proof of the optimal solution is unavailable for this problem when using LINGO to solve it. Therefore, an alternative to LINGO was developed in this study.

Our approach relies on the fact that, for a given setup (xed values of Y jt ), an optimal solution can be found by using the model reference adaptive (MRA) search algorithm developed in Bajwa et al. (2016a).

MRA algorithm

This algorithm was introduced by Bajwa et al. ( 2016a), and we present its main steps in this section, referring to the original study for further details and a theoretical proof.

MRA starts with an initial feasible solution, generates an increasing sequence of objective values, and terminates at an optimal solution.

The notations for the algorithm are the same as those used in the model (RP 1 ) presented during the proof of Proposition 1.

The algorithm is based on two dierent cases that may occur during a given period:

Case 1: The capacity constraint is not binding for the optimal solution. Then, for a given m period, the optimal solution is found by dierentiating z P with respect to X jmn , setting it to 0, and solving for X jmn as follows:

X * jmn = B jn (1 -1 βj ) βj A βj jmn - n l=0,l =m X jln (20)
Case 2: The capacity constraint is binding for the optimal solution. In this case, the Lagrangian operator can be written as follows:

L = -z P + T m=1 λ m ( J j=1 T n=m v j X jmn - C m ).
Then, for a given m period, the optimal solution may be found as a function of λ m :

X * jmn =      B jn (1-1 β j ) β j (Ajmn+λmvj ) β j - n l=0,l =m X jln if X * jmn ∈ N + m 0 if X * jmn ∈ N 0 m (21) 
where N + m is the set of variables taking a positive value for the optimal solution (the most valuable), and N 0 m is the set of variables equal to zero for the optimal solution (the least valuable).

It is not possible to obtain a closed-form value for λ m here by replacing (21) into the capacity constraint. Therefore, λ m is determined using a bisection method, with the value in [0, max (j,n) ( 1

vj ∂z P ∂Xjmn (0))].
The purpose of this algorithm is to nd the variables belonging to the set N + m and to nd the values of λ m associated with this set. This algorithm was proved to be optimal for a given setup, then the main issue here is to nd the optimal conguration, or at least a near-optimal one. Two dierent constructive methods have been developed to build this setup conguration.

These methods use the assumption that the production during a particular period will occur only if the inventory level is equal to zero at the end of the previous period. This Algorithm 1: MRA pseudocode Bajwa et al. (2016a) X jmn = , ∀j ∈ {1, ..., J}, ∀m ∈ {1, ..., T }, ∀n ∈ {m, ..., T } ; Denote X q as the variable associated with the q th position in the sorting based on the 1 vj ∂z P ∂Xjmn (0) values;

z 0 P = 0, s = 0, ∆z = 1 ; while ∆z > 0 do s = s + 1, m = 1 ; while m ≤ T do if Case 1 then X jmn = max( Bjn(1-1 β j ) β j A β j jmn - n l=0,l =m X jln , 0) , ∀j ∈ {1, ...,
q m = 0, q * m = J * (T -m);
while q * m = q m do q m = q m + 1;

Determine λ m (q m ) using the bisection method; if

1 vq m+1 ∂z P ∂Xq m +1 (0) ≤ λ m (q m ) then q * m = q m ; λ * m = λ m (q * m );
Compute X jmn from equation ( 21) ∀j ∈ {1, ..., J}, ∀n ∈ {m, ..., T }; m=m+1; Compute z s P from X jmn ; ∆z = z s P -z s-1 P ;

assumption was proved to be optimal for a class of incapacitated lot-sizing problems by [START_REF] Wagner | Dynamic version of the economic lot size model[END_REF]. For model (P 1 ), this assumption will not provide an optimal solution, but it may give a good solution.

To improve the results from the constructive heuristics, several local search moves have also been implemented.

Heuristic 1

This heuristic starts with an initial sorting of all products. Then, the entire setup is set for each product. The conguration values are set by assigning a setup to a product and a period if the production capacity associated with this period is able to cover the optimal sales of several periods, or if the capacity production is able to cover, at least partially, its own period. Finally, the setup conguration obtained is evaluated using the MRA algorithm presented in the previous section.

Four dierent decision rules are used to sort the products:

• S1: Sort the products according to decreasing values of βj log(αj ) ;

• S2: Sort the products according to decreasing values of αj βj (

1-1 β j cjt ) βj -1 ;

• S3: Sort the products according to decreasing values of α j ( 1-1 β j cjt ) βj ;

• S4: Sort the products according to decreasing values of ajt hjt .

The rst decision rule is based on a simple evaluation that dierentiates the products by their demand parameters. The second decision rule prioritizes the products with the highest potential revenue. The value used to sort the products is the optimal revenue if the product is processed and sold during the same period and the production capacity is sucient to produce it. This value is determined from model (RP 1 ). For the third decision rule, the value is the optimal quantity associated with the optimal revenue used for the second decision rule. Finally, the fourth decision rule sorts the products by using the ratio between the setup cost and the inventory cost. This last sorting rule prioritizes the products with the highest setup cost and the lowest inventory cost, and aims at minimizing the impact on the total setup cost.

Algorithm 2 summarizes the dierent steps of the proposed heuristic.

Algorithm 2: Pseudocode of Heuristic 1 Apply one of the four sorting rules; Initialize all setup values to 0;

C t,remaining = C t , ∀t; foreach j ∈ J do t=0; while t<T do if C t,remaining > α j ( 1-1 β j cj ) βj then Y jt = 1 and Y jt1 = 0 , ∀t 1 > t such that C t,remaining ≥ t1 k=t v j X * jk , with X *
jk being the optimal production quantity; Let t 2 be the last period covered by the production; Update(C t,remaining );

t = t + t 2 ; else if C t,remaining > 0 then Y jt = 1; C t,remaining = 0; t=t+1; else Y jt = 0; t=t+1;
Use the MRA algorithm to evaluate the solution;

Heuristic 2

During each period, the algorithm decides which products to produce, and how many periods are covered by the production. To determine the best assignment, the algorithm evaluates the partial solution value. For the evaluation, the remaining unassigned periods are lled with the setups (all remaining Y jt are xed at 1) and the evaluation of the setup conguration by MRA algorithm provides the objective value. The setup values for the remaining periods are xed at 1 to easily compare the solutions obtained. Owing to this partial evaluation, the algorithm is able to choose locally the best solution by trying dierent setup congurations and evaluating them.

The pseudocode of this heuristic is detailed in Algorithm 3. Within heuristic H1, the setup variables are product-dependent, whereas for heuristic H2, the setup variables are time-dependent. In addition, the solutions for heuristic H1 are evaluated at the end, whereas for heuristic H2, the solutions are evaluated after each step.

To improve the eciency of the heuristics, the instances have been solved consecutively from high to low capacity. The algorithm stores the previous solution. It evaluates this solution with the new capacity alongside the new one, to compare the results and keep the best one. Because the computational time of the heuristic remains at less than 1 s, it is possible to solve the instances with all dierent capacity values consecutively without too much computational eort. In addition to this, it may be wise for a company to determine the solutions for dierent production capacities to evaluate the benets of a change in such capacity. For such a company, the modication of the algorithm does not involve any change in the total computation time.

A solution evaluated with a decreased capacity will nevertheless remain of good quality because the MRA algorithm is able to re-assign the partial production between prod-ucts. This solution may also be better than that obtained using the heuristics again because the heuristics tend to increase the total number of setups when the production capacity is decreased, and the addition of a setup may sometimes be worse than a partial production.

Local search procedure

A local search is widely used after the constructive heuristics or metaheuristics are applied. This helps the algorithms avoid being stuck in a local optimum to obtain a better solution. Better solutions can sometimes be found by exploring the immediate neighborhood of the previous solution. Here, the neighborhood of a solution is represented only by the moves used to modify the solution. This neighborhood representation prevents an enumeration of all possible feasible solutions, therefore limiting the total computational cost of this representation.

Three local search moves are proposed. They are all used with a "rst-improvement" policy to limit the computational load of the local search.

• Move 1: Find two periods for which two products have a setup assigned to both periods; Unassign a setup period for each product.

• Move 2: Find two periods for which two products have a setup assigned to one period (not the same for both products); Swap their setup assignments for these two periods.

• Move 3: Shift one setup assignment of one product to another available period.

The rst move is particularly useful for instances with a low capacity, where the heuristics have trouble reducing the total number of setups. By deleting two setup assignments at two dierent periods, the production will be reported to other periods, and the prot impact from the total production decrease will be balanced by the cost decrease owing to the setup removal.

The second move aims at correcting some sub-optimal assignments due to the initial sorting for H1 or on-time sorting for H2. These sorting rules generate priority for the products, but the global impact of these priorities cannot be evaluated at the moment of a decision, and may be easily modied afterwards using this local search move. The third move has a lower impact than the second one as it aects only one product, although it can be helpful to improve a setup assignment. More specically, the H1 heuristic may provide an optimal setup assignment for one single product, becoming sub-optimal in the cases of multiple products, and the third move can rectify this.

Computational results

The two heuristics and the local search moves are tested on the instances proposed by Bajwa et al. (2016a) and [START_REF] Bajwa | Optimal product pricing and lot sizing decisions for multiple products with nonlinear demands[END_REF]. These instances are based on real-world data. For the second instance, setup costs have been added to adapt the data to our problem.

The data related to each instance is detailed in Table 1.

The dierences between the two instances lie mostly in the demand parameters α j and β j aecting the price range of the solutions. In addition to these parameters, several production capacities ranging between 40 and 110 are tested.

The two instances are tested on four demand scenarios, given by Table 2. These scenarios impact the demand seasonality γ jt for each product. The rst scenario represents the case without any seasonality. The second scenario has a low seasonality at the beginning of the horizon, and a high seasonality at the end. The third scenario is the opposite of the second one, with a decreasing seasonality. Finally, the fourth scenario is a mix between the second and third scenarios, with the seasonality depending on the product.

Table 3 illustrates the eect of the improvement of the model when using LINGO α j β j v j c jt h jt a jt 500 1.9 1.0 1.6 0.02 8.5 Instance 1 400 1.6 1.0 1.3 0.05 4.5 600 2.5 1.0 1.5 0.04 7.5 20000 3.5 1.0 3.0 0.035 10.5 Instance 2 18000 4.0 1.0 3.0 0.035 4.5 800 5.5 1.0 1.1 0.013 3.5 The raw results obtained with decreasing capacity are presented in Tables 4 and5.

Within the LINGO column, the solutions presented are those obtained by the solver for model P 1 with a 3,600 s time limit. LINGO is used along with its "global solver" setting.

On the tested instances, the solver is not able to guarantee the optimality of its solutions.

The following columns in Tables 4 and5 Within Table 6, the minimal, average, and maximal gaps (over all scenarios and production capacities) for each heuristic and each instance are presented. These gaps are given by the formula gap = z LIN -z M z LIN

, with z LIN corresponding to the solution obtained by LINGO software and z M corresponding to the solution obtained by one of the ten methods. The gap represents the percentage of deviation of the heuristic solutions compared to the solutions by LINGO.

In Figure 1, the curves represent the gaps between the heuristic results and the results of the LINGO software. These gaps are averaged over the dierent demand scenarios, and are plotted for each production capacity.

The top of the gure corresponds to the results for instance 1, and the bottom of the gure corresponds to the results for instance 2. On the left, heuristics are represented alone, and on the right, the results are obtained with the use of heuristics and local search moves.

Table 7 provides the percentage of deviation of the heuristic solutions from the LINGO software solutions for each instance and scenario (averaged over the capacity values).

As the rst analysis shown in the tables and gure, there is no method or sorting rule that outperforms all other methods on all instances. Methods M4 and M8 are those Instance 1 min 0.00% 0.48% 0.72% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% average 1.11% 2.41% 2.14% 0.56% 0.96% 1.04% 0.65% 0.50% 1.15% 0.90% max 4.38% 6.47% 4.17% 4.36% 3.76% 5.71% 3.15% 2.77% 4.53% 2.61%

Instance 2 min 1.07% 1.04% 1.15% 0.04% 0.33% 0.15% 0.81% 0.04% -0.15% -0.15% average 3.64% 2.55% 4.79% 2.49% 2.60% 1.87% 3.25% 1.85% 1.46% 1.18% max 9.40% 5.09% 14.93% 8.00% 9.27% 5.09% 9.19% 7.55% 4.52% 3.58% the average gaps but also the minimal and maximal gaps) than those obtained for the rst instance. In addition, the dierence between the sorting rules on instance 1 are not the same as that for the second instance. The local search slightly increases the results obtained by both heuristics, but performs better for far-from-optimum solutions than for close-to-optimum solutions.

Sorting rule S4 is the most ecient rule of the four. This eciency may be explained by its synergy with the way the heuristic assigns the setup values. As the algorithm assigns less setups to the rst products in the sorted list, the rule S4 helps the algorithm decrease the total inventory and setup cost.

For some parameter sets, the best solutions are all found using the same sorting rule, which is due to the resolution by decreasing the production capacity. This means that an optimal conguration for a given production capacity may remain optimal for smaller capacity values.

From Figure 1, it should be noted that the heuristics are particularly ecient for medium and high production capacity values, but less for low capacity values. The low capacities force the solutions to have a number of assigned setups. It is then dicult for the algorithms to decrease the total number of setups. For high production capacity values, the solutions tend to have few assigned setups, and the removal or addition of a setup usually has unexpected consequences on the production of other products.

Overall, by taking the best results between the H1 and H2 heuristics, and by using a local search, the worst solution obtained over every instance and parameter having a percentage of deviation of only 2.93%, and on average, for each instance and parameter set, the best solution obtained by either the H1 or H2 heuristic has a percentage of deviation of 0.49% compared to the LINGO solver. Scenario 1 0.85% 2.17% 1.67% 0.97% 0.69% 0.18% 0.24% 0.77% 1.79% 1.21% Scenario 2 1.52% 2.53% 2.50% 0.61% 1.43% 1.05% 1.06% 0.58% 0.66% 0.66% Scenario 3 0.51% 2.34% 1.59% 0.36% 0.22% 0.91% 0.48% 0.36% 1.00% 0.92% Scenario 4 1.57% 2.60% 2.80% 0.31% 1.49% 2.02% 0.82% 0.31% 1.14% 0.82% Instance 2 Scenario 1 3.62% 2.55% 5.56% 4.45% 2.02% 1.94% 3.28% 3.90% 1.98% 1.57% Scenario 2 3.94% 2.97% 6.38% 1.98% 3.07% 2.05% 3.79% 1.40% 2.65% 1.93% Scenario 3 2.27% 2.19% 2.90% 1.71% 1.53% 1.79% 2.19% 0.99% 0.26% 0.26% Scenario 4 4.74% 2.48% 4.32% 1.83% 3.79% 1.68% 3.74% 1.09% 0.97% 0.97% 

Conclusion and future research

In this study, we considered the problem of optimizing, simultaneously, production and pricing decisions while considering a capacity constraint limitation, multi-period time horizon, and multiple products to maximize prots.

As the rst contribution, we propose a non-linear mathematical formulation solved using LINGO software. On average, this mathematical formulation improves the quality of the solutions obtained with LINGO software by 84.4%.

The second contribution consists of new constructive methods to solve this problem.

These methods have been proven to be ecient in providing high-quality results on literature-based instances, reaching a worst deviation of 2.93% from the solver's solutions.

The results presented in this study have found for an isoelastic demand function and can easily be adapted to a linear demand function.

As a future extension of this study, an exact method can be developed to replace the use of LINGO software, and provide a proof of optimality for the obtained solutions.

Finally, the price of a product is not the only parameter impacting the customer's choice when buying. The guaranteed lead-time can also signicantly inuence their choices, and for some product categories, customers may have a reference price in mind from their previous purchases. These parameters may be included in the studied model to achieve a more accurate representation of industrial problems.

  represent the results obtained by the two constructive heuristics. The rst eight methods (M1 to M8) use the H1 heuristic with four sorting rules. In addition, methods M5 to M8 use three local search moves to improve the results obtained by the H1 heuristic. Finally, methods M9 and M10 correspond to the H2 heuristic, with M10 using a local search. A bold number in the tables represents the best result obtained with the methods developed. Finally, the lines "Number" and "Rank" represent the number of best solutions obtained with each method, and the rank based on these numbers.

  performing the best on instance 1. For the second instance, methods M9 and M10 provide the best results. The gaps obtained for the second instances are also greater (

Figure 1 :

 1 Figure 1: Average deviation for the ten heuristic methods compared to LINGO

  Keep the best solution for all values of j for period t; Update the best partial solution; Update t available from the partial solution;

	Algorithm 3: Pseudocode of Heuristic 2
	Initialize all setup values to 0;
	t available (j) = 1 , ∀j ∈ {1, ..., J};
	foreach t ∈ T do
	j=1;
	while j<J do
	if t available (j) = t then Assign the setup for period t of the current best partial solution by
	prioritizing product j;
	Complete the partial setup conguration by adding 1 to each
	non-assigned setup;
	Use the MRA algorithm to evaluate the current conguration;
	j=j+1;

Table 1 :

 1 Data for each instance(Bajwa et al. (2016a),[START_REF] Bajwa | Optimal product pricing and lot sizing decisions for multiple products with nonlinear demands[END_REF] 

	t	1	2	3	4	5	6
		0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
	Scenario 1 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
		0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
		0.1	0.1	0.1	0.2	0.2	0.3
	Scenario 2	0.1	0.1	0.1	0.2	0.2	0.3
		0.1	0.1	0.1	0.2	0.2	0.3
		0.3	0.2	0.2	0.1	0.1	0.1
	Scenario 3	0.3	0.2	0.2	0.1	0.1	0.1
		0.3	0.2	0.2	0.1	0.1	0.1
		0.3	0.2	0.2	0.1	0.1	0.1
	Scenario 4	0.3	0.2	0.2	0.1	0.1	0.1
		0.1	0.1	0.1	0.2	0.2	0.3
		Table 2: Demand scenarios Bajwa et al. (2016a)	
					Model P 0 Model P 1
	Instances without a feasible solution	10/64		0/64
	Average objective value	Instance 1 Instance 2	166.69 69.80		224.70 211.46

Table 3 :

 3 Comparison of the eciency of LINGO solver on models P 0 and P 1 software to solve it. The rst row represents the number of instances for which LINGO software found no feasible solution. The second and third rows show the average objective function value obtained when solving the instances of type 1 Bajwa et al. (2016a) or type 2 Bajwa et al. (2016b).

Table 5

 5 

	: Instance 2

Table 6 :

 6 Average, min, and max deviation from LINGO solver solutions

Table 7 :

 7 Gaps for each instance and scenario (averaged over the production capacity values)
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